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Summary

Hidden Markov models (HMMs) have been used successfully for speech recognition for many
years. However, in some respects the assumptions behind HMM models are poor. HMMs
model only the within-class data and no attempt is made at discriminating between classes.
This is a problem, especially in speaker independent systems where a wide variety of speakers
may be used. This thesis considers the problem of acoustic modelling in speaker independent
systems in two ways: (a) by incorporating discrimination into the HMM framework; and,
(b) by adapting the HMMs to the chosen speaker (speaker adaptation). In both cases,
linear transformation methods are proposed which aim to tune the model parameters on a
class-specific basis to improve the modelling. Particular emphasis is placed on applications
in large vocabulary continuous speech.

The acoustic-class discrimination problem is addressed at the HMM state level by con-
sidering the feature space representation of each class. Confusable class distributions are
identified and class-specific mappings in the form of linear transforms are used to sepa-
rate the within-class data from confusable data. The transforms reduce the dimensionality
of the feature space so that those elements in the feature space which are confusable are
discarded. Two methods of identifying confusable distributions are considered, one data-
driven using data from the training set, and the second based on the distances between
class distributions.

For speaker adaptation, a new approach using transformations, termed maximum like-
lihood linear regression (MLLR), is derived. Transforms are associated with each com-
ponent distribution within the HMM system and estimated using a maximum likelihood
approach similar to standard HMM parameter estimation. The transforms capture the gen-
eral speaker characteristics between the current system parameters and the new speaker.
A flexible form of tying of transforms is derived to make efficient use of the available data,
allowing adaptation on small amounts of example speech. The method can be implemented
in supervised or unsupervised adaptation modes and the flexible framework can be extended
for incremental adaptation.

The discriminative and speaker adaptation transformations have been evaluated on a
1000 word task (Resource Management), and the speaker adaptation has also been evaluated
on a larger 5000 word task (Wall Street Journal).

Keywords: Hidden Markov models, speech recognition, discrimination, feature extrac-
tion, speaker adaptation, maximum likelihood linear regression.
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Notation

The following notation has been used in this work.

x a vector (lower case bold)

A a matrix (upper case bold)

z’ the vector transpose of x

Al the inverse of matrix A

| A the determinant of matrix A

tr(A) the trace of matrix A

T an estimate of x

u a Gaussian mean vector

b a Gaussian covariance matrix

A the parameters of a HMM model set

(C) a set of model state sequences

(7] a single model state sequence

F(x) the likelihood of @
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Chapter 1

Introduction

Over the last twenty years much research has been performed in the field of speech recog-
nition with the volume of new ideas expanding as rapidly as the power of computers.
Although a perfect speech recogniser is still a distant dream, the technology available today
has reached a level where applications may be considered. There is, however, still much re-
search to be performed in many different areas to improve the recognition systems available.
Many current systems are designed for very limited tasks in controlled environments, and
perform poorly when extended to more general situations. These problems of robustness
must be addressed before general real world applications can be considered.

A speech recogniser is a device which takes an utterance of speech and processes it to
produce a hypothesis of the sequence of words in the utterance. The actual process is,
however, extremely difficult due to the large amount of variability that appears in various
stages of the process. There is a great deal of variability in the speech wave itself. No
person is physically able to produce the same utterance in exactly the same acoustic form
twice, and the same utterance by different speakers results in two completely different forms.
The environment in which the recognition system is used can affect the acoustic forms due
to the channel conditions, such as microphone used, and the background noise. Further
variation comes from the number of speakers which use the system, the style of speaking,
the vocabulary used and the grammar used.

Designing a speech recogniser to cope with the variations is a difficult problem, and as
a result, research is focused on resolving only a small number of these problems at once.
The problem of channel conditions is usually overcome by using the same environment for
developing and testing a system, and ensuring that only clean speech (no background noise)
is used. In the early years of speech research tasks were limited to considering only isolated
words from specific speakers. Such systems had no grammar and the vocabularies used
were very small. Gradually techniques developed allowing systems which were not limited
to a specific speaker, so called speaker independent systems, and allowed continuous speech
instead of isolated words.

At the present point in time, the methods have moved forward far enough to consider
sentences of continuous speech made up from words of reasonably large vocabularies. In-
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deed, as the system in chapter 8 will demonstrate, recognition performances on tasks with
supposedly unlimited vocabularies can be very good. However, the tasks are still being lim-
ited in many ways such as using only clean speech, and all speakers having fairly standard
accents. Thus, much research effort is being directed at improving the underlying basics so
that the techniques can be extended to less restricted tasks.

1.1 Large Vocabulary Speech Recognition

Hidden Markov models (HMMs) are the most successful and widely used speech recognition
technique, although other techniques such as neural networks [94] give good recognition
performance.

The HMM approach is an extremely effective recognition technique when the tasks
are limited to very small vocabularies. For example, a word recognition rate of over 99%
can be achieved with a connected digit task [83]. The extension to larger vocabularies is,
however, non-trivial. The increased number of words leads to a much wider range of acoustic
phenomena, especially when dealing with continuous speech. Much more variation in the
speech occurs, leading to increased misclassification of the speech classes. To overcome this
problem the acoustic modelling needs to be improved. Adding other knowledge sources to
restrict the search for sentence hypotheses, for example grammatical constraints, can also
aid recognition by reducing the number of possible classes considered at any one time.

Acoustic

Modelling

Speech

. . Recognition
—_— Recognition Algorithm

Hypothesis

) 1 Other Knowledge |
Lexicon Language Model |
| Sources

Figure 1.1: Schematic diagram for a large vocabulary speech recogniser

Figure 1.1 shows a schematic diagram for a large vocabulary recognition system, incor-
porating lexical constraints for word pronunciations, language models for constraining the
word possibilities (due to grammatical constraints, syntax etc.), and the acoustic modelling
component. Other knowledge sources such as domain dependent factors or semantic inter-
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pretation, can be incorporated, but, except for task dependent grammars, no examples of
the use of such high level knowledge being incorporated into the basic recognition paradigm
exist.

The definition of a large vocabulary is relative to the current perceptions of size. In
the initial stages of the work for this thesis, the 1000-word task resource management
task considered for much of the evaluation of ideas was considered large. However, by the
completion of this work, recognition tasks on unlimited texts with a 65000 word vocabulary
were being considered.

1.2 The Acoustic Modelling Problem

The core of any speech recognition system is the ability to accurately model the set of
acoustic classes chosen as the basic units of recognition. If the acoustic modelling is poor,
the effect of additional knowledge gained from language modelling or lexicons is limited.
Ever since HMMs were first proposed, great effort has been put into trying to improve the
acoustic modelling aspect. Recognition is performed by matching the observed unknown
speech to the model which is most likely to have generated that speech. The acoustic
modelling problem is thus twofold: (a) to maximise the likelihood of correctly identifying
speech belonging to the correct model; (b) to minimise the chance of misclassifying speech
by assigning it to the incorrect model.

Traditional approaches to estimating the models concentrate only on the first problem,
and ignore the second. Improving the recognition rate of one model may also increase the
chances of that model matching speech from other models, thus the overall recognition rate
may not improve. This problem of discrimination has been addressed by several people (e.g.
Brown [16]), mainly in terms of alternative methods for estimating the model parameters.
The aim of many of these methods is to improve the poor assumptions that are made when
using HMMs for speech recognition, since from a speech production point of view HMMs
are notoriously poor models. Although the results of some of these attempts have been
successful on small tasks, the extension to larger tasks has proved more difficult and few
effective methods have been reported.

1.3 Speaker Independent and Speaker Dependent Modelling

When considering large vocabulary systems the training of the model parameters is of
paramount importance. As with any pattern recognition system, the estimation of HMMs
relies on the amount of data available for training. The more example speech data that is
available the more detailed the acoustic modelling can be. For speaker independent systems
the data can be drawn from many different sources and there is no onus on any one speaker
to provide a substantial amount of spoken utterances. The resulting system must model
both intra-speaker and inter-speaker variations in speech, and hence the acoustic modelling
for large vocabulary systems needs to be extremely detailed.
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If a system is required to recognise just one speaker, the situation is different. A large
amount of example speech is still required to train the models for a sufficient degree of
modelling accuracy in large vocabulary systems, but the data must be provided by the
single speaker. This puts a large burden on the chosen speaker, although speaker dependent
systems do typically perform much better than speaker independent systems [69].

In many applications it is not feasible for a single speaker to provide a substantial amount
of training data, thus a speaker independent system must be used. In other applications
where the system is nominally speaker independent, but a single speaker may use the
recogniser for a sustained period, then speaker dependent performance is desirable. A
partial solution to both of these instances is that of speaker adaptation, whereby a small
number of example utterances from the new speaker are used to adjust the original system
to improve recognition for the speaker. Several methods for such adaptation have been
proposed, but the most successful approaches still require a reasonably large sample of
speech to be effective.

1.4 Transformations Within HMMs

The two problems outlined above, namely that of discrimination and speaker adaptation,
have been tackled in this thesis by using existing HMM theory to estimate model parameters,
and then using linear transformations of the model parameters to improve the models.
Only continuous density HMMs (CDHMMs) have been considered since these are widely
accepted as being better at modelling speech than discrete density HMMs which use vector
quantisation (VQ) to limit the variation in the representation of speech. However, the
ideas presented are, in part, developed from ideas implemented on template matching with
dynamic time warping (DTW) and discrete density HMMs.

In an aim to improve the discrimination within HMMs a technique based on selecting
a discriminative subspace of the acoustic representation is considered. By considering each
state within an HMM to represent a distinct class of acoustic sounds, the class-specific
specific acoustic information which is best for discriminating between that class and all
other classes can be chosen by transformation of the feature space. This discriminative
feature selection can be used to improve the acoustic modelling by identifying the errors in
classifying individual frames (confusion analysis), and selecting a subspace in which these
confusions are minimised. The basic approach has previously been shown to work on a very
limited task (the recognition of 8 isolated letters) [105]. The extension of this approach to
large vocabulary continuous speech is the focus for the first part of this work.

Speaker adaptation techniques can also be viewed as approaches to improving the acous-
tic modelling. In this case the problem is that although the model parameters may be well
estimated, they are sub-optimal for the new speaker. The aim of the adaptation is not
necessarily to improve discrimination, but to make the class distributions better suited to
the new speaker. This can be achieved by either transforming the parameters to move
the classes in acoustic space, or by reestimating the parameters using the sample speech
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from the new speaker. A new transformation approach is presented which formulates the
transforms in a parameter reestimation framework in an aim to combine the two methods.
The new technique is structured so that it can be easily placed in a flexible framework, and
adaptation can be successfully implemented on very large vocabulary tasks using a small
amount of data.

Both of the transformation methods presented implement the transformations on a
class-specific basis, thereby improving the acoustic modelling at the very lowest level of the
recognition paradigm. It is hoped that the improved modelling at the lower level propagates
through the other levels and results in improved word and sentence recognition. If this is
the case then the limitations on the speech recognition tasks with respect to vocabulary

size, language used etc. can be more easily resolved.

1.5 Organisation of Thesis

This thesis, as described above, contains two separate topics, based on the use of linear
transformations. Chapters 3 to 5 investigate the use of transformations for discriminative
feature selection, and chapters 6 to 8 investigate speaker adaptation techniques with linear
transformations.

Chapter 2 describes HMMs and the notation used throughout the thesis, and reviews
the basic HMM theory which is required for understanding and implementing the ideas
proposed. The training and recognition algorithms for HMMs are presented and the issues
of applying HMMSs to continuous speech are reviewed.

A survey of previous methods for feature selection is given in chapter 3, along with other
discriminative methods based on changing the standard HMM assumptions. Chapter 4
evaluates the existing global transformation methods and proposes a theory for applying
transformations on a state-specific basis. The problems of applying such a method to
continuous speech are discussed and a compromise using a similar technique to the global
approaches is implemented on a state-specific basis. The problems of a full state-specific
implementation are addressed in chapter 5, and two approaches to solving the problems are
proposed and evaluated.

Chapter 6 introduces the topic of speaker adaptation with a brief outline of the problems
involved. Past work in the area of adaptation is reviewed, and the problems of implementing
such techniques in practical systems are discussed. A new method of adaptation, drawing
on several ideas from the work reviewed is presented in chapter 7. This is a state based
transformation approach which is placed within a standard HMM estimation framework.
The efficacy of the method is evaluated in chapter 8 where successful application to a state
of the art speech recognition system is demonstrated.

A summary of the ideas presented in the thesis is given in chapter 9 and future avenues
of research to develop the ideas are suggested.



Chapter 2

Hidden Markov Models for Speech
Recognition

Speech recognition using HMMs is a subject which has expanded rapidly in recent years.
This chapter briefly reviews the theory of HMM speech recognition relevant to the work
presented in this thesis. The assumptions behind the theory are discussed and methods of
using HMM systems for recognition of continuous speech are presented.

2.1 Parameterisation of Speech

The aim of speech parameterisation is to represent the signal in a form suitable for use in
a recognition system. The first stage in this process is to convert the speech to a digital
representation by sampling the speech at an appropriate frequency. Due to the effects
of sampling, the speech must be sampled at at least twice the frequency of the desired
highest frequency component. Most speech information has been found to be in the 0-8
KHz frequency range and the speech wave is typically sampled at 16KHz to preserve this
information.

Signal processing techniques are then used to reduce the sampled speech into a compu-
tationally more manageable form. The sampled signal is split into frames each representing
a time slice short enough so that the speech wave can be considered stationary within the
frame. This is achieved using a windowing function which windows part of the speech sig-
nal and weights those samples within the window so that the samples at the centre of the
window are weighted more. The weighting is used to minimise spectral leakage. A common
window function is the Hamming window:

w(n):{ 0.54 — 046 cos(2my%y)  if 0<n< N -1 @)

0 otherwise

where N is the window length.

By stepping the window along the sampled speech signal a sequence of frames represent-
ing the whole speech wave is obtained. A typical window length is 25ms, and the frames



Hidden Markov Models 7

are stepped at shorter intervals (e.g. 10ms) so that the frames overlap.

The windowed speech frames are then processed further to capture the characteristic
information in a compact form. Most current systems use frequency domain-based parame-
terisations, although time domain and autocorrelation approaches such as linear predictive
coding (LPC) have been used. A common frequency domain-based approach is to use
mel-frequency cepstral coefficients (MFCCs). A Fourier transform is applied to the win-
dowed speech and a set of band-pass filters (filterbanks) used to determine the different
frequencies in the frame. Using filterbanks spaced along the mel-scale gives mel-filterbank
coefficients. These can be transformed into MFCCs by applying a discrete cosine transform
to the logarithm of the filter-bank outputs [32]. The formula for producing M MFCCs is

p . .
—05
ci:Zchos(M> i=1,2,... M (2.2)
- p
7j=1

where ¢; is the i*" MFCC, p is the number of filter bank channels and X ; is the log of the
ji" filter bank output.

Parameterising the speech using MFCCs is superior to using LPCs since there is no
assumption of an all-pole speech production model, and a mel-scale frequency resolution
can be made. Including time derivative information in the parameterisation has also been
shown to be advantageous [68, 103]. This dynamic information is computed over several
frames so that long term effects can be incorporated into the speech frame. The first order
derivatives are termed AM FCC's and the second order derivatives are termed acceleration
parameters AAM FCC's. Energy terms and their time derivatives can also be included in
the parameterised speech vector (also termed a feature or observation vector).

2.2 Hidden Markov Models

If an utterance of speech is represented by a series of T parameterised speech frames (referred
to as observation vectors) O,
O =01,09,...,0T (2.3)

the object of the pattern matching stage is to determine the most likely sequence of words
which produce this observation sequence.

Assuming the observation vectors are produced by a Markov process the pattern match-
ing can be achieved by using Hidden Markov Models (HMMs). A Markov model is a finite
state machine which makes a state transition once every time unit, and each time a state
is entered, an observation vector is generated according to a probability density function
associated with that state. Probabilities are also associated with the transitions between
states. Hence, the likelihood of generating O using any sequence of states can be computed.
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2.2.1 HMM Representation

The definition of an HMM in this work corresponds to that used in the HTK Toolkit [113].
Note, only HMMs with continuous density output distributions are considered.

An HMM consists of a set of N states S; ... Sy (Figure 2.1) with the properties:
e State Sp is the left most (entry) state of the model (occupied only at time 0).
e State Sy is the right most (exit) state of the model (occupied only at time 7"+ 1).

o States So — Sy _1 are emitting states. Each emitting state 5 has an associated output
probability density function b;(o)

e A transition matrix A = [a;;] defines allowable transitions between states. a;; is the
probability of moving from state 7 to state 7,

aij = p(st41 = jlst = i) (2.4)

(s¢ is the state occupied at time t), with the constraint,
N
Z a;; = 1.
i=1

To correspond with other notations which do not use non-emitting entry and exit states,
the initial state probability vector w (where 7; is the probability of occupying state i at
time 0) in this case is given by

i = ai;. (2.5)

The non-emitting states allow simple construction of model sequences and incorporation of
language models (see [113]). The output probability density functions b;(0;) can in theory

ay) azz Ay

Figure 2.1: An example HMM. States 1 and 5 are non-emitting.

be any form of distribution, however it is standard practice to assume that they are made
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up of a mixture of Gaussian densities [92],

K
bj(0r) = Y cirbjk(or) (2.6)
k=1

where K is the number of component densities in the mixture, c; is the mixture weight
(with the constraints 0 < ¢, < 1 and Zle cjk = 1), and bj; is a multivariate Gaussian
density function,

1 _l(0,— N to,—
bik(0r) = (2m)n/2[ %12 3 (O by) B (O by) (2.7)
where n is the dimension of the observation vector o¢, and pj;, and X ;i are the mean and
covariance respectively of the k** Gaussian component. The covariance may be either a full
n X n matrix modelling the correlations between elements of the feature vector, or restricted
to a diagonal covariance, in which case the elements of the feature vector are assumed to
be independent.

An HMM can be completely described by the parameters N, A and {b;}, and this
parameter set will be referred to as A ( = {N,A,{b;}}).

2.2.2 Assumptions

When using HMMs to model speech several assumptions are made:

(1) The distribution of observation vectors is dependent only on the state and not
on other vectors (independence assumption).

(2) The speech is assumed stationary over a whole speech frame.

(3) The observation vector distributions are adequately modelled by the number
of component mixture Gaussians present.

There are certainly correlations between successive speech frames since they are pro-
duced by a continuous articulatory process. This is shown by the effectiveness of the inclu-
sion of predictive processes in recognition where knowledge of the current frame is used to
adjust the probability values of succeeding frames [60, 104]. However, these methods are
computationally expensive and difficult to train so are not widely implemented.

Assumption (2) is a function of the front end speech processing and is a common assump-
tion in many speech recognition systems. Reducing the size of the speech frames makes the
stationarity assumption more reasonable, but introduces other problems such as increasing
the variance of the spectral estimate.

Other output distributions have been investigated [42] but the consensus is that the
computational and statistical qualities of Gaussian distributions are desirable.
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2.3 Pattern Matching with HMMs

The aim of the recognition system is to take the observation sequence O and compute which
words! were most likely to have produced this set of observation vectors. Considering the
case where the observation sequence is known to represent a single word from a limited set
of possible words (the vocabulary V), the task is actually to compute

max{p(ui|0)} (28)

which is the probability of word w; given the observation vector O. Using Bayes’ rule

p(O|wi)p(wi)
p(O)

this task can be reduced to determining p(O|w;) assuming that p(w;) can be determined

p(wi|O) = (2.9)

from a language model using a priori knowledge, and that p(O) does not affect the choice
of w;. Hidden Markov models are ideally suited to generating the class conditional p(O |w;),
assuming that an acoustic model, m;, representing each w; exists. This can be achieved
by computing the likelihood, F(O|m;), of taking any path through the acoustic model m;
and producing the given sequence of observation vectors. F(O|m;) takes into account all
possible state sequences,

F(Olmi) = 3 F(O|8,m;)F(0m;) (2.10)
0cO
T
= Z a6, N Ha’at—letbet(ot) (2'11)
60cO t=1

where © is the set of all K possible states sequences of length T in model m;,
0={0W, . . . 05

and 6; is the state occupied at time ¢ in @ (6y = 1). To compute this likelihood efficiently
it is convenient use a recursion involving forward and backward ‘probabilities’ [8]. The
forward ‘probability’ is defined as

a](t) :‘7:(017027""025581‘ :j’ml) (212)

i.e. the likelihood that state j is occupied at time ¢ and having generated the first ¢
observations. The values of a;(t) can be computed recursively. From the definition of the
HMM, the initial conditions for «;(0) are

a;(0) = 1
a;(0) = 0 if j#£1

Ywords is intended to cover the unit of speech being modelled, so could equally be phones, syllables, etc.
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and the recursion proceeds for 1 <t <T
N-1
aj(t) = lz Oéi(t — 1)aij] bj(Ot) forl<j< N (2.13)
i=1
and terminates with the condition

aN(T) = Z_ ai(T)aiN.

=2

In a similar way, the set of backward ‘probabilities’ 3;(t) is defined as the likelihood that
the model will generate the remaining observations (0441, ...o0r) whilst occupying state j
at time t,

ﬁj(t) ZF(OH_l,...OT‘Ht :j, ml) (2.14)
This recursion starts at state N at time 7" with the conditions
Bi(T) = ajn for1<j<N

and proceeds fromt =T —1tot =0,

N-1

,Bj(t) = Z ajibi(0t+1)ﬂi(t + 1) for 1 <i< N (2.15)
=2

Bn(t) = 0.

The forward/backward probabilities can be used to compute the overall likelihood
F(O|mi)

N
F(Olms) = an(T) = 1(0) = Y a;(t)3;(t) (2.16)
j=1
These recursive calculations are very useful in the estimation of HMM parameters.

2.4 Estimation of the HMM parameters

The parameters of the models must be estimated before the HMMs can be used for recog-
nition. This is achieved by using estimation techniques which use a sequence of known
utterances (the training set) to estimate the appropriate parameter values.

2.4.1 Maximum Likelihood Estimation

During the training phase all the parameters within the HMM system are chosen to optimise
some criteria, given the training data. Common practice is to use Maximum Likelihood
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Estimation (MLE) which attempts to maximise the likelihood of generating the the training
data with the correct model. More formally, in MLE the aim is maximise f})1o()),

fm1e(A) = F(Olwi, \)p(wi) (2.17)

where O is the observed data when the word w; is spoken.

It can be shown that MLE will lead to an optimal estimate of the model parameters
satisfying equation 2.17 if: (a) all samples (w;, O) are from the assumed family of distribu-
tions; (b) the family of distributions is well behaved; (c) the sample size is large enough;
and, (d) the performance of a system cannot get worse as its parameters get closer to the
true estimates [80]. However, none of the above are valid.

It should be noted that the optimisation criteria for MLE only considers the acoustic
vectors of the class under consideration during training. Hence there is no attempt to dis-
criminate between different classes, only to optimise the likelihood of recognising utterances
from the correct class. One of the aims of this work is to rectify this and add some discrim-
inative information into the model parameters. Alternative training methods, for example
maximum mutual information (MMI) [16], have shown that it is possible to improve on
MLE in certain circumstances. This aspect is discussed further in chapter 3.

2.4.2 MLE Parameter Estimation

Maximum likelihood estimation of the model parameters is usually achieved by using
Expectation-Maximisation (EM) techniques, an example of such a technique is the Baum-
Welch algorithm [8]. Given an estimate of the parameter set A\ the estimate is improved
using a set of reestimation formulae to give a new set of parameters ()\). These formulae
are defined such that

Fmle(M) Z fimte(A) (2.18)

i.e. the new estimate is guaranteed to be at least as good as the previous estimate.

This allows an iterative approach to MLE. The reestimation formulae are derived by
the use of an auxiliary function, Q(\, \), defined as

QNN = Y F(0,6|\)log F(O,0|N). (2.19)
60cO

where © contains all possible state sequences leading to the recognition of O.

It can be shown that finding the A which maximises the auxiliary function leads to an
increased value of fmle(j\), unless already at a maximuim, so iterative application eventually
converges to the MLE estimate. Baum first proved the convergence of the algorithm [8] and

the proof was later extended to mixture distributions and vector observations [58, 77].

The auxiliary function (2.19) can be expanded

T T
QNN = Z F(O,8])\) {logagTN + Zlog ap,_,0,+ Zlog bgt(ot)} .
0O t=1 t=1
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and separated into component auxiliary functions based on the individual parameter sets:

T
Qa(\ ) = Zf(O,OM){logagTN—i—Zlogagt_lgt} (2.20)
6cO t=1
Qy( M) = Z}"(0,0M){Zlogbgt(ot)}. (2.21)
0cO t=1

Qy()\, \) can be further decomposed into individual mixture components and weights. These
auxiliary functions for individual parameter sets lead to closed form solutions for the rees-
timation of the model set parameters [58]. The use of the auxiliary function is discussed
further in chapter 7.

2.5 Recognition with HMMs

To recognise an utterance with an HMM, MAP (maximum a posteriori) decoding is used.
Instead of computing p(w;|O), which is the desired probability, the probability p(O|w;) is
computed and Bayes’ theorem used to convert to the desired form (equation 2.9).

The recognition of an unknown utterance thus involves computing the likelihood of the
observation sequence given each acoustic model (m;), which can be achieved by computing
the total likelihood using the forward-backward alignment. This considers every possible
path through model m; and gives the combined likelihood of all paths generating the ob-
servation vector. However, in practice the forward-backward likelihood is dominated by
likelihoods from a small number of possible paths through the model. Thus to reduce
computation, the likelihood of taking the most likely state sequence through the model is
computed. The likelihood of the best state path to state j at time ¢ is computed as,

75 () = max{;(t — 1)as;b;(04)} (2.22)

where 71(0) = 1, and 7;(0) = 0 if j # 1 (c.f. the definition of a;(t) equation 2.13). The
likelihood for the whole utterance is,

%(T+1) = m?X{”/i(T)aiN}- (2.23)

This is the basis for the Viterbi algorithm [100] which is commonly used for recognition.
For computational efficiency, and to prevent underflow, the likelihoods are computed in the
log domain.

The main advantage of using the Viterbi algorithm is that it can easily be extended
to continuous speech. It also has the advantage of allowing disjoint paths within the same
model to be considered separately. For instance if the model has two different state paths
from one state to another which correspond to alternative pronunciations, the combined
likelihood of both paths is not the desired likelihood. By using the Viterbi path the alter-
native pronunciations can be considered separately.
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A computation saving may be made by using pruning algorithms to restrict the search.
A typical pruning algorithm is the beam search whereby all hypotheses that fall below
a certain threshold of the current most likely hypothesis are pruned out of the search.
There is no need to compute state likelihoods for any state outside the current ‘beam’ and
computation can be greatly reduced.

2.6 Whole Word and Sub-word Modelling

The theory presented in the previous section has assumed that there is an HMM for each
word that can be recognised. In practice for continuous speech recognition tasks this is not
the case, due to the problems with data sufficiency. To train a word model robustly several
example utterances of the word are required. In many databases the amount of training
data is limited and for many words there are insufficient numbers of examples. Indeed,
in unconstrained recognition tasks where the test set has an unlimited vocabulary there
will be words which have no examples in the training data (for the 65000 word WSJ tasks
described in appendix A the majority of words are unseen during training). For this reason
word modelling is not generally implemented and sub-word modelling is used instead.

Linguistics defines the most basic unit of speech as phonemes. These are abstract units
and about forty of them occur in English speech. For the purpose of sub-word modelling, a
set of basic units representing the realisations of phonemes are used. These representations
are termed phones. Most large continuous speech recognition systems use phones as the
unit of speech to model, and then use combinations of the sub-word models to build up
whole word models (Figure 2.2).

Connecting transition

Figure 2.2: Example of combining phone models into word models. Phone A and phone B
are merged into a word model by removing the final state of A and replacing it by state 2

of B.

The acoustic realisation of a phone can vary greatly depending on the preceding and
following speech. Although using multiple component densities in the output distributions
may help to model this variation, this leads to poorer class separation. A better solution
is to use introduce context-dependent phone models. This can be achieved in a number of
ways: (a) function word dependent phone models, where a limited number of frequently
occurring words have separate phone models defined for them. For example if ‘THE’ is
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pronounced ‘/dh//ax/’ there would be a model for /dh/ in normal speech and a separate
one for /dh/ in ‘THE’; (b) phone context dependent models - different models represent
the same phone in each of the possible immediate left and/or right contexts. Different
degrees of context can be used - models using a single left (or right) contexts are termed
biphones, those using both immediate left and immediate right contexts are triphones. This
may in theory be extended to any number of contexts but this then leads to problems with
sufficient training data due to the large number of models involved; and, (c) incorporation
of cross word effects. The pronunciation of phones at the beginning or end of words can be
significantly affected by the end/start of the last/previous word.

2.7 Parameter Tying

Defining context dependent models can lead to a large number of models. However, the
training data is not infinite and limits the number of parameters that can be robustly
estimated for the model set. It is possible that some phone contexts which are necessary
for the recognition tasks are not present in the training data and occurrences of others
are limited. To overcome such problems the technique of parameter tying is widely used.
When two distributions or models share the same set of parameters they are said to be
‘tied’ [11, 109].

If a phone in one context is thought to have a similar acoustic realisation as the phone in
a different context then the two models may be tied. At a lower level similar states or even
mixture components may be tied. The tying may be determined via linguistic knowledge
or after an initial estimation of the parameters. Once the parameters are tied they may be
reestimated using the data associated with all the tied components. Thus the use of tying
can reduce the number of parameters in the system to a level where there is sufficient data
for robust estimation [112].

The idea of using phonetic knowledge has also been extended to predict the pronuncia-
tions of unseen phone contexts [85].

2.8 HMMs for Continuous Speech

The theory presented so far has assumed that one model can match a whole utterance. For
the application to continuous speech this is no longer the case. Each utterance will consist
of a series of words which are not strictly separated. Thus the theory must be extended to
allow for a sequence of models.

For the training algorithms, since the speech is labelled, a single sentence model may be
built in a similar manner to building word models from phone models, and the parameter
estimation can be performed as before.

The recognition procedure is more complicated since the number of combinations of

words in an utterance is unknown. Thus a method such as the token passing algorithm
[111] must be employed which utilises the non-emitting entry and exit states of each model
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to generate a Viterbi alignment. In this method a token is associated with each state in
a model. The token records the likelihood of occupying that state at the current time
having generated all the observation vectors up to that time (y;(¢) from section 2.5). The
token also records the model sequence that has been taken to reach the current state.
Within the model, the state transitions occur as in the standard case, and the individual
state likelihoods in the token are updated according to the transitions and the observation
vector. However, after each frame, token propagation takes place between models.

For each model, the token in the final state is computed from the current tokens in the
other states of the same model. A new token is then placed in the first state of each model
(m;), the token being selected from the final state of model m; such that,

.7:(01, .o., 0, Qt = Nj)Tj,i > .7:(01, - ,Ot,et = Nk)Tk,i
vV  models my # m;. (2.24)

where IN; and IV are the final states of the models m; and my, and T}; represents the
transition probability between model m; and m; which can be used to incorporate grammars
and language models to constrain the search space. The likelihood of the selected token is
also updated to include the transition.

After the last frame a similar propagation is made to the final states of all models which
can terminate a sentence, and the most likely final model determined. The recognition
hypothesis can then be found from the recorded history of the token to find the Viterbi
word sequence.

Multiple hypotheses (the N-Best) can be generated by building a word lattice during
recognition. The lattice contains alternative words for each section of speech. An A*
search can then be performed on the lattice to determine all possible word sequences [98].
Computing and storing such a word lattice is computationally expensive, and methods of
pruning down the number of possible words must be used. Usually only very restricted
implementations may be used to generate approximate solutions [95]. The alignment must
consider the likelihood of the sequence of words and not states for the N-Best path score so
that multiple pronunciations of the same word are not included in the same path [96].

