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ABSTRACT

This paper explores methods of increasing the speed of a
Viterbi-based word-spotting system for audio document re-
trieval. Fast processing is essential since the user expects
to receive the results of a keyword search many times faster
than the actual length of the speech. A number of compu-
tational short-cuts to the standard Viterbi word-spotter are
presented. These are based on exploiting the background
Viterbi phone recognition path that is computed to pro-
vide a normalisation base. An initial approximation us-
ing the phone transition boundaries reduces the retrieval
time by a factor of 5, while achieving a slight improvement
in word-spotting performance. To further reduce retrieval
time, pattern matching, feature selection, and Gaussian se-
lection techniques are applied to this approximate pass to
give a total x50 increase in speed with little loss in per-
formance. In addition, a low memory requirement means
that these approaches can be implemented on any platform,
including hand-held devices.

1. INTRODUCTION

The message domain of many word-spotting applications,
such as personal memo and dictation retrieval, tends to be
very user-specific and liable to change over time. An open
keyword vocabulary is therefore essential to allow the user
to search for any term in the audio database. However,
if an open keyword set is used, the location of keyword
hits cannot be determined in advance of a retrieval request.
Since the user expects to receive the results of a keyword
search in a reasonably short time, the retrieval process must
operate much faster than the actual length of the speech.
For example, to achieve a response of 3 seconds for 1 minute
of data the processing needs to be 20x faster than real-time.

An approximation to a full Viterbi word-spotter with a
network of the keyword and filler models in a loop is pre-
sented that reduces the amount of computation necessary,
thereby, speeding up retrieval (section 3.). To further re-
duce retrieval time, feature selection, pattern matching, and
Gaussian selection have been applied (sections 5. to 6.). Ex-
perimental results are presented in section 7., showing an
overall speed improvement of x50. In addition to their
speed advantage, these methods require little memory so
they can be applied on any platform, including hand-held
devices. This contrasts with other fast implementation ap-
proaches reported previously such as lattice-based word-
spotting systems which have been shown to be very fast [3],
but require a large amount of memory for lattice storage.
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2. STANDARD WORD-SPOTTING SYSTEM

Two recognition passes are run in the standard word-
spotting system. In the first, the keyword and filler models
are run together to determine putative keyword hits. The
filler models are also applied separately to allow the filler
scores to be used to normalise the keyword scores [6]. Fig-
ure 1 shows the basic word-spotting system structure. A
concatenated string of phone HMMs is used to represent the
keyword, the keyword phone string. The full set of phone
HMMs is used in parallel as filler models to represent non-
keyword speech. The filler only recognition is effectively a
Viterbi phone recogniser and it can be applied in advance
when the message is recorded, as it is keyword independent,
so that only the keyword plus filler recogniser has to be run
when a search request 1s received.

Keywordg) Determine 7Keyv;<t)rzggphone
search request | Transcription
Keyword + Filler Ranked
Recognition keyword
Audio scores
document
Filler scores
Filler only + boundaries
Recognition

Figure 1. Word-spotting system structure

3. APPROXIMATION TO WORD-SPOTTING
RECOGNITION PASS

There is a large amount of duplification of effort in comput-
ing the filler model hypotheses in a standard keyword and
filler recogniser. This can be greatly reduced if instead of
calculating the filler probabilities at any frame, the Viterbi
filler hypothesis is used.

In word-spotting, only the score over the keyword frames
is required, not the total path score, e.g. the score for a
keyword between frames f(1) and f(2) is

log l(keyword) = logl(og(),--.,0)lkeyword) —
logl(of(ay, - - 0p(ny| filler) (1)

where log (o), ..., 0p(1)|filler) is the optimal filler path
log-likelihood score up to frame f(1). This has been calcu-
lated in the filler recogniser. lf the addition of a keyword is
assumed to not affect the path scores of keyword matches
elsewhere in the same path, then only the keyword frame
scores have to be calculated in the recogniser. If the forward
and backward Viterbi path scores are stored at each time
frame, O(2'1") frames must be stored, giving O(71?) possible
start and end points for each keyword [2].
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To further reduce the memory requirements and compu-
tation, the assumption can be made that the phone tran-
sition boundaries in the word-spotting path are identical
to those in the filler path. This assumption means that
the score up to a transition frame, £(1), is known and the
only requirement is to calculate the score for the keyword
starting at £(1) and finishing at ¢(2), where £(2) > t(1) are
phone boundaries in the filler path, as illustrated in fig-
ure 2. Since the scores and transitions are recorded at the
phone level, the maximum number of transitions possible
is of O(T/3) for 3 state phone models. Far fewer computa-
tions are, therefore, required in the word-spotter.
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Figure 2. Faster keyword spotting recognition pass, single key-
word case

