
USE OF GAUSSIAN SELECTION IN LARGE VOCABULARY CONTINUOUS
SPEECH RECOGNITION USING HMMS

K.M.Knill, M.J.F.Gales and S.J.Young

Cambridge University Engineering Department,
Cambridge, CB2 1PZ, UK�

kmk,mjfg,sjy � @eng.cam.ac.uk

c
�

IEEE 1996 Appears in : Proc. ICSLP-96

ABSTRACT

This paper investigates the use of Gaussian Selection (GS) to reduce
the state likelihood computation in HMM-based systems. These
likelihood calculations contribute significantly (30 to 70%) to the
computational load. Previously, it has been reported that when
GS is used on large systems the recognition accuracy tends to de-
grade above a ��� reduction in likelihood computation. To explain
this degradation, this paper investigates the trade-offs necessary be-
tween achieving good state likelihoods and low computation. In
addition, the problem of unseen states in a cluster is examined. It
is shown that further improvements are possible. For example, us-
ing a different assignment measure, with a constraint on the number
of components per state per cluster, enabled the recognition accu-
racy on a 5k speaker-independent task to be maintained up to a ���
reduction in likelihood computation.

1. INTRODUCTION
In recent years, high accuracy large vocabulary continuous speech
recognition systems have been developed. However, most systems,
in particular those based on HMMs, have tended to operate at sev-
eral times real-time. To convert laboratory systems into useful prod-
ucts, techniques are required to reduce the decoding time to faster
than real-time, while maintaining, or staying close to, the same level
of accuracy. A number of methods have been proposed in the lit-
erature, falling into the following general categories; pruning, ty-
ing, feature selection, and Gaussian selection. Since the evaluation
of Gaussian likelihoods can dominate the total computational load,
taking between 30 to 70% of the computation, the latter category is
of particular interest and is the topic of this paper.

The motivation behind Gaussian Selection (GS) is as follows. If an
input vector is an outlier with respect to a component distribution,
i.e. it lies on the tail of the distribution, then the likelihood of that
component producing the input vector is very small. This results
in the component likelihoods within a state having a large dynamic
range, with one or two components tending to dominate the state
likelihood for a particular input vector. Hence, the state likelihood
could be computed solely from these components without a notice-
able loss in accuracy. GS methods attempt to efficiently select these
components, or a subset containing them, at each frame.

GS was originally proposed by Bocchieri [3]. The acoustic space

is divided up during training into a set of vector quantised regions.
Each component is then assigned to one or more VQ codewords.
During recognition, the input speech vector is vector quantised.
Only the likelihoods of the components associated with the VQ
codeword corresponding to the observation vector are computed
exactly and the remaining likelihoods are approximated. In Boc-
chieri’s work, the VQ codebooks were generated by clustering the
Gaussian components. An alternative data driven approach was pro-
posed by Murveit et al [7]. Recently a number of direct search meth-
ods have been proposed. However, these are typically system spe-
cific, e.g. requiring a single shared covariance [1], or a large number
of components per state [4].

This paper investigates the GS approach proposed by Bocchieri. In
particular, the paper addresses the problem of limited performance
when pruning (beam-search) is applied. Bocchieri reported that
on context-independent systems with no pruning reductions of up
to ��� in the likelihood computation can be made [3]. However,
this drops to ��� when pruning is applied in a context-dependent
system [2]. The causes of this degradation are investigated on the
CUED-HTK system used on the 5k Hub 2 task in the 1993 ARPA
evaluation [9], reimplemented in HTK V2.0 [10].

2. GAUSSIAN SELECTION METHOD
The Gaussian clustering was performed during HMM training as
follows. A weighted (Mahalanobis-like) Euclidean distance be-
tween the means was used to calculate the distance between the 	 th
and
 th Gaussians.������������������� �� � "!�#%$ ��&'�(��� � ��&)��*+� � ��&'�,�,-/.