2.9 Grammars and Language Models

During recognition, different word sequences can be weighted by grammars and more weight
can be given to the more grammatically correct sequences. The search space for a sequence
of words can grow extremely large if all possible word sequences are considered, and pruning
out unlikely sequences can reduce the search effort.

e Deterministic Grammars
The possible successors of a particular word can be restricted using deterministic
grammars, T; ; = {1|0}. By enforcing grammar rules on recognition the hypotheses
should correspond more to valid sentences. However, natural language grammars are
far from trivial and only basic rules may be implemented easily.
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e Stochastic Grammars

The probabilities of certain words following other words can be used to weight the
more likely word sequences, and thus aid in pruning the less likely sequences from
the recognition path. The T; ; probabilities are usually computed from a large corpus
of example sentences. The grammars can be extended to consider more context. A
bigram language model represents the probability of a word given the previous word,
whilst trigram and 4-gram language models represent the probability of a word given
the previous 2 and 3 words respectively.

These word based factors can aid the pruning and increase the recognition performance

of recognisers.



Chapter 3

Discriminative Methods for HM Ms

The basic HMM theory outlined in the previous chapter has addressed the problem of how
to model specific classes of speech. However, no attempt was made to discriminate between
different speech classes. This chapter examines the discriminative ability of HMMs and
methods for improving discrimination between classes.

3.1 The Discrimination Problem

As discussed earlier (chapter 2) the use of maximum likelihood estimation (MLE) for train-
ing HMMs is widespread. MLE aims to find an estimate for the parameters such that the
likelihood of the model generating the training data is maximised. MLE is both compu-
tationally efficient and gives a robust estimate when sufficient training data is available.
Indeed, when the true forms of the distributions of the speech classes are known it can be
shown that MLE leads to an optimal estimate if sufficient data is available. In general,
however, the forms of the distributions are not known, hence MLE leads to sub-optimal
estimates for the HMM parameters. Furthermore, the amount of data available for training
the models is limited, and, unless it is completely representative of the test set, although
MLE may lead to a good estimate for the training set data this is not necessarily the case
for the recognition test set. A second problem with MLE is that the method does not take
into account other classes when making class distribution estimates, there is no attempt to
maximally separate the classes. This leads to cases where the likelihood of incorrect data
being recognised by the class is also increased.

Therefore, by incorporating some discriminative aspect into the estimation of HMM
parameters it should be possible to improve recognition performance. This can be achieved
in two ways: (1) by changing the parameter estimation algorithm to incorporate discrim-
inative optimisation criteria; and, (2) by ensuring the class characteristics of each sound
class modelled (as represented by the feature vector) are maximally separated. Some such
training techniques are briefly outlined in the next section, and in section 3.3 methods of
improving discrimination via transformation of the feature space are investigated.

18
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3.2 Discriminitive Training Methods

A number of alternative training methods have been proposed which aim to improve the
estimation of the model parameters from the available training data. These methods vary
in their approaches to resolving the problems of MLE, either using different optimisation
criteria or resolving the poor assumptions underlying the optimisation. There are two
broad categories for these training methods, one based on sound theoretic estimation of the
parameters (e.g. using an information theoretic approach) and the other based on ad-hoc
methods of maximising some recognition criteria, i.e. the aim is to directly reduce errors.
Examples of both types of method are briefly reviewed in the following sections.

3.2.1 Maximum Mutual Information

Brown [16] viewed the HMM training problem from an information theoretic point of view
via the maximum mutual information (MMI) approach. The aim of MMI is to maximise
the joint information between the class samples and the model parameters. The mutual

information measure is defined as
F(0, uJI/\)>
F(O,w|\)log < 3.1
= 2 7O (7o) (@1)

where O is the acoustic event, and w is a word.

Assuming that the training data is a representative sample, (O, w) is constant, so only
the final term in equation 3.1 is of interest, and this is used as the MMI criteria fi,m;i.

F(O,w|\)
fmmi()‘) = 10g<p(w).7:(0)>

Applying Bayes’ theorem and re-ordering,
fmmi(A) = log F(Olw, A)p(w) — log F(O)p(w). (3.2)

The first term on the r.h.s. of equation 3.2 is exactly that of the MLE criteria f o, the
difference between MLE and MMI lies in the second term.

Assuming that the language model is given, consider the derivative,

0F(O|w, A
ar(Olw) = 7Ol (3.3)
O\
where ); is an arbitrary individual parameter. The differential of fj,;; w.r.t. A; is,
0 fmmi 1 p(w) :| ax O|W (@)
= — (O
S [FOw N~ F0)) 2O - 2 TR0y
(3.4)
where W represents all words. Compare this to the differential of f ;o w.r.t. A;,
0
fmle _ . (Ow) (3.5)

0N
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and it can be seen that fj,,; has contributions in the direction of MLE, but also has
compensating components in the direction of g)(O|®) for incorrect word sequences. Thus,
MMI can be seen to be incorporating discrimination into the training process.

One of the advantages of MMI is that there is no assumption that either the set of dis-
tributions modelling the speech, or the language model has to be correct. The disadvantage
of MMI is that there is no direct optimisation formula as in MLE, and estimates have to be
made using techniques such as gradient descent. Due to this problem there is no guarantee
of convergence to an optimal parameter set.

It has been demonstrated both theoretically [81] and experimentally [7, 16] that MMI
will outperform MLE when the assumption of model correctness is poor, and there is suf-
ficient data for estimation. Although MMI has been used for small tasks such as digit
recognition [18, 19, 83] the computation required for iterative estimation, and the problems
of convergence have limited the use of MMI for larger tasks, although a few attempts have
been made using discrete density HMMs [25].

3.2.2 Minimum Discrimination Information

The minimum discrimination information (MDI) [37, 38] approach attempts to generate
a set of model parameters which has the minimum discrimination information (or cross-
entropy) between the training data and the HMM parameters. This is another information
theoretic approach which also removes the assumption that the true probability distribution
is a Markov source.

The discrimination information between two probability distributions, U, the joint prob-
ability density of the acoustic signal O and word w, and V, the joint probability density of
the acoustic model A and word model, is

_ L u(o, m)
DU V)= > u(o,m)ln (

v(o,m
m=19cO »m)

(3.6)

where u(0, m) and v(o, m) are the probability mass functions of U and V respectively, and
m represents the L models in the model set. The aim is to minimise the discrimination
information so that the model parameters produce a similar distribution to the acoustic
source.

It can be shown that if the observations are produced by exactly the same source as
that modelled by the HMMs (i.e. the assumption of true distributions for MLE is valid)
then MDI produces the MLE estimate.

MDI can also be shown to incorporate the MMI estimate when estimating all acoustic
models simultaneously using the empirical distribution of the acoustic signal from all words.
Let U,, be the p.d.f. U given word w, and V,, be the p.d.f. V given the word model yx then
the discrimination information is,

DU || V) = DU, || V) = 1(O,w). (3.7)
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Increasing the mutual information I(O,w) as in MMI reduces the discrimination infor-
mation between the acoustic signal and the model. In this case MMI and MDI lead to the
same estimate of the model parameters [37].

MDI suffers from the same problem as MMI in that no direct training algorithm is
available to estimate the parameters, and using iterative gradient descent algorithms does
not guarantee convergence. As a consequence MDI is rarely implemented.

3.2.3 Optimisation of Error Rates

Instead of attempting to optimise a theoretical measure to increase discrimination, attempts
have been made to adjust the model parameters to directly increase the recognition perfor-
mance. Bahl [6] uses a corrective training approach where the models are first trained using
a standard technique, and then an iterative refinement of the model parameters is made.
Each iteration involves a recognition of the training data to identify errors or confusable
words. The model parameters are updated based on a simple shift in the (discrete) output
probabilities for each state, so that within-state vectors are more likely. This approach has
been extended to continuous speech by Lee & Mahajan [72], but again using discrete output
distributions, and Mizuta shows that it is also viable with continuous density HMMs [79].

Chou [22, 23] implements a similar scheme, but aims at minimising the recognition error
over a whole string. Using an N-Best framework confusable strings are generated and the
model parameters adjusted according to a loss function. This scheme is refined by Chen [20]
for implementation on continuous density output distributions and shows an improvement
over MLE on a Chinese word task.

Franco [39] also uses an error criterion for optimising the parameters. Instead of iden-
tifying confusable strings, the state sequence is examined and the parameters are adjusted
to ensure the correct state path is chosen during recognition.

Using the error rate on the training data as the optimisation criteria is intuitively a good
idea, since the aim is low error rates on the test data. However, in terms of implementation
and theory these methods have several disadvantages: errors on the training set may not
be representative of errors on the test set; correction of errors may lead to new errors
so convergence is not guaranteed; no true theoretical measure for the estimation of the
parameters is used, so there is no guarantee of robustness; repeated recognition of the
training data may be computationally expensive.

Other alternative training methods, such as placing HMMs in a neural network frame-
work (e.g. competitive training [108]) and Bayesian estimation [42] have more theoretical
basis, but are difficult to implement in large systems. Thus, at the present time, for large
systems MLE training is generally used in spite of the poor assumptions.
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3.3 Discriminitive Feature Vectors

It is clear that the choice of features for inclusion in the speech vector is very important.
Ideally the feature vector should contain as much acoustic class specific information about
the speech as possible, enabling good classification into individual sound classes. Unfortu-
nately, it is very difficult to define what features are needed since different classes of sounds
have different characteristics. The size of the feature vector must also be considered in
relation to the amount of data available and the computational cost during recognition.
Each mean vector and covariance matrix has the same number of dimensions as the feature
vector. Using a large feature vector means that fewer class distributions may be robustly
estimated from a fixed amount of data than using a small feature vector. The calculation
of the observation vector likelihoods is the major computational overhead in most speech
recognition paradigms, and this is also directly dependent on the number of elements in the
feature vector.

Intuitively, increasing the number of elements in a feature vector should give more
information about the speech wave, thus aiding classification. In practice however, this is
not the case, since the extra features may contribute additional information which does not
aid class separation but leads to more variation in within-class distributions. The features
which are representative of the class contribute less to the class membership decision due to
the contributions of the extra features. Addition of such features is unnecessary and adds to
the computational cost without a corresponding improvement in discrimination. Features
are generally selected on the basis of experimental evidence, but the best features for one
task are not necessarily the best set for other tasks. The majority of large vocabulary
continuous speech systems developed recently favour the use of MFCCs and incorporate an
energy term along with first and second order time derivatives [32, 103].

Having selected a set of features to incorporate into the observation vectors, it is im-
portant to use the information contained within the vectors in the most effective way.
Duplicated information can be reduced and any elements not contributing to class separa-
tion can be removed. There are several approaches for achieving this aim, some based on
the properties of individual features, and others based on the interaction between features
and their combination. Broad definitions for these groups are termed feature selection and
feature extraction.

The purpose of both feature selection and extraction is twofold:

1. To optimise the recognition rate by selecting a set of elements which aid discrimination
for the final speech feature vector.

2. To produce a speech vector of a size which is computationally tractable, and can be
well estimated from the available training data.

Ideally each element should be independent of the other elements in the vector, and
contribute to separating the different speech classes. Various methods for feature selection
and extraction are described in section 3.5, but first methods of measuring class separation
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are examined.

3.4 Class Separability Measures

The problem of measuring class separability is well documented in pattern recognition
literature [40]. Given a set of classes (w;), two measures of scatter can be defined:

a) Within-class scatter matrix - the scatter of samples around the expected vector for
the class:

| K
Sw= % ZE{(a: — p)(x — )|z € class w;} (3.8)

b) Between-class scatter - the distribution of the different class means (and therefore
classes):
1 XK
Sy = K Z(I"l’z — po) (ki — No), (3.9)
i=1
assuming both distributions to be Gaussian, where p,; is the mean of class w; and p is the

expected value of all the speech data regardless of class.

Having defined these scatter matrices, a measure of the class separability can be made
by comparing the ratio of the within-class scatter to the between-class scatter.

Typical measures are:

J1 = tr(Sy'S))
Jo = In|S3'S1| = In(|S1]/|Sz)
Js = tr(S1) —n(tr(Sz2) —c)
where 7 is a lagrange multiplier to add a constraint

and ¢ is a constant

J4 = tT(Sl)/tT(Sz)

where S§1 = Sy, except for Jo where §1 = Sy, + Sp, and S2 = S,

The scatter matrices are invariant under co-ordinate shifts. J; and Js are invariant
under any non-singular transformation, but Js and J; are dependent on the co-ordinate
system.

Other methods of estimating class separability are available, such as the divergence mea-
sure (see Appendix B), or Bhattacharyya distance which compare the actual distributions.

The aim is thus to determine an optimal vector of d dimensions from the original speech
vector of n features from the speech coding. The vector is optimal in the sense that it
maximises the class separation according to one of the measures above (for computational
ease J1 will normally be considered).
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3.5 Feature Selection

Feature selection is a method of choosing from the available features a subset which is
optimal for recognition. Each element is assessed for suitability in the vector by assigning
it a score on some basis, and choosing the best ranked features to make up the vector.

Three possible approaches which have been investigated in the literature are
1. Use of recognition rate for individual features

2. Use of the Fisher ratio

3. Discriminative feature selection

These approaches are briefly examined.

3.5.1 Use of Recognition Rate

Paliwal [87] investigates a method in which a set of features were obtained by coding the
speech wave. Each feature was used individually in a recognition task on the training set.
The features were ranked according to the recognition performance obtained, and the best
d features selected for use in the final recogniser.

This method has the advantage of assessing how effective each feature is within the
recogniser. Whilst it is possible to rank the features in this way, the assumption that all the
features are statistically uncorrelated means the selection is not guaranteed to be optimal.
A further problem with this method is that it gives no indication as to the number of
features to use for optimal recognition.

It is apparent from the results reported by Paliwal for recognition using individual
features that a few features provide a lot of recognition information, but the majority
of features give very closely matched recognition rates. With low recognition rates on
individual features (the majority are 11 — 20%) ranking the features may be unreliable.

3.5.2 Use of the Fisher ratio

The Fisher ratio (F-ratio) is defined as the ratio of between-class variance and within-class
variance. Making the assumptions:

1. The feature vectors within each class have Gaussian distributions.
2. The features are statistically uncorrelated.

3. The variances within each class are equal.

The F-ratio (F;) for the it" feature is defined as:

(3.10)
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where
T
Bi = > (uf — i)’ (3.11)
k=1
1 X
W= Lsic (3.12)
Kk:l

where pF and CE are the mean and variance of the it feature of the k* class, and fi; is the
overall mean of the i*" feature. This is exactly the same principle as the class separation
measure J; but applied to a single dimension. Larger F-ratios indicate that a feature has
a small within-class variance compared to the between-class variance, so the feature should
be good at discriminating between classes.

Calculating the Fisher ratio for each feature allows the features to be ranked and the
best d selected. Since the third assumption is generally not valid, the method can only be
implemented by using a pooled within-class variance.

Again, this method has been investigated by Paliwal [87]. A broad range of F-values is
obtained (0.03 — 2.17), however like the recognition rate measure, although the important
features are very clear many features have very similar values making it difficult to order
them properly. This is more obvious in the case of second order time differential parameters
which generally have low magnitudes and have small between-class variances.

3.5.3 Discriminative Feature Selection

A third method of selecting features based on their discriminative ability has been proposed
by Bocchieri & Wilpon [14, 15]. Instead of looking directly at the recognition rate achieved
using individual features, a full feature vector is used in recognition of the training set. The
contribution of each feature to the recognition errors is recorded.

A basic set of features is identified, and a set of models trained using those features
on the whole set of training data. Recognition of the training data is performed using a
Viterbi algorithm to generate a model sequence. The model sequence is compared with the
reference sequence to identify substitution or insertion errors. For each error that occurs
the erroneous frame, f,, and the state it is aligned with, s;, are identified. An average
distance measure for the i** feature D(i) is calculated from all the errors in the training set
recognition.

D(i)=F l[ft(l)g: g;t (l)]Z] (3.13)

where f;(7) is the index of the i feature in the observation vector f;, and us, (i) and o, (i)
are the mean and variance respectively of feature 7 in state s;.

If the models have been trained using MLE, then the calculation of D(7) for correctly
classified data leads by definition to the result:

D) =1 Vi (3.14)
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Thus, the measure D(7) for incorrectly recognised frames is effectively a measure of between-
class and within-class ratio (c.f. J; and the Fisher ratio). The features with the d highest
values are selected for use in the final recognition system.

In this case it is assumed that the within-class distribution is a Gaussian distribution and
that all features are independent (diagonal covariance). Since the discriminant information
measure has been produced by the recogniser with a full set of features, the features are
specifically tuned for that recogniser on the particular database used.

3.5.4 Comparison of Feature Selection Methods

The different methods produce substantially different feature orderings (Table 3.1)[15, 87].
The initial feature vector contains 38 components made up of 12 linear prediction cepstral
coefficients (c;) together with the first (A¢;) and second order (AAc;) time differentials,
and the first and second order time differentials of an energy term.

Rank | Indiv. | F-ratio | Disc. || Rank | Indiv. | F-Ratio | Disc.
1 C1 C2 AFE 20 ACg AACl Cg
2 AFE AFE AAE 21 cs Acg AAcg
3 Ca c1 ca 22 Acig Aci1 AAcy
4 Acl C3 Cg 23 Acll ACg AAcl
5 Aco Cq c1 24 Acs Acig C9
6 c3 c10 Acy 25 Acg AAcs Acg
7 AAE c11 cs 26 c12 Acg AAcs
8 ACg ACZ AC@ 27 AC7 AACQ AAC7
9 Cq cs Acsy 28 Acg Acy AAcg
10 AAcy cs Co 29 AAcy Acia Acig
11 cs Acy Acs 30 AAcy AAcy AAcg
12 C10 ACg C3 31 AC12 AAClo C11
13 C9 C9 cr 32 AAcg AAcy Acyy
14 c11 AAFE Acs 33 AAcy AAcs c10
15 AAcs cr Acq 34 AAcg | AAcy1 | Alcyo
16 AACQ Cg AC7 35 AAClO AACS C12
17 (64 C12 ACg 36 AACH AAC7 AACH
18 Acy Acs AAcs 37 AAcs AAcg Acqo
19 cg Acy AAcs 38 AAcia | AAcia | AAcia

Table 3.1: Comparison of ordering of features using different feature selection methods
(using information from [15, 87]). Indiv. is the ranking using recognition of individual
features and Disc. is the ranking using the discriminative measure.

Equivalent performance to the full 38 feature vector is obtained using the top 16 features
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from either the individual recognition rate ranking or the discriminative analysis ranking,
but for the F-ratio ranking at least 24 features are required. The best overall performance
is achieved using the top 32 features ranked by discriminative analysis. This is interesting
because the features discarded include the 10t and 12t cepstral coefficients, whilst ciq
and Acy are retained. The second derivatives are ranked poorly in both the individual
recognition rate and F-ratio rankings (except for those pertaining to ¢; and c¢3) yet the
inclusion of second derivatives has been shown to contribute significantly to recognition
performance [103].

The rankings using different methods show that most of the features contribute to
the recognition performance in some manner, however their relative importance is heavily
dependent on the ranking measure used. Since all the measures have ignored correlations
between features, different features may contribute similar information, thus the ranking
may not be optimal. This is indicated by the use of an empirical combination of 24 features,
made up of the energy terms, the best 10 ranked cepstral coefficients, the best 8 ranked
first differential cepstras and the best 4 ranked second order differential cepstras (ranked
by individual recognition rate). This gave a better performance than any ordered feature
selection method [87].

Thus these feature selection methods have three fundamental problems:

o Different selection criteria produce different feature rankings.
e The number of features to use in the final vector must be determined empirically.

e Correlations between features are ignored.

In addition, the definition of an original feature set is important since only information
apparent along the feature space axes can be used in the final vector.

3.6 Feature Extraction

Feature extraction differs from feature selection in that the new feature set is a linear com-
bination of the original feature vector. Thus the reduced feature set contains components
from all of the original features so that most of the information available is retained.

There are two basic approaches to feature extraction: principal components analysis
and linear discriminant analysis, which are variations on the same idea. Both project
the original feature vector into a new subspace, but with different intentions. Principal
components attempts to select the subspace which is best for classification, while linear
discriminant analysis attempts to preserve the discriminative information available whilst

removing the confusable information.
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3.6.1 Principal Components Analysis

Principal components analysis (PCA) is based on the assumption that the direction along
which there is most variation in the speech vectors contains the most information about the
classes of speech. This is a poor assumption as will be seen later.

The distribution of the original speech vectors is determined on a global basis. A
rotation is then derived to project the distribution into a space where the directions of
maximum variance are aligned along the axes, which represent the principal components.
The first principal component is the direction along which there is the largest variance for
the distribution. The dimensions which contain little variance (and thus little information)
are discarded to select a subspace containing most of the variance of the features [91].

The principal component axes are determined by generating a total covariance matrix
T,

T= Y (@ )@ p) (3.15)

where @ takes the value of all IV speech vectors in the training data, and p is the mean
vector of the whole training data.

The directions of maximum variance are those which correspond to the eigenvectors of
the largest eigenvalues of T'. If the eigenvectors of T', v;, have corresponding eigenvalues \;
(7=1...n) then a rotation matrix R; can be defined:

R1 = [’01’02 e ’Un] (316)

R; rotates the speech vectors into a new space where all features are statistically uncor-
related. The axes of the new space correspond to the eigenvectors of T' and the variance
along each axis is equivalent to the eigenvalue of the axis. The principal components axes
can be selected by discarding those columns of R; which have the smallest eigenvalues, so
that R; becomes a (n X d) matrix which can be applied to the original feature vector x to
generate a principal components vector y with d components.

y=Riz (3.17)

Both the training and test data for a recognition system can then be transformed by the
matrix R; so that the system only uses the principal component axes.

There are several points to note about this method. First, the calculation of T' depends
only on the training data, and not on any class definitions. Secondly, there is no attempt to
use class information so the between-class scatter and within-class scatter are not considered
directly. However, as between-class scatter normally dominates the within-class scatter in
the total variance calculation the transform usually preserves class separation.

The principal components are dependent on parameter scale. If one component of
the feature vector is multiplied by a scaling factor, this does not increase the amount of
information it contains, but does increase its variance. Hence, the principal component may
become dominated by such scaled elements.
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A further problem with PCA is that the directions of maximum variance are not neces-
sarily the directions of maximum discrimination [16]. Consider two Gaussian distributions
in two dimensions (Fig.3.1) which have the same variance along the 1% principal component
axis (axis A). Clearly, PCA would retain this axis, and discard the other axis (B) which
provides all of the discriminant information.

Original A axis

Figure 3.1: Potential problem with PCA - principal axes do not discriminate between

classes.

3.6.2 Linear Discriminant Analysis

Linear discriminant analysis (LDA) can be used to increase the value of J; by using a linear
transform to rotate and scale the original feature space into a new space. Note that since J;
is invariant under non-singular linear transformations, it can only be changed by choosing

a new space of different dimensions.

The transformation is expressed as,
y=Az (3.18)

where A is the n x d transformation matrix (n is the original feature space dimensionality,

d is the new space dimensionality).

LDA makes the following assumptions

1. Each class can be represented by a single Gaussian distribution,
2. All classes have an identical within-class covariance (Sy,),

3. The class centroids (means) can be represented by a Gaussian distribution with

between-class covariance matrix (Sp).
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If it is assumed that the components of the feature vector are not statistically inde-
pendent, the off-diagonal elements of the scatter matrices S,, and Sp are non-zero. This
assumption is generally valid when the components of the feature vector are generated from
a parameterisation of speech.

For LDA the aim is to directly minimise ¢r(S'S}), which can be achieved by an eigen-
analysis of the matrices. The first stage in generating the transformation is to orthogonalise
the within-class matrix by rotating it onto a set of axes in which the features become statis-
tically independent of each other, using the Karhunen-Loeve transformation (R;). Rotating
the within-class distribution S,, by R; aligns the distribution along orthogonal axes cor-
responding to the eigenvectors of S, with the within-class variance along each axis being
equivalent to the corresponding eigenvalue ();). By scaling after the rotation, the distribu-
tion of the within-class data in the new space can be made to be the identity matrix.

If the between-class scatter matrix is projected into this new space to give a distribution
G, an eigenanalysis can be performed to generate a further rotation so that the within-class
and between-class distributions are projected into the same space and are both aligned
along the same axes. Combining the rotations and scaling gives a single transformation,
which is the desired linear transform A. A full derivation of such a transform is given in
section 4.4.1.

Applying this transformation to the set of within-class data, projects the data into the
new space so that the all the features are uncorrelated and the variance of each feature for the
within-class data is unity. The rotation of the between-class distribution by A decorrelates
the features and aligns them along the axes of maximum discriminability. However, the
measure Jj is invariant under non-singular linear transformations (denoting transformed
parameters by S,,S4, and J;),

S,=A'S,A S, = A'S,A
jl = tT(S’;ISb) = Jl

and the value of J; can only be altered by changing the dimensionality of the new space.

Rotating all data by A results in the within-class and between-class distributions being
aligned along the same axes, with the within-class covariance known to be the identity ma-
trix. By comparing the within-class and between-class variances in the new space (c.f. the
F-ratio), a feature subspace can be selected to increase J;. This is achieved by selecting
features which maximise between-class scatter, whilst keeping within-class scatter well clus-
tered. The between-class features which have a large variance are retained, and those with a
small variance are discarded. The variances are directly related to the eigenvalues, «;, of the
matrix G, and these eigenvalues can be used to select an appropriate set of features. The

trace of a matrix is the sum of its eigenvalues and denoting the measure J; in n dimensions
n)
as J; 7,

T = tr(S18,) = A+ ...+ A (3.19)

The largest J;1 in d dimensions (Jl(d)) is found by selecting the dimensions corresponding to
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the largest d eigenvalues.
Jl(d) = tT(S;lsb) =M+...+ j\d (3.20)

where ); is the it largest eigenvalue of S,'Sy. An n x d feature selection matrix F(= [fi;])
is defined to perform the reduction in dimensionality

1 if ~; is j*" largest variance and j < d
fij = :
0 otherwise

The LDA transform with dimensionality reduction is then applied to all speech vectors,
y=FAz (3.21)

It can be seen that since LDA uses a scaling term to make the within-class variance of
each feature unity in the new space, the selection of features is independent of scaling which
is one of the problems with PCA. The feature selection criteria is based on the Fisher ratio,
but in this case the features considered for selection are guaranteed to be independent.

3.6.3 The Use of LDA

LDA has emerged as a good method of producing a feature vector which is uncorrelated and
of a computationally feasible size. The idea of using this technique for speech recognition was
briefly mentioned by Hunt in a paper abstract in 1979 [51], but not actually implemented
until much later when LDA was used with an auditory model [52]. This was extended
to perform LDA on mel-scale filter bank outputs [53] and the resulting transform termed
the IMELDA transform (Integrated Mel-scale representation using LDA), since it allowed
heterogeneous sets of parameters to be combined into a single discriminant function. Initial
experiments only considered template matching, and hence each class was assumed to have
an identical within-class distribution with the template as the class centroid. The within-
class covariance was found by comparing the examples of each word with the corresponding
template and generating a pooled within-class distribution. The between-class distributions
were calculated directly from the templates. These experiments showed that combining
static and dynamic spectral information into a template of a fixed size performed better than
using an equivalent number of static spectral parameters. This confirms the findings made
in the implementation of feature selection that the dynamic spectral features can contribute
important information to the class discrimination measure (this can also be demonstrated
by recognition comparisons including/excluding dynamic spectral information in the feature
vector [103]). Further work by Hunt [54, 55] confirmed that a similar approach is also viable
for use in HMMs.

LDA is now used in many discrete [114] and continuous [16] density HMM systems.
Most implementations follow a five step procedure:

1. Estimate models using original data,
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[\

. Assign class labels to each frame (via recognition alignment),
3. Accumulate within and between-class statistics, and compute LDA transform,
4. Transform the data,

5. Retrain a new set of models on transformed data.

In general LDA is normally applied on a global basis using a single transform [115],
but the definition of classes for accumulating statistics varies. Haeb-Umbach & Ney [48]
investigated using different class definitions in a phoneme based recogniser and concluded
that using states (phone-segments in their phraseology) as classes performed better than
using basic phoneme classes. Parris & Carey [90] showed that reducing further to individual
mixture components as classes could also produce good results. For computational reasons,
e.g. accumulation of statistics, it is common to employ a class-independent transform [3, 47],
but it may be beneficial to apply LDA on a more specific basis. This idea is examined in
more detail in chapter 4.

3.7 Class-Specific Feature Vectors

In the previous sections it has been demonstrated that using appropriate feature selec-
tion/extraction methods the number of features can be reduced, often by a significant
amount, without degrading recognition performance. All the methods examined considered
the feature choice on a global level maximising the overall class separation. Attention is
now focused on how such approaches can be implemented on a more specific basis so that
highly confusable classes can be better separated.

3.7.1 Word Adaptive LDA

One of the limitations of global implementations of LDA is the assumption that all classes
have a common covariance matrix. Ayer [4, 5] proposed a method of overcoming this
limitation by applying a word-adaptive LDA transform (WALDA) which is computed using
a gradient descent method on a word class basis. The set of states used to model a whole
word (or set of words) is assigned to the same class and the transformation is derived by an
iterative process based on maximising a measure of whole-word recognition performance. By
weighting the training tokens according to their supposed confusability, the transform can
be shown to perform the same function as LDA. Results of using WALDA on an alphabet
database show a significant improvement over an IMELDA implementation. However, one
of the limitations of WALDA is that it is vocabulary dependent. This limits its applicability
to large scale tasks where word information is not always available in sufficient quantities
in the training data. This is especially true for large vocabulary CSR systems which may
have to recognise words which are never seen in the training data.
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3.7.2 Individual Class Discriminants

Bocchieri & Doddington [13] proposed a method for applying an LDA approach on a more
specific basis for template matching, which was later extended for use with HMMs. In
standard template matching a Euclidean distance measure between the input speech f;,
and the reference templates f,.; is used,

| fin— Frer II? (3.22)

Initially Bocchieri investigated a global transform, computed by normalising (in the time
domain) all the training data, and calculating an LDA transform using a global covariance
matrix. The problems of LDA were noted, namely (1) all the frames were assumed to
be statistically uncorrelated, and (2) the variability of all the input vectors is assumed
independent of the acoustic event that produced it (global covariance). To overcome the
correlation problem Bocchieri introduced frame stacking whereby after the global LDA
transform, adjacent frames were combined to make a single frame. This approach is similar
to the incorporation of time-differences into feature vectors now common in most HMM
systems. Reference template specific transformations were used to attempt to resolve the
second problem. After performing global LDA and frame stacking, a template specific
transform (T'j) was applied to both the input vector and reference template.

I Tj(Fin = Fresiy) I? (3.23)

where f,, and f,. #(j) are the input vector and reference template (for class j) respectively
after global LDA and frame stacking. The template-specific transform was computed using
eigen decomposition as in LDA, but using the covariance of the frames assigned to the class
during training. i.e. the within class covariance for class j is

N.
1 - - )
C,= N E (@k — Fref()) @k — Frep;y) where @y, € class j (3.24)
J k=1

The class-specific transform is chosen so that
T;C;T; =1 where I is the identity matrix (3.25)

The actual derivation of such a transform will be detailed in chapter 4.

This frame-specific modelling improves the template matching by further decorrelat-
ing features for each class. This gives better recognition performance than using a global
transform, even without a dimensionality reduction (note that, unlike HMMs, templates
do not use covariance within the distance measure). A reduction in dimensionality may
yield yet further improvement, but as the data is now statistically modelled on a template
basis, using a standard approach of analysing between class distributions is no longer valid.
Bocchieri proposes such a feature reduction by characterising the distributions of both cor-
rectly assigned frames and possible confusable frames, and feature reduction to maximally
separate them. The confusable frames are identified via recognition of the training data
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to find frames which give a close match to the template, yet are not drawn from the same
class. Having identified a set of within-class data X = {x;...x,} and a set of confusable
vectors Y = {y; ...y,,} their corresponding distributions can be found. Due to the nature
of the transformations used to compute X,

Bz (i) — frep(i) =1 (3.26)
where 2 (i) and f,.f;(i) are the it" elements of the speech vector and reference template
respectively, i.e. the expected individual contribution of each feature to the distance mea-
sure is unity. Thus, by computing the expected contribution of the confusable vectors,
E(y(i) — frep(j)(i)), those features which best contribute to separating the within-class
and confusable vectors can be identified. This approach can be seen to be similar in prin-

ciple to the discriminative feature selection discussed in section 3.5.3.