Using the token passing paradigm [11], operation of the
recogniser 1s as follows. At each filler model boundary,
a token is propagated to the keyword model. The token
contents are set to match the filler model path up to that
frame. If any tokens are emitted by the keyword model at
this point, the highest scoring token is recorded. The ratio
scoring process, in which the keyword score is normalised
against the background Viterbi pass to improve the rank or-
der, can be performed immediately. The average keyword
frame score is normalised by the average filler model score
over the same set of frames (see figure 2). A threshold can
then be applied to test if the keyword should be accepted.
Once recognition is complete, overlapping keyword hits are
eliminated by removing any keywords of a lower score that
overlap with the best keyword and so on down the set of
putative hits. A ranked list of keyword hits, based on the
normalised score, is then made over all the audio documents
in the search space and the information given to the user.

4. PATTERN MATCHING

In the above approximation the keyword recogniser is ap-
plied to all frames of speech data to be searched. If the
recogniser is applied instead to a subset of the frames, then,
an improvement in speed will result. Since the same model
set is used in the keyword phone string and fillers, the phone
label information from the Viterbi filler path can be used to
determine which segments of the speech are likely to contain
a keyword.

The recognised phone path can be scanned for matches,
or partial matches, of the keyword phone string. The key-
word recogniser is then only run over those frames that lie
within matched segments. The simplest criterion to use for
a match is to force the recognised string and keyword string
to be identical. However, the number of matches found in
this way would be very small due to recognition errors, so
instead a partial match criterion is required.

Dynamic programming is used to perform the string
matching. Penalties for substitution, deletion and insertion
are used in the DP alignment algorithm. The penalties can
either be fixed or be phone dependent. Only the former is
investigated. For each starting point, the best DP align-
ment is stored provided at least one phone match between
the two strings is recorded. Further thresholding can be
applied based on the DP scores. To try and ensure that the

number of keyword frames eliminated is kept to a minimum,
the endpoints of the DP match can be extended by one or
more transition points, at the cost of increasing the search
space. To limit this increase a threshold can be applied to
prevent extension.

Most of the computational effort remaining is expended
computing the Gaussian output probabilities. The follow-
ing techniques reduce the number of probability calcula-
tions, thereby further reducing the retrieval time.

5. FEATURE SELECTION

The keyword recognition pass can be speeded up by reduc-
ing the number of features in each acoustic vector, thereby,
decreasing the number of Gaussian output probability cal-
culations performed. Power spectrum resolution, the F-
ratio, and mutual information have all been used to select
the optimum set of features to maximise discrimination and
recognition performance. However, manually selected sets
have typically out-performed these methods [10], so are used
here. Our standard system uses 39 element acoustic vectors
consisting of static MFCCs, energy, deltas and accelera-
tions. As an alternative, a reduced 26 feature set [10] has
been used to improve the response time by a factor of 3.
The set consists of

R(26) = Ci—i0,E,AC s, AE,A*Ci_s, A°E

This allows direct comparison with the standard 26 feature
set of statics, log energy and delta parameters.

6. GAUSSIAN SELECTION

An alternative approach would be to store the N highest
state likelihood scores per frame from the filler path. No
likelihood computation would then need to be done in the
word-spotting path. However, the memory cost of storing
the likelihoods may grow quite large. A more efficient ap-
proach is to use Gaussian clustering combined with vector
quantization.

It is well known that Gaussian models are statistically
accurate only if the input feature vector is “near” to the
Gaussian means. When the feature vector falls on the tail
of a distribution, the Gaussian model provides at best a
poor approximation of the likelihood. In this outlier case, a
simple approximation to the likelihood maybe sufficient. So
only the likelihoods of those Gaussian components for which
the input vector is not an outlier need to be calculated ex-
actly. To determine which Gaussians to use, all the mixture
components in the model set are clustered into neighbour-
hoods. A vector quantizer is defined, with a codeword for
each neighbourhood [1]. In the recogniser, each input fea-
ture vector is quantised. The likelihood of each Gaussian
in the corresponding cluster is calculated exactly. A quick
approximation is made to the likelihood of the other Gaus-
sians, for example by table look-up or by a small constant.

The Gaussian clustering was performed during HMM
training as follows. A weighted (Mahalanobis-like) Eu-
clidean distance between the means was used to calculate
the distance between the ith and jth Gaussians.