(1)

where
�

is the feature vector dimension,
� � ��&)�

is the
&

th compo-
nent of vector

� �
, and $ ��&'� is equal to the inverse square root of

the
&

th diagonal element of the average of the covariances of the
Gaussian set 0 ���"12�43 1 �(�456� � �8797:79�4; , where

3 1
is the diag-

onal covariance of the
5

th Gaussian component. Then, a clustering
procedure based on the Linde-Buzo-Gray [6] algorithm was applied
to minimise the average (per Gaussian component) distortion,

�=<:>9?
,��<9>9?@� �; A�1 "! BDCEGFIHJ K! �����12� c J �8L (2)

where
;

is the number of Gaussian components in the model set,�
is the number of clusters (pre-defined), and c J is the centre (code-

word) of the � th cluster � J ,

c J � �� 	���� � � J � �1	��
�� � 1 � � � � �879797:� � (3)

The clusters produced by the above process are disjoint. If used in
recognition, errors are likely since the likelihood of some Gaussians
close to the input feature vector but not in the selected cluster will
be excluded from the full computation. To avoid this, clusters share
Gaussians as follows. Given a threshold �� � , an input feature
vector, � , is said to fall on the tail of the

5
th Gaussian if�� �� � "! ��� � 	 �K* � 1 � 	 �,� .� .1 � 	 � � (4)

where � .1 � 	 � is the 	 th diagonal element of
3 1

. Thus, if the clus-
ter centroid is taken to be a typical input feature vector the neigh-
bourhood, � J , of codeword c J , can be defined as consisting of all
Gaussians such that [3]

� ����12�43 1 ��� � J 	���� �� �� � "! ��� J � 	 �"* � 1 � 	 �,� .� .<9>:?/� 	 � � (5)

where � .<9>9? � 	 � is the 	 th diagonal element of the matrix of the av-
erage covariance of the full Gaussian set. The use of � .<9>9? � 	 � in
the criterion is preferred to � .1 � 	 � since the individual variance es-
timates are often noisy.

The weighted distance measure in equation 5 takes no account of
the variance of the cluster, so some clusters grow too large. An
alternative, class-weighted, distance measure was therefore imple-
mented, where the neighbourhood of codeword, c J , consists of the
Gaussians such that

� ��� 1 �:3 1 ��� � J 	���� �� �� � "! ��� J � 	 �"* � 1 � 	 �,� .� � � .<9>9? � 	 � � . � � 	 �,� � (6)

where � . � � 	 � is the 	 th diagonal element of the cluster centroid co-
variance,

3
c
� � �"! � 	#��� � � J �%$ 1	��
 � 3 1

.

During recognition, the appropriate neighbourhood is selected by
determining the cluster centroid, c

�
, which minimises the weighted

(Mahalanobis-like) Euclidean distance to the observation vector,
� �'& � , at time

&
,

c
� � CEGFIHJ "! �� � �'& �(� c J � (7)

Each state likelihood is calculated by exactly determining the log
likelihoods of components within the selected cluster and approx-
imating, by a discrete value, the other components. The reduction
in computation of the Gaussians, the computation fraction, (, is
defined as

(� �*)�+-,/.1032 '4 165�3798":;: (8)

where
�)�+-, � �3798":;:

are the average number of Gaussians calculated
per frame in the GS and full system respectively, and

0<2 '4 165
the

number of computations required to calculate the VQ index.

The choice of in equation 6 controls the average size of the Gaus-
sian neighbourhoods. Efficiency improves with reductions in
because fewer Gaussian likelihoods have to be computed during
recognition. However, there is a trade-off with the recognition accu-
racy. For states with at least one component assigned to a selected
cluster, errors can occur if some components that make a significant
contribution to a state likelihood are not contained in that cluster.
The state likelihood is likely to be poorly approximated in this case.
Further errors can occur due to ‘state flooring’. When no compo-
nents from a state are assigned to the selected cluster the state likeli-
hood is simply given a discrete approximate value, i.e. it is floored.
Since it is possible for an input vector to be an outlier with respect
to all the component distributions of a state on the optimal path, the
state flooring chosen can be crucial to maintaining accuracy. This is
investigated in the next section.

A good cluster assignment is therefore one which assigns all, or
most of, the components that contribute significantly to state like-
lihoods for that region of acoustic space, while assigning as few
non-contributing components as possible.