Using the global rotation, frame stacking and template specific feature selection is clearly
advantageous. From a base of 16 features per frame, which gave 2.5% error on isolated digits,
the global rotation and stacking reduced the error to 1.4%. Adding the final template specific
selection further reduced the error to 0.6% using a final speech frame of 8 features. Using
the template specific transform clearly improves the modelling capabilities of the templates
through better identifying which components of the feature vector can best characterise a
class whilst at the same time discriminating between similar classes. However, this gain
is at a substantial computational cost, only 16 multiply-adds are needed for each distance
measure calculation in the original system, but this rises to 132 multiply-adds in the best
final system.

3.7.3 Confusion Discriminants in HMMs

The template specific model has been extended to continuous density HMMs by Dodding-
ton [35, 36]. The HMM system set up was aimed at simulating the template approach. The
number of states was chosen to correspond to the average length of each speech event (dig-
its) so that on average each state would match exactly one frame. Each state was modelled
by a single Gaussian distribution, and the state likelihoods were computed using a Eu-
clidean distance. The Euclidean distance measure can be used since a state-specific scaling
of the feature vector ensures that the variance of each feature is unity. A global transform
generated from the global covariance is first used to transform all the vectors to decor-
relate features and reduce dimensionality. For the confusion discriminant (state-specific)
transform within-class and confusable class distributions are computed. The within-class
distribution is taken directly from the trained model states, and the confusable class distri-
bution is determined using a three step procedure. First, all frames in the training data are
allocated a “correct” state using a supervised maximum likelihood alignment. Second, an
unsupervised alignment which is biased against the correct sequence is made. Finally, the
two alignments are compared and where a frame is assigned to different states in the two
alignments a confusion is identified. The frame from the supervised alignment is added to
the confusion data for the state identified in the confusable alignment. Using the within-
class and confusable distributions the confusion discriminant transform can be computed
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for each state in the same manner as the template transform used above. The transform
decorrelates the features and those dimensions in which the confusion distribution contains
less variance than the within-class distribution can be discarded. The distance measure
used for the log likelihood calculation for input vector x; state j is:

D =|| §;°T;(z: — ) |I? (3.27)

where T'; is the confusion discriminant, p; is the state mean and S; is a diagonal scaling
matrix used to weight each feature by its standard deviation, and 3 is an arbitrary power.
Although Doddington reported experiments on a connected digit database showing that
confusion discriminant transforms reduced the word error rate from 0.8% without transforms
t0 0.5% with transforms it was later discovered that there was an error in the implementation
[35]. In revised experiments it was found that a value of 3 = 0.5 was optimal and that

dimensionality reduction using the confusion discriminant gave some reduction in error.

Two major problems can be identified in Doddington’s approach. First, biasing the
recognition pass to force errors for the confusion data can lead to the identification of
‘false’ errors, i.e. those which would not normally occur in recognition. Generating the
transforms based on these errors may not lead to better class separation. Secondly, the
distance measure used to calculate the likelihood is not consistent. It can be seen to be a
corrupted form of the standard HMM probability density function. Woodland [105] noted
that the normalisation term for a Gaussian p.d.f., namely

1

—_ 2
(27T)d/2|2‘1/2 (3 8)

(where d is the number of dimensions in the speech vector) makes a contribution to the log

likelihood of
d
D) log 27 — log | 2|12 . (3.29)

Since the covariance for the within-class data is diagonal (ensured by the transformations)
the state dependent term can be written as:

d
~3 log A} (3.30)
=1

where ); is the 7" eigenvalue of the within-class covariance matrix. This is clearly not the
same normalisation used by Doddington in which the standard deviation is used to scale
the contribution of each feature. Each feature should be normalised by a fixed amount
dependent on the variance of the feature in the transformed case. A comparison between
the modified normalisation and the corrupted normalisation shows that significant gains are
made by using the modified approach [105].

Woodland approached the gathering of confusion data in a different manner to Dodding-
ton. Instead of biasing an unsupervised recognition pass to create errors, possible confusable
frames are identified by comparing the log likelihoods of frame/state pairings and including
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No. of Dimensions | Frame Confusions | Viterbi Confusions
24 8.9 8.9
20 8.2 8.0
16 10.1 7.9
12 10.4 8.9
9 12.5 9.3

Table 3.2: Speaker Independent results quoted by Woodland on the E-set using a state
based discriminant transform with correct Gaussian normalisation [105] (% error)

near misses. Two methods for accumulating confusable frames were used, a frame-based
one where, similar to Doddington, incorrect frame assignments are identified, and a second
where confusions are determined on a whole utterance basis using the utterance likelihoods.

For the frame based approach, the likelihood of the frame being generated by the best
state in the correct model was identified. The likelihood of any other state generating the
frame was compared and any which fall within a given threshold were deemed confusable.
This allows confusable frames to be identified even if the whole frame sequence is not
confusable. For the second approach, a Viterbi alignment of each isolated utterance with
each potentially confusable model was generated. If the overall likelihood of the model
matching the utterance is within a threshold of the likelihood of the correct model matching
the utterance, the whole phrase is deemed confusable. The alignment of the utterance to the
incorrect model is used to assign the frames to states to generate the confusion distributions.

An evaluation of this method on the British E-set (which consists of 8 letters B, C, D,
E, G, P, T, V) using a 24 dimensional vector (12 MFCCs + first differentials) shows that
both methods of gathering confusions can show improvements, with the Viterbi confusion
collection being substantially more robust in lower dimensional feature spaces (Table 3.2).

3.8 Summary

Methods of improving discrimination in HMMs have been discussed in this chapter. Ap-
proaches using training methods have looked at correcting some of the invalid assumptions
for HMMs, but have been seen to be limited in scope. These methods are either difficult to
implement, for example estimating MMI parameters on large systems, or based on ad-hoc
methods optimising an arbitrary measure. Approaches which manipulate the feature vector
have shown that selecting an appropriate feature space can lead to significant improve-
ments in recognition performance. Feature extraction methods based on transformations
have been seen to be successful, both in terms of reducing computation and improving
discrimination.

The state-specific transforms reported by Doddington and Woodland appear to be ef-
fective in selecting a more discriminative feature space, allowing better class separation.
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These transforms incorporate many of the ideas from feature selection and training algo-
rithms which are aimed at improving discrimination. The selection of feature dimensions
based on the ratio of within-class and between-class variances is the basis for many feature
extraction methods (e.g. the Fisher ratio), and the use of a recognition pass on the training
data to identify errors is common amongst many of the discriminative training approaches.

Both implementations of the confusion discriminant transform have considered small
scale recognition tasks and used simple algorithms to compute the confusion distributions.
The extension to larger and more complex systems is certainly more difficult but given
the success of the reported experiments, applying the transforms to larger tasks should be
investigated. Such an investigation is the subject of chapters 4 and 5.



Chapter 4

Transformations for Discriminative
Feature Selection

The selection of a good set of features for the observation vectors is crucial for high accuracy
recognition. In this chapter, methods of feature extraction using linear transforms for
application to continuous speech are investigated. The aims of selecting a smaller feature
space are twofold :-

1. To improve recognition performance

2. To reduce computational cost during recognition.

Initially, methods of reducing the dimensionality of the observation feature vector on a
global basis are examined. Both a feature selection and a feature extraction method are
implemented on a continuous speech task, and the effects and problems of the methods
discussed. In an aim to improve upon the global approach, a state specific approach termed
confusion discriminant analysis (CDA) is presented and discussed in terms of application
to continuous speech tasks.

4.1 Model Sets for Evaluation

The feature selection methods discussed in this chapter have been evaluated using HMMs
with a single Gaussian density per state and a full covariance matrix.

Two model sets, Rp,; and Rgrandv were defined for speaker independent Resource Man-
agement (RM) experiments (appendix A). These model sets are identical except that

Ryg 1 has a separate covariance for each state, while R,,...,q is a grand covariance model set

gran
(a single covariance matrix is shared between all states).

For each model set, 48 phone models corresponding to the CMU phone set [71] were
defined. Each model had 3 emitting states and a left to right topology. The number of
models was increased to 130 by including function-word dependent phone models for the

38
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32 most common function words in the RM training data (Table A.1, appendix A). A full
covariance monophone system was trained using Baum-Welch re-estimation with all 3990
training utterances.

4.1.1 Baseline Results for Ry and Rgrang

The baseline results for the Rg,) and Rgpapq model sets on the RM speaker independent
test sets are shown in Table 4.1.

Test Set | R, models Rgrand models
Feb’89 9.6 20.8
Oct’89 9.9 18.8
Feb’91 8.6 18.0
Sep’92 14.0 26.2

Table 4.1: Baseline results of models on RM speaker independent test sets (% word error).

4.2 A Global Feature Selection Method

Before the feature extraction methods are considered, a feature selection method is examined
to assess the need for more complex methods of reducing the size of the feature vector.

The method proposed by Bocchieri & Wilpon [15] was implemented using the 39 element
feature vector in the Ry, model set. Errors were identified for the feature selection errors
using an N-Best recognition pass with single mixture diagonal covariance models. For each
error that occurred, the erroneous frame f, and the state it was aligned with s; were
identified. The average distance measure D(7) was calculated for each of the 39 features
(i=1...39).

D(i)=E [[.ft(l) - /J.’st (2)]2] (4.1)

05, (7)

The features were rank ordered according to D(i) and the d best features selected (high
D(i) are retained, low D(i) are discarded).

Diagonal covariance HMMs were used to calculate D(i) and select the features. The
full covariance models were reduced to use the selected features (note that the reduction is
simple selection, no scaling or rotation is involved).

A state-based selection using the same criteria has been examined, but this produced
extremely poor results for the diagonal model set, and was not implemented on the full
model set. The poor results were due to many states not being assigned sufficient confusion
data to estimate the distance measure robustly.
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The results of the global feature selection on the full covariance model Ry, set (Fig. 4.1)
show that no improvement in recognition rate can be achieved by reducing dimensionality
(using 36 features gives equivalent performance to the baseline). For the diagonal model
set it was possible to get a improvement at all dimensions down to 22, showing that the
selection measure is model set dependent.

A possible problem with this approach is the identification of errors, and their relevance
to the recognition. Here, errors have been identified on one model set, and used to correct
another. The assumption for the discriminant feature selection theory was that all the
features were independent, hence the diagonal models. This is a poor assumption and
when correlations are modelled using full covariance models a different feature set should
be selected.

% Word Error

6 ! ! ! ! !
39 36 32 28 24 20 16 12 10
No. of dimensions retained

Figure 4.1: Simple feature selection using the approach proposed by Bocchieri & Wilpon.
Results are % word error on Feb’89 using Ry,,;; models.

The results demonstrate that a simple feature selection cannot be implemented without
a loss in performance. The selection does not try to separate classes, but chooses the set of
features which will perform the best classification of the correct speech frames. In fact this
method selects features based on a MMI measure between the state distributions and the
frames assigned to the states during collection of statistics.

A reduction to 24 features is possible without a large fall in performance, suggesting that
with more complex feature selection, a larger dimensionality reduction may be obtained.
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4.3 Global Feature Space Selection Using LDA

Linear Discriminant Analysis (LDA) is widely used to generate reduced feature vectors.
There are several assumptions made in the implementation of LDA which are not usually
valid. These assumptions are examined in the following section and the effect of LDA on
the selection a discriminative feature space from the standard observation vector coding is
examined.

4.3.1 Analysis of Global LDA Assumptions

It is assumed that all classes share a common within-class covariance for a global LDA
implementation. The validity of this assumption in terms of the Rg,;; models was consid-
ered by performing an eigenanalysis to determine the relative shapes of the distributions
for different classes. When considering the distributions of two classes w1 and ws, if the
eigenvalues of distribution wo are scalar multiples of wq, then the distributions may be of
the same shape but different sizes and orientations. However, if the ratio of the largest
eigenvalue to the next largest is different for the two classes then the distributions must
have different shapes.

Model/State A ratio A\1/A2 | Model/State A ratio A1/ Aa

E (state 2) | 127.078 1.140 B (state 2) | 90.941 1.181
state 3) | 142.148 1.121 B (state 3) | 160.576 3.614
state 4) | 140.996 1.297 B (state 4) 81.569 1.096

E (

E (

Y (state 2) | 173.434 |  1.542 CH (state 2) | 111.929 |  1.298
Y (state 3) | 149.898 |  1.222 CH (state 3) | 72.721 2.022
Y ( )

state 4) | 157.268 1.570 CH (state 4) | 107.850 1.739

Table 4.2: Comparison of eigenvalues for in-class distributions of states of Rg,; models. A\;
is the largest eigenvalue and A9 is the next largest.

Table 4.2 shows these ratios for states belonging to a variety of models. It is clear that
the shapes of the distributions are different even for distributions within the same model.
An eigen analysis of the grand covariance distribution in Rgrand gives a A1/A2 ratio of
1.123, significantly lower than the majority of individual states. Computing the average
eigenvalues over all state distributions and comparing against the eigenvalues of the grand
covariance shows significant differences in the values of the larger eigenvalues (Fig. 4.2)
indicating that the distributions have different sizes as well as different orientations. Thus
the LDA assumption of a common covariance for all classes is poor. This is confirmed by

the baseline results using a grand covariance system (model set R which is consider-

grand)
ably worse than the Ry, model set (section 4.1.1). LDA also assumes a single Gaussian
distribution per class, however the results using models with multiple mixture densities

(section 8.1) shows that the classes represented by the HMM states are modelled better by
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multimodal distributions.
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Figure 4.2: Comparison of eigenvalue distributions for grand covariance and individual
model covariances (eigenvalues computed for each distribution and then averaged)

The results of this eigenvalues analysis indicate that the LDA assumptions are incorrect.
To examine how this affects the performance a global LDA transform was used to transform

the model sets.

4.3.2 Global LDA on RM Models

The grand covariance model set (Rgrand) was used to compute the LDA distributions, using
the grand covariance as the in-class distribution C,. The between class covariance (C}) of
the HMM states was calculated by accumulating the individual state means,

Cy = Zuiui (4.2)

where ¢ indexes every HMM state.

The standard LDA transform was generated using C,, and C} and feature reduction
performed to generate an n X d transform R. The parameters of each individual model
state in the Ry,;;) model were transformed and reduced to a lower dimensionality,

¥, = RY;uR (4.3)
B = Rpgpy
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where 3, is the reduced covariance and p, the reduced mean, each of dimension d. The
Gaussian normalisation term in each state was also reestimated using the value of the new

covariance matrix.

The n dimensional speech observation vectors (x) are projected into the d dimensional

LDA space by the same transformation,
y=Rz (4.5)

and y is used as the observation vector in further processing.

Implementing the transform in this way removes the need to reestimate the reduced di-
mension models from scratch, however, it also relies on the assumption that the frame/state
alignment for training is the same for both the full and reduced covariance models. The
effect of reestimating the models using further training iterations shows only a small change
in model performance so this assumption is reasonable (Fig.4.3).

The global LDA transform gives a substantial dimensionality reduction without loss of
accuracy. A reduction to 30 dimensions results in the best performance (9.3% - without
training), and further reductions gradually degrade the performance. All dimensions lower
than 30 give worse performance than the full feature set.

5 8| *

i

'g 6f ——  LDA with further training 1

= - - - - LDA without training

R 4t ]
2 - i

0 ! ! ! ! ! ! ! ! !
39 36 34 32 30 28 26 24 22 20 18
Number of dimensions retained

Figure 4.3: Results of global LDA feature extraction using Rp,;) models on Feb’89 test set
with and without further training
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4.4 State-Based Feature Space Selection Using Confusion
Discriminant Analysis (CDA)

Confusion Discriminant Analysis (CDA) performs much the same function as LDA in rotat-
ing the feature space to the best orthogonal axes to find the most discriminative features.
The nature of the data used in deriving the transform, however, is ideally suited for appli-
cation at the state level.

The transform is derived by identifying potentially confusable data and using this to
estimate an out-of-class distribution for each class. In a similar manner to LDA, the original
feature space is projected into a new space in which the in-class distribution is based on
orthogonal axes. By projecting the confusable data onto the same axes a comparison of
the suitability in terms of discriminative ability of each of the axes in the new space can
be made. Those axes which are most representative of the in-class data, in comparison to
the confusable data, are retained. The axes in which it is difficult to separate the in-class
and out-of-class are discarded. As the out of class data is class dependent, the approach
necessitates the use of class specific transforms.

4.4.1 Derivation

Following the notation of Woodland [105] the CDA transform is derived as follows. Given
an in-class covariance matrix C' and an out of class confusion covariance matrix B about
the in-class mean, both matrices are diagonalised simultaneously.

The transformation T'; is used to decorrelate all the features and normalise the variances
of all the features in the within class matrix to unity.

T,CT, =1 (4.6)
where
T, = RiA 2 (4.7)

and R; and A are the eigenvalue and eigenvector matrices of C respectively.

The confusion data is also rotated using the transformation T'j, giving the resulting

matrix S,

S = T,BT, (4.8)

S is then diagonalised using Ro the eigenvector matrix of S,
R,SR, =D (D is diagonal) (4.9)

Under the same rotation Rg, the normalised orthogonalised in-class matrix remains the
identity matrix, thus the transformation

T =R,A 3R, (4.10)
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transforms both in-class and out of class data to have uncorrelated features and be aligned
along the same axes. These rotations do not affect the class separability measure J; so
the discriminative ability of the classes is unchanged. By discarding those axes in which
the confusable data and the in-class data are difficult to separate, the measure J; will be a
maximum for the new reduced dimension space, and lead to better class separation.

Assuming that both the in-class and out-of-class distributions are Gaussian, features are
selected on the basis of effectiveness in the Gaussian p.d.f. The features which will increase
the likelihood difference between in and out of class data are those which have a confusion
data variance greater than unity in the transformed feature space. The in-class variance is
unity in the new space and the out-of-class variances are the eigenvalues of §. Therefore
the dimensions with the largest eigenvalues of S should be retained.

Features are selected by using an n x d selecting matrix F' (n is the size of the original
feature space and d the size of the reduced feature space). Element (4, ) of F' has a value of
one if the i*" dimension of the original space is to become the j** dimension of the reduced
space and zero otherwise. The transformation for rotation, scaling and feature selection

becomes,

T = RyA 2R, F (4.11)

If the speech vectors in the original feature space are {x; ...y} the vectors after trans-
formation (without scaling) into the subspace are {y;...y, : y; = F'RR|x;}. The
covariance of the in-class data in the transformed subspace is X,

1
Si= > F'RyR(xi — p)(wi — p) Ri Ry F (4.12)
)

where N is number of data samples in the class, and @ is the mean of the in-class data.
Noting that

1
N > (i — p)(xi — p) = RAR] (4.13)
i
and Ry is orthogonal, this simplifies to

%, = F'R,AR,F (4.14)

The covariance X; should be used in the constant term of the probability calculation.

4.4.2 Computational Considerations

Without transformations the probability density function of a particular observation vector
x belonging to a Gaussian class is:

p(iB :( )n1||16_%(w_“i)/2_1(w_l"l’i) (4.15)
2m)z | X |2

where p; and ¥ are the mean vector and covariance matrix of the class distribution, and n
is the dimensionality of the feature space.
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In a straightforward implementation of the p.d.f. n(n + 1) + 1 multiplications and

w +1 additions are required to estimate the exponential expression (using the symmetry

of the covariance matrix). However if 7! is reduced by a Choleski decomposition,
> = LI (4.16)
the exponential part of the probability density becomes,
(= p) 2 e —p;) = |IL(z—p)lP (4.17)

Only "2% multiplications are required for the matrix multiplication, and n multiplications
for the squared distance calculation.

When the state distribution is transformed by the CDA transform (without selection)
the term (x — p;)'E 7 ( — p;) in the p.d.f. calculation can be rewritten as,

(@ - ) (RIARY) (@ — ;) (4.18)

using T' = RlAfé this becomes
1T (@ — p;) | (4.19)

Thus the feature space has been transformed so that all the components in the transformed
feature space are linearly independent with respect to each other. The feature reduction
can be included and the probability density for the new reduced feature space is given by,

@ = Gt g re e (4.20)
2m)2 Zt 2

For the transformed calculation, the selection of d features from the input vector requires
n multiplications and n + 1 additions per feature, and the vector norm calculation requires
d multiplications, plus d — 1 additions. To implement the method thus requires a total of
d(n + 1) multiplications and d(n + 2) — 1 additions.

Assuming that multiplication is the most computationally expensive factor, the trans-
formed calculation results in a ratio of d : n saving on calculation over a direct implemen-
tation of the untransformed vector calculation, but for a saving over the Choleski decom-
position approach d < % is necessary.

In terms of storage the transform matrix requires d X n entries, as opposed to the ”2—2
entries required by the symmetric covariance matrix. A reduction to half the number of
dimensions would result in the same storage requirements.

4.4.3 Relationship to MMIE

The method has strong similarities to the MMIE training approach. An attempt is made
to maximise the probability of recognising the frames of the correct speech class, whilst
reducing the probability of recognising frames from other classes. In effect the mutual
information between the in-class acoustic events and the model state in the new subspace
is maximised by discarding those dimensions which contribute little mutual information.
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In section 3.2.1 it was shown that MMI optimisation effectively shifts the parameters in
the direction of the MLE estimate but compensates in directions corresponding to confusable
data. CDA starts with MLE estimates and selects a set of axes which least represent the
confusable data. Hence, instead of compensating the parameter estimates for confusions,
those directions which would require most compensation are discarded.

4.4.4 Relationship to LDA

The main differences between CDA and LDA are the generation of the out of class distribu-
tion, and that CDA is implemented on a class specific basis. For LDA the distribution may
be found on a global basis by considering all of the available speech data and the classes
to which they should be assigned. For CDA a distribution of confusable data needs to be
generated separately for each class. Generating such distributions on an individual class
basis is the major problem in implementing CDA.

4.5 Applying CDA to Continuous Speech Tasks

The reason for considering CDA is that it can be applied on a state basis to select particu-
lar characteristic traits of the class being modelled. Thus a state-based distribution which
specifically selects the optimal features individually for each state should theoretically per-
form better than the global LDA approach. In order to apply the transform to maximum
effect a distribution representing confusions with each state must be generated.

The term ‘confusion’ can be used to refer to many different concepts in the field of
speech recognition, so a clarification of how it is defined here is necessary.

Given a distribution d representing an acoustic event (X), an acoustic observation o is
deemed confusable with d if o is generated by an acoustic event other than X, yet may be
assigned to d during recognition.

By identifying typical confusions within a state, the subspace of the feature space which
best separates the in-class and confusable data can be determined. The problem examined
in the remainder of this chapter is how to determine appropriate distributions for generating
the state based CDA transforms. This will be approached as follows: first the confusion
gathering methods used for isolated speech will be reviewed; the problems of extending such
approaches to continuous speech will be detailed; further problems of identifying confusions
are discussed; finally, an approach using global distributions at the state level is examined.

4.5.1 Confusion Gathering Approach for Isolated Words

As mentioned in chapter 3, CDA has previously been implemented by Woodland [105], on
the isolated British E-set task which consists of 8 highly confusable letters (B, C, D, E,
G, P, T, V). In those experiments a single 15-state HMM was used for each letter, with 6
states representing the consonant section and 9 states tied among all models to represent
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the common vowel sound. For the best confusion gathering method, each utterance in the
training data was aligned against every model, and the Viterbi likelihood recorded. Those
models which gave a likelihood within a threshold of the likelihood of the correct model
were considered as confusable models, and the alignments of the speech frames to states
was used to allocate confusion data. If a frame f was allocated to state s in the incorrect
model, f was pooled into the confusion data for s.

After the alignment was complete, the pooled confusion data for each state was used to
generate a confusion distribution for the state which was used in CDA to reduce the dimen-
sionality of the feature vector. This proved effective and allowed the number of dimensions
to be reduced whilst obtaining a reduction in error rate for the speaker independent test
set. Reducing the original 24 dimensional feature vector to a 16 dimension feature vector
resulted in the error rate dropping from 8.9% to 7.9%, and a 12 dimensional feature vec-
tor gave equivalent performance to the original vector. The E-set is a highly confusable
database and if a reduction to half the number of original dimensions can be achieved on
this task, other tasks may allow even greater reductions. However, the E-set is also a very
small vocabulary task and thus may require only a small number of features to discriminate
between classes.

There are two aspects to note in this confusion gathering process. First is the assumption
that all models are confusable, all models are aligned and used for determining confusable
data. The second is the use of confusability thresholds, which are used to ensure that
enough data is present to generate a robust estimate of the distribution.

4.5.2 Problems of Extending to Continuous Speech Tasks

Extending the Viterbi confusion data collection method to continuous speech increases the
complexity of the task by several orders of magnitude. The E-set task is small, requiring
the use of only 8 different HMMs, and each utterance was known to consist of exactly one of
the 8 E-set letters. Enumeration of all combinations of model/utterance was a simple and
computationally feasible task. With continuous speech, not only are there more possible
models (e.g. 40 — 50 models just for the basic monophone set) and more speech frames
in each utterance, but there is a variable number of words in the utterance. It becomes
computationally infeasible to enumerate model sequences and utterances, even if the number
of words in the utterance is predetermined.

For the extension to continuous speech there are several factors to consider:

e Computational feasibility,

e At what level to identify confusions (model level, word level, sentence level),

How to incorporate insertion/deletion errors into the confusion framework,

How to determine confusion distributions (what are confusable frames for a state),

What other factors (e.g. grammar constraints) can restrict possible confusions.
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The generation of the transform needs to be computationally feasible in terms of training
time. As the calculation is a once only post-training step, absolute speed is not of great
importance, but should be considered relative to the actual training time of the system.

Woodland investigated both frame level and word level approaches for identifying con-
fusions and found that word level confusion gathering was significantly better in terms of
robustness and recognition accuracy. Extending to continuous speech gives many more
possible levels at which to determine confusions. Any point in the recognition hierarchy

Frames < State & Phone Models & Words < Sentence

can be used.

The decision is somewhat complicated by other factors which apply at recognition time,
for example phone sequences must make up words, words must follow the language model,
confusable sequences may be pruned out of a recognition search. Gathering confusions at
the sentence level inherently incorporates all these factors, however, this leads to further
problems in enumerating alternative sentences and in the type of confusions that can occur.
Allowing large degrees of freedom for confusion comparisons leads to the problem of how to
treat insertion and deletion errors in terms of confusion gathering. There is also the further
problem that CDA requires confusion distributions on a state level, thus if confusions are
identified at higher levels a mapping to assign data to individual states is required. The
distributions must also be robustly estimated so any method should ensure that a sufficient
number of confusable frames are identified for each state. For continuous speech the acoustic
models have to model much more intra-class variability, which leads to many overlapping
class distributions. The directions of maximum separability in these cases is more difficult
to determine.

4.5.3 Simulating Isolated Confusions for Continuous Speech

One of the problems of extending to continuous speech is the larger number of models and
increased size of the parameter set. This may limit the effect of the CDA implementation
due to the difficulty of determining appropriate dimensions to separate the current class
from all potentially confusable classes. To determine the extent of this problem the isolated
word confusion gathering approach was examined in the context of continuous speech.

For the purposes of this experiment the TIMIT database (appendix A) was selected for
a phone classification task. The detailed labelling of this database allows individual phone
models to be aligned between the start and end points of each phone segment. By treating
each segment as an isolated phone, Viterbi alignments can be generated and confusable
models identified. Thus a direct correspondence to the confusion gathering on the E-set
can be achieved. The effect of the confusion gathering is assessed by performing phone
classification with the reduced dimensionality models. Confusions were gathered from the
training data in a similar manner to Woodland.

To ensure a sufficient number of confusions, different thresholds for the Viterbi confusion
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scores were used. Observation sequence O is confusable for all alternative models m,, if
F(O|mi) — F(O|mg) < 0 (4.21)

where ¢ is the confusion threshold, F(O|m;) is the log likelihood of generating O using the
true model m; (according to the labelling), and F(O|m,) is the log likelihood of generating
O with m.

number of | Training Testing Set
features 0=0 0=0|d6d=10|6=25
39 66.7 64.1 64.1 64.1
36 67.8 64.8 65.3 65.0
34 67.7 64.6 64.8 65.0
30 68.1 64.5 65.0 64.7
28 68.0 64.1 64.6 64.5
26 67.3 63.4 64.0 64.3
24 66.9 63.3 63.7 64.0
22 66.6 63.0 63.4 63.9
20 67.1 62.9 64.0 64.2
18 66.8 62.0 64.0
16 66.6 61.0 63.7
14 65.7 60.2 62.8
12 64.8 59.2 62.1

Table 4.3: Isolated confusions simulated on TIMIT database using phone classification.
¢ is the confusion threshold. Models are single Gaussian monophones with 39 element
observation vectors. Results are percentage of phones classified correctly.

This simulation shows that gathering confusions in a similar manner to that of isolated
words can improve the performance (Table 4.3) on both training and test data. The use of
a threshold allowing near confusions as well as true confusions makes the estimation more
robust and enables greater dimensionality reduction for the test set. A small reduction to
36 dimensions improves phone classification rates, and a reduction down to half the original
number of dimensions maintains the same performance as the full feature set.

This result shows that CDA can determine good dimensionality reductions even with
an increased number of models which is encouraging for the application to general contin-
uous speech tasks. The confusion gathering approach used here is computationally very
expensive, requiring an enumeration of all models and all labelled speech segments. In
other databases, such segmentation is not available (e.g. databases labelled at word not
phone level), and the size of the tasks (number of words, amount of training data) make
the enumeration unmanageable.
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4.6 State-Based CDA using Global Distributions

Before considering methods of attempting to identify specific confusion data for each state,
an examination of the effect of using the same distribution for each state is considered.
This gives an idea of the possible dimensionality reductions which may be achieved with
appropriate state-specific confusion distributions.

Implementing CDA on a state basis using global distributions performs exactly the same
function as LDA but the feature space is state specific since the in-class distributions used
are state dependent. In theory this should improve classification on a state basis. The main
problem is to determine which between-class distributions should be used to compute the
transform. The within-class distribution of the state is known (from training). The global
measures which can easily be computed are

(a) Distribution of class centroids (means)
(b) In-class distributions for all other classes

(c) Distribution of data as a whole
These measures give four possibilities for the distribution to use

1. The between-class distribution (a). This is a direct equivalent to LDA, but
on a state-specific basis.

2. An average of the within-class distributions (b). E.g. A pooled (grand) state
covariance. This is analogous to the no-confusion data implementation of Woodland,
where the speech data was initially transformed to produce a grand within-class vari-
ance of unity for each feature. The identity matrix was used to represent a confusion
distribution.

3. The total covariance of the whole of the training data (c). Here, the aim
is to identify those features with large overall variance among other speech classes,
but a small variance for the class under consideration. These features are intuitively
representative of the class.

4. A fixed deterministic matrix not using any class/data information. E.g. the
identity matrix.

The effect of using examples of each of these global distributions on the speaker inde-
pendent RM Feb’89 test set using the Ry, model set is shown in Figure 4.4. For the global
covariance of the data and the between-class covariance, the distributions were first shifted
to be around the state means before the CDA transform was implemented. This was found
to give marginally better performance than using the distributions without the shift.

The between-class covariance is clearly superior to the other distributions and allows a
dimensionality reduction to 16 dimensions without a degradation in performance. The best
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Figure 4.4: Effect of feature reduction using CDA with global measures. Results on RM SI
feb’89 test set using Rg,); models.

performance of 8.9% word error is achieved using 28 dimensions. This result is better than
the best global LDA result and a greater dimensionality reduction is achieved.

It is interesting to compare the results of transforms generated by the global covariance
and the between-class distributions. Both represent similar measures of the data, however
the between-class distribution gives equal weight to each class, whilst the global distribution
gives more weight to the classes which occur more frequently in the training data. It appears
that assuming each class is equally confusable is better than assigning confusability on

frequency of occurrence of the classes.