$(pomy) = 55 S {w®) k) — ()Y (2)

where D is the feature vector dimension, p;(k) is the kth
component of vector y;, and w(k) is equal to the inverse
square root of the kth diagonal element of the average of the



covariances of the Gaussian set G(u,,, Xm),m =1,..., M
where X, 1s the diagonal covariance of the mth Gaussian
component. Then, a clustering procedure based on the
Linde-Buzo-Gray algorithm was applied to minimise the av-
erage (per mixture component) distortion, 4.,

M
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bavg = 37 {{ggﬁ(um’%)} (3)
m=1

where M is the number of Gaussian components in the
model set, ® is the number of clusters (pre-defined), and
¢y is the centre (codeword) of the ¢th cluster yg,

ep=— Zumw—l ,® (4)
size X¢

mexe

The clusters produced by the above process are disjoint.
If used in recognition errors are likely, as the likelihood of
some Gaussians close to the input feature vector but not in
the selected cluster will not be exactly computed. Instead
clusters are allowed to share Gaussians as follows. Given a
threshold © > 1, an input feature vector, o, is said to fall
on the tail of the mth Gaussian if

DZ

where o7,() is the ith diagonal element of X,. Thus, if the
cluster centroid is taken to be a typical input feature vector
the neighbourhood, v4, of codeword ¢4, can be defined as
consisting of the Gaussians such that [1]

)_“m ))2 >0 (5)

G, Xm) €Eve iff —Z (es(i) = im (i) )_Nm()) <O (6)

o'a'ug

where o2, (1) is the ith diagonal element of the matrix of
the average covariance of the full Gaussian set. The use
of 02,,(1) in the criterion is preferred to o7,() since the
individual variance estimates are often noisy.

The wetghted distance measure in equation 6 takes no ac-
count of the variance of the cluster, so some Gaussians may
be incorrectly assigned. An alternative, class-weighted, dis-
tance measure was therefore implemented, where the neigh-
bourhood of codeword, ¢y, consists of the Gaussians such
that

)
Z \/ aav}q 0'(‘4)

where aid)(z') is the ith diagonal element of the cluster cen-

troid covariance, ¥¢, = 1/size(xg) Zm€X¢ -

The choice of © controls the average size of the Gaussian
neighbourhoods. Efficiency improves with reductions in ©
because fewer Gaussian likelihoods have to be computed
during recognition. However, there is a trade-off with the
recognition accuracy.

During recognition, the appropriate neighbourhood is se-
lected by determining the cluster centroid, ¢;, which min-
imises the weighted (Mahalanobis-like) FEuclidean distance

to the observation vector, o(t), at time ¢,

ci = min§(o(t), ¢g) (8)

he reduction in computation of the Gaussians, the com-
bl
putation fraction, C, is therefore

C — Gnew + VQcomp (9)
Grull

where Grew 1s the average number of Gaussians calculated
per frame in the selection system, G the total number
of Gaussians, and V Qcomp the number of computations re-
quired to calculate the VQ index. In the word-spotting sys-
tem, the VQ computation is carried out in the filler path
and the VQ indices stored with the MFCCs. This allows
more Gaussians to be calculated for the same computation
fraction in the word-spotting pass, as V Qcomp = 0.

7. EXPERIMENTAL RESULTS

7.1. System description
The Video Mail Retrieval Database (VMR1) [4] was used

for evaluation. The HMMs for each speaker were trained
on the read sentences (~ 200). Testing was carried out on
20 spontaneous speech messages from the same speaker.

46 speaker dependent, continuous density multiple com-
ponent Gaussian distribution, monophone HMMs were
used. FEach model had 3 emitting states, with 8 mix-
ture components per state, with a left-to-right topology, no
skips, except for the silence and pause models, both of which
were ergodic with 3 and 1 states respectively. The param-
eters used in the system were; 12 Mel-frequency Cepstral
Coeflicients, normalised log energy, and first and second
derivatives of all parameters, giving a vector size of 39, un-
less otherwise stated. The monophone HMMs were used in
the word-spotter for both the background filler models and
the sub-word units in the keyword models. The keyword
phone transcriptions were taken from the British English
Pronunciation (BEEP) dictionary [9]. For Gaussian selec-
tion, the likelihoods for Gaussians outside the VQ cluster
were approximated by a constant log likelihood value of -
500.0.

Putative keyword hits were re-scored by dividing the
maximum log likelihood keyword score by the average filler
model score over the same time frames. 'This has been
shown to yield a better keyword ranking than other pro-
posed schemes [6]. Results are averaged over the 15 speaker
set. The results are presented for acoustic hits, i.e. where
the phone sequence matches that of the keyword.

All training and testing used version 1.5 of the HTK
HMM toolkit [12], with suitable extensions to perform
word-spotting and implement the various speed-up tech-
niques.