3. EXPERIMENTAL RESULTS

3.1. Experimental Setup
The November 1993 ARPA WSJ evaluation Hub 2 task consists of a
5k word closed vocabulary, with a standard bigram language model
provided by Lincoln Labs, the 5K Closed NVP bigram. Pronuncia-
tions were taken from the Dragon Wall Street Journal Pronunciation
Lexicon version 2.0 with some locally generated additions and cor-
rections.

The experiments reported here used the HMM model set trained for
the Hub 2 task. This set consists of continuous mixture density, 8
mixture component, tied state, word-internal triphone HMMs corre-
sponding to a 44 base phone set plus silence and optional inter-word
silence models. All the speech phone models had three emitting
states, and a strictly left-to-right topology. Acoustic features are 12
MFCCs and log energy plus first and second derivatives (total 39
dimensions). State tying was performed using a decision-tree based
algorithm. More details may be found in [9]. The decoding was
performed using the HTK V2.0 tool HVite [10].

HTK V2.0 [10] was also used to build the GS codebooks. The code-
books were flat with 256 codewords. A standard flat search was im-
plemented to eliminate effects of codebook search errors from the
results (faster methods such as [8] can reduce the search cost to a
few percent relative to the standard full search). Results are given
for both lattice rescoring and full recognition experiments. The for-
mer were performed for speed of execution, and serve to illustrate
the general behaviour. Since the codebook search is disproportion-
ate to the search-space of the lattices, reductions in computation
are only considered in terms of the percentage of component likeli-
hoods computed with GS with respect to the none GS lattice system.
These percentages tend to be slightly high with respect to the actual
reductions that can be achieved in the full recognition system. For
this full system, computation reduction is presented using the com-
putation fraction defined in equation 8.

3.2. Gaussian To Cluster Assignment

10 15 20 25 30 35 40 45 50 55
12

13

14

15

16

17

18

19

20

% COMPONENTS CALCULATED PER FRAME

%
 W

O
R

D
 E

R
R

O
R

12.69

FULL

WEIGHT

CLASS−WEIGHT

Figure 1: Word error against % component likelihoods calculated
per frame for weighted and class-weighted assignment measures at
tail thresholds # 1.0,1.3,1.6,1.9,2.2

-
using lattice rescoring.

It was previously reported that a cluster class-based (“class-
weight”) distance measure improved the assignment of components
to cluster neighbourhoods compared to a standard average weighted
distance measure on a SD word-spotting task [5]. Figure 1 shows
that this holds for a speaker-independent LVCSR task. All further
results are, therefore, presented using the class-weighted measure.

3.3. State Flooring
From figure 1, it can be seen that the class-weighted system ac-
curacy matches the non-GS system for tail thresholds of 1.6 and
above. Even at these thresholds the choice of approximate log like-
lihood for components outside the frame cluster was found to be
important. If the likelihood is too small reasonable paths may be
killed, whereas poor paths may remain within the search space if
the likelihood is too large. The choice of approximation is espe-
cially sensitive when no components from a state belong to the se-
lected cluster so ‘state flooring’ occurs. A good approximate log
likelihood score was found empirically.

To test whether the GS performance degrades below the 1.6 tail
threshold due to the state likelihoods of components within a se-
lected cluster being poorly determined or due to state flooring, the
1.3 system was run as follows. If no components from a state be-
longed to the VQ codeword at a particular frame then the true like-
lihood of that state was computed. Otherwise, the state likelihood
was computed only from those components lying within the code-
word cluster. With this approach, the 1.3 system was able to attain
the standard system accuracy. This indicates that a significant part
of the failing of the lower thresholds is due to state flooring.

As a very basic solution, each cluster was forced to contain at least
one component from each state. If no components from a state met
the tail threshold, then the closest component to the cluster centroid
from that state was assigned to the cluster. Since no states were
floored no approximations were required for the components out-
side the cluster. Under this constraint, word error rates close to the
standard system (12.69%) were observed throughout the tail thresh-
old range, but at the cost of an increase in the number of components
calculated, as shown in table 1.