The grand covariance and identity matrices have very similar effects, indicating that
very similar rotations are generated. Looking at the case of the identity matrix, the rotated,
scaled matrix for the out of class data is

S=A:R,{IRA 2=A" (4.22)

Since S is diagonal the second rotation has no effect and the features are selected based
on a comparison of eigenvalues of the in-class data, and those dimensions with the largest
eigenvalues (and therefore largest variances) discarded first. A similar argument can be
made for the grand covariance case since the expected value of the class variance is the same
as the grand variance. The second rotation has (on average) little effect so the selection

criteria is very similar.
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4.7 Summary

This chapter has compared global feature selection, global LDA and a state-specific trans-
form approach. The feature selection was found to be poor in that no improvement on the
recognition performance could be achieved. The global LDA assumptions were analysed
and shown to be poor, although a dimensionality reduction can be achieved using LDA
without loss of performance. This results in a computational saving since each observation
vector is only transformed once.

The theory of a state based approach, CDA, has been presented and shown to be similar
to LDA, but with better assumptions. Using global distribution measures on a state basis
has been shown to be more effective than global LDA, both in terms of increasing recognition
performance and in the dimensionality reduction which can be achieved. A computational
saving over the original model set may be made without loss of performance.

Ideally the method should be applied with state-specific distributions which represent
the possible confusions made during recognition. The problems of identifying such distri-
butions when using continuous speech have been considered, and the problems involved
identified. A simulation of the confusion gathering approach for isolated words on con-
tinuous speech has shown that generating state-specific confusion distributions is possible,
however a direct implementation is not feasible. The problems that need to be considered
when generating specific confusion data from continuous speech are

e Enumeration of all confusable models not feasible

Model /word boundaries no longer fixed

Incorporation of high level recognition constraints

How to define confusion data (frames/models/words)

e How to ensure robust estimates of distributions

Methods for overcoming these problems are discussed in the next chapter.



Chapter 5

Evaluation of Confusion
Discriminant Analysis Transforms

In chapter 4 the problems of generating confusion distributions on a state-specific level for
use with CDA on continuous speech were identified. Methods for overcoming these prob-
lems are now proposed and investigated. Two approaches, one data driven and the other
distribution based are examined and evaluated on the RM speaker independent database.
The results achieved compare favourably with those obtained using global feature selection
and extraction methods.

5.1 State-Specific Confusion Distributions for CDA

Gathering confusion data involves identifying and accumulating speech frames which are
potentially confusable for each state. A distribution for the confusable frames needs to
be estimated which is both accurate and robust. The distribution should represent all
potentially confusable frames for the class, and sufficient numbers of confusions should be
identified so that the estimate is not dominated by one particular type of confusion. Bearing
these requirements in mind, two approaches to estimating the confusion distributions will
be examined.

1. Data-Driven Confusions
Identifying confusable vectors using the training data.

2. Confusions from Model Parameters
Identifying potentially confusable regions of acoustic space using the parameters of
the model distributions.

These approaches vary in the amount of computation required and the accuracy of the
confusable distribution generated.

54



FEvaluation of CDA Transforms 55

5.2 Data-Driven Confusions

If the training data is assumed to be completely representative of the test data, i.e. any
modelling errors which will occur in the test data will also be present in the training data, a
valid set of confusions may be identified from the training data. By performing recognition
on the training data sections of speech which are poorly modelled can be identified by
comparing the recognition output with the known transcription. The sections of speech
which are assigned to incorrect classes can then be used as confusion data to try to improve
the performance.

When considering possible approaches to confusion gathering from recognition of the
training data, computational aspects must be considered. Since the tasks under considera-
tion are based on continuous spoken words it is reasonable to restrict the search at the word
level. This will ensure that only valid phone sequences corresponding to words are consid-
ered, and allows language models to be incorporated into the identification of confusions. If
the phone model level is used the problem can become computationally expensive (phone
models are more confusable than word models), whilst the sentence level is too broad. It
may not seem intuitive that using higher level information as a basis to adjust individual
state distributions is relevant, but the aim is to improve high level (word/sentence) recogni-
tion. Some training methods which use sentence performance to estimate state parameters
[39, 93] provide justification for utilising higher level information to improve state modelling.
Hence, algorithms based on word recognition will be considered.

Recognition on the test data is usually implemented as a Viterbi match to find the
path through all model states which best matches the speech. The effectiveness of Viterbi
confusions is limited for two reasons:

e The models are optimised on the training data, hence, the recognition performance
on it is generally good. This can result in only a small proportion of the training
utterances being incorrectly recognised.

e Confusions are only gathered from the single best matching model sequence. This has
two consequences: first, it limits the number of confusions identified, and second it
ignores the fact that the correct model sequence may be confusable with many other
model combinations. Resolving the most likely confusion does not necessarily promote
the correct transcription.

Using a standard Viterbi approach for gathering confusions is not ideal and may result
in too few confusions to make a robust estimate of a confusion distribution. The obvious
solution to this problem is to extend the one best match to generate multiple recognition
hypotheses for each training utterance, or part of the training utterance. Any hypothesis
which is more likely than the correct sequence is deemed confusable. Each incorrectly
recognised utterance may contribute several hypotheses more likely than the correct one,
and correctly recognised utterances may have segments which are confusable with partial
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hypotheses. In this way, the number of confusions gathered can be vastly increased, making
estimate of the confusable distribution estimate more robust.

5.2.1 Identifying Confusions

The process for identifying confusions using recognition of the training data is straightfor-
ward. For each training data utterance there is a known word transcription W,

W = wiws...w

(transcription contains k words, each w; is a word). Each wj; is represented by a phone
model sequence of length I; (w; = m;1m;2...m;y;), hence the transcription at the model
level can be determined:

W =miimio...my;moy1...magy...Mg1...MgJ,

The correct model level transcription can then be used to generate the best alignment
of the frames of the training data utterance to the transcription. This is termed a forced
alignment. Examining the frame/state alignments of the forced alignment each frame f; is
allocated to a ‘true’ state, s;(f;), deemed to be the class that f; belongs to.

To identify confusions, each incorrect hypothesis generated by the recognition of the
training data is frame/state aligned in a similar manner to the true state alignment to get
a confusable state alignment (s.(f;)).

The true and confusable state alignments are then compared. Any frame which is found
to be assigned to different states in the two alignments is deemed to be confusable.

If  su(f;) =sc(f;) then frame f; is not confusable
st(f;) # sc(f;) then frame f, is confusable in state s.(f;)

Having identified the frames that are confusable in a designated state, the confusion
distribution (covariance C., mean = state mean ) for that state is calculated.

1 X

Ce= ﬁc;(fvi —p)(zi — p)f (5.1)

where there are N, confusable frames x; ... xy, for the state. This is the confusion distri-
bution to be used in CDA.

Using a standard recognition algorithm any factors which may affect the confusability
on the test set, such as language models or model to word mappings, may be incorporated
into the training data recognition. Problems may result from poor labelling of the database.
If the correct transcription generated is a poor match in terms of modelling because the
correct transcription is erroneous (maybe due to unusual pronunciation of words, or just
poor labelling), the confusion data collected may be inaccurate. In all approaches it is
assumed that the labelling is accurate.
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A further problem that must be considered is the robustness of each confusion distribu-
tion estimate. If there are few recognition errors on the training set the number of confusions
gathered for each state may be small, leading to problems in estimating distributions. In
such cases, methods for making the distribution estimates more robust must be considered.

5.3 Data-Driven Confusion Methods

Two approaches for gathering confusion data from a recognition pass of the training data
are proposed.

1. N-Best recognition
A Viterbi based recogniser which generates multiple sentence hypotheses.

2. Frame-by-Frame recognition
A Viterbi recogniser which uses information at the speech frame level to identify
confusable sections of speech. A restricted case of frame by frame is also considered
which attempts to incorporate lower level (e.g. model) restrictions into the confusions
collected.

There is a trade off in these approaches between the specificity of confusions identified
and the computation required. By using a word based recognition approach the search space
for the recognition passes can be kept small helping to reduce the amount of computation.

5.3.1 N-Best Recognition Confusions

The N-Best recognition method of gathering confusions uses an N-Best recogniser with an
additional state alignment procedure. The recogniser generates a lattice of word hypotheses,
and a search of the lattice is used to find possible sentence hypotheses and corresponding
likelihoods. Two definitions of confusable hypotheses may be used. One based on a compar-
ison of likelihoods between the current hypothesis and the correct transcription alignment,
and the other based on rank orders within the N-Best framework.

Confusions are gathered using the following algorithm:
Generate word hypothesis lattice
Search lattice for correct hypothesis, likelihood Ly
Search lattice for set of confusable hypotheses
For each hypothesis h which is deemed confusable

1. Generate frame/state alignment F; for correct hypothesis
2. Generate frame/state alignment F. for confusable hypothesis h

3. Identify and assign confusable frames to states
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For the comparison of likelihoods the confusion criteria is
Li— Ly <6

where Ly, is the likelihood of hypothesis h and ¢ is a confusability threshold. § = 0 corre-
sponds to the case where only confusable sentence transcriptions are considered. Relaxing
this constraint so that ¢ > 0 allows near confusions to be considered. For the comparison of
rank orders, any hypothesis which is in the top n N-Best hypotheses is deemed confusable.

The identification of confusable frames is achieved in the manner described earlier, but
for optimisation purposes, it is not necessary to generate complete frame/state alignments
for the whole of the true and confusable utterances. Instead, the models used in each
alignment can be compared, and state alignments only generated when different models
(and not states) are used at the same time frames. Here the assumption is made that being
in a different state in the correct model is not a confusion, but a relaxation of the time
alignment within a model.

It should be noted that in this approach all confusions are first identified at the sentence
level by comparison of sentence likelihoods or ranks, but the actual confusion analysis is
performed at the word level to generate confusions for each state.

5.3.2 Frame-by-Frame Recognition Confusions

The N-Best recognition confusion gathering looks for errors at the sentence level. This may
result in parts of the utterance which are highly confusable being ignored in the confusion
analysis because over a whole utterance the confusability has been diluted. The Frame-by-
Frame approach attempts to overcome this by looking for confusions at the model level.

In this approach, a standard (1-best) Viterbi recogniser is forced to recognise the correct
model sequence. The same recogniser is then used in an unconstrained recognition to find
the most likely model sequence. This gives two alternative state paths for recognition, a
true path (P;) and the most likely path (P,,). Confusions are gathered in a way in which
aims to promote P; in likelihood and degrade P, in likelihood (unless P, = P;). At each
frame, the model occupied in P; is considered to be the correct model (i.e. the desired
model to be in at that frame), and the model occupied in P, should be considered to be a
confusable model if different from that in P;.

For the model comparisons, the best matching model over the immediately preceding
frames are considered. Using the token passing recognition paradigm [111], after each frame
has been processed by the recogniser the likelihood of being in the final state of each HMM
represents how well that model has matched the immediately preceding speech frames.
Assuming that the models used in the forced true recognition pass give the desired model
sequence, the model with the highest final state likelihood at each frame is assumed to
be the ‘correct’ model at that frame. It is known which frames this model matches (this
information is recorded as part of the token passing algorithm), so any model in the free
recognition which matched the same speech frames is potentially confusable. The potentially
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confusable models are tested by comparing the likelihoods. Confusions are gathered for each
confusable model over the whole of that speech segment.

The outline algorithm is:

1. Generate correct model sequence alignment My recording best models (models with best
final state likelihoods) at each frame.

2. Generate a free model alignment My, but at each time ty:

(a) Identify the section of speech (f,, — fy, ) matched by the best model in My ending
at time tp

(b) Find all models m; matching f, — f;, in free alignment My.
(c) Check models m; for confusability over f, — f;, (compare likelihoods).
(d) Generate frame/state alignment over f, — f;, for models m;

(e) Assign confusable frames to confusion distributions.

Although this method identifies confusions at the model level, the aim is to promote the
likelihood of the correct sentence being recognised as the 1-best match. The recognition
algorithm is identical to that which is used in recognition of the test set, with only the
confusion statistic collection added, hence the confusions identified are directly relevant to
the model parameters and recogniser.

This method is computationally very expensive as confusions at every single frame must
be considered. Also, by considering the best models at every frame, models not actually in
the true transcription can be deemed as correct models and thus inaccurate confusion data
may be assigned to states.

5.3.3 Restricted Frame-by-Frame Recognition Confusions

The Frame-by-Frame method gathers confusion statistics at every single frame, with the
aim of trying to make the most likely matching models at each frame in an unrestricted
recognition the same as those produced in recognition of the correct utterance. Gather-
ing confusions at every single frame is computationally expensive and unnecessary, so an
adaptation of the approach is considered.

Examining the Viterbi recognition algorithm, it can be seen that although the best
model finishing at each frame is recorded, the actual recognition sequence is determined via
a traceback which looks at only a small percentage of the frames in the utterance.

The Restricted Frame-by-Frame method attempts to reduce computation by taking
advantage of knowledge of the correct alignment. Only those models that are included in
the traceback of the correct sequence need to be considered.

1. Generate correct model sequence M; alignment recording best models only at frames
identified in the traceback.
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2. Generate a free model alignment M.
3. For each time frame t; locate the closest entry in the traceback list (at time tp ).
4. If |t; — ty| < tol, where tol is an arbitrary frame tolerance:
(a) Determine the model my entered in the traceback at time t, and the corresponding
speech it successfully matched (£, — fy, ).

(b) Find any models m. more likely than m; at time t;

(c) Generate frame/state alignment over speech segment f, — f;, for each m., and
corresponding likelihood.

(d) If alignment is confusable assign frames to confusion distributions.

Figure 5.1 illustrates this idea. Model A is the best model finishing at time ¢;, and the
closest traceback entry is the previous frame. Assuming this is within the frame tolerance,
confusion data for model A is gathered over the whole segment matched by the model in
the traceback. By including a level of tolerance in the frame allocation, a degree of freedom
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Figure 5.1: Illustration of the restricted Frame-by-Frame method.

in the time domain is allowed. This allows for slight deviations from the exact true model
traceback, whilst not including all unnecessary confusion identifications for every model
over every frame.

The amount of computation is vastly reduced in comparison to the Frame-by-Frame
method since the restriction from the traceback means only a portion of the model /segment
combinations need to be examined.
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5.3.4 Summary of Data-Driven Confusion Methods

The data-driven confusion methods are all based on the assumption that errors in the
recognition of the training data are representative of errors that will occur in the test set.
All use a standard Viterbi recogniser, so any language models, model to word mappings,
and recognition time constraints which are used in the recognition of the test set may be
incorporated into the training data recognition.

If all the assumptions about the database and modelling accuracy are valid then the
main problem with these methods is that they are computationally expensive in comparison
to using the simpler global distributions for confusions. The training data set may be fairly
large, and multiple passes of the data may be needed to generate all the alignments needed
for gathering confusions. This is a once only cost, however, and may be considered as an
extra stage in the training process.

5.4 Evaluation of Data-Driven Confusions

The approaches to gathering confusions by recognition were applied to the full covariance
single mixture models (Ry,) using the RM speaker independent training data. The specific
experimental setups for each approach were:

1. N-Best recognition confusions
Recognition of all 3990 utterances in the training data was performed using a word-
dependent N-Best recognition algorithm [95], to produce transcriptions ranked in
order of decreasing likelihood.

For initial evaluation the rank of the correct transcription was identified, and all
transcriptions more likely than the correct transcription were analysed for confusions
(i.e. confusability threshold ¢ = 0).

More detailed evaluation examined N-Best confusions based on different thresholds
for both comparison of likelihoods and comparison of ranks.

2. Frame by Frame confusions
The algorithm was implemented exactly as described previously. The correct model
sequence was forced on each utterance, however the optional inclusion of inter-word si-
lence was allowed to ensure that true recognition conditions were satisfied. A standard
Viterbi decoder was used for the free recognition. Only models matching the same
speech segments were allowed to be confusable and only true confusions identified
(confusability threshold § = 0).

3. Restricted Frame-by-Frame confusions
The same forced recognition and free recognition algorithms as in Frame-by-Frame
were used. The frame tolerance tol was set to 1, allowing confusions identified at
+/ — 1 frames from the true phone boundaries. Likelihoods were compared over

identical speech segments using an absolute confusability threshold (§ = 0).
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5.4.1 Problems with confusion gathering

The confusion gathering algorithms generally appeared to be successful in that reasonable
confusions were being identified. However, the methods were all found to be computationally
expensive, taking much longer than a single iteration of a standard Baum-Welch training
pass.

A more important problem was that of ensuring that each state confusion distribution
was well estimated. With a frame vector of size 39, at least 39 confusions were needed for
an initial estimate, for a robust estimate many more would be needed. Figure 5.2 shows a
breakdown of how many state confusion distributions would be poorly estimated if different
minimum thresholds for the number of confusions required for robust estimates are specified.
Even at low thresholds it can be seen that several distributions are poorly estimated, and
as the threshold increases the number of poorly estimated distributions grows.
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- — General Frame-by-Frame
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Figure 5.2: Examination of robustness of distribution estimates. All confusion data collected
at threshold 6 = 0.

The N-Best confusion gathering had a particular problem with estimating robust con-
fusion distributions due to very good recognition performance on the training data (69.5%
of the training utterances were recognised as the most likely hypothesis). This limited the
number of utterances which could be used to gather confusions, and of those utterances
that were used, many had the correct transcription in the top 10 possibilities. Some states
in the model set were actually deemed non-confusable, by the fact that zero confusions
were collected for them. These were mainly states in function word dependent models, for
example none of the states in all the models representing the word ‘many’ were confusable.

The Frame-by-Frame method is much better at generating sufficient data for robust
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confusion estimates with only a small number of states (24) lacking data at a threshold of
200.

To overcome this problem of robustness, poorly estimated distributions were replaced
with a globally derived ‘default’ distribution. To ensure that the recognition confusions and
global distributions could be interleaved in this way some brief experiments were carried
out on a subset of the Feb’89 test set, combining the N-Best confusion distributions with
the various globally derived distributions. The minimum number of confusions used to
estimate the confusion distribution robustly was set at 200. Any states with fewer confusions
identified were transformed by the default distribution, and any states with more confusions
used the distribution estimated from the confusions gathered.

Figure 5.3 shows the results of these experiments, which confirm that the between class

covariance is the best and most robust of the default distributions.
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Figure 5.3: Examining interaction of default and N-Best confusion distributions on Feb’89

test set. Minimum no. of confusions for robustness = 200 per state.

The global covariance also appears to be robust when used in conjunction with the
N-Best generated confusion distributions. However, using the grand covariance appears to
combine in a destructive manner with the N-Best confusion estimates. The same effect
occurs when using the identity matrix (not illustrated). This may be explained by looking
at which features are discarded in each state. The grand covariance and the identity matrix
both discard features with a high in-class variance, thus minimising the variance of the in-
class features. The transforms from N-Best confusion distributions may discard any of the
features, regardless of their in-class variance. An examination of the global variance of the
individual features in the original feature space shows that 11 of the 13 second differential
(AAs) features have variances smaller than unity, and the variances of the first differentials
(As) are significantly less than the variances of the MFCCs. This implies that default
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confusions based on grand covariances or the identity matrix will select new dimensions
based heavily on the differential features. These are less variant in the data as a whole,
so the expected likelihood of a state transformed by these default confusions matching any
speech frame is increased relative to those transformed using confusion distributions. This
leads to the recognition process favouring those model strings with a high density of states
transformed by the default confusions. Since only a minority of the states use default
confusions, a small number of models dominate the output of the recogniser, most notably
the function words. These words have a short duration, and the recogniser seems to prefer
the use of two or more function words to the correct word in many cases, resulting in a
large number of insertion errors, and a low recognition accuracy.

This problem is not as pronounced with the global covariance default confusions since
the dimensions selected are those based on features with a large variance in the data set as
a whole. The expected changes in likelihood after transformation by a transform generated
from global covariance and a transform generated by N-Best confusion estimates are much
more similar, and neither of the types of transformed states are heavily favoured.

The between-class covariance is derived on a state-basis, so is well tuned to the individual
state characteristics, and allows good combination with the recognition based confusion
distributions. Hence, the between-class covariance was chosen as the default distribution
for all other experiments.

5.4.2 Selecting Robust Confusion Estimates

The effect of using different values for minimum confusions was evaluated using N-Best
confusion estimates. The between-class covariance matrix was used as a default confusion
distribution if there were deemed to be too few confusions for a robust estimate. Different
values for minimum confusions were used to reduced the number of dimensions to 36 and
30. The results (Table 5.1) show that high values are mainly based on using the default
matrix in most states, and performance is similar to that obtained using only the default
matrices.

At lower minimum confusion thresholds the N-Best estimates dominate, and perfor-
mance is maintained at a high level. As the threshold is increased, performance is impaired,
due to either the interaction between default and N-Best confusion distributions, or just
the increased use of the less specific default confusion distribution.

With 100 minimum confusions there are 289 out of the 388 states using the N-Best
recognition confusion distributions, however some of these are poorly estimated, as can be
seen from the fact that the 200 minimum confusion threshold performs better. There is a
definite trade-off between the robustness of the confusion distribution estimates, and the
number of states which use the estimates. A minimum confusion threshold of 200 appar-
ently generates robust distributions and is used for all other recognition based confusion
experiments.
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Min no. | No. states using % Word Error
confusions | N-Best estimates | 36 features | 30 features
100 289 9.0 8.8
200 254 8.7 8.8
300 231 8.7 9.1
400 209 9.1 9.7
500 200 9.1 9.9
1000 158 9.5 11.4

Table 5.1: Effect of choosing different values for minimum number of confusions for defining
robust estimates, and reducing to 36 and 30 dimensions. Confusions generated using N-Best
confusions with threshold § = 0. Default matrix is between-class covariance.

5.4.3 Recognition Confusion Transform Results

Each approach to gathering recognition confusions was tested on the Feb’89 test set using
a minimum confusion threshold of 200, and transforming the feature space into dimensions
as low as 10.
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Figure 5.4: Comparison of recognition based confusion methods on Feb’89. All generated
with threshold § = 0. Default matrix is between-class covariance.

The results (Figure 5.4) show that the different approaches have different effects on the
performance on the test set. The N-Best confusion distributions initially increase perfor-
mance substantially (from 9.7% word error to 8.3% word error, a reduction in error rate
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of 14.4%). However, at lower dimensionalities the performance falls off. The optimal per-
formance is obtained at 32 dimensions, and all dimensions down to 24 features give better
performance than the baseline. At lower than 24 dimensions the performance is substan-
tially poorer than that of the original model set.

Both of the Frame-by-Frame methods are more robust at lower dimensionalities than
the N-Best method, with a gradual decline in performance rather than a large fall. However,
the performance is worse than the baseline for all dimensionality reductions except when
discarding only one dimension. The general and restricted Frame-by-Frame methods both
follow the same trends in performance, with the restricted version performing marginally
better. There is very little change in recognition performance of the general Frame-by-Frame
method until the dimensionality is reduced to less than 32. The restricted Frame-by-Frame
gives an initial error reduction (to 8.9%) but then falls away with greater reductions in
dimensionality. The restricted version gives better performance than the general Frame-by-
Frame at lower dimensionalities.

The Frame-by-Frame approaches are computationally much more expensive than N-
Best, and despite more confusions being identified perform poorly in comparison. The
N-Best approach is concentrated on for the remainder of the evaluation.

5.4.4 Use of Thresholds with N-Best

The results reported above all used an absolute confusion threshold which for N-Best leads to
problems of robustness for the estimated confusion distributions. By relaxing the definition
of confusability the number of confusions identified can be increased. This is tackled in
two ways: the top n from the N-Best list are treated as confusion data (Figure 5.5); the
confusability threshold for the likelihood comparison is lowered (Figure 5.6).

As more confusions are identified the dimensionality reduction process becomes more
robust. The best performance for the fixed rank confusion gathering is achieved when using
the top 10 ranked sentences, this gives approximately 3 times the number of confusable
frames as using the top 5 but less than half as many as using the top 20. This indicates
that the transformations are well estimated using around 10 hypotheses for each utterance
(one of the top 10 may actually be the correct hypothesis).

Rank Confusions Likelihood Confusions
Ranks | No. Conf. Frames | Threshold | No. Conf. Frames

1 29789 0.0 697177

5 383539 100.0 2193915

10 1006607 200.0 5748959

20 2512761 400.0 24380505

Table 5.2: Number of confusable frames identified using N-Best confusion gathering with
different thresholds.
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Figure 5.5: N-Best confusions gathered using a fixed number of alternative hypotheses.
Results on Feb’89 test set.

For the likelihood comparison reducing the confusability threshold § to below zero in-
cludes near confusions and increases the confusion data available (Table 5.2). Again, in-
cluding more confusions increases the robustness of the method. Using a threshold of 100
results in a similar number of confusable frames to using the top 20 best ranked hypotheses,
and increasing the threshold to 400 gives a ten-fold increase in the number of confusions.

The larger number of confusions enables a larger dimensionality reduction to be made
and a similar performance to the original models can be achieved when using 14 features.

5.4.5 Discussion of Results

The N-Best and Frame-by-Frame methods both suffer from the problem of robustly esti-
mating the matrices. Although the general Frame-by-Frame method results in a substantial
amount of confusion data, the quality of the confusions identified is poor. This is demon-
strated by the improvement gained by restricting the method. Neither the general or the
restricted Frame-by-Frame methods allow a substantial dimensionality reduction without
a drop in performance. The Frame-by-Frame method is also computationally much more
expensive than the N-Best method.

The N-Best approach suffers from poor estimation of the confusion distributions when
only absolute confusions are used, due to limited number of confusions being gathered.
However, even with this method over 10% reduction in word error can be achieved by
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Figure 5.6: N-Best confusions gathered using different likelihood thresholds. Results on
Feb’89 test set.

discarding a small number (7) of dimensions. By including more potentially confusable
data by identifying near confusions, or simply the best matching hypotheses, the N-Best
method can be made much more robust. This allows a dimensionality reduction down to
14 features, which is less than half the original number of features, and gives a saving in

computation during recognition.

With N-Best confusions and a likelihood confusability threshold of 400, reducing to 18
dimensions not only results in a small computational saving, but also a 15% reduction in
error (8.2% word error rate).

5.5 Confusions from Model Parameters

It was demonstrated earlier (section 4.6) that using the between class distribution success-
fully reduced the number of dimensions down to 16 without degrading performance. In
that case, all classes were considered equally confusable. By considering only the closest
classes it may be possible to improve this dimensionality reduction and get a further saving

on computation.

During the training process, each frame of data in the training set is assigned to a
particular state. Each state has an estimated distribution based on the data allocated to
it. These distributions could be used to estimate which other distributions are confusable,
and hence potential confusion data.
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If a typical frame is drawn from a particular state distribution, by looking at the like-
lihood of other state distributions matching the typical frame a set of confusable state
distributions can be identified. These confusable state distributions can be combined into
a single confusable distribution for the state that the typical frame was drawn from. This
method is termed PDF-based confusion gathering.

Assume there are N emitting states (si...sy) in the whole model set with each state
s; characterised by a mean vector p; and covariance ;. The outline algorithm is:

1. Consider state s which has a typical frame vector f.
2. For each state s; (i=1...N, i#k), if
F(Flsk) = F(Flsi) < p (5.2)

then distribution sy is confusable with distribution s;. F(f|sk) is the likelihood that
frame f belongs to state sy and 0p is a confusability decision threshold.

3. Combine all confusable state distributions into a single distribution.

The confusability decision threshold is arbitrary and can be determined empirically. The
combination of the state distributions into a single distribution is a weighted combination
of the covariances after they have been adjusted around a common mean (the within-class
mean for the state under consideration, py).

1 X
Be = 1 2 (s Ni (Zi+ (1 — ) (i = 1)) (5.3)
sum i=1
where
1 if s; is confusable with sy,
i) = . 5.4
9(s:) { 0 otherwise (54)
N; is the number of vectors used to estimate 3; during training and
N
Noum = »_ g(s:)N;. (5.5)
i=1

The sampling of distributions for frame vectors and subsequent testing for belonging to
other distributions can be simplified by considering the expected values of vectors belonging
to each distribution. i.e. given x € s;, what is the expected likelihood that « € si.

The comparison for confusability becomes,
E[F(x|s;)] — E[F(x|sk)] > 0. (5.6)

Such a measure can be translated into a comparison of the actual distributions, using
a distance metric between distribution pairs which gives an idea of the relative confusabil-
ity. Possible measures for confusability definition are the Kullback-Liebler measure [67]
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or Bhattacharyya distance [12], which are small for confusable distributions and large for
non-confusable distributions.

If H(sg, s;) is the measure between the distributions of state s; and s; then confusable
distributions are those for which:
H (Sk, Si) < 5h

where 0y, is an arbitrary threshold of confusability.

This approach is a compromise between the global approach based on the distribution
of the classes, and the recognition approach based on actual errors identified. The distri-
bution of the data in individual states is used, and confusable frames are assumed to be
average state vectors instead of individually identified frames. There is no consideration of
recognition run time factors such as the model sequences or grammar restrictions involved,
and there is no tailoring to specific errors in the training data, which relaxes the assumption
that the training data is completely representative of the test data.

5.6 Evaluation of PDF-based Confusions

For the implementation of PDF-based confusions, a measure of similarity between multi-
variate Gaussians distributions must be defined. The measure needs to be small when the
distributions are very similar in shape and volume, and represent similar acoustic space,
and increase as the distributions become more separated. For this purpose the divergence
measure is considered. As the aim is to generate potential confusion data for a specific
class, the directed divergence is more relevant than the full divergence measure.

Given two Gaussian distributions w; and we with means p; and py and covariances K
and K5 respectively, the log likelihood ratio A is defined as,

F(ylwr)
F(ylws)

where F(y|w;) is the likelihood that y was drawn from distribution w;.

A(y) =In (5.7)

The directed divergence (also known as the Kullback-Liebler distance or relative infor-
mation of class wy with respect to class wa) is the likelihood that a vector from class w; also

belongs to class ws.
Dair = E[A(y)|w:] (5.8)

with the closed form (appendix B),

1 _ 1 _ 1. |Ky
Daip = Str(K3 Ky = 1)+ S (s — pg) K3 (1 — p) + 5 In K|

(5.9)

For the evaluation, two further factors are involved. A threshold (dj) is required for the
directed divergence measure to identify similar distributions, and some means for determin-
ing the weights (IV;) used in combining state covariances is needed.
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5.6.1 Threshold for Confusions

The threshold to use for a definition of confusability is dependent on the state distributions.
If the threshold is set too low then very few state pairs will be confusable, and the confusion
distributions will be biased. If the threshold is set too high, all states become confusable
and the method will converge to the performance achieved using the global covariance
distribution.

To get an idea of the values of a reasonable threshold, the divergence measures between
all state pairs were generated, and the number of state pairs that would be confusable at
various thresholds calculated. Figure 5.7 shows that the number of confusable states is
similar to a cumulative Poisson distribution. There are 388 states present in the model
set making 75078 state pairings. For each state it is desirable to have several different
state distributions contributing to the confusion data, but including too many distributions
reduces the relevance of each contribution.

Assuming a Poisson distribution, the mean over all state pairs gives a mid-point to
base the threshold around, this is about 40.0 for the directed divergence measure. The
mean values gives around 20000 confusable state pairs, which is an average of 50 confusable
distributions per state, sufficient for a robust estimate of the distribution.
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Figure 5.7: Number of confusable states at different divergence thresholds for Rg ;) models.
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5.6.2 Weights for Combination

The confusable distributions identified for a specific state s; need to be combined into a
single distribution about the state mean p; (equation 5.3). From the definition of the
covariance matrices the NV; values should represent the number of vectors used to estimate
each state.