7.2. Results

The results in table 1 show that a x5 reduction in compu-
tation time is achieved by using the keyword only recogniser
(Keyword) compared to the full keyword and filler recog-
niser (Full). A slight improvement in performance is also
observed. Applying DP with fixed penalties and requir-
ing a minimum of one hit per frame set (Fixed DP) gives
an extra 12% drop in retrieval time. However, the word-
spotting accuracy is severly degraded. This is chiefly due
to frames at the start and end of keywords being elimi-
nated by the search, lowering the keyword hit score. To
overcome this, the neighbouring transition boundary was
added to each end of the DP frame sets when the number
of hits was less than the length of the keyword phone string
(Fixed Extd DP). Using this DP match, the word-spotting



System No. of False Alarms Rel

1T 1 3 | 1-10 Time
Full 64.3 | 81.0 82.7 1.000
Keyword 66.2 | 82.7 84.9 0.200
Fixed DP 35.6 | 44.2 47.5 0.080
Fixed Extd DP 65.3 | 81.9 84.2 0.140
Fixed Extd2 DP 65.5 | 81.4 83.8 0.030
Fixed DP, No Acoust 50.0 | 57.9 60.6 0.001
Std 26 Features 62.8 | 78.4 80.6 0.133
Sel 26 Features 63.3 | 77.8 80.0 0.133
GS Nc64 Weight 64.4 | 80.7 83.1 0.133
GS Nc64 ClassWt 65.2 | 81.2 83.6 0.133
GS Nc128 ClassWt 64.8 | 81.0 83.6 0.133
GS Nc64 ClassWt DP 64.9 | 81.0 83.1 0.020
GS Nc128 ClassWt DP || 65.1 | 80.8 83.2 0.020

Table 1. Word-spotting performance (% hits per false alarm)
and relative retrieval times

performance of the full system is achieved, but computa-
tion time is increased. By adding the constraint that at
least 2 keyword phone matches must be found in a frame
set (Fixed Extd2 DP), word-spotting performance is main-
tained at the full level, while reducing the computation time
to 1/30th. When the DP match is used on its own (Fixed
DP, No Acoust) a much faster response is achieved. How-
ever, the word-spotting performance is once more severely
degraded, showing the need for a keyword recogniser.

If the accelerations are not used, the acoustic vector re-
duces from 39 to 26 features (Std 26 Features). This gives
a 1/3rd reduction in the computation time in the keyword
recognition time, but a drop in word-spotting performance
is observed. The latter was expected to be improved by us-
ing a selected set of 26 features. However, a slightly poorer
performance is observed using the 26 element set defined in
section 5. (Sel 26 feature).

For Gaussian selection, 64 weighted (GS Nc64 Weight),
and 64 and 128 class-weighted (GS Nc64 ClassWt, GS
Nc128 ClassWt), clusters were investigated. In all cases, it
was found that the number of likelihood calculations could
be reduced to 50% with little loss in word-spotting perfor-
mance. Table 1 gives the performance for © = 2.2, where
49.8, 47.1% and 42.3% gaussians were computed for the
64 weighted, and 64 and 128 class-weighted cases respec-
tively. Hence, a 1/3rd reduction in retrieval time is possible,
as for feature selection, but with little degradation in per-
formance. As fewer Gaussians were computed per frame,
the word-spotting performance dropped. A slower rate of
degradation was seen using a class-weighted compared to a
weighted tail threshold. Increasing the number of clusters
further slowed the drop in performance. For example an
average of 81.4% hits per false alarm were achieved using
30.5% Gaussians and 128 clusters, compared to 76.2% using
28.1% Gaussians and 64 class-weighted clusters, and 74.0%
using 28.7% Gaussians and 64 weighted clusters. Similar
behaviour was observed when Gaussian selection was added
to the pattern matching system, Fixed Extd2 DP, (GS Nc64
ClassWt DP, GS Nc128 ClassWt DP). This combined sys-
tem reduced the retrieval time to 1/50th of the full system.

Gaussian selection also reduces the computation required
for the filler path. For a particular tail threshold, ©, the
proportion of likelihoods that have to be computed exactly
is less than that needed in the word-spotting path. With
©® = 2.2, computation fractions of C' = 0.43 and 0.50 were
required for 64 and 128 class-weighted clusters, respectively.

8. CONCLUSIONS AND FURTHER WORK

Low cost approaches to open vocabulary word-spotting
have been presented. These stemmed from an approxima-
tion to the full word-spotting pass using a precomputed
filler pass, the keyword only recogniser. The basic method
increased the retrieval speed x5, and yielded a slight im-
provement in word-spotting performance. Pattern match-
ing, feature and Gaussian selection were then applied to in-
crease the speed further. Experimental results showed that
by adding pattern matching and Gaussian selection to the
keyword only recogniser a x50 reduction in time is possible
with little loss of word-spotting performance.
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