Tail Standard GS Min 1 CSC
% Lhood Word % Lhood Word

calc error calc error
1.0 13.17 18.17 23.37 13.07
1.3 22.55 13.89 30.31 12.88
1.6 33.08 12.80 38.77 12.72

Table 1: Word error against % component likelihoods calculated
per frame for the standard GS system and for GS with at least one
component per state per codeword (CSC) at assignment tail thresh-
olds of # 1.0,1.3,1.6

-
using lattice rescoring.

3.4. Constrained Gaussian Selection
The good performance at tail thresholds of 1.6 and above is achieved
at the expense of excess computation. Examination of the cluster
sets at these thresholds showed that many clusters contained several
components from the same state. This is in contradiction with the
motivation behind GS, namely that the state likelihood calculation
is dominated by one or two components, implying that some unnec-
essary computation is being performed. As a first, simple, solution
to this problem the number of CSC was limited to a fixed number,�

. If more than
�

components from a state satisfied the tail thresh-
old then the closest

�
components to the codeword centroid were

assigned to that cluster.

In addition, the results in table 1 suggest that most of the dominant
likelihoods required for exact computation in a cluster lie within the
1.3 tail threshold, with the remaining important components in the
region from a tail of 1.3 to 1.9. Thus, a dual ring CSC constraint was
applied. In this, the number of CSC was constrained at an inner tail
threshold, as in the single ring approach, and between the inner tail
and an outer tail threshold. Approximating the components outside
the cluster with a discrete log likelihood (since some states were
floored), the results shown in table 2 were obtained.

Approach Inner Max Outer Max Comp Fr Word
tail CSC tail CSC C error

Standard - - - - 100.0 12.72
Standard GS 1.6 - - - 24.1 12.75
Single ring 1.6 4 - - 18.4 12.88

1.9 3 - - 20.3 12.88
1.9 4 - - 24.3 12.46

Double ring 1.3 4 1.6 1 17.7 12.69
1.3 4 1.9 1 20.4 12.54

Min 1 CSC 1.3 - - - 24.9 12.94

Table 2: Word error against computation fraction for full recogni-
tion pass using: standard system, standard class-weight, and class-
weighted system with one or two ring constraints on the maximum
number of CSC, and with a minimum of 1 CSC.

Table 2 shows that a ��� reduction in computation was achieved us-
ing the standard class-weighted measure without loss in accuracy.
Further reductions were achieved without loss in accuracy by ap-
plying a single maximum constraint of 4 CSC at a tail of 1.6 or 3
CSC at a tail of 1.9. Tighter constraints led to a drop in performance
due to the sub-optimal selection of the components. For example,
input vectors at the centre and edge of a cluster are likely to be best

fitted to different components within the cluster1.

The double ring constrained system produced the greatest computa-
tion reduction. From table 2 it can be seen that most of the dominant
likelihoods lie in the 1.3 tail boundary. In experiments performed
with an inner ring tail threshold of 1.0, the accuracy degraded as
important components were eliminated from the clusters. As shown
by table 1, the 1.3 tail threshold requires some further components
from outside this boundary. Table 2 shows that a single component
in the outer ring from a tail of 1.3 to 1.6 is sufficient to match the
standard system accuracy with a computation fraction of just 17.7%.
Hence, a � � � reduction in likelihood computation can be achieved
without an increase in the word error on a pruned system. The over-
all reduction in decoding time will depend on the ratio of search to
likelihood computation time. This is dependent on the amount of
pruning and level of tying used.

3.5. Comparison With Pruning
The number of likelihood computations can also be reduced by
tightening the pruning. Since it reduces the search space, prun-
ing can have a greater effect on overall computation than GS. In
the standard system above a pruning threshold of 300 was used.
It was found to be possible to tighten this threshold to 250 before
significant degradation in error was noticed. Table 3 shows that at
this threshold the decoder requires the same overall amount of com-
putation as the best GS system at a beam-search threshold of 300.
However, GS can be applied to the 250 decoder yielding more com-
putation reductions.

Beam-search Approach Comp Fr Total Comp Word
threshold C wrt 300 error
300 No GS 100.0 100 12.72

2-ring GS 17.7 71 12.69
250 No GS 100.0 70 12.95

2-ring GS 20.3 52 12.93

Table 3: Word error against computation for full recognition pass
with pruning thresholds, 250 and 300, using no GS and the best
two-ring constrained GS.