There are two approaches for choosing the weights:

1. Weights from state occupation counts during training

During each training iteration the frame/state alignment may change, and the align-
ment of the final training iteration is needed. This requires an alignment to be gener-
ated after the final training iteration has been used to re-estimate the model param-
eters. Some training methods (e.g. Baum-Welch embedded re-estimation) which use
a total likelihood approach to state alignment of the vectors, assign the same vector
to several states, weighted with the probability of it being generated by each of the
states. Hence, the state occupation counts are not integers.

2. Weights from a recognition pass
In a similar way that confusable vectors are calculated using the N-Best recognition
approach (see section 5.3.1), the confusable distributions can be counted. If a vector
x is assigned to state s; in the alignment of the true model sequence, but state s. in a
free recognition alignment, then s; is a confusable distribution for s.. For each state,
a count of how many times every other state is confusable is made. These counts are
used as the weights for combinations in states which are deemed confusable.

The second method amounts to a recognition of the training data which is computa-
tionally expensive, and one of the reasons that this approach is being examined is to try to
negate the need to do a recognition pass on the data.

5.6.3 Results

Experiments have been performed using different thresholds with the two methods of gen-
erating the weights for combining the distributions on the Feb’89 test set (Figure 5.8).

It can be clearly seen from the results that using combination counts from the training
pass is superior to using N-Best recognition counts. A test was made to investigate the
effect of just using the weights from confusion recognition as both the confusability test
(instead of using the Dgy;, measure) and combination weights, but this was found to produce
poor results. This indicates that recognition errors identified on the training set are not
completely representative of errors which will occur on the test set.

The results are very encouraging in two ways. First, there is an initial improvement
in recognition accuracy when discarding a small number of features, for example with a
threshold of 20.0, when reducing the dimensionality to 34 the error rate drops to 9.0% word
error. Secondly, the method is robust, using as few as 18 dimensions the system achieves a
word error of 10.2%.
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Figure 5.8: PDF-based confusions generated by combining distributions based on weights
from training (solid line) and weights from recognition of training data (dotted line). %

word error on Feb’89 test set.
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It also appears that the threshold value is fairly flexible in that over a range of values
(20 to 30) similar recognition performance is achieved from the confusion transform. Closer
examination of the thresholds at lower dimensionalities shows that a threshold of 20.0
is more robust and gives the best reduction in error for all the PDF-based confusions
(Figure 5.9).

5.7 Comparison between Methods

The different methods of generating state-specific confusion data for CDA dimensionality
reduction are compared in Figure 5.10.
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Figure 5.10: A comparison of the best confusion gathering approaches for CDA on Feb’89
test set.

The N-Best approaches give a much greater error reduction than the PDF-based con-
fusion method, and allow more dimensions to be discarded. The fixed rank and likeli-
hood comparison approaches to confusion gathering give very similar performance until
half the original dimensions are discarded. With further reductions the confusions based
on likelihood are slightly more robust and allow a more dimensions to be discarded without
degrading performance.

5.7.1 Comparison with LDA Methods

The state-specific CDA confusion approach has been compared with state-specific CDA
using global distributions and global LDA transforms (Figure 5.11).
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Figure 5.11: A comparison of the best confusion gathering approaches with global and
state-specific LDA. Results on Feb’89 test set.

The CDA with confusions gathered using N-Best recognition is by far the most effective
approach. A 15% reduction in error can be achieved and the number of dimensions dra-
matically reduced. Enough dimensions can be discarded to achieve a computational saving
over the global LDA approach, and the equivalent dimensions give lower error rates than
the state-specific LDA. Global LDA allows a reduction to 24 features while maintaining
baseline performance, and state-specific CDA with global distributions allows a reduction
to 20 dimensions before becoming slightly unstable. Using confusion distributions allows an
even greater reduction, any dimension down to 14 features gives better performance than
the baseline.

From a computational point of view, calculating the CDA transforms using confusion
data is vastly more expensive than any of the global approaches. However, this is a once
only cost, and the resulting models have a lower computation cost during recognition.

5.7.2 CDA Confusions on Different Test Sets

The best CDA confusion gathering approach was implemented on the different RM speaker
independent test sets (Figure 5.12). Three of the four test sets allow reductions down to 14
dimensions with no great adverse effect on the recognition performance. The Oct’89 test set
is the exception and the error rate increases with most dimensionality reductions, however
even this test set allows a dimensionality reduction to 24 without a great increase in error.

The Feb’91 test set gets a maximum 12.8% reduction in error, achieved when using
34 features, and the Sep’92 has a maximum reduction of 14.2% error using also using 34
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Figure 5.12: CDA confusion on different test sets. Confusions gathered using N-Best with
a likelihood threshold of 400. Results are average % word error.

features.

5.8 Analysis of Discriminative Feature Selection

The evaluation of the CDA transform has shown that computation savings may be made
over the original full covariance model set by using state-specific LDA or state-specific
CDA using data-driven confusions. The N-Best confusion approach is superior to the other
methods of generating transforms, and by incorporating near confusions as well as absolute
confusions the estimates of the transforms can be made more robust.

An attempt at improving the state-specific LDA approach using PDF-based confusions
which uses only those class distributions which are deemed confusable instead of all class
distributions showed only limited success. A large dimensionality reduction could be made,
but no substantial reduction in error. The method is clearly susceptible to the definition of
confusable distributions, and the decision boundary chosen for the confusions has a large
effect on the reductions achievable.

The biggest reduction in error on Feb’89 (15%) was achieved using the N-Best confusion

gathering with a likelihood comparison threshold of 400. The largest reduction in dimensions
and hence also computation was also achieved using the N-Best confusion approach.
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5.8.1 Improving PDF-based Confusions

The PDF-based confusions are limited by the problems of determining which distributions
are confusable. Only one distance metric, the directed divergence between two distributions,
has been considered, although brief experiments with the full divergence measure showed
that the directed divergence was superior. Other distance measures could be used, however,
all measures are subject to the problems of defining a decision boundary.

A second possible improvement is to reduce the effect of a hard decision boundary. At
present a frame is either confusable or not confusable. By incorporating a soft boundary,
whereby the combination of distributions is weighted by the confusability of the distribu-
tions improved confusion distributions may be gained. This could be incorporated into the
standard theory by replacing the binary valued g(s;) of equation 5.4 by a scaling value
dependent on the confusability.

g(si) = (5.10)

where z is the degree of confusability, z = 1 indicates complete confusability, £ = 0 indi-
cates no confusability. Determining the degree of confusability can be performed using the
distance measure with a gradient scale of confusability depending on the distance.

Given the poor performance of the PDF-based confusions in comparison to the N-
Best approach, and noting that the hard-decision boundary produced poorer results than
the state-specific LDA even when using low thresholds (i.e. very specific confusions), this
extension of the method was not examined further.

5.8.2 Improving Data-Driven Confusions

The confusion distributions identified from the N-Best approach have been shown to be
effective in the CDA framework. The use of fixed rank ordering and likelihood comparisons
for the gathering of confusions both resulted in large numbers of confusions being gathered.
The larger the number of identified confusions the more effective the CDA transformations.
The major problem with this method is the computation involved in performing a recog-
nition pass on the training data to generate the N-Best alternatives. It is also possible
to weight the confusable frames based on a confusability measure. The weightings would
be difficult to determine, however, and evaluation would be required to examine the best
approach for such a scaling (e.g. weights based on sentence, word or phone confusability

measures).

5.8.3 Application to Component Mixture Distributions

The discussion thus far has focused on the use of CDA with HMMs with a single full co-
variance Gaussian distribution. The application to the more general multiple component
mixture density HMM case is obviously of great interest. In theory exactly the same ap-
proach can be used as the single Gaussian case, but treating each component Gaussian
density as a separate class. This is certainly the case for LDA, as reported by Parris &
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Carey [90], but for CDA this could affect the methods of gathering confusions. In this
case, the component distributions within the same state should not be deemed confusable,
and the assumption that frames allocated to different states within the same model are not
confusable should be extended to cover this aspect.

For recognition confusions, the state alignments generated should be extended to mix-
ture component alignments so that frames are assigned to individual components. The
number of distributions has increased, thus the total number of confusions required for
robust estimation of all the confusion distributions is increased. Indicating that larger
thresholds should be used.

Due to the limited number of training utterances for RM, estimating model sets with
multiple mixture component full covariance distributions to achieve reasonable performance
was not feasible, so the approach to component mixture distributions could not be investi-
gated properly.

5.9 Summary of Discriminative Feature Methods

The use of state-specific transforms has been investigated using the RM speaker independent
database. Comparisons between the state-specific transforms and similar global approaches
have shown the effectiveness of using state based information. A state-specific LDA ap-
proach, confusion discriminant analysis (CDA), allowed a much larger dimensionality re-
duction using global measures than a global LDA transform approach due to the ability to
capture state-specific rotations to maximally separate the state from other distributions.
The state-specific CDA used a global between-class distribution centered around the state
under consideration. This approach is sub-optimal and based on expected confusable dis-
tributions. An attempt to improve the state-specific CDA approach by identifying only
likely confusable distributions, the PDF-based approach, proved less successful. This was
due to problems with distance measures and decision boundaries for identifying confusable
distributions.

A more successful approach was that using statistics collected from a recognition of
the training data to generate multiple sentence hypotheses. Accumulating data from the
confusions and near confusions at the word level from the different hypotheses gave robust
confusion distributions. This resulted in CDA dimensionality reduction being substantially
more effective, in terms of reduction in error (15%), than the state-specific LDA trans-
form. This could be achieved with no increase in computation during recognition. Extra
computational savings could be made by reducing dimensionality further and performance
equivalent to the baseline could still be achieved.

The CDA and state-based LDA approaches have an identical computation cost, and
both can achieve a dimensionality reduction of over 50% allowing a computational saving
over the original model set. The CDA approach with N-Best confusion gathering has a
substantial computation overhead in computing the confusion distributions, but this is a
once only cost.
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The use of state-based criteria for generating rotations is clearly advantageous, and al-
lows discrimination to be incorporated into the model parameters after maximum likelihood
training has been completed.



Chapter 6

Speaker Adaptation Techniques

Transformation techniques may also be applied in the field of speaker adaptation. The model
parameters or the input speech may be transformed so that the match between the acoustic
model parameters and the acoustic signal is improved. In this chapter several techniques
for speaker adaptation are reviewed. For comparison some non-transform methods are
examined and the advantages and disadvantages of the different approaches are described.

6.1 Introduction to Speaker Adaptation

Current state of the art speech recognition technology is able to produce speaker indepen-
dent recognisers which have extremely low error rates for small/medium vocabularies. For
example average word error rates of around 3% have been achieved on the RM speaker
independent test sets [85]. Although the average error rates are low, some speakers have
recognition rates considerably worse than others. Due to the wide range of speakers used
to train a speaker independent system the models have to cope with the inter-speaker vari-
ability as well as the intra-speaker variability. This leads to a large amount of variance
within the model for each acoustic phenomena and may reduce the modelling accuracy for
each individual speaker. This is demonstrated by a comparison of speaker independent (SI)
and speaker dependent (SD) systems tested on the same speaker. Assuming that sufficient
data is available to train both systems, speaker dependent systems typically perform 2-3
times better than equivalent speaker independent systems, as mentioned by Huang [50]
and demonstrated by a comparison of results (Table 6.1). When the amount of speaker
dependent data is limited, an improvement in performance over an SI system cannot be
guaranteed due to poor estimates of the model parameters. In many applications it is not
feasible for a speaker to provide enough data to reliably train a SD recognition system from
scratch, and SI systems must be used.

This problem can be overcome, at least partially, by using speaker adaptation tech-
niques the aim of which is to take an initial model system which is already trained, and
use a sample of a new speakers data (termed adaptation data) to attempt to improve the
modelling of the speaker with the current set of models. This can be achieved in two

80
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Speaker | SI error rate | SD error rate
bef0_3 3.2 2.3
cmr(_2 7.4 1.6
dasl_2 1.8 0.9
dms0 4 3.2 1.0
dtb0_3 3.3 1.2
dtd0_5 4.6 2.3
ers0_7 3.5 2.6
hxs0_6 6.5 1.5
jws0 4 4.5 1.8
pgh0_1 2.6 2.1
rkm0_5 8.3 2.6
tab0_7 2.2 1.8
Average 4.3 1.8

Table 6.1: Comparison of speaker dependent and speaker independent systems for the same
speakers on RM1 speaker dependent test set. Identical systems are used, SI trained on
SI-3990 sentences, SD system is SI system retrained on 600 SD sentences.

ways: speaker normalisation and speaker adaptation. Speaker normalisation is the process
of normalising the input speech so that the speech of all speakers has similar characteris-
tics. During speaker adaptation the parameters of the recognition system (input speech or
model parameters) are adjusted to improve the modelling of the new speaker. Before these
alternative approaches are examined the causes of speaker differences are discussed.

6.1.1 Speaker Variation

There are many causes of differences between speakers, mainly due to the personal charac-
teristics of each person. A model of speaker characteristics is presented by Nolan [82] which
suggests some of the factors which contribute to speaker variation. These can be split into
two categories, acoustic (realisational, duration and physiological), and phonological (lexical
and stress differences). The acoustic variation must be handled by the acoustic modelling
component of a recognition system while the phonological differences can be handled by

grammar and pronunciation models.

6.1.1.1 Linguistic Differences

Accents can account for much speaker variation between speakers, however there is still
considerable variation within accents [102]. Pronunciations are different due to different
phonetic realisations across accents, for example there is a vast difference between the pro-
nunciation of tomato in RP /ta’'matol/ (using the IPA alphabet), and General American
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/to'melto /. Vowels are particularly susceptible to variation even within a particular ac-
cent or dialect. The vowel in coat, nose and snow is monophthongal in some accents but
dipthongal in others. In RP it is generally /eU/ but may be more rounded (/8U/) or less
rounded (/ow/).

There are also phonotactic distribution and systemic differences between accents. These
involve the different pronunciations of phonemes in different contexts, and the different
phoneme sets used in the accents. Although all accents are based on the same IPA phone
set, some accents ignore certain phones e.g. RP uses /U/ and /ui/ for the vowels in good
and mood whilst Scottish accents use /ur/ for both words, thereby using one less phoneme.

In some cases the pronunciation of one word can lead to predictions of the pronunciation
of other words, e.g. the vowel in bath is usually consistent with the vowel in words such as
grass, staff etc. for a given speaker. In other cases the pronunciation of words is speaker
specific, e.g. the pronunciation of either generally gives no indication of how the speaker
pronounces other words. Such examples are idiosyncratic of the speaker and lead to further
speaker differences (usually termed lexical-distributional differences).

6.1.1.2 Physiological Differences

Physiological differences are the source of many speaker differences between speakers of the
same accent. The values of formant frequencies are defined by physical attributes of the
vocal tract, such as the size of the mouth and nasal cavity. Females tend to produce higher
fundamental frequencies than males and more widely spaced formants, thought to be about
20% higher, due to the shorter vocal tract.

Other effects are more transitory in nature, being initiated by the physical and mental
condition of the speaker. Tiredness can lead to slower more stilted speech, while anger may
lead to louder, quicker speech. A cold can lead to the nasal passages becoming obstructed
and the speech becomes fully non-nasal. For the purposes of current speech recognition
techniques these transitory effects are ignored, and the normal behaviour of the speaker is
considered. An ideal adaptation technique would consider transitory effects and change the
modelling accordingly, but such a complete dynamic adaptation process is not currently
feasible due to the poor understanding of the modelling involved and the short term nature
of the effects.

6.1.2 Speaker Normalisation

In spite of the many differences in speaker characteristics outlined above, humans find it
very easy to understand a wide variety of speakers with different accents and different
physiological characteristics. This suggests that the human brain may be performing some
kind of normalisation to the speech which filters out individual characteristics. If such a
filtering system can be performed in a speech recogniser then the inter-speaker variation
problem can be resolved.

The object of speaker normalisation is thus to construct a normalised speaker space into
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which speech from any speaker can be projected so that the inter-speaker differences are
minimised (or even better, the acoustic features are invariant). Figure 6.1 shows a schematic
diagram of speaker normalisation.

1)

Speaker —=

Speech

—= Normalised Speech Recogniser

Speaker .

sk 4]

Figure 6.1: Schematic diagram of speaker normalisation process

Normalisation Algorithm

The problem with speaker normalisation techniques is the amount of variation in the
speech. Finding a general technique which performs a good mapping into the normalised
space has proved difficult. Among the attempts that have been made are normalisations
based on estimating the vocal tract length and then computing spectral shifts accordingly
[86, 101]. Dynamic frequency warping has also been investigated [88] where the vowel spec-
tra undergo a non-linear frequency alignment. This not only reduced the distances between
equivalent vowel spectra, but also between phonetically distinct vowel spectra thereby reduc-
ing discrimination as a whole. Other normalisation techniques have investigated alternative
frequency shift functions [99] and self-organising feature maps [62].

Overall, speaker normalisation techniques have been found to be ineffective due to the
complex mappings required, and the fact that all acoustic information is treated in the
same way, regardless of the acoustic event it represents. If the speaker normalisation was
sound-specific it may be more effective.

6.1.3 Speaker Adaptation

Speaker adaptation techniques differ from normalisation techniques in that instead of using
a general mapping for all speakers so that all speakers appear similar, a separate mapping is
generated for each speaker. A sample of speech from the new speaker is used to generate an
adaptation mapping and all further processing of the speaker uses the mapping, improving
the recognition performance for the speaker. The aim is thus to make a speaker independent
recogniser behave more like a speaker dependent recogniser.

During speaker adaptation either the input speech can be adapted (similar to speaker
normalisation), or the models can be adapted, or both (Figure 6.2). The current adaptation
techniques can be split into three categories: spectral transformation techniques which use
mappings of the feature space, speaker classification in which an appropriate model set is
selected, and techniques which re-estimate the model parameters. These techniques are
discussed later in sections 6.3, 6.4 and 6.5.
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Figure 6.2: Schematic diagram of speaker adaptation process

6.2 Modes of Speaker Adaptation

The process of adapting the speech recognition system can be performed in several different
modes, describing how and when the adaptation will take place, and how the adaptation
data presented by the speaker is used. The adaptation is termed supervised if the identity
of the adaptation data (e.g. a word transcription) is also given to the adaptation process,
otherwise the adaptation is unsupervised. There are two categories for describing how the
data is used:-

e Static Adaptation
All of the adaptation data is presented to the adaptation process before the final
adapted system is produced.

e Dynamic Adaptation (also termed Incremental Adaptation)
An adapted system is produced after only part of the adaptation data is presented,
and refined as more data is observed.

Thus if a speaker provides a sequence of known utterances and an adapted system is pro-
duced using all those utterances, the adaptation is static supervised.

The use of different adaptation modes has consequences for the adaptation techniques in
terms of computational effort, accuracy of adaptation and the nature of the task in question.
Clearly, if the adaptation data is correctly labelled, the appropriate adaptation mappings
can be determined accurately whilst unsupervised data may lead to errors in the mappings.
In some tasks a very quick enrollment time for a new speaker is desirable, hence it may be
desirable to initially start with a speaker independent system and use unsupervised dynamic
adaptation. In other tasks high recognition accuracy may be needed, hence more time may
be available to gather adaptation data, and a static supervised mode may be used.

6.3 Speaker Clustering for Adaptation

One of the more simplistic ideas for implementing speaker adaptation is that of speaker
clustering and classification. If it is assumed that there is a large number of model sets,
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each one corresponding to a different speaker, the adaptation method is simply to determine
which model set belongs to the current speaker. In practice, generating a large number of
well trained model sets is not feasible due to the training overheads and large amount of data
required from each of many different speakers. Instead most implementations of this idea
use a small number of model sets, and use each set to represent similar speakers. Speaker
clustering algorithms are used to pool similar speakers into groups, and the speakers in
each group are used to estimate a set of models. Thus the required training data from each
speaker is reduced, and a smaller number of model sets can be trained. For recognition,
the adaptation process is to select the speaker group that is most representative of the new
speaker and use that model set.

Imamura [56] clusters the speakers by initially training a model for each speaker and then
clustering the models based on a cross-entropy measure. Each model set is then restricted
to have output distributions (in this case VQ codebook entries) which are dependent on the
relevant group of speakers.

Kosaka [63] implements a scheme in which a hierarchical speaker model clustering al-
gorithm is used. A model set is trained for each speaker and the sets are clustered to form
a tree. The top node of the tree corresponds to the case where all speakers belong to the
same cluster, and at successive levels of the tree, more classes are formed. A model set
is associated with each node of the tree, and estimated from the individual speaker mod-
els. The adaptation process searches the tree for the best model set according to the best
likelihood produced by recognition of the adaptation data.

A second method proposed by Kosaka [64] approaches the problem from a different angle.
Given several sets of speaker dependent models for different speakers, the corresponding
models in each set are merged by combining the different state distributions into a single
state with equal weights. This gives a pseudo speaker independent system, termed a speaker-
maxture model set. Adaptation of this system is performed by re-estimating the weights
given to the distributions from each speaker according to the adaptation data.

All these methods suffer from several problems. The spectral variation of speakers, even
within a cluster, may be large. The range of sample speakers is always limited, and the
new speaker may not be represented well in the possible model set. It is assumed that the
differences between speakers are uniform across a model set, i.e. the whole set of models is
a good match for the new speaker, which is a poor assumption.

6.4 Spectral Transformation Approaches

The spectral mapping approach to speaker adaptation has been widely investigated in recent
years. These methods attempt to map the input speech from a new speaker to match the
speaker which the models are trained on (reference speaker). The reported spectral mapping
implementations apply linear transformations to either the input vector, or to the whole
model set. The main difference in the implementations is the manner in which the transform
is estimated.
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Spectral transformations were first considered for use with spectral template based recog-
nisers [44, 45, 57]. These approaches considered the reference templates as representing
speech from a reference speaker and generated spectral transformations to minimise the
distance between the new speaker and the reference speaker.

Grenier [44, 45] proposed a canonical correlation approach, later extended by Choukri
[24], whereby both the speech from the new speaker and the reference templates are pro-
jected into a common vector space which maximally correlates the two (Figure 6.3). This

Common Vector Space

Reference Speaker

Figure 6.3: Example of the canonical correlation approach: The acoustic representations of
each speaker are projected into a common feature space.

requires only two transformation functions to be estimated, one for the new speaker (P,)
and one for the templates (Pp).

Ys = Pu(s) (6.1)

where x; and y, are the original and transformed observation vectors of the speaker and x,
and y, are the original and transformed templates of the reference speaker. The distance
measure for recognition is then computed between y, and y,. Jaschul [57] uses a simpler,
but effective, transformation for spectral slice templates which can be viewed as a frequency
shift transformation,

y=Tz+a (6.3)

where T is a transformation matrix and a is a vector allowing for mean effect. « is the input
speech and y is the transformed speech (Figure 6.4). Jaschul implemented the transforma-
tion both on a global basis, where each frame of input speech is transformed only once and
compared to each template, and on a more specific basis so that different transformations
were used for each phone class (i.e. the speech had to be separately transformed for each
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template comparison). Although the separate transforms were computationally more ex-
pensive, and required more data for estimation, the resulting performance indicated that it
should perform better than the global approach, though there are problems with data suf-
ficiency for transform estimation. The parameters of the transform matrix were computed

on a least squares error basis,

1N
=¥ Z Wa; —u;)? (6.4)

where e is the error, W is the composite matrix [T, a], u; is the reference template corre-
sponding to the i** speech frame x;. #; is the extended vector [, 1]. To reduce the amount
of data required for the estimation, a banded-diagonal matrix was also investigated. The
diagonalised transform could still be implemented successfully, but required less data for
estimation.

Jaschul’s approach to transformations has been investigated further by Hewett [49].
Hewett uses dynamic time warping to align adaptation data to templates and estimates
a single transformation matrix which combines the frequency shift and scaling by a least
squares regression formulation. A comparison between the multivariate least squares re-
gression transform and a canonical correlation method showed in favour of the regression
transform.

y=Tx+a

New Speaker
Reference Speaker

Figure 6.4: Example of spectral transformation using a single transform to project the
reference speaker onto the new speaker

A similar transformation approach has been reported by Cox & Bridle [31] who imple-
mented the approach on isolated vowel spectra, but in an unsupervised fashion. Schwartz
et al. [97] use the transformation in the probabilistic domain to adjust the VQ codebook
of discrete HMMs. Class et al. [26, 27| also apply a transformation to VQ codebooks, but
use global transformations.

Kenny et al. [61] extended the transformation idea to continuous density HMMs, but
only in a very restricted form. The mean vectors of the Gaussian distributions were updated
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by a translation,

B= 1+ Vphone: (6.5)

The interesting aspect to the implementation is that the estimate of the translation vector
Vphone is achieved via a Baum-Welch type alignment of the data. The use of a simple
translation is limited since the results reported by Kenny for adaptation were poorer than
the results obtained using a standard reestimation of the means on the same data. This
indicates that a translation even at a phone level is not sufficient to adequately capture the
spectral variation from speaker to speaker in different states within an HMM.

The application of spectral transformations to HMMs has been considered further by
Zhao [116] who views the inter-speaker variation as a two-source problem. The acoustic
source is attributed to physical speaker differences, that cause spectral variations indepen-
dent of phone units. The second source is phone-specific, attributed to a speaker’s individual
articulation (e.g. accent, idiosyncratic pronunciations). Each of these sources is modelled
by a separate transform, so the complete spectral transformation is of the form,

&=HLx (6.6)

where H is the global acoustic transformation and L; is the phone specific transformation
for phone ¢. To estimate the transforms, H is first estimated from the average spectrums of
the reference and the new speaker. The individual phone transforms are then estimated from
the differenced spectra of the individual phone units after being adjusted by H. The use of
either the acoustic or the phone-specific transforms leads to an improvement in recognition
accuracy, and the inclusion of both transforms leads to the best improvement.

A variation on spectral mapping techniques has been investigated by Bellegarda [9, 10].
The adaptation is performed on a piecewise basis, and is used to transform the existing
data for the reference speaker. This data is added to that supplied by the new speaker
and used to estimate a speaker dependent VQ codebook. A similar approach was also
considered by Kubala [66], and later by Choi [21], where a spectral transform is used to
map each speaker in the speaker independent training data onto a reference speaker before
the system is trained. The resulting system is then assumed to be speaker dependent.
During recognition, a further transformation is generated to map each speaker onto the
reference speaker.

An investigation of a non-linear spectral transformation applied to the input speech
has been performed by Gurgen [46]. A multi-layer perceptron was used to generate the
transformation, and the resulting speech frames used in an HMM recogniser. The results
showed that using a standard linear canonical correlation analysis actually performed better
than the non-linear approach, indicating that linear transformations are capturing a large
amount of the difference between speakers at a global level.
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6.5 Model Parameter Adaptation Approaches

The model parameter adaptation approach to speaker adaptation has become a much re-
searched area in recent years. The limitation of spectral input transformations and model
selection techniques have become more apparent with the improving performance of speaker
independent systems. Although some spectral transformation techniques do alter the model
parameters, this is performed with the aim of improving the match between the new speaker
and the reference speaker, not with the aim of improving the modelling accuracy for the
new speaker.

Most model parameter adaptation techniques for continuous density HMMs use Bayesian
MAP (mazimum a posteriori) approaches to parameter reestimation. Brown [17] first

suggested using Bayesian estimation for adaptation in a connected digit recogniser using
CDHMMs, and the method has been developed further by Lee and Gauvain [43, 69].

In a MAP approach the parameter set is chosen to maximise

FONFA)

FNO) = =5

(6.7)
where O is the observation sequence of the adaptation data with a probability distribution
function given by F(O), and A is assumed to be the parameter set defining the distribution.
If X is assumed to be random with a prior distribution F,(\), the MAP estimate is obtained.

Different approaches to estimating the value of A have been investigated. Lee proposed
using a segmental K-means algorithm [69]. The MAP estimate was estimated by solving

5
S F(Asl0) =0 (6.8)

where s is a state sequence. An iterative procedure can be used to solve this, successively
determining the optimal state sequence, and updating the parameters based on the sequence.

§ = max F(O, 5|\ Fp(N) (6.9)
A= m}e\mx]—"(O, 8N Fp(N) (6.10)

The MAP estimate can also be formulated in an EM algorithm [33]. If the complete set
of the adaptation data is represented by y, the auxiliary function used in the EM process
is given by

Q(A\, \) = Eflog F(y|))|0, Al (6.11)

This function can be differentiated and separated into component parts representing each
parameter in the model set. Hence, an iterative algorithm similar to that used in MLE can
be used.

The choice of priors for A can affect the outcome for the MAP estimate. If a non-
informative prior is used (A assumed fixed but unknown) the maximisation leads to the
MLE formula (section 2.4).
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SI Adaptation Data
2 min | 5 min | 20 min

139 | 8.7 6.9 3.4

Table 6.2: Example MAP adaptation results on RM Feb’91 test set [43](%word error)

The effectiveness of the MAP estimate is shown by the results from Gauvain [43] (Table
6.2).

The major problems with the MAP adaptation approach are the estimation of prior
densities, and the fact that the reestimation formulae only applies to individual model

parameters. Thus, if a mixture component is not observed in the adaptation data it cannot
be adapted.

The problem of unobserved mixture components has been addressed by Cox [29, 30] and
Ahadi [1] by using prediction techniques for the unseen mixture components. These tech-
niques stemmed from an initial study by Cox [28] on linear regression relationships between
vowel sounds. Regression coefficients between different vowel sounds were computed from
all the training speakers. Using five vowels from the test speaker all the vowel templates
were updated based on regression. This improved classification rates for all the vowels.
Furui [41] has also shown that regression analysis could be used to good effect to estimate

unobserved models in isolated recognition.

This idea was incorporated into the basic MAP approach by augmenting the algorithm
with a second stage which uses linear regression relationships between the distributions so
that the unobserved distributions can still be updated. Speaker dependent model sets are
used to derive regression coefficients between different mixture distributions. For the mean
vectors of the distribution a multiple linear regression relationship of the form

P
yj =ao+ Z @i Tij (6.12)

=1

is assumed where y is the target mean and z; is the mean from the i** source distribution.
P is the regression order and the a; are regression coefficients which are estimated by consid-
ering the source and target means from all the speaker dependent model sets. This method
provides a significant improvement over the MAP estimate for limited adaptation data,
and converges to the MAP estimate as more data becomes available, and less prediction is
necessary [1].

The success of these techniques show that the relationships between the class distribu-

tions in different speakers may be represented in a regression formulation.
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SI No. Adaptation Sentences
40 100 600
MAP 10.2 8.0 6.6 4.1
Prediction | 10.2 7.1 6.2 4.1

Table 6.3: Improved adaptation by incorporating prediction methods into the MAP adap-
tation process [1] (% word error).

6.6 Approaches Combining Parameter and Spectral Adapta-

tion

Although the spectral transformation and model adaptation approaches have been cate-
gorised separately, it can be seen that spectral transformations can equally be applied to
the model parameters. The separation was deemed necessary since the spectral transfor-
mation approach optimised the match between paired speech frames (i.e. the reference
frame and the speaker frames), but not the acoustic modelling of the speaker. The model-
based approaches attempt to improve the modelling of the speaker. The adaptation method
proposed in the next chapter combines the spectral transform estimation with a training
algorithm which aims to improve the acoustic modelling [73]. A similar approach has since
been proposed by Digalakis [34]. In both approaches the estimation of the transformation
is formulated in a maximum likelihood framework. In the case proposed by Digalakis, only
a diagonal transformation matrix has been considered, which, as will become apparent in
the following chapters, is a very limited case.

The transform used by Digalakis takes the standard form of spectral transformations
and is applied on a mixture component basis to both the mean and covariance,

b;=Tp;, +a (6.13)
> =TT (6.14)

where i, and 3, are the adapted mean and covariance, T is the n X n transformation matrix,
and a is an offset. To compensate for the lack of adaptation data the transformations are
tied between many mixture components. The estimation of the transforms is performed
using an EM algorithm. Since only diagonal covariances and diagonal scaling matrices are
being considered the problem can be reduced to a single dimensional case.

6.7 Summary

The process of adapting HMMs to specific speakers with little training data has been de-
scribed. This speaker adaptation can be performed in a variety of ways, either by selecting
a model set, by spectral transformations of the speakers involved or by updating the param-
eters of the models. Examples of each of these techniques have been presented. Spectral
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transformations are the simplest to implement, since they can be performed on a global basis
on the input speech. However, more success has been found by applying such transforma-
tions on a phone specific basis. This is less computationally expensive if the adaptation
process transforms the HMM state distributions, leaving the input speech unchanged. This
is slightly different from model reestimation since the aims are not the same. Spectral
transforms attempt to minimise the difference between the speaker and the appropriate
reference models. No account is taken of how this affects the other models.

The main problem with model reestimation techniques is that with limited adaptation
data, not all the model parameters will be observed in the example data. A solution to this
problem is to use a combined method of transform and parameter reestimation, by placing
the estimation of the transforms into a standard reestimation framework. Such a method
is detailed in the next chapter.



Chapter 7

A Transformation Approach to
Speaker Adaptation

A new transformation based approach to speaker adaptation is presented in this chapter.
The approach associates a transform matrix with the output distributions within each
HMM. The transformation is estimated by aligning the adaptation data with the model
states to capture the general characteristics of the speaker with respect to the current
HMM parameters. The method is described in the following sections and formulae for
estimating the transform are derived.

7.1 Maximum Likelihood Linear Regression

Many of the adaptation methods examined in chapter 6 use a global spectral transformation
approach or only adapt parameters of those models which are observed in the adaptation
data. A new method termed Mazimum Likelihood Linear Regression (MLLR) is presented

which overcomes these limitations.

MLLR uses a set of regression-based transforms to tune the HMM mean parameters
to the new speaker. Each of the transformations is applied to a number of HMM mean
parameters and estimated from the corresponding data. This sharing of transformations
and data enables the method to estimate transforms on small amounts of data.

The aim of MLLR is to estimate an appropriate transformation for the mean vectors
of each mixture component so that the original system is tuned to the new speaker. For
mixture component s with mean p, the adapted mean estimate fi, is given by,

p, = W5, (7.1)

where Wy is an n X (n + 1) transformation matrix and £ is the extended mean vector,

£s = [wa /*lev e nu’Sn]/

where the value of w indicates if an offset term is to be included: w = 1 for an offset, w = 0
for no offset.

93
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Including the regression (transformation) matrices the mixture component density func-
tion becomes,
b;(0) = %e—%(O—WsMS)@;l(O—WsNS), (7.2)
(2m)2 |22
A maximum likelihood estimate of the W matrices is made which attempts to increase
the likelihood of the model set generating the adaptation data.

The MLLR approach is similar to that used by Hewett [49], but is extended to work
in an HMM framework with a more appropriate optimisation formula. Hewett’s work
was performed on DTW templates which allowed him to make the assumption that the
distribution of each class around the template was common to all templates. In this case
the maximum likelihood estimate for Wy is the least squares estimate. In HMMs the
assumption of a common covariance for all states is not valid and the resulting least squares
estimate of Wy is not guaranteed to be the best estimate. MLLR attempts to overcome
this problem by using a maximum likelihood estimation which incorporates the effects of
different class covariances.

Jaschul [57] has suggested that phone-dependent transforms may be more appropriate
so the MLLR framework has been derived with a flexible scheme of transform sharing in
mind. With a globally tied system a single W, matrix is used and shared between all
mixture components. At the opposite extreme, if a separate Wy is used for each mixture
component then the adaptation process is an MLE reestimation of the component means
using the adaptation data (since the same optimisation criteria is used). This method of
tying transforms can be used to overcome problems of limited observation data, similar
to methods such as tying of states which are used in parameter estimation [107, 110].
The estimation of the transformations then becomes a regression estimate of the average
differences between the example speech data and the current system parameters. Since the
method is being considered for the purposes of speaker adaptation with the aim of adapting
the recognition system with as little data as possible, the emphasis is placed on the tying
case.

Note that this method has only considered adapting the mean vectors and not the other
model parameters. This is due to the assumption that the main differences between speakers
lies in the average position of phones in the acoustic space rather than the distribution of
the intra-speaker variation. Limiting adaptation to only updating the mean vectors restricts
the number of parameters that need to be estimated during adaptation, and should allow
adaptation on a small amount of adaptation data. The problem of updating other model
parameters is considered in section 7.7.

7.2 Estimation of MLLR Regression Matrices

MLLR estimates the regression matrices W, to maximise the likelihood of the adapted
models generating the adaptation data. The derivation of the MLLR estimates [74] is
given below, making the assumption that each HMM state has a single Gaussian output
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distribution.

7.2.1 Maximisation of Auxiliary Function
Assuming the adaptation data, O, is a series of T observations
O=o0;...07.

a re-estimated set of model parameters () can be generated from the current set of model
parameters (\) using MLE (section 2.4).

Denoting all possible state sequences of length T by the set @, a new set of parameters
which increase the value of auxiliary function (equation 2.19) can be estimated. Since only
the transformations Wy are to be re-estimated, only the output distributions b, are affected,
the auxiliary function, Q(A, ), can be written as,

T
Q(\,)\) = constant + Z Z]—"(0,0M) log b, (0¢). (7.3)
0o t=1

Defining S as the set of all states in the system, and «5(t) as the a posterior: probability
of occupying state s at time t given that the observation sequence O is generated,

1
s(t (O, 0; = s|A). A4
€0
Equation 7.3 can then be written as,
S T
QM) =a+ F(O|N) ZZ t)logb;(0y). (7.5)

where a is a constant. Expanding log b;(0;) the auxiliary function is,

T
QM) = a-— —]—" (0[N ZZ t)[nlog(2m) + log |=;| + h(oy, )] (7.6)
where h(ot,j) = (ot — ijj)’zj_l(ot - WjEj) .

The differential of Q(\, ) with respect to W is,

d -
pr= ()\,)\):——J-' 0|)\ 227] [nlog(27) + log |%;| + h(o, 5)] (7.7)
s 3] 1t=1

Equating to zero to find the maximum of Q(\, A),

d
AW,

T
Q%) = F(OP) L(t)B, " [or — Wit [ € =0 (78)
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hence,
T T )
Z’Ys(t)zs_lotgfg = Z'Ys(t)zs_lwsssgg' (7'9)
t=1 t=1

Equation 7.9 gives the general form for computing Ws. In the following sections a closed
form solution for the case of diagonal covariance matrices is presented. The case of full
covariance matrices has no closed form solution and is not considered further.

7.2.2 Re-estimation Formula for Tied Regression Matrices

When the regression matrices are tied across a number of distributions (e.g. a global
regression matrix) the summations must be performed over all tied distributions. If Wy is
shared by R states {s1,s2...sg} equation 7.9 becomes,

T R
Z Z 73T 2 Ots Z Z Vs (t)zs:lwsSsTEQT' (7'10)

t=1r=1 t=1r=1

To derive a re-estimation formula for the tied case, equation 7.10 is first rewritten as

R
ZZ%T )X ok, = > VOW,D" (7.11)

t=1r=1 r=1

where V() is the state distribution inverse covariance matrix scaled by the state occupation
probability,

T
> Vs (O] (7.12)

and D) is the outer product of the extended mean vectors
D" = ¢, ¢ . (7.13)

If the right hand side of equation 7.11 is denoted by the n x (n+ 1) matrix Y with elements

Yij, the individual matrix elements of V(T), W, and D) are denoted by vl(]), w;; and dl(;)
respectively, then
n n+l
Yij = Z Z Wpg lz vzp qJ] . (7.14)
p=1q=1
If all covariances are diagonal, and since D is symmetric, then
& (r) () R’ ()d() when i=p
Z Yip dqj = . (7.15)
— 0 when ©#p

SO

n+1 W)
K3
Yij = ) Wilsg

g=1
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where gJ(Q are the elements of the (n+ 1) X (n + 1) matrix G®, given by

gjq Z U(T d(r (7.16)

If the left hand side of (7.11) is an n X (n + 1) matrix denoted by Z with elements z;;, then
Z =Y and

n+1 )
Zij = Yij = Y Wigdly- (7.17)
g=1

It should be noted that z;; and g](-;) are not dependent on W, and both can be computed
from the observation vectors and the model parameters. Hence, a system of simultaneous
equations is generated to compute W,

wi = GO 1y (7.18)

(2

where w; and z; are the it" rows of W, and Z respectively. These equations can be solved
using Gaussian elimination or LU decomposition methods to calculate W, on a row by row
basis.

This estimate of W, increases the likelihood of the adaptation data being generated by
the models. By iterating the estimation, the likelihood can be maximised.

7.2.3 Extension to Mixture Distributions

For states with output distributions made up of M mixture components the probability
density function for the state is given by

M
= Z cskbsk(o) (7.19)
k=1

where by (0) is the kth Gaussian mixture component of state s and cg, the associated
component weighting. Thus the likelihood function becomes

T M
F(0,01)) = ag.n[]aos0, lz Catkbetk(ot)] (7.20)

t=1 k=1
= Z Z Z la9T7NHa9t 19t09tktb0tkt (Ot)] . (721)

k1=1ko=1
Defining
T

F(0,0,K|\) = ag,n [ ] a0,_,0.co0k, 6.k (0:) (7.22)

t=1
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and € as the set of all possible branch sequences (mixture component sequences) of length

T, where such a sequence is K = (k1, k2 ..., kr), the joint density of the stochastic process
is
FON = > > F(0,6,KN. (7.23)
069 KeQy

This can be interpreted by considering each set of state sequences which generates O as
being a superposition of M7 branch layers.

The auxiliary function is now redefined to take the branch layers into consideration:

QNN = D> > F(0,6,K|\)log F(O,6,K|\) (7.24)
0cO Kep

T
= > > F(O,O,KP\){logagTN+Zlogagt19t+
0cO Key t=1

Zlogbgtkt Ot +Zlog60tkt}

- (7.25)

Again, only considering those elements relevant to the regression transform this reduces to

T
Q(\,X) = constant+ > > > F(0,0; = j ki = k|\)logbjr(or)  (7.26)
0c® KeQ, t=1

Defining ;i (t) as the total occupation probability of mixture component k of state j at
time t given that the observation sequence O is generated:

Yix(t) O|)\ Z Z F(O,0; = j, ky = K|N) (7.27)
OcO® Key

reduces equation 7.26 to

Q(\, \) = constant + F(O|N) Z*yjk ) log bjx (o) (7.28)
t=1

which is equivalent to equation 7.5 for the single Gaussian case.

Thus by substituting mixture component occupation probabilities for state occupation
probabilities, transformations for individual mixture components can be derived.

7.2.4 Multiple Observation Sequences

The transform has been derived for the case of a single observation sequence. The extension
to the more general case of multiple observation sequences is trivial.



Transforms for Speaker Adaptation 99

Given a set of P observation sequences oW ... 0P with observation sequence ow

having 7T}, observation frames (O(p) = ng ). 0%)), and considering a single component

mixture per state, equation 7.9 becomes:

P Tp P Tp
S Y AP B PE, =33 AP ()BT LELL (7.29)
p=1t=1 p=1t=1
where 1
WO = zowpy o FOT 0= (7:30)
0€®Tp

and O, is the set of all possible state sequences of length T;,.

The tied regression matrix formula (equation 7.11) then becomes

P Tp
2‘1; Z;%T o (p Z;V W,D() (7.31)
p= T r=

where D) is the extended mean outer product matrix as before and V() is the state
distribution inverse covariance matrix scaled by the state occupation probability:

P T
S AP (7.32)
p=1t=1

Hence G and Z can be calculated and the transform estimated as before.

7.3 Incremental Adaptation

The MLLR equations presented in the solution of equation 7.11 assumed that all the adap-
tation data had been observed before the transform was estimated. By re-arranging the
equations to separate the components which are dependent on time, a formulation for in-
cremental adaptation is found.

Re-arranging equation 7.12 results in

T
lz Vs, (t)] = ! (7.33)

and the left hand side of equation 7.11, Z, can be written as

R T
> %5 lZ %r(t)ot] &, - (7.34)

A full MLLR estimation of the transforms can then be made at any time, based on
the observed data up to the current point in time. The adapted models may be used
to get an improved alignment for future adaptation observations. This is equivalent to a
single iteration of static adaptation, except that alignments are generated using repeatedly
updated models.
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7.4 Computational Considerations

Calculating the MLLR transform is computationally expensive. Consider a single transform.
Computing each g](.;) requires 2R multiplications therefore each G requires 2R(n + 1)2
multiplications. Assuming that the mixture component occupation probabilities and the
observation vectors are efficiently accumulated R(n + 2)n multiplications are required to
compute Z. The computational overhead for one (n x n) regression matrix is 2Rn(n+1)% +

Rn(n + 2) multiplications plus n matrix inversions, i.e. computation of order n3.

The matrix G(i), which must be inverted, is the summed weighted outer product of two
mean vectors. Each outer product is a singular matrix and the resulting matrix G may
be very close to singular if only a few examples of regression class members are observed
in the adaptation data. To overcome this problem it is suggested that the matrix inversion
be performed using a robust method. The Moore-Penrose pseudo inverse is ideally suited
to this problem, although computationally expensive,

If A = XDY' the singular value decomposition of A
then AT =YD 1X is the pseudo inverse

X and Y are orthogonal matrices and D is diagonal.

7.5 Diagonal Regression Matrices

A full n x (n + 1) matrix implements n'* order multivariate linear regression. This can
be computationally expensive and the complexity of the regression may be unnecessary. A
considerable computational saving can be made if the regression matrices are restricted to
a diagonal form. This effectively implements a single variable regression for each element
within the feature vector. Consider the matrix

’LU1,1 ’LU1,2 0 e 0
~ ’LU2,1 0 w273 e 0
W, = (7.35)
W, 1 . o 0 wpnt1

then the transformation to update the mean value ji = W€ results in each component of
the mean undergoing a shift and a scaling

fli = Ww1; + Wit1,ik;- (7.36)
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Rewriting the matrix as a vector

w11

Wn, 1

El

wi 2

Wn,n+1

the quadratic form in the output density becomes
(0 — Wafn) 27 0 — Wijay) = (0; — Dyivs)E7(0; — D) (7.37)

where Dg is a n X 2n matrix

w 0 0 u O 0
0 0 0 py O 0
D,=| : N (7.38)
0 ... 0 w O ... ... 0 p,71 O
0O ... ... 0 w 0 ... ... 0 U,

Substituting the new form of the quadratic in the output density for each state and
following the standard MLLR derivation leads to a formula for the values of the regression
matrix elements in the tied case

R T T “Irr 7T
s = ZZsz(t)D;TE;leT] [ZZZ%T@)D;TE;:W (7.39)

r=1t=11t=1 r=1t=11t=1

When including the offset term one matrix inversion is required to calculate the re-
gression matrix entries, and by ignoring the offset term (w = 0) the offset column can be
ignored, and all matrices can be reduced to diagonal matrices making inversion trivial. Thus
computation is significantly reduced over the full regression matrix case.

7.6 Regression Classes

The MLLR formulae have been derived with a flexible transformation tying structure. The
effectiveness of the tying clearly depends on a good choice of mixture components to as-
sociate with each transformation matrix. For this purpose the idea of regression classes is
introduced. The set of mixture components which are associated with the same transfor-
mation are placed in the same regression class. The aim is to select the members of each
regression class so that a good transformation is generated for all members. The actual
definition of a good transformation is an abstract term since the necessary transformations
will be different for different speakers and the regression class definitions are needed to
generate them in the first place. An interpretation using the acoustic space is considered
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instead. Assuming that if two acoustic classes are represented in a common region of acous-
tic space for a speaker (speaker A), then the same two acoustic classes will be represented
in a common region (but possibly a different region to that of speaker A) of acoustic space
for a different speaker (speaker B) (Figure 7.1).

Class X ClassY

o~

[

o]

£0)

o

e

[a) Speaker B

§ Class X

& @

©

7]

>

: D

< Speaker B
ClassY

Acoustic Space Dimension 1

Figure 7.1: Example of assumption of similar relative acoustic distributions from speaker
to speaker

Under this assumption the mixture components representing acoustic classes located in
similar acoustic space should be placed in the same regression class (Figure 7.2). Although
the relative positions of classes in acoustic space may vary with different speakers, if an
average of many speakers is taken (e.g. from a speaker independent system) a good esti-
mate of appropriate groupings may be made. A further consideration is that the mixture
components in each regression class must contribute sufficient adaptation data to the class
so that a robust estimate of the regression matrix can be made. Thus if the adaptation
data is known in advance the regression classes can be selected accordingly.

7.7 Adapting Other Parameters with MLLR

The MLLR approach has only considered adaptation of the mean vectors of the mixture
components. For complete adaptation of the system it would be necessary to update all the
model parameters. However, this is similar to a complete retraining of the system which
would require large amounts of speaker specific data. MLLR is intended to address the case
where the amount of adaptation is limited, and hence makes a general update of the mean
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Regression Class 3

,,,,,,,,,,,,,,,,,,,,

Acoustic Class @
Distribution | |

Acoustic Space dimension 2

Regression Class 1

Acoustic Space dimension 1

Figure 7.2: Example regression class members in a 2-dimensional acoustic space

parameters through the tying of transforms. The other parameters in the model set are not
altered. The effect of not adapting the other parameters is briefly discussed below.

e The transition probabilities (a;;).
Very few methods adjust the transition probabilities on a speaker-by-speaker basis,
with MAP adaptation being one example. However, the effect of transitions is small
in a continuous density system, and not adapting the transition parameters will not
adversely affect the adaptation.

e The mixture component weights (c;x).
Multiple mixture component states can be expanded to parallel individual states,
with transition probabilities computed relative to the mixture weights. Hence, similar
arguments to the case of transition probabilities can be made.

e The covariance matrices.
Although tying of the covariance matrices has been performed within HMM systems
(e.g. grand covariance systems), the nature of the covariance distribution makes it
unsuitable for tying between transformations. The use of individual covariances in
each distribution has been proved to be effective indicating the importance of having
a correct shape for the distribution of examples of each acoustic class. Transformation
of the covariance would result not in a change in position of the class in acoustic
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space, but a change in the shape of the distribution. Although Digalakis [34] suggests
adapting the covariance matrix with the same transformation of the mean, a similar
idea is rejected in this case. The MLLR transform generates a relocation of the mean
of each component in the current acoustic feature space, but does not transform the
space. Applying the transform would result in the covariance of the distribution being
rotated in the feature space, but the rotation would be generated from the change in
the mean, not the appropriate covariance.

Although in theory these parameters should be adapted to the new speaker, it is clear
from the success of spectral transformation techniques that successful adaptation can be
performed without considering all of the parameters.

7.8 Alignment of Data

The success of the MLLR method depends on assigning frames of the adaptation data to the
HMM states and mixture components. Assuming that the transcription of the adaptation
data is given, standard alignment strategies such as the forward-backward algorithm or
the Viterbi algorithm can be used. The forward-backward algorithm allows each frame of
adaptation data to contribute to several states, which is possibly advantageous in the case
of small amounts of data. A schematic diagram of the alignment process is shown in figure
7.3.

The adaptation data and transcriptions are first passed through a filter to resolve am-
biguous pronunciations. This filter would normally consist of a Viterbi alignment using the
SI models and a pronunciation network. The appropriate models representing the chosen
pronunciations are then selected and ordered, and an alignment of the data produced. Each
observation vector is then allocated to the regression classes with the appropriate weighting.

For the case of supervised adaptation the transcriptions are provided, for unsupervised
adaptation the appropriate transcriptions must be generated within the system by passing
the adaptation data through a recognition module.

7.9 MLLR Matrices as Input Transformations

In theory MLLR can be used to implement adaptation through speaker normalisation by
applying the regression matrix to the input speech instead of the mixture component means.

Using a global transformation matrix to transform the observation vectors the proba-
bility density is
bi(0) = 77} . s (Wo-p B (Wo-p,) (7.40)
(2m) 2|32

where 0 is the extended observation vector for time ¢

o= won.....on | (7.41)
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Adaptation data Transcriptions

/\/\/\/\/ "What is Firebush’s propulsion type 7
\ Pronunciation

Filter
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to States Model Transcription
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probs
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Figure 7.3: Alignment of the adaptation data, and allocation of data to tied regression
classes

The estimate of the global transformation is performed in a similar manner to standard
MLLR estimation. The auxiliary function is redefined as,

T
Q (W, W) = —f.’F (O|\, W) Z t)[nlog(27) + log |Xs| +

(Wot - l‘"s) s (Wot - ’J's)]

(7.42)
with the differential
d R T
5 (W, W) = F(O]\, W) zzj =7 [Wo — | 6, (7.43)

Equating to zero and summing over all states,
ZZ% )2, 0} ZZV”WD”) (7.44)
t=1s€eS t=1s€eS

where V(1) is the state distribution inverse covariance matrix scaled by the state occupation
probability,

v = 4 )xt (7.45)

s
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and D1 is the outer product of the extended observation vectors at time ¢
DY = 5,8 (7.46)

If the individual matrix elements of V() W and D" are denoted by v3", w;; and
dl(;’t) respectively, the right hand side of equation (7.44) is an n X (n + 1) matrix Y with
individual elements y;; given by

n n+l T
Yij = D D Wy [Z > vfﬁ’“dé‘}’“] (7.47)

p=1q=1 seSt=1

Since DY) is symmetric and assuming diagonal covariances

n+1 .
Yij = Z wiqg](‘;) (7.48)
qg=1

where g](Q are the elements of the (n 4+ 1) x (n 4 1) matrix G® which is the sum of the
outer products of the extended observation vectors scaled by the i** diagonal component of
the weighted mixture component inverse variance of all mixture components (D(s’t) scaled

("gvt))

11

by v

) T
B o (7.49)
seS t=1

As before, the n x (n + 1) matrix Z (= [z;]) is defined as the Lh.s. of equation 7.44,

T
Z=3 Y ()55 .} (7.50)

t=1seS
and,
n+1 )
Zij = Yij = ) WigGyy (7.51)
g=1

so a set of simultaneous equations can be generated and an estimate of W made.

Although this derivation follows similar arguments to the standard MLLR transform,
the nature of the transformation generated is significantly different. Instead of generating
a transform which relocates the position of each acoustic class in the acoustic space (trans-
formation of the mean vectors), the observation vectors are transformed in an attempt to

locate the appropriate vectors in the correct region of the acoustic space.

7.10 Comparison to Least Squares Regression

The MLLR approach is similar in essence to the least squares approach suggested by Hewett
[49], although it differs significantly in the treatment of covariances. Least squares makes
the assumption that shape of the distributions of each acoustic class modelled are identical.



Transforms for Speaker Adaptation 107

The discussion in section 4.3 shows this is a poor assumption which MLLR overcomes
through incorporating the covariances into the optimisation. Least squares regression can
be shown to be a specific case of the more general MLLR.

Assuming all the covariance matrices of the distributions assigned to the same class are
the same (X, = X, = ... = X,,) equation 7.10 becomes,

T R T R ~
DD s (outs, =YD s () Wal, i, (7.52)
t=1r=1 t=1r=1

If each speech frame is assigned to exactly one distribution (e.g. by Viterbi alignment) so
that

Yo () = { (1) ioftltz;ri; iizsigned to state distribution s, (7.53)
then equation 7.52 becomes
T T
> oiig, s, = W, > ivg, v, 05, (7.54)
t=1 t=1
where
o= { 5 e 759
Defining the matrices X and Y as
X = [ fuo, fte, - fo |
Y = [ 0109,m 0200,m --- OTO6rm ]
equation 7.54 becomes,
YX' =W, XX’ (7.56)
so the estimate of the regression matrix is
W, =YX'(XX')! (7.57)

which is the least squares estimate [59].

This suggests that MLLR should perform at least as well as the least squares approach.

7.11 Summary

The MLLR adaptation method has been described and appropriate optimisation formulae
derived. This method transforms the mean vectors of all the mixture components in a
continuous density HMM system. However, a closed form solution is only available for
HMMs with diagonal covariances. The method can be implemented either using a global
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transformation, or, if there is sufficient data available to make robust estimates, more specific
transformations. For this purpose the idea of regression classes has been introduced, with
all the mixture components in each class being transformed by the same matrix.

The transformation matrices can either be full n X (n + 1) matrices or more restricted
diagonal matrices which implement single variable regression for each element of the feature
vector. The diagonal matrices are computationally more efficient and require less data for
robust estimation. However, they are less well suited to making general regression estimates
when a large degree of tying is involved.

The MLLR method makes a maximum likelihood estimate of the regression matrices,
and it can be shown that the least squares estimate is a special case. The MLLR method
can also be used for implementing speaker normalisation by applying the transformation to
the input speech instead of the mean vectors.



Chapter 8

Evaluation of MLLR

Transformations for Speaker
Adaptation

The efficacy of the MLLR transformation approach for adapting model parameters to a
new speaker is now investigated. Many experiments have been performed to show that the
MLLR estimate of the transformations is both effective and feasible in a general continuous
density HMM framework. The basic experimental evaluation has been performed using the
speaker dependent portion of the RM1 database. This has been selected since it provides
a reasonable number of speaker dependent training utterances from 12 different speakers.
Further evaluation used the much larger WSJ database to demonstrate the effectiveness of
MLLR on different databases.

For the RM experiments, the adaptation data is drawn from the training utterances,
and evaluation results generated using all of the speaker dependent test sentences. For the
WSJ experiments the adaptation and evaluation correspond to the requirements of the 1994
ARPA sponsored continuous speech recognition evaluation [65].

8.1 Model Sets used for Adaptation Evaluation

The speaker adaptation techniques have initially been evaluated on the RM1 speaker de-
pendent corpus, and extended to the Wall Street Journal corpus (Appendix A). The model
sets used were originally created by others ! for speaker independent tasks.

8.1.1 Models for RM experiments.

Two types of models have been used for the RM experiments - word-internal triphones, and
cross-word triphones.

!Many thanks to Julian Odell and Phil Woodland for providing the model sets

109
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8.1.1.1 Word Internal Triphones

A set of state clustered word-internal triphones were generated as described in [107]. The
130 function word dependent phone set described in section 4.1 was used to train a set
of monophones with a single mixture component diagonal covariance per state. These
models were cloned to generate 2427 non-tied single mixture component triphones and the
models reestimated. The corresponding states of all allophones were then clustered using a
hierarchical furthest neighbour clustering algorithm. Using the Euclidean distance between
the means weighted by the geometric mean of the variances as the intra-class distances, those
components which result in the minimum increase in intra-class distance are clustered.

After the initial clustering a data sufficiency check was made using the training data and
any classes with insufficient data were clustered with the nearest class. The distributions
associated with the clustered states were tied, as were the 130 transition matrices which
were associated with each allophone. The parameters of the HMMs were then reestimated to
form the Rldiag model set. The resulting model set after eliminating models with identical
distributions had 2029 models and 1811 states [107].

To form the other model sets the number of components in the mixture density for each
state was successively increased, and the models re-estimated using all 3990 SI training
utterances.

° Rldiag - 1 Gaussian component mixture density per state.

R2diag - 2 Gaussian component mixture density per state.

R4diag - 4 Gaussian component mixture density per state.

R6diag - 6 Gaussian component mixture density per state.

R8diag - 8 Gaussian component mixture density per state.

8.1.1.2 Cross-Word Triphones - Ryt

A set of cross-word triphones was defined using the tree-based state clustering method
described in [110]. Initially a set of monophones were defined and trained. The monophones
were cloned to context dependent models and retrained. For each monophone a state-based
decision tree was built using the state alignment of the training data. The decision trees
are then used to construct a complete set of triphones, including those not present in the
training data. The number of mixture components in each state was then increased and
the models re-estimated.

For the R.wt set the model training results in a system with 1778 states each with 6
mixture components. This is the Rm3 system described in [85].
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8.1.2 Wall Street Journal Models

Two WSJ model sets using cross-word triphones have been used. Both are trained on
the combined WSJO and WSJ1 databases (Appendix A) using a modified version of the
tree-based state clustering method described in section 8.1.1.2.

8.1.2.1 Gender Independent Models - W,

Phone-level pronunciations were generated using a pronunciation dictionary (1993 LIMSI
WSJ Lexicon and phone set) and the sentence orthography in a Viterbi alignment. The
alignment was used to build monophones, then triphones and finally a phonetic decision
tree. The tree was then used to cluster the triphone contexts and the resulting set of
distributions reestimated. The number of mixture components per state was then increased,
and the models reestimated [106].

The final W, model set is a gender independent triphone model set with 6399 speech
states each with 12 component Gaussian mixture densities.

8.1.2.2 Gender Dependent Models W}

The W}, model set is a gender dependent quinphone model set with 9354 speech states
each with 14 component Gaussian mixture densities. The quinphones are generated in
exactly the same manner as the Wj triphones, but using a quinphone context decision tree.
A gender independent model set is first generated, and the final gender dependent set is
obtained by a final re-train to estimate the mixture component mean values, on gender
dependent data whilst keeping the variances fixed.

8.1.2.3 WSJ Language Models

For the WSJ recognition tasks two language models were used. The WSJ spokes S0, S3 and
S4 were restricted to 5000 words, and the MIT Lincoln Labs 5k trigram language model
was used. For the hub task H1-P0O a 65k word dictionary was used and the language models
(bigram, trigram and 4-gram) were generated using 227 million words of data from the WSJ
CSRNABI corpus.

8.2 Implementation Issues

The two main issues regarding the implementation of MLLR are the generation of the
observation vector/state alignment and associated probabilities, and the generation of ap-
propriate regression classes.
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8.2.1 Alignment of the Data

There are two approaches to aligning the data: the forward-backward algorithm and the
Viterbi algorithm. The forward-backward algorithm assigns each observation vector to all
states with a probability distribution whereas the Viterbi alignment assigns each observa-
tion vector to exactly one state (see chapter 2). To align the data, a model transcription
must be generated. Since the dictionary used for the RM experiments contains only single
pronunciations this is achieved by a simple dictionary lookup of the word transcription. For
other cases where there may be multiple pronunciations of words (e.g. the WSJ database)
a forced alignment of the possible model combinations should be generated, and the most
likely model sequence determined. It must be noted that such a forced alignment will use
an existing model set which is not tuned to the speaker. This has the result of mapping
pronunciations of the new speaker to the speakers in the training which can be misleading
if the new speaker has a different accent/dialect (e.g. pronouncing the same vowel in a
different manner) to those in the training set.

8.2.2 Generation of Class Definitions

As explained in section 7.6 mixture components representing similar regions in the acoustic
feature space should be placed in the same regression classes. Given an initial model set,
some method of determining similar mixture components must be used. Possible approaches
are :-

1. Phonetic Characteristics

Similar acoustic classes can be grouped using phonetic knowledge. This assumes
that utterances produced in a similar articulatory manner will be represented in a
similar region of the feature space. This is clearly dependent on the speech coding
used. A further assumption is that the acoustic classes modelled by the mixture
components have some phonetic meaning. In general this is not the case since the
model representing each phone is made up of several states each with multiple mixture
components. Each state represents only part of a phone, and each mixture component
represents a further division of the phone. On the positive side, small numbers of
classes are trivial to define by using broad phoneme groupings (e.g. front vowels, back
vowels, stop consonants etc.).

2. Distance Measures
A logical method of determining similar mixture components is to use a distance
measure between the distributions. There are two problems associated with this
approach: the definition of the distance measure and the decision boundary between
classes. A further consideration is that each class must contain a sufficient number of
components to ensure that the estimate of the associated regression matrix is robust.
Two possible distance measures which have been considered in this evaluation are
the divergence measure and a likelihood measure (see Appendix B). The boundary
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decision problem is implementation specific and depends on the distance measure. The
distance criteria can be chosen so that each regression class has a sufficient number
of members.

The use of multiple mixture components per state is intended to produce a complex mod-
elling of the feature space for the sound class. Assigning the mixture components within
the same state to different regression classes will result in the mixture components being
transformed in different directions, and hence a change in the modality of the state distri-
bution may result (Figure 8.1). Applying the same transform to all mixture components
of the state will move the distributions in the same directions which preserves the shape of
the state distribution, and is consistent with the mixture weights. However, since the trans-
forms are estimated from the data assigned to each mixture component, a change in the
state distribution shape may be desirable to improve the modelling of the speaker. For this
reason no restrictions are placed on the regression class allocation of mixture components
from the same state, although for phonetically based classes this naturally applies.