4. CONCLUSIONS
For a given input vector, a state likelihood can be computed from
a subset of the components belonging to that state. The aim of GS
is to pre-select these subsets so that the state likelihoods are deter-
mined with as few calculations as possible without degrading the
recognition accuracy. This paper has shown that GS introduces er-
rors due to (i) the omission of significant, in terms of their contri-
bution to a state likelihood, components from clusters, and (ii) state
flooring. In minimising the errors’ effects, the Gaussian clusters be-
come over-assigned, with many clusters containing multiple com-
ponents from the same state. The resulting extra calculations limit
the computation reductions that can be achieved to � ��� when ef-
ficient pruning techniques are applied to a standard GS LVCSR.

To reduce the over-assignment of components to clusters, the as-

1This approach did not work on a SD word-spotting system as the more
tightly clustered (in acoustic space) components were more susceptible to
incorrect elimination of a component.

signment was first improved by use of a class-weighted distance
measure. This achieved a ��� reduction in computation without loss
in accuracy. To further reduce the over-assignment, while retaining
the significant components, the number of components per state per
cluster (CSC) was constrained. The selection of components was
very crude, with those closest to the centroid being assigned. Even
so, this constraint enabled computation to be reduced to � ��� with
no degradation. In particular, a dual ring approach, in which the
number of CSC was constrained at both an inner tail threshold, and
between the inner tail and an outer tail threshold, yielded a word
error of 12.69% at a computation fraction of 17.7%, compared to
12.72% word error in the system without GS. This was based on
the observations that most significant components lie within a fairly
tight tail threshold, but inclusion of some components from outside
this threshold is essential to prevent state flooring problems.

5. ACKNOWLEDGEMENTS
Kate Knill is funded by Hewlett-Packard Labs, Bristol, UK. Mark
Gales is supported by a Research Fellowship from Emmanuel Col-
lege, Cambridge.

6. REFERENCES

1. P. Beyerlein and M. Ullrich. Hamming distance approximation
for a fast log-likelihood computation for mixture densities. In
Proc. Eurospeech, pages 1083–1086, Madrid, 1995.

2. E. Bocchieri. A study of the beam-search algorithm for large
vocabulary continuous speech recognition and methods for im-
proved efficiency. In Proc. Eurospeech, volume 3, pages 1521–
1524, Berlin, 1993.

3. E. Bocchieri. Vector quantization for efficient computation of
continuous density likelihoods. In Proc. ICASSP, volume II,
pages II–692–II–695, Minneapolis, 1993.

4. J. Fritsch and I. Rogina. the bucket box intersection (bbi) al-
gorithm for fast approximate evaluation of diagonal mixture
gaussians. In Proc. ICASSP, volume 2, pages II–273–II–276,
Atlanta, 1996.

5. K. M. Knill and S.J. Young. Fast implementation methods
for Viterbi-based word-spotting. In Proc. ICASSP, volume 1,
pages I–522–I–525, Atlanta, 1996.

6. Y. Linde, A. Buzo, and R. M. Gray. An algorithm for vector
quantizer design. IEEE Trans Comms, COM-28(1):84–95, Jan
1980.

7. H. Murveit, P. Monaco, V. Digalakis, and J. Butzberger. Tech-
niques to achieve an accurate real-time large-vocabulary speech
recognition system. In Proc. ARPA Workshop on Human Lan-
guage Technology, pages 368–373, Plainsboro, N.J., Mar 1994.

8. G. Poggi. Fast algorithm for full-search VQ encoding. Elec-
tronics Letters, 29(12):1141–1142, June 1993.

9. P.C. Woodland, J.J. Odell, and S.J. Young. Large vocabulary
continuous speech recognition using htk. In Proc. ICASSP, vol-
ume II, pages 125–128, Adelaide, 1994.

10. S. Young, J. Jansen, J. Odell, D. Ollason, and P. Woodland.
The HTK Book (for HTK V2.0). Entropic Cambridge Research
Laboratory Ltd, Cambridge, U.K., 1996.