Before Transformation

>
>
>
w

1 2

After Transformation

Figure 8.1: Example of change in modality when transforming mixture components within
the same state using different transforms

In both types of class definition the mixture components representing silence should
be considered separately. Given the same recording environment the non-speaker noise
(background hum, microphone effects etc.) is common to all speakers. It should be noted
that only clean speech recognition is considered here - background noise is minimal. Silence
is therefore not included in any regression classes, and the mixture components within the
silence models are ignored for the purpose of adaptation data collection, although they still
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form part of the alignment.

8.3 Class Definitions

The initial adaptation experiments used a set of class definitions determined before the
adaptation process began. These class sets are termed fized class definitions. An alternative
method is to generate the classes after having seen all of the adaptation data. This can be
achieved by using regression class trees.

8.3.1 Fixed Class Definitions

The two methods of generating class definitions were used for the experimental evaluation
on the RM1 task. A set of phone-based class definitions based on broad phonetic classes
was defined by associating all the component mixtures in a particular set of phone models
with the same regression class. The division of phones into particular classes is described
in Appendix C. A set of distance-based classes was defined using the likelihood measure,
and hierarchical clustering based on pair-wise distances. Those components which were
deemed close were pooled into a class. The classes were then repeatedly combined on a
pair-wise basis (using a distance measure based on the average class membership) until the
requisite number of classes was defined. The average distribution of a class with R mixture
components is defined as,

1 R

Pave = SR N,ZNi“i (8.1)
1=1+"14=1
1 R

Yave = TNZNi [Zi + (i — pave) (1 — Bave)'] (8.2)
i=14Vi 521

where N; represent the relative frequencies of the different distributions. For the purpose
of adaptation using unknown data each mixture component is considered equally likely
(N; = 1 for all 7). However, given a priori knowledge of the adaptation data, N; can be
chosen to generate task specific classes. For the class definitions used in the evaluation tests
the adaptation data was assumed to be unknown.

8.3.2 Regression Class Trees

This fixed class definition approach may be replaced by a tree-based approach which allows
class selection to be performed dynamically within the adaptation process. The tree struc-
ture (Figure 8.2) contains a set of nodes each of which represents a possible regression class.
The regression class of each node contains all the mixture components in the regression
classes in the sub-tree from the node. Hence, the root node represents the global regression
class, and the children of each node represent more specific classes. For example, in the
diagram node A represents the regression class made up of the mixture components in the
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Base Classes

Figure 8.2: A regression class tree

classes represented by nodes B and C. The leaf nodes represent the most specific classes.
For a complete tree the leaf nodes would represent individual mixture components, however,
when considering large HMM sets the number of mixture components is large and with lim-
ited adaptation data it is unlikely that classes representing individual mixture components
would be used. For practical purposes the leaf nodes represent base classes which contain
a small number of similar mixture components. This reduces the complexity of the tree
making tree searches less computationally expensive, and as long as the base class members
are well chosen (i.e. they are similar and there is a small number of them) this should not
limit the effect of the most specific transforms.

8.3.2.1 Traversing the Regression Class Tree

The regression class tree is used to determine the regression classes used during adaptation.
Using the statistics from the adaptation data the amount of data allocated to each regression
class can be determined. A top down search of the tree is performed to find the lowest node
in each alternative branch with sufficient data to estimate a transform. This is performed in
such a manner that sufficient transforms are estimated for all mixture components, and each
mixture component is adapted using the most specific class that can be robustly estimated.

Starting the search at the root node:

For a node A
if A is a leaf node
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generate transform W from data for A
update all components in A using W
if A has children B and C
if B has sufficient data
search through node B
else
generate transform W from data for A
update all components in B using W
if C has sufficient data
search through node C
else
generate transform W from data for A

update all components in C using W

The class tree can replace the use of fixed classes and remove the necessity of prior
knowledge of the amount of adaptation data. The question of how much data is sufficient
can be determined empirically, but should be similar to that determined using the fixed
class approach.

8.3.2.2 Regression Class Tree Generation

The regression class tree may be generated using a clustering approach which is similar
to that used to generate the fixed classes with distance measures. The base classes can
be generated in an identical manner to the fixed classes, and the tree built from the base
classes by pair-wise clustering. This process is repeated until the combination results in a
global class.

For the RM cross-word triphone models a set of 200 base classes was defined using
distance-based classes computed via the divergence measure. The average distribution of
each class was computed from all the component class members and used to compute
pair-wise class distances with the divergence measure. The regression class tree was then
generated. Each base class had an average of 53 component members, and the resulting
tree was 9 levels deep.

Trees were also generated for the WSJ model sets, but the number of base classes was
increased to 750 due to the larger number of mixture components within the system. For
the Wy model set each base class had an average of 102 mixture components and for the
W}, model set there were 174 components in each base class. Both trees were 11 levels deep.

8.4 Initial MLLR Adaptation Experiments

Several experiments were performed using the RM database to assess the MLLR method.
The most basic implementation used a global transformation. The use of different amounts
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of adaptation data, different alignment strategies, tied matrices and diagonal matrices were
also evaluated. All the experiments were performed in a supervised manner, with the
pronunciations for each word generated using the CMU RM dictionary [70]. Unless stated
otherwise all alignments used the forward-backward algorithm and all regression transforms
were full n x n+ 1 matrices, generated using one iteration of MLLR. Although the method
relies on an iterative optimisation criteria, it was found that only one iteration was necessary.

8.4.1 A Global MLLR Transform

The single mixture component diagonal model set Rldiag was used for an initial assessment
of the global MLLR transform. 40 utterances were used for adaptation and the resulting
model set tested on all 100 test files for each speaker.

Speaker | Baseline | MLLR adaptation | % Improvement
bef0_3 10.5 8.7 11.5
cmr(0_2 19.9 10.4 47.7
dasl_2 6.7 3.3 50.7
dms0.4 11.2 6.0 46.4
dtb0_3 10.4 7.1 31.7
dtd0_5 11.7 9.3 20.5
ers0_7 13.6 11.7 14.0
hxs0_6 11.9 6.6 44.5
jws0.4 8.0 6.1 23.7
pgh0_1 9.1 7.0 23.1
rkm0_5 15.5 12.0 22.6
tab0_7 4.5 4.2 6.7
Average 11.1 7.7 30.6

Table 8.1: Results (% Word Error) using a global MLLR transform using a single mixture
component per state (Rldiag)- Adaptation using a full matrix estimated with 40 adaptation

utterances.

The results (Table 8.1) show that a substantial improvement (averaging 30% reduction
in error) over the speaker independent system can be achieved. The adapted models are
better than the SI models for all speakers, even those which have a high initial error rate
which may lead to poor model alignments.

Table 8.2 shows the changes in Viterbi likelihoods of the models on the test data. As
would be expected a significant increase in the likelihood value per frame is achieved after
adaptation. Thus the maximum likelihood estimation can be seen to be having the correct
effect.
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Speaker | Baseline Log Likelihood | Adapted Log Likelihood
per frame per frame
bef0 3 -72.55 -70.52
cmr(_2 -74.06 -71.36
dasl_2 -71.64 -69.40
dms0 4 -76.09 -72.77
dtb0_3 -74.32 -72.61
dtd0._5 -74.14 -72.23
ers0_7 -69.75 -68.71
hxs0 6 -72.21 -70.22
jws0 4 -76.27 -74.29
pghO_1 -70.86 -69.17
rkm0_5 -75.99 -74.03
tab0_7 -71.33 -69.57
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Table 8.2: Changes in log likelihood per frame for each speaker on the test data

8.4.2 Application to Multiple Component Mixture
Distributions

The results for models with a single Gaussian distribution per state are encouraging, but
these models have a high error rate. Equivalent SI model sets with increased numbers of
Gaussian components mixture distributions per state were adapted using a global MLLR
transform estimated on 40 adaptation utterances. These SI models give reduced error rates
as the number of mixture components increases. Table 8.3 shows that the global MLLR
transform gives a substantial reduction in error rate with every model set. For the 2 mixture
component models the adapted models reduced the error rate for all speakers. For both the
4 mixture component and 8 mixture component model sets the adapted models increased
the error rate for speaker ers0_7, the error rate for all other speakers was either better or
equal to the baseline after adaptation.

The global MLLR transform is clearly effective even with model sets with large numbers
of parameters. A 24% reduction in error rate using a global transform on a model set with
a 6.6% initial error rate is considerable, and with more specific regression classes further
reductions in error may be achieved.

8.4.3 Effect of Increasing the Number of Regression Classes

Table 8.4 shows the effect of using different methods to generate fixed regression classes for
MLLR adaptation on deiag models using 40 utterances. The phone-based classes used
broad phonetic definitions and the distance-based classes used the likelihood measure for
clustering.
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Num. Mixture | Baseline Models | Adapted Models | % Reduction
Components (SI) in error
1 11.1 7.7 30.6
2 8.4 6.1 27.3
4 6.8 5.2 23.5
6 6.8 5.3 22.1
8 6.6 5.0 24.2

Table 8.3: Effect of MLLR on models with different numbers of component mixtures per
state. Results are % word error averaged over all 12 speakers. 40 utterances were used to
estimate a global adaptation transform.

As the number of regression classes is increased, the adapted models reduce the error
further. Due to the smaller number of mixture components assigned to each class, the
estimates of the regression matrices are more appropriate for the class members and better
estimates of the adapted means are obtained. However, this is not a monotonic process,
and there is an optimum number of classes to use. This optimum occurs due to the trade off
between specificity of the regression classes and robustly estimating the transform. After
this point the poorly estimated transforms can affect the performance quite dramatically,
for example using a set of 47 regression classes based on the individual phone models (and
ignoring silence) results in an average word error rate of 16.9%, which is considerably worse
than the initial SI error rate.

There is little difference between the two types of class definitions in terms of the lowest
error rates achievable. This is possibly due to the large number of mixture components
within the model set, which results in a very broad allocation of mixture components to
each class. Further tests with distance based classes based on the divergence measure also
showed little difference.

8.4.4 Iterative Adaptation

The adaptation formulae are derived to maximise the auxiliary function. Although this is
guaranteed to lead to an increase in the likelihood function an iterative procedure is required
to obtain a local maximum Thus, once the models have been updated, a second alignment
of data to models should be generated to collect new adaptation statistics and another
update performed. This should be repeated until the likelihood function has converged (c.f.
Baum-Welch parameter estimation).

Table 8.5 shows the effect of iterating the adaptation process for all speakers, using the
2 component mixture models. The likelihoods increase with each iteration until the point
of convergence is reached, but the performance on the test data is not significantly changed.
This indicates that very little change in the alignment of data is taking place and the
estimates of the adapted means are not changing with each iteration. The objective function
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No. Regression Class Definitions
Classes Phone Based | Distance-Based
1 6.1 6.1
2 6.1 6.0
3 6.0 6.0
4 5.7 5.7
5 5.7 5.5
6 5.5 5.5
7 5.5 5.3
8 5.3 5.4
10 5.1 5.2

Table 8.4: Effect of MLLR with different numbers of regression classes defined using pho-
netic knowledge or distance measures between mixture component densities. Results are %
word error averaged over all 12 speakers on the RM1 SD test sets. 40 utterances were used
for adaptation of the R2diag models.

is close to the maximum after the first iteration and further iterations are unnecessary.

8.4.5 Adaptation of Specific Feature Elements

The feature vector contains MFCCs, an energy component and the first and second time
derivatives. It may be the case that adapting all the elements of the feature vector is
unnecessary. Some features (e.g. the dynamic coefficients) may be common among speakers
and adapting them based on a small amount of adaptation data may have an adverse effect.
By only adapting a portion of the mean vectors the number of parameters which need to
be estimated in the regression matrices can be reduced. When implementing a selective
feature vector adaptation scheme the regression matrices can be reduced to

0 0 ... ... 0
0 1 0 ... ... 0
0 0 1 0
W = Ws,1 0 NN 0 Wii41 .- wi,'j+1 0 ... 0 (83)
wj1 0 cee 0 Wji+1 -+ Wj5+1 0 ... 0
0 0o ... 0 1 0
0 0o 0 ... .. 0 1

where features 7 to 7 are the elements within the vector to be adapted.
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Iteration | % Word error | Training Data Likelihood
Baseline 8.4 -72.5

1 5.2 -68.3

2 5.2 -68.0

3 5.3 -68.0

4 5.3 -68.0

Table 8.5: Effect of iterative adaptation on SD tests. Adaptation on deiag models with
40 adaptation utterances and 10 regression classes. Table shows the average % word error
on the test set and the average log likelihood per frame of the forward-backward alignment
after each adaptation pass.

A comparison of adaptation using various combinations of the different coefficients is
shown in Table 8.6. The largest gain after adaptation is certainly with the MFCC co-

Coefficients Average % Word Accuracy

Adapted (a) (b) (c)

none 8.4 8.4 8.4

MFCCs 6.9 6.9 6.6

MFCCs + AMFCCs 6.7 6.7 6.3
MFCCs +AMFCCs +AAMFCCs 6.4 6.4 5.8
all 6.1 6.1 5.5

Table 8.6: The effect of adapting only selected coefficients for R2diag models. Adapta-
tion with (a) 5 utterances, global transform, (b) 40 utterances, global transform, (c) 40
utterances 5 classes.

efficients, however the other coefficients are important in reducing the error rate further.
Including the energy and its derivatives gives the same amount of gain as including each of
the first and second derivatives of the MFCCs.

Reducing the number of coefficients adapted does not appear to affect the amount
of data required to estimate the transform, and for the adaptation to be fully effective
all the elements of the feature vector should be adapted. No reduction in the number of
regression parameters that need to be estimated can be achieved without a fall in adaptation
performance.

8.5 Comparison with MAP adaptation

The MLLR adaptation method is successful at gaining an increase in recognition perfor-
mance using a small number of adaptation utterances. Table 8.7 gives a comparison between



FEvaluation of MLLR 122

MLLR and the MAP adaptation algorithm described in section 6.5. Model sets with an
identical structure to models deiag and RGdiag were used for the MAP adaptation, but
were estimated in a slightly different manner [1]. The baseline results were marginally dif-
ferent, hence the comparison is made in terms of the reduction in error from the baseline.
For the adaptation with 10 sentences a global transform was generated, and for 40 and 100
sentences 10 and 15 classes were used respectively.

Models Number of Adaptation Sentences

10 40 100
MLLR | MAP | MLLR | MAP | MLLR | MAP
R2giag | 274 | 91 | 381 | 193 | 392 | 328
R6gjag 19.1 1.8 38.2 14.0 39.7 30.1

Table 8.7: Comparison of MLLR and MAP adaptation approaches using a small number
of sentences for adaptation. Results are % error reductions obtained between baseline and
adapted model sets.

The MLLR approach is substantially better when adapting with a small number of
utterances. The MAP approach only updates those models for which there is data present in
the adaptation data. Updating the parameters of all the models, even if in a general fashion,
is clearly advantageous. MLLR can be seen to capture the general speaker characteristics
quickly and use these to great effect in the speech modelling.

8.6 MLLR with High Accuracy Models

The previous section demonstrated the effectiveness of the basic MLLR approach. Attention
is now focused on applying MLLR to an initial model set with very good performance. The
model set (Rewt) is based on cross word triphones and gives very good performance on the
RM speaker independent test set, for example the word error rate on the Feb’91 SI test set
was 2.5% [110].

On the speaker dependent test set this model set gives a word error of 4.3%, and after
Baum-Welch re-training for each speaker with the 600 SD training files an average word
error rate of 1.8% is achieved. The effect of re-training is particularly noticeable on those
models which were initially poor, for example speaker rkm0_5 had the highest error rate in
both the SI and SD systems, but performance improved from 8.3% to 2.6%.

In this section different aspects of implementing MLLR adaptation are investigated fur-
ther. The relationship between the amount of adaptation data and the number of regression
classes used is examined, and restricted cases of the general MLLR are tested.
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8.6.1 Very Small Amounts of Adaptation Data

A global MLLR transform resulted in a 21 — 30% error reduction for the word internal
triphone models using 40 adaptation utterances. Figure 8.3 shows the effect of using a
global MLLR transformation on the cross-word triphones using different amounts of data.
The baseline SI and SD results are indicated on the figure and show that although adapta-

12

10 -« Speaker Independent
- - Speaker Dependent
8F —— Speaker Adapted

% Word Error
o

1 5 10 15 _20 25 30 35 40
No. Adaptation Utterances

Figure 8.3: Supervised MLLR adaptation of cross-word triphone models using a global

transformation

tion using 1 utterance is poor, using 3 or more utterances results in an improvement over
the SI system. The poor performance of the adaptation using just 1 utterance is due to
the lack of data for estimating the transform. The utterances are on average 3.4 seconds
long, but this includes a significant amount of phrase initial/final silence. The number of
models represented in one utterance is small and the transform is estimated with respect
to a small number of mixture component examples. These mixture components dominate
the estimate and lead to a poor transform for the majority of mixture components which
has a severe effect on the recognition performance. Increasing the number of adaptation
utterances increases the variety of mixture components observed in the adaptation data and

the transform estimate is able to capture the general speaker characteristics.

An improvement in the adaptation performance is achieved by increasing the amount of
adaptation data from 3 to 15 utterances, but further increasing the available data has little
effect on the performance. With 15 utterances the transform has been estimated robustly
and further data appears to simply reinforce the estimate.

Examining the effect on individual speakers it is encouraging to find that the adaptation
performs well on the speakers which are poorly recognised with the SI models (Table 8.8).
Some of the speakers with initially low error rates have robustly estimated transforms using
just 5 utterances, while those speakers with higher SI error rates require more data.
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Speaker Num. Adapt. Utts
SI 1 5 15 SD
bef0_3 3.2 8.3 2.9 2.7 2.3
cmr(_2 7.4 19.7 6.2 4.8 1.6
das1_2 1.8 2.5 1.6 1.8 0.9
dms04 | 3.2 4.0 2.7 2.6 1.0
dtb0_3 3.3 7.4 2.8 2.4 1.2
dtd0.5 4.6 5.8 4.3 4.0 2.3
ers0_7 3.5 13.7 | 3.3 3.5 2.6
hxs0 6 6.5 12.8 | 4.3 3.2 1.5
jws0.4 4.5 7.9 4.1 3.3 1.8
pgh0_1 2.6 5.7 2.6 2.5 2.1
rkm0_5 8.3 24.8 7.6 5.5 2.6
tab0_7 2.2 3.1 2.6 2.2 1.8
Average | 4.3 9.2 3.8 3.2 1.8

Table 8.8: Supervised MLLR adaptation performance for individual speakers using the
cross-word triphones and a global transform. Results are average % word error rate over
all speakers.

8.6.2 Varying the Number of Regression Classes

A global transformation cannot effectively exploit a lot of adaptation data. Once the matrix
is well estimated, the addition of further data has little effect. By increasing the number
of regression classes the data can be used to estimate several regression matrices. This
allows more specific transforms to be generated for the component mixtures and increase
the performance of the adaptation as indicated earlier in section 8.4.3. In that experiment
only a limited number of classes were defined to compare phone-based and distance-based
generation of regression classes which were found to give similar performance. It is however
easier to automate the distance-based class generation and generate large numbers of classes.
Figure 8.4 shows the effect of using different numbers of distance-based regression classes
defined using the divergence measure. The trade off between well estimated transforms and
specific matrices is clear. The error rate decreases when increasing the number of regression
classes from 1 to 12, and is maintained up to around 20 classes. Increasing the number of
classes further results in slightly less well estimated matrices and the adaptation error rate

Increases.

8.6.3 Diagonal Regression Matrices

All the MLLR experiments reported thus far have used the full (n x n+1) regression matrix.
For the case of the 39 element observation vector, each matrix requires 1560 entries to be
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Figure 8.4: Effect of varying the number of regression classes when using cross-word triphone
models. 40 utterances were used for supervised adaptation. Results are average word error
rate averaged over all speakers.

estimated. This clearly limits the number of matrices that can be estimated from small
amounts of data. Using the diagonal form of the MLLR matrices reduces the number of
parameters to 79 per matrix, thus 20 diagonal matrices have the same number of parameters

as one full matrix.

The effect of using diagonal regression matrices is shown in Figure 8.5. The diagonal
matrices are not as effective at capturing the general regression estimates needed when using
high degrees of tying. The assumption that single variable regression can model the complex
mixture component adjustments is clearly poor. The performance of models adapted using
20 diagonal matrices is significantly worse than the SI model performance. One full matrix
with the same data adapts the models effectively. Adaptation with the diagonal matrices
only gives an improvement when using 30 classes or more, yet this is still marginally worse
than the models adapted with one full matrix. Increasing the number of classes significantly
reduces the error rate by only a small amount. Using 300 diagonal classes the performance is
3.2% word error, yet using 15 full matrices, which have an equivalent number of parameters,
the adapted performance is 2.7% word error.

Using a large number of regression classes may lead to problems of data sufficiency in
the matrix estimation. This is especially important if the adaptation data is not known
when selecting the class definitions, especially when considering unsupervised adaptation.
For this reason using a small number of full regression matrices is preferable, and the case
of diagonal matrices is not considered further.
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Figure 8.5: Effect using diagonal or full regression matrices for supervised adaptation of
cross-word triphone models. 40 utterances were used for adaptation. Results are average

word error rate.

8.6.4 Alignment Strategies

The MLLR estimation formulae have been shown to be equivalent to a least squares esti-
mate if a) each observation frame is assigned to exactly one mixture component, and b) it is
assumed that all covariances are equal. Table 8.9 shows a comparison between adaptation
with the matrices generated by an MLLR estimate using a Viterbi alignment, an MLLR es-
timate using a forward-backward alignment and a least squares estimate. In all tests MLLR

No. Adapt. | No. of | Least Squares MLLR Adaptation
Utts Classes | Adaptation Viterbi Forward-Backward

5 1 4.0 3.8 3.8

10 1 3.8 3.8 3.7

15 1 3.4 3.3 3.2

40 1 3.5 3.4 3.4

40 5 3.5 3.2 3.0

40 10 3.3 3.0 2.9

40 15 3.5 2.8 2.7

40 20 3.8 3.0 2.8

Table 8.9: Comparison of adaptation using least squares estimation and MLLR estimation
using Viterbi and forward-backward alignment of the data (% word error).

adaptation is better than the least squares approach, and the difference gets significantly
more noticeable as the transformations become more specific. The incorporation of variance
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terms into the transform estimation clearly has a positive effect. This effect will grow if
the transformations are applied to fewer mixture components (i.e. using more regression
classes).

The two alignment strategies for MLLR produce similar results, with the forward-
backward approach being marginally better. This is not surprising for this model set since
the alignments will be very similar due to the high accuracy of the SI models. However, in
other cases (e.g. unsupervised adaptation), the difference may be more substantial due to
the strict decisions of mixture component allocation made by the Viterbi alignment.

8.7 Supervised vs. Unsupervised Adaptation

Unsupervised adaptation using the MLLR transformation method can be easily imple-
mented. As suggested in section 7.8 the labels for the unsupervised data can be generated
using a recogniser. For this purpose the original speaker independent model set is used.
The low initial error rate of the SI system will give a reasonable transcription for the adap-
tation data. Further, the use of the forward-backward model alignment and tied regression
matrices should reduce the effect of mis-aligned data. This is demonstrated by unsuper-
vised adaptation with a global matrix (Figure 8.6) which gives a similar performance to
supervised adaptation. Adaptation with 15 utterances gives 3.2% word error in supervised
mode, and 3.3% error in unsupervised mode.
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Figure 8.6: Unsupervised MLLR adaptation using a global transform. Results are average
% word error rate over all speakers.

For a proper comparison of MLLR adaptation in supervised and unsupervised modes the
set of regression class definitions was extended. The amount of adaptation data was varied
and for each set of adaptation data the best number of class definitions (averaged over all
speakers) was determined by experimentation. Table 8.10 shows that once the amount of



FEvaluation of MLLR 128

data becomes sufficient to use multiple transforms there is a linear relationship between
the amount of data and the appropriate number of classes to use, roughly 1 class for every
3 adaptation files. This is consistent with the earlier findings that 3 utterances were the
minimum requirement for a global MLLR transform to give an improvement. On average
3 utterances corresponds to 10 seconds of speech per matrix, or 1000 frames of adaptation
data (although a proportion of this is silence).

No. Utts 15 40 100 600
No. Classes 1 15 40 200
Supervised 32% | 2.1% | 2.3% | 1.8%
Unsupervised | 3.3% | 2.9% | 2.4% | 1.9%

Table 8.10: Best performance for different amounts of adaptation data using cross-word
triphone models.(% word error averaged over all speakers)

The performance of supervised and unsupervised adaptation modes are fairly similar,
with supervised being marginally better (Figure 8.7). Adaptation using all the speaker
dependent data gives equivalent performance to the SD trained models. This shows that
the method gives a very good estimate of the adapted mean values. It also suggests that
not adapting the covariances does not significantly affect performance. There is a slight
caveat here in that there was not sufficient data to ensure that all the SD parameters were
well estimated, so the true significance of the covariance parameters cannot be properly

examined.
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Figure 8.7: Effect of varying the number of regression classes with the amount of adaptation
data using cross-word triphone models. Results are average word error rate achieved with
the best set of regression classes.
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8.8 [Evaluation of Regression Trees

The RM database with cross-word triphones was used to compare the effect of using regres-
sion class selection via regression trees with fixed class definitions. The experimental setup
described earlier was used, but the static supervised adaptation used a regression class tree
instead of fixed class definitions.

The regression tree was generated using 200 base classes. The clustering criteria was
the divergence between the average distribution of the mixture components in each node.
Table 8.11 shows the results of the dynamic class allocation scheme using different thresh-

Min. Occupation Threshold | % Word Accuracy
250 3.1
500 2.9
750 2.9
1000 2.8
1250 2.8
1500 3.1
2000 3.0
5000 3.3

Table 8.11: Adaptation results using a 200 leaf regression class tree for dynamic class
allocation. Adaptation on cross-word triphone models Ryt using 40 adaptation utterances.

olds for sufficient data to estimate the matrices. The performance using a minimum node
occupancy count of 1000 is very similar to that obtained when using the optimum number of
fixed regression classes (10) determined by experimentation. An examination of the number
of transforms generated at this threshold shows that an average of 9.7 classes were used
for each speaker. Using a threshold of 250 uses on average 44.2 classes, while a 2000 count
node threshold uses an average of only 5.3 classes.

The results confirm the earlier findings that an occupancy count of 1000 is needed for
robust estimation of each transform matrix.

8.9 Incremental Adaptation

The dynamic approach to class generation allows MLLR to be extended to incremental
unsupervised adaptation. As data is presented, the model set can be updated after every
utterance (section 7.3). The regression class tree selects the appropriate class set for each
adaptation phase.

Assuming that the frame/state alignment generated for each utterance is not changed
after the models are updated, the accumulated adaptation data can be used in future
updates. It was demonstrated earlier (section 8.4.4) that iterating the MLLR adaptation
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process provided little further improvement over the first adaptation pass when a good
initial model set is used. This indicates that the initial alignment of the frames to states
is very similar for both the initial models and the adapted models, although occupation
probabilities may change. Thus the assumption is reasonable.

Using equations 7.33 and 7.34 the time dependent components can be accumulated by
associating observation vectors and mixture component occupation counts with individual
mixture components. The MLLR transforms can then be estimated at any time, with the
estimate using all previously observed data, and not just the data presented since the last
adaptation update.

8.9.1 Evaluation of Incremental Adaptation

The incremental MLLR adaptation approach has been evaluated on the S4 spoke of the 1994
WSJ NAB database [75]. The Wy cross word triphone models were used with a modified
dynamic network decoder and a trigram language model with a 5k dictionary. The 750 base
class regression tree was used for all adaptation.

The test sentences from each speaker were passed into the modified recognition system.
A transcription for each sentence was generated by the recogniser which then used a forward-
backward alignment of the data to collect adaptation statistics. After a specified number
of sentences had been observed since the last update, the models were updated using the
current adaptation statistics and the formulae in section 7.3.

Table 8.12 shows the results of the incremental adaptation on the S4 data using different
intervals between adaptation updates. The error rates on both the development (Dev’94)
and evaluation (Nov’94) data sets have been reduced. The effect is significantly more
pronounced on the development data with a 26% reduction in error achieved. A smaller
reduction in error (17%) was achieved on the evaluation data, but this started from a much
lower baseline error rate.

Update % Word Error
Interval | S4 Dev’94 S4 Nov'94
baseline 9.08 7.76

1 6.66 6.43

5 6.69 6.58

10 6.76 6.62

Table 8.12: Unsupervised incremental adaptation on WSJ NAB 1994 spoke S4. A 750
base-class regression tree was used with a minimum occupancy level of 1000. Results are
average % word error over all 4 speakers.

Each of the four speakers gives a reduction in error for the evaluation data (Table 8.13).
Figure 8.8 gives an indication of what is happening during the adaptation when updating
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every sentence. This compares the error rates at various points in the recognition for all
past sentences. After 10 sentences speakers 4tb and 4td are already being recognised sub-
stantially better by the adapted models, only 4te has a higher error rate. As the adaptation
proceeds the adapted models are consistently better than the unadapted models. For speak-
ers 4td and 4te, the difference in error rate between the adapted and unadapted models
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Figure 8.8: Comparison of error rates for S4 Nov’94 at various points during the recognition
pass for each speaker. Dotted line indicates baseline error rate, solid line is the error rate

for the recognition with incremental adaptation.

grows as more sentences are recognised, showing the incremental adaptation is having an
increased effect as more data is seen. Speakers 4tb and 4tc also show an improvement,
but the difference between adapted and unadapted models changes little with increased
data. The error rate is the average of all past sentences so if further adaptation has only a
small effect on the recognition rate over the interval being considered (every 10 sentences)
the difference is not noticeable in the cumulative error rate. This can happen if either the
sentences in the interval are either very easily recognised (e.g. one of the final intervals of
4tc has a 0.5% baseline error rate), or if the estimation of the transforms is dominated by
earlier alignments in the incremental recognition.

Table 8.13 also shows the ratio of the time taken by the recognition run with adaptation
every sentence and without adaptation. It is apparent that the adaptation process places a
significant computational burden on the recogniser. The majority of this computation is in
the computing of the transforms, and using the tree, the number of transforms computed
increases with time (Figure 8.9). The collection of adaptation statistics is relatively efficient,
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Speaker Time ratio % Word Error
(adaptation/no adaptation) | Baseline | Adapted
4tb 1.37 5.57 4.98
4tc 1.16 6.32 5.37
4td 1.22 14.16 11.67
4te 1.12 4.80 3.71

Table 8.13: Error rates for individual speakers for Nov’94 S4, Unsupervised incremental

adaptation with models updated every sentence.

and the updating of the means is a fixed computational overhead not dependent on the
number of classes. The ratio can be reduced to closer to one if the models are updated less

frequently.
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Figure 8.9: Number of classes used for incremental adaptation when adapting every sen-

tence.

8.10 Static Adaptation of Poor Speakers

The MLLR adaptation approach relies on the statistics gathered from the state alignment
of the adaptation data. So far only model sets with low error rates have been considered.
Use of such model sets produces a good alignment of the data, especially in supervised
adaptation. In a flexible framework a good match between speaker and model set cannot
be taken for granted. To examine the robustness of MLLR when there is mismatch between



FEvaluation of MLLR 133

the two, the case of non-native speakers is considered.

8.10.1 Non-Native Speakers

The use of speech from non-native speakers provides a very good test since there are many
sources of modelling error. The main modelling problems relevant to MLLR adaptation

are:-

1. Acoustic Modelling
Clearly acoustic modelling is the most important aspect of the system. The non-
native speakers have different phonetic characteristics, for example the articulation of
vowels may be different. In extreme cases the phonetic alphabet used may be different
(section 6.1.1).

2. Dictionary Lookup
Non-native speakers have very different pronunciations to native speakers. This causes
problems for the mapping of words to phones even though multiple pronunciations
are available.

3. Language Model
Non-native speakers are more prone to grammatical errors such as mixing tenses
within a sentence. The effectiveness of the language model is also affected by mistakes
which can result from poor acoustic modelling or bad pronunciations. The use of a
strict language model may penalise such mistakes thus affecting the recognition.

When using a system trained for native speakers (in this case the native language is
American English), the effects of these problems combine and result in a high error rate for
non-native speakers. This is demonstrated in table 8.14 which compares the performance
of a set of native speakers with a set of non-native speakers using the WSJ 1994 evaluation
database (spokes SO and S3 respectively). The results are generated using the W cross-word

System Setup % Word Error
Native Speakers (SO) | Non-Native Speakers (S3)
for natives 5.67 20.72
for non-natives 6.47 16.67

Table 8.14: Native and non-native recognition results. The recognition set up is tuned to
either native speakers or non-native speakers. Results are on the Nov’94 WSJ evaluation
data, using the Wy system. SO data for native speakers, S3 data for non-natives.

triphone system with a 5k vocabulary and a trigram language model. A dynamic network
decoder [84] is used for the recogniser and the grammar scale factors and word insertion
penalties are tuned to the data set using the Dev’94 development test set. The change
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in these factors is required to balance the insertion and deletion rate for the recognition
errors. Without this adjustment the recognition of the non-native speakers is prone to
large numbers of word insertions (6.9% before adjustment 2.1% after adjustment). The
adjustment gives more weight to the language model, and encourages fewer words per
sentence. This reduces the number of errors due to the inclusion of spurious function
words.

8.10.2 Adaptation for Non-Native Speakers

The non-native speakers give approximately three times the word error rate of the native
speakers. For adaptation this means that the alignments will be significantly poorer. How-
ever, the attraction of the MLLR method is that the probabilistic assignment of frames to
mixture components and generation of general transformations compensate for poor align-
ments. Further, unlike the earlier cases examined which used good initial models, if the
adaptation process changes the alignment significantly then the process can be iterated
until the alignments (and hence likelihoods) converge.

The results on the WSJ S3 data confirm the need for iterative adaptation (Table 8.15).
Although the first iteration provides a significant error reduction, a second iteration reduces

Iteration | Dev’94 | Nov’94
Baseline | 20.82 16.67

1 12.80 11.52
2 12.34 10.99
3 12.20 10.99

Table 8.15: Supervised MLLR adaptation on WSJ S3 non-native speakers. Adaptation uses
40 utterances and a 750 class regression tree. The recognition system is tuned to non-native
speakers. Results are average % word error.

the error further. It then appears that further iterations do not affect the frame/state
alignments significantly and hence have little additional effect. The use of the regression
tree here is also effective since adaptation using a global transform (2 iterations) resulted
in error rates of 16.10% for S3 Dev’94 and 13.81% for S3 Nov’94 [75].

8.11 Incorporating MLLR into SI Recognisers

The MLLR adaptation scheme has proved flexible with respect to specific adaptation tasks.
As a final test of the true capability of this method, the incorporation of MLLR into a
speaker-independent system has been considered. This is a specific case of the incremental
adaptation algorithm placed in a standard recognition paradigm. However, two related
problems need to be addressed: how to recognise a change in speaker, and what action to
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take when the speaker does change. Recognising speaker changes is not a trivial problem
in speech recognition. Indeed much research is being performed in the area of speaker
identification and separation [2, 76]. The problem is avoided in this case since the evaluation
data is tagged with the speaker identity, however in a truly automatic system a speaker
identification method would be necessary.

The adaptation data accumulated during incremental adaptation is speaker specific.
When the speaker changes, this adaptation data becomes redundant. Incorporation of
multiple speaker data in the collected adaptation statistics is an issue which has not been
addressed in this work, but intuitively will lead to poorer estimates of the adapted model
parameters for each speaker.

If the model set has been adapted to the previous speaker it will perform poorly on
the new speaker. Thus the alignment of the data may be initially poor. To resolve this,
each time a new speaker is identified, the model set is restored to the original parameters.
This has the unfortunate effect of ‘forgetting’ the adaptation statistics and adapted model
parameters for previous speakers so when they use the system again the adaptation restarts
from scratch. By saving the speaker specific statistics this problem can be alleviated, but in
true SI systems management of such stored data (i.e. identifying the speaker, loading/saving
the correct data) becomes an intrinsically difficult problem.

8.11.1 The 1994 ARPA SI Evaluation

The incremental MLLR adaptation scheme was incorporated into the Cambridge University
HTK HMM system [106] for the hub task (H1) of the 1994 ARPA continuous speech recog-
nition evaluation. For these experiments a two pass dynamic network decoder was used.
The first pass generated a set of word lattices using the Wy cross-word triphone models
and a bigram language model with the 66k WSJ dictionary. The lattices were expanded
to incorporate a 4-gram language model. The second pass rescored the lattices using the
quinphone model set W},. The first two utterances from each speaker are used to determine
the gender of the speaker, and the appropriate gender dependent model set used for all
further utterances of the speaker. Unsupervised incremental MLLR adaptation was used
only in the second pass and the model parameters were updated every 2 utterances. Each
speaker provided 15-20 sentences for the test set.

Adaptation % Word Error
H1 Dev’94 H1 Nov’'94
None 8.30 7.93
Incremental MLLR 7.28 7.18

Table 8.16: Results of 1994 ARPA CSR evaluation with unsupervised incremental MLLR
adaptation. % Word error on the development data (H1 Dev’94) and evaluation test data
(H1 Nov’94) using W3, models and 65k vocabulary with a 4-gram language model.
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The results of this approach both with and without incremental adaptation are shown
in Table 8.16. The incremental adaptation results in a 12.3% reduction in error for the
development data and 9.5% reduction for the evaluation data. Considering the scale of
the recognition task, the complexity of the models (the system has around 131000 mixture
components), and the initial error rate, the adaptation has produced a reasonable reduction
in error.

On the development data only one speaker had a higher error rate after adaptation.
The evaluation data was more inconsistent with 7 out of the 20 speakers performing more
poorly (Table 8.17).

Speaker | No. Files | Before | After || Speaker | No. Files | Before | After
4t0 15 12.88 | 8.73 4ta, 15 6.86 6.33
4t1 21 6.99 5.15 4tb 15 11.21 | 11.84
4t2 15 5.45 5.69 4tc 15 4.78 5.26
4t3 16 2.04 2.30 4td 17 24.23 | 20.77
4t4 16 7.81 6.91 4te 16 4.66 5.59
4t5 15 4.36 4.12 4tg 15 10.68 7.42
4t6 15 19.42 | 18.90 4th 16 1.77 2.76
4t7 15 3.59 3.59 4ti 15 7.06 6.18
4t8 16 8.46 8.78 4tj 15 4.68 3.80
4t9 17 5.39 4.31 4tk 16 4.87 4.87

Table 8.17: Speaker breakdown of WSJ Nov’94 evaluation task H1 with and without adap-
tation.

The final system, including the adaptation, produced the lowest error rates for the H1-P0
test in the Nov’94 ARPA evaluation [89].

8.12 Discussion

This chapter has implemented and evaluated the MLLR adaptation method. Results on
the Resource Management and Wall Street Journal databases have proved that MLLR
adaptation scales to large continuous density HMM systems. This is very pleasing due to
the broad nature of the transformations generated.

Each distribution in the system represents an acoustic class. The class is mapped into
a feature space by the parameterisation of the observation vectors. The MFCC parameter-
isation captures general information about the speaker such as the formant frequencies and
the distribution of the formants is characteristic of a speaker. Speaker independent systems
have to model a wide variation of speakers, and therefore model the average distribution of
the frequency of the speakers used to estimate the parameters. A specific speaker will have
a different formant distribution from the average, but the differences are specific to each
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acoustic class. The global linear transformation is able model these various changes in the
frequency distribution, at least in a general form. The changes are clearly class dependent
as indicated by the improvement in adaptation using more specific transforms, and the
diagonal regression transforms are unable to capture the variety of changes in distribution
needed for a large number of classes. With larger systems, and especially the very large
WSJ systems described, there is a large number of finely tuned mixture distributions, and
the directions of transformation required are vastly more complex.

The experiments have shown that adapting time differential information is necessary for
the adaptation to be fully effective. This indicates that as well as the distribution of the
formant frequencies, the changes over time are indicative of the speaker.

The energy terms are also important, contributing as much to the adaptation as the
inclusion of the MFCC time derivatives. This is not a surprise since the energy terms were
found to be useful in aiding class discrimination in all feature selection methods (section
3.5.4). Energy is also a characteristic speaker trait, and the changes due to a speaker can
obviously be captured by a linear transform.

8.13 Summary

This chapter has evaluated the basic MLLR technique and applied it to a variety of model
sets using the RM speaker dependent database. A reduction in error on all RM model sets
was achieved using a global transform and a small amount (15 utterances) of adaptation
data. The best improvement in error rates tended to be for those models and speakers
with initially high error rates. Adaptation using one component mixture models produced
a larger reduction in error than models with more mixture components, although the error
rate was still larger than that achieved by the higher mixture component models.

When more adaptation data is available the number of regression classes can be in-
creased. There is a linear relationship between the optimum number of classes and the
amount of adaptation data. This is due to the balance between making the regression
classes specific and having sufficient data to estimate the matrix parameters. Reducing
the number of parameters by using diagonal MLLR matrices is not as effective and large
numbers of classes are required.

MLLR may be implemented in supervised or unsupervised modes with only a very
marginal advantage in favour of supervised adaptation. This is due to the good use of
data in the estimation of the transform. Generating mixture component occupancies using
the forward-backward alignment allows each frame of data to contribute to several mixture
components. This together with pooling the data into the regression classes reduces the
effect of poorly labelled data, however, with good initial models the Viterbi alignment can
give comparable results. A comparison with a least squares estimation of the transformation
shows that the additional information obtained from the individual class covariances can be
used to good effect in estimating the transforms. The effect increases as the transformations
become more specific.
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The MLLR adaptation method can thus be seen to be successful in improving the
modelling of specific speakers. In fact, experiments on RM showed that MLLR adaptation
of a SI system gives equivalent performance to reestimating the system using Baum-Welch.

Further experiments to assess the practical uses of MLLR were performed on the WSJ
database. It was shown that MLLR could substantially reduce the error rate for non-native
speakers, although the error was still much greater (about double) than that achieved for
native speakers. Using iterative adaptation in such cases proved beneficial, but again the
likelihood of the adaptation data converged rapidly so that more than two iterations had
no further effect.

Unsupervised incremental adaptation was successfully applied to a good set of initial
models. Even after a small number of sentences an improvement in error rate was gained,
and maintained throughout the recognition pass.

Finally, as a demonstration of the use of adaptation in a speaker independent system,
unsupervised incremental adaptation using MLLR was applied to the ARPA NAB 1994 H1-
PO task. Even though only a small number of sentences were available from each speaker,
a reasonable reduction in error (average 10% over both Dev’94 and Nov’'94) was achieved.

The results have shown that MLLR is both a robust and flexible method for speaker
adaptation. Although effective at using very small amounts of adaptation data the method
is easily extended to take advantage of larger amounts of data. MLLR has also been shown
to compare favourably with other methods such as MAP adaptation and least squares
transformation estimation.



Chapter 9

Conclusions

This thesis has investigated the use of transformations within HMMs as a post-training stage
in improving the acoustic modelling. Particular emphasis has been placed on continuous
speech with medium to large vocabularies so that the ideas could be seen to be feasible in
a general HMM framework.

Two aspects of the acoustic modelling problem were identified in the introduction: im-
proving discrimination between acoustically distinct classes; and, the problem of modelling
individual speakers. These problems have been addressed through the use of transforma-
tions at a state-specific level of the HMM modelling, and it has been demonstrated that
improving the modelling at the state level can have significant benefits at the word level,

even for initially well trained models.

9.1 Review of Work

The two transformation approaches have been presented in two distinct sections. Chapters
3, 4 and 5 concentrated on transforms for improving the discrimination between individual
acoustic classes, and chapters 6, 7 and 8 examined the use of transforms for improving the

modelling of a new speaker.

9.1.1 Discriminative Feature Transforms

The existing methods for incorporating discrimination into HMMs were reviewed in chapter
3. These methods could be split into two categories, those which are based on reestimating
the model parameters, and those which try to determine the elements of the feature vector
containing the most discriminative information. Two types of optimisation criteria were
used in examples for both categories, an information-theoretic measure (e.g. MMI, Bocchieri
and Wilpon’s feature selection), and effect on recognition rate (e.g. corrective training,
Paliwal’s feature selection). It was noted that the discriminative feature selection methods
all used a global selection, except the confusion discriminant transform.

The standard global feature selection/extraction methods were evaluated in chapter 4

139
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where it was demonstrated that simple feature selection is very limited and does not lead
to an improvement in recognition rate when applied to word recognition in continuous
speech. A global feature transformation using LDA gave only a very small improvement
in recognition. A brief investigation of the LDA theory indicated that the reason for this
was the assumption that all class distributions have similar shapes. This was shown to
be a very poor assumption, and the examination switched to a state based transformation
termed confusion discriminant analysis (CDA).

The theory of the CDA transform was derived and it was shown that if the number
of dimensions in the chosen discriminative subspace could be reduced by a factor of two,
a computational saving over the original model system could be made during recognition.
Using a distribution based on the between-class covariance the number of dimensions in the
discriminative feature space could be reduced to as low as 16 from the original 39, without
a loss of performance. The examination of other distributions with the same transform
indicated that the nature of the between-class covariance was important. Using the global
covariance of the data as a whole proved not as successful, and this was put down to the lack
of class-specific information. Previous work had shown that the CDA transform could be
more effective if the distributions used in the computation were based more on the actual
confusions that could occur. The problems of implementing such an approach in large
vocabulary continuous speech were identified as: the definition of confusable frames; the
difficulty in identifying confusable words; and, the location of confusable boundaries. There
was also the additional problem of ensuring robust estimates for the estimated confusion
distributions.

Methods for overcoming these problems were proposed in chapter 5. Two types of
method were investigated, one based on confusions identified during the recognition of the
training data (data-driven confusions), and the other based on using the confusability of the
class distributions (PDF-based confusions). It was found that the PDF-based confusions
performed poorly in comparison to using a global between-class distribution. This was
due to the problems in defining confusable classes with a fixed decision boundary, and
the lack of a readily available weighting to combine the confusable distributions into a
single distributions. The data-driven confusions were more successful, allowing an even
greater reduction in dimensionality than the global between-class covariance, without loss
of performance. Using half the number of dimensions of the original feature space a 15%
reduction in error can be achieved. This performance can only be achieved by using an
N-Best framework to generate large numbers of confusable frames. The confusion gathering
had to be extended to include large numbers of near confusions to ensure robust estimates
of the transforms, and the general conclusion appeared to be that the more near confusions
that were identified, the better the transforms that were generated.

The discriminative feature transform can be seen to be an effective way of improving
the discrimination between acoustic classes, and results in an improvement in recognition at
the word level. A trade off between recognition improvement and reduction in computation
can be made using CDA. The N-Best confusion distributions are computationally expensive
to compute, but result in a worthwhile error reduction. Using a global between-class distri-
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bution allows a similar reduction in computation during recognition, but the reduction in
computation does not lead to improved performance.

9.1.2 Transforms for Speaker Adaptation

Previous work on speaker adaptation used either model selection, spectral transformations,
or model parameter reestimation, as discussed in chapter 6. The theory presented in chap-
ter 7, termed maximum likelihood linear regression (MLLR), is aimed at combining the pa-
rameter reestimation approach with the transformation approach by using standard HMM
training techniques to estimate the transform parameters. A transformation is associated
with each acoustic class (each Gaussian mixture component), and to compensate for the
limited amount of adaptation data, many classes share the same transformation matrices.
The transform sharing is formulated in such a way that the parameters can be reestimated
within a standard MLE framework. A closed form reestimation formula is only available for
HMMs using Gaussians with diagonal covariances. The derived formula can be shown to be
equivalent to both a global spectral transformation method (using least squares estimation)
and a standard Baum-Welch MLE training algorithm, depending on the degree of transform
tying.

For the purpose of tying transforms between mixture components the notion of regression
classes has been introduced. These are groups of acoustic classes which are deemed to be
similar enough so that they require similar transformations. When there is insufficient data
to estimate a transform for a particular component, the transform is computed from the
data associated with all the components within the same regression class.

The MLLR transformation approach is evaluated in chapter 8. The initial experiments
demonstrated that the MLLR approach was practical for use with HMMs systems with
states made up of multiple mixture distributions. The investigation then examined the
effect of increasing the number of transformations used, and found that there was a trade
off between the number of regression classes and the ability to robustly estimate the classes
with the available adaptation data. By arranging the regression classes in a tree the selection
of appropriate regression classes can be made. An unsupervised MLLR adaptation approach
was compared to the supervised method, and the supervised method was only marginally
better. This can be explained by the general use of transform tying and probabilistic
assignment of adaptation data. Misalignments of data have only a small effect on the
estimation the transforms, and since the models were initially very good, the number of
misaligned speech frames is small.

The application of the MLLR method to a state of the art system was reported in the
later part of chapter 8. Adaptation was applied to a non-native speaker task, using initial
native models. This showed a large reduction in error could be achieved with adaptation,
but the error rate was still approximately double that of native speakers. Unsupervised
incremental adaptation using MLLR was also examined using the same model set using
native speakers, and a reduction in error was achieved after only a few utterances and was
maintained throughout the test.
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Finally, to assess the use of adaptation within speaker independent recognisers, the
unsupervised incremental adaptation approach was applied to a speaker independent system
with very short term speaker dependent tests (about 15 sentences per speaker). An average
10% reduction in error was achieved using an open vocabulary task with a 65000 word
dictionary. This system including the MLLR adaptation had the lowest error rate in the
1994 ARPA continuous speech recognition evaluation.

9.1.3 Summary

The two transformation approaches have been shown to be successful in their respective
tasks. Both methods take models with parameters estimated using standard MLE, and
improve the modelling at the acoustic class level. In both cases this results in a reduction
in error, and in the case of discriminative feature transforms, can also lead to a reduction

in computation.

It can be concluded that transforms applied in a post-training phase are very useful in
fine-tuning the acoustic modelling. The transforms are most effective when applied directly
to the acoustic classes being modelled, but sufficient data must be available to estimate
them.

9.2 Ideas for Future Work

Although both of the transformation methods presented indicate that the acoustic modelling
in HMMs can be improved, there are still many aspects of these transformations which need
investigation.

9.2.1 Discriminative Feature Transforms

The discriminative feature transformation has only been examined for HMMs with single
Gaussian full covariance state distributions. These models are limited in their ability to
fully capture the variability of speech that needs to be modelled, as indicated by the fact
that using multiple component mixture state distributions perform substantially better.
The application of CDA to model sets with better initial recognition performance, such as
context dependent models or models with multiple component mixture distributions, is the
next step. Due to the problems of data sufficiency using RM to generate high accuracy full
covariance models this has not been examined. The application should be a straightforward
extension of the method proposed, treating each individual mixture component as a separate
class. The main question is whether a similar reduction in error can be achieved.

Although the N-Best data-driven approach proved successful, one of the problems en-
countered during the evaluation was that of which utterances to use to identify confusions.
This was performed in a rather ad-hoc manner, increasing the number of utterances con-
sidered until sufficient confusions were identified. Further research is needed to determine
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optimal thresholds and devise methods for identifying optimal sets of confusions for each
state.

One interesting aspect to consider is that of reestimating the models after they have
been transformed. This is not a trivial task since the current set of state transformations
must be applied to the frames assigned to each state, before the reestimation statistics can
be accumulated. This will allow the dimensionality reduction to be estimated in a step
fashion. Generate an initial transform, retrain the models with the transform, collect more
statistics, and reestimate a new transform which to reduce the dimensionality further. Such
an approach, however, would require an extremely large amount of compute power.

Finally, application of the CDA transforms to a larger task, such as WSJ, can be consid-
ered. This will allow the training of a much larger set of models, with an increased number
of mixture components.

9.2.2 Speaker Adaptation Transforms

Although many aspects of the MLLR transform approach have been investigated there are
still many area open for future research. FEach of the ideas presented can be examined
further to determine the factors which contribute to the success of the algorithm. Some of
the areas which are of the greatest interest are :-

e Reestimation procedure
The basic method has used the maximum likelihood criteria for estimating the trans-
form parameters. It is possible to formulate the objective function for a different
criteria such as maximum mutual information. A different set of estimation formula
would be generated and it is possible that no closed form solution would exist. How-
ever, as with other MMI training implementations, it may be possible to use a gradient
descent approach for the estimation.

e Regression class definitions
The experiments reported here have generally used only a very limited amount of
adaptation data, and as a result the number of regression classes has been small. This
makes the regression classes extremely broad, and the effects of poor allocation of
mixture components to classes is difficult to assess.

e Adaptation of variances
The transformation derived is only applied to the mean vectors of the mixture com-
ponents. The adaptation of variances was not initially considered due to the consid-
eration of limited adaptation data. A transformation matrix for the covariance (since
only diagonal covariances are used, it should be a scaling matrix) may be examined
within the same framework.

e Full covariance models
For MLLR to be considered a general adaptation method, the application to full
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covariance models must be addressed. It is possible to assume that a full covariance
matrix is diagonal for the calculation of the transform, but this is not optimal.

Given the success of the MLLR method these extensions merit further consideration.

9.3 Summary

Transformation approaches to improving the basic HMM modelling capabilities at the state
level have been considered with respect to large vocabulary speech recognition. The two
approaches, one aimed at improved acoustic class separation, and the other to improve the
modelling of individual speakers, have been shown to be successful in reducing the word
error rate on tasks with vocabularies of 1000 or more words.



Appendix A

Databases

The different databases used during the experimental evaluations are described. The speech
waveforms have been parameterised in exactly the same manner for all databases.

A.1 Parameterisation of Databases

All the databases used in this thesis have been parameterised in the same way. Each
utterance was sampled at 16KHz, and split into frames of 25 msecs, with a new frame
starting every 10msecs. The speech wave is pre-emphasised by a factor of k = 0.97,

s =8y —kSp_1 (A.1)

n

Each frame is windowed by a Hamming function defined by,

2mn
s =0.54 — 0.46(:os(N T

)Sn (A.2)

where N is the number of samples in a frame and s, is sample n.
Each frame is coded into 12 Mel-Frequency Cepstral Coefficients (MFCCs), plus a log
energy term, which then undergo cepstral liftering by a factor of L = 22,

4= (14 gsin(%))ci (A.3)

The 12 MFCCs and energy term are combined with first order, and second order time
differentials to form a 39 element vector which is used for all experiments.

A.2 The TIMIT Database

The TIMIT database is a phoneme based continuous speech database for speaker indepen-
dent tests. It contains a total of 6300 sentences, 10 sentences spoken by each of 630 speakers
from 8 major dialect regions of the United States. The text material in the prompts con-
sists of dialect sentences (sa), phonetically-compact sentences (sx) and phonetically-diverse
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sentences (si). For the purposes of this work the dialect sentences (sa) were ignored in both
training and testing as they were considered unsuitable for speaker independent phone
recognisers.

The database is split into a training set of 3696 utterances and a test set of 1344
utterances. Dialect region 1 (drl) is used for all tests and consists of 8 utterances from each
of 11 speakers (ignoring the sa sentences).

A.3 The Resource Management Database

The Resource Management (RM) database is a continuous speech database based on a naval
task. The speech is from a variety of speakers of North American English recorded in a
quiet environment using close talking head mounted microphones. There are two portions
to the database, one speaker independent and the other speaker dependent. The sentences
for both tasks use a vocabulary of 991 words, and are generated from a list of 900 different
template queries. A single pronunciation was defined for each word based on the CMU
dictionary and a set of 48 phones [71].

A.3.1 Speaker Independent RM Database

The training data for the speaker independent RM database consists of 3990 sentences
corresponding to about 3.3 hours of data. 109 different speakers were used to collect the
data, with 2830 sentences from 78 different male speakers and 1160 sentences from 31
females.

The SI database has four different test sets, corresponding to the DARPA speech recog-
nition evaluations in February 1989, October 1989, February 1991 and September 1992.
Each test set (referred to as Feb’89, Oct’89, Feb’91 and Sep’92) respectively consists of 300
sentences made up of 30 utterances from each of 10 speakers.

A.3.2 Speaker Dependent RM Database

The speaker dependent portion of the RM database consists of data for each of 12 speakers.
There are 600 training sentences per speaker, corresponding to approximately 30 minutes
of data. A further 100 sentences per speaker are provided for test data.

A.3.3 RM Word-Pair Language Model

For the purposes of recognition a word-pair grammar is provided. This is constructed from
the finite state network which was used to construct the training and test sentences. This
grammar simply constrains the words which may immediately follow a given word. All
allowable successor words are assigned equal probability.
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A.3.4 Function Words

The 32 most common words in the RM (Table A.1) database are defined as function words
for the definition of some model sets.

A FOR ME THERE
ALL | FROM | MORE TO
AND | GET OF WAS
ANY | HAVE ON WHAT
ARE | HOW ONE | WERE

AT IN THAN | WHICH
BE IS THAT | WILL
BY | MANY | THE WITH

Table A.1: Words defined as function words in RM

A.4 The Wall Street Journal Database

The Wall Street Journal (WSJ) database is a very large vocabulary continuous speech
task consisting of passages read from the Wall Street Journal (a daily American financial
newspaper). The database was collected using a variety of desktop and close talking head
microphones.

A.4.1 WSJ Training Database Description

The database contains a large amount of speech data, some with verbalised punctua-
tion where the punctuation is explicitly included in the sentence, and the remainder non-
verbalised where the punctuation symbols are not included.

The initial WSJ data is split into two sections:

e WSJO

The WSJO corpus is designed for training purposes. The speakers were asked to speak
the given prompts exactly as given. Non-verbalised pronunciation was used for half
the prompts and the pronunciation was verbalised for the remainder. The SI84 subset
of the database was used, and those sentences which contained mispronounced words
or word fragments were discarded, leaving a total of 7185 sentences. The phrase initial
and phrase final silence in each sentence was stripped to leave a maximum of 200ms
of initial and final silence. This resulted in around 14 hours of training data.
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e WSJ1

The WSJ1 portion of the data is larger but less varied than WSJ0. Speakers were
allowed to use their normal speaking style and no fixed specification for numbers or
abbreviations was enforced. The data was processed in the same manner as WSJO,
resulting in 29308 sentences representing 52 hours of speech.

The WSJ0 and WSJ1 portions of the database combine to form the training corpus for
the WSJ experiments.

A.4.2 The 1994 NAB Database

For the purpose of the 1994 ARPA continuous speech recognition evaluation the corpus
was extended to include texts from other North American business publications. These
included Reuters North American Business Report, the Dow Jones Information Service,
the New York Times, the Los Angeles Times and the Washington Post. No new acoustic
training data was made available, but a development test set (Dev’94) was supplied to tune
the recognition setup. Evaluation tests were performed on the evaluation test set (Nov’94)
under the guidelines of the ARPA evaluation [65].

The test sets were split into different categories and the ones that are used in this work
are:-

e Hub H1 - the main ARPA evaluation for SI systems.
Dev’94 H1 - 15-18 sentences from each of 20 speakers (total 310 sentences).
Nov’94 H1 - 15-21 sentences from each of 20 speakers (total 316 sentences).

e Spoke 0 (S0) - Native speaker SI tests.
Dev’94 SO - 20-23 sentences from each of 20 speakers (total 424 sentences).
Nov’94 SO - 19-23 sentences from each of 20 speakers (total 425 sentences).

e Spoke 3 (S3) - Non-native speaker SI tests.
Dev’94 S3 - 20-23 sentences from each of 11 speakers (total 238 sentences).
Nov’94 S3 - 20-23 sentences each from 10 speakers (total 213 sentences).

e Spoke 4 (S4) - Incremental adaptation tests.
Dev’94 S4 - 100-102 sentences from each of 4 speakers (total 403 sentences)
Nov’94 S4 - 99-101 sentences from each of 4 speakers (total 401 sentences).
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Distance Measures

B.1 Derivation of Closed Form of Divergence
Measures

The divergence is a measure of the separability of two distributions based on the difference
of their means.

Given two Gaussian distributions p;(y) for class wy, with mean p; and covariance Xy,
and pa(y) for class wq, with mean py and covariance Xq, the log likelihood ratio is,

_ o (W)
A = (7)) (B.)
and for : =1 or i = 2,
sl [ (0o
Define Has e ), piy),
i) = [ S mi(y)dy = Bl 25 (B3

The directed divergence between w; and ws is
Dgir = H(w1,w2) (B.4)
and the symmetric divergence is,
Dsym = H(w1,w2) + H(wz,w1) (B.5)

The log likelihood ratio may be expressed as,

—

) = 20k

[\)

1 -1 1 |22|
——(y—p) STy — S =2 B.6
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Hionw) = SEl(y )55y — polon
3Bl — m) B - )] + g (8.7
and since,
(v — 1)y — ) = tr (v — 1) (y — o)) (B.8)
El(y - m) STy — m)len] = Etr (7 - )y — m1)') Jen]
= tr (27'%0) = tr(1) (B.9)
El(y — 1) S5y — mo)len] = E[tr (23— mo)(y — p2)') |en

Thus from above, the directed divergence Dy, is,

Dgir = H(wi,w2)

1 _ 1 _ 3o
= Str(3'81 — )+ - (g — p)' By (g — o) + 1 ||
2 2 |34
(B.10)
and the symmetric divergence Dy, is,
Dsym = H(Wla w2) + H(a)2, wl)
1 _ _ 1 _ _
= 5”’(21 'S+ X, 13 —20) + 5(#1 — 1) (Z1 4+ 20N (g — 1)
(B.11)

B.2 Likelihood Measure

The likelihood measure is a measure of similarity between distributions, and is used in
model decision tree building for clustering of distributions [85].

For single Gaussian distributions the log likelihood of the distribution generating an
observation vector o is,

1 ~lo-p )X, (o-
log(bs(0)) = log <W6 Lo-p,E us>>

- _% (nlog(2m) +log(|Bs]) + (0 — 1) B (0 — 1)) . (B12)

So, assuming that the data is the training data and consists of T" observations, and 7,(t) is
the probability of occupying state s at time ¢, the likelihood measure is,

Z ) (mog(2m) + 1o8(1B4)) + (00 — )27 0r — ) (BA3)
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The parameter reestimation formulae for the covariance using a single observation sequence
is [113],

Siey vs(t) (0 — ) (01 — )’

¥, =

Zg;l Vs(t)
So,
T T
Y (0 — ) S0 — p)ys(t) = Y s(t) (B.14)
t=1 t=1
This gives
1 T
L = —— (n(1 +log(27)) + log(|X B.15
5;9 5 (n(1 +log(27)) + log(|%,])) ; (B.15)

The change in likelihood when a set of distributions D are merged to produce a single
distribution m, is then given by,

T T
5L = (Z%loguzdnt_zlw(t)) ( g2 3 ) (B.16)

deD

Replacing each (3.7, 7:(t))s with a specific weight (w;), and considering the case of
two distributions (d; and d2) merging into a single distribution s the change in likelihood
measure is,

1
L = —wg log(|Zg]) +

1 1
; i, 10g([ B ]) — S log(|Zim)) (B.17)

2

The weights wj, w2 and ws can be determined either from the data or can be set empirically.
The merged distribution is produced by averaging the two distributions using the weights.
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Broad Phonetic Classes

For the allocation of phones to classes in the phonetic-based regression class definition the

following groupings were used.

Class Members
Very Front Vowels ih iy ix
Near Front Vowels ae eh
Front Dipthongs ey ay
Back Dipthongs aw Ow Oy

Near Back Vowels

aa uh ah er

Very Back Vowels a0 ax uw
Liquids lrwy
Nasals en m n ng

Strong Fricative dh jhtsvz
Weak Fricative ch f hh s sh th
Closures dd kd pd td
Unvoiced Stops kpt
Voiced Stops bddxg

Table C.1: Broad Phonetic Classes
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