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Abstract

We present a new method using a Markov Random Field (MRF) to integrate edge and
intensity based stereo algorithms. First, we derive the intensity based stereo algorithm
under the MRF framework. The integration is then performed by coupling the disparity
estimates from an independent edge based stereo module to the energy functional of the
MRF, associated with the intensity based stereo algorithm. The maximum a posteriori
estimate of the resulting MRF is obtained using the mean field annealing algorithm. Results
from real and artificial images show a consistent improvement in the accuracy under this
scheme of integration.

1 Introduction

Psychophysical experiments like [5] have shown strong evidence that the human visual system
is able to integrate information from several sources for its visual processing tasks, such as 3D
surface reconstruction. Integration of information from several sources allows the results from
various visual cues to inter-validate each other, hence giving more reliable and accurate aggregate
results.

Encouraged by the same argument, workers in computational vision are trying to integrated
various low-level visual modules in building a more robust vision system [2]. More importantly,
a unified framework based on the Bayes’ theorem and MRF model has been used successfully in
a few examples of integration. Under the MRF framework, Poggio et al. [13] integrated several
low level vision modules to compute the discontinuity map of a 3D scene. In the context of stereo
vision, Nasrabadi et al. [12] integrated intensity and optical flow information, while Yuille et al.
[15] integrated intensity and feature based stereo. In this paper, we describe a new method using
a MRF to integrate the results of edge based stereo with an intensity based stereo algorithm.

In our scheme of integration, a sparse disparity map is first obtained from an independent edge
based stereo module. Next, we formulate our intensity based stereo algorithm using the MRF
framework. Finally, in order to integrate the edge based results, we couple the sparse disparity
map to the energy functional of the intensity based MRF as an external field.

Conventional methods to find the maximum a posteriori (MAP) estimate of a MRF are based
on stochastic relaxation methods like simulated annealing [10] [9]. These techniques are able to
guarantee convergence close to a global minimum of the energy functional associated with the
MRF! [9]. They are however very slow. More recently, several new methods based on the mean
field approximation have been developed to obtain an approximate solution [4] [8]. With these
methods, the solution can usually converge towards the ground state more than 50 times faster
than simulated annealing. In particular, we use the method of mean field annealing described by
Bilbro et al. [4], which can be seen as a deterministic form of simulated annealing.

We tested our implementations with computer generated stereo images and an outdoor stereo
scene. Comparison of results in Section 3 shows a consistent improvement after the integration of
edge and intensity based modules. Furthermore, this work has demonstrated an effective scheme
using a MRF model to integrate two low level visual modules.

lfinding MAP estimate of a MRF is equivalent to minimizing its energy functional



2 Theory and Implementation

2.1 Markov Random Field for Intensity based Stereo

Like most low level vision problems, stereo correspondence may be expressed as an energy function
minimization. Given left and right images data g , if we need to estimate the disparity field d,
the energy functional for intensity based stereo may take the form [14] :

Ed|g) = [F(g.dij)+a Y (dij — dn)?] (1)
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F(g,d;;) represents the matching cost based on the intensity value of a small matching window
around image coordinate (7, 7). It is usually a correlation measure or sum of squared difference
(SSD). The second expression in the energy functional is the cost associated with the smoothness
constraint. It is expressed in terms of the disparity values of the neighbouring points d,,, N
indicates the 8 neighbourhood. « is the parameter controlling the degree of smoothness of
solution. It has a similar function to the regularization constant used in [14].

Since the disparity field d;; at any site (¢,j) depends solely on its neighbouring disparity
values d,,, the disparity field d is a MRF. Its corresponding Gibbs distribution is given by :
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where Z is the normalization constant called the partition function. Under Bayesian interpreta-
tion, the Gibbs distribution is equivalent to the a posterior: distribution of disparity field d given
image data g :

_ _P(gld)P(d)
>.dPlgld)p(d)

where P(g | d) is the likelihood of d given data g, and is associated with the matching cost
F(g,d). P(d) is the a priori distribution of the disparity field d, and is corresponding to the
smoothness term in the energy functional domain which represents the prior assumption of the
solution d.

P(d]g) 3)

Finding the MAP estimate of the Gibbs distribution is equivalent to minimizing its energy
functional. Kirkpatrick et al. [10] implemented the Metropolis procedures as a simulated anneal-
ing algorithm to search for the global minimum of the energy functional of a system. A variation
of this is the algorithm based on a Gibbs Sampler by Geman and Geman [9]. They have proved
that the solution converges asymtoptically to the Gibbs distribution if a sufficiently large number
of iterations are performed [9].

While the stochastic relaxation methods are able to escape from the system local minima,
they are very slow to converge. In the next section, we will describe a deterministic form of
annealing scheme known as mean field annealing. It was first described in detail by Bilbro et al.
[4] and has since been applied to numerous image processing tasks like image restoration [3] and
stereo [6].

2.2 Mean Field Annealing

Just like the simulated annealing algorithm, mean field annealing consists of a relaxation opera-
tion which iteratively finds the system equilibrium states at a sequence of temperatures, decreas-
ing over time under a specific cooling schedule. However, the mean field annealing algorithm
attains the equilibrium states using a deterministic approach, in contrast with the stochastic
nature of simulated annealing.

In simulated annealing, the ground state of the system is achieved through many probabilistic
transitions of every site according to the local characteristic of the site (described by the Gibbs



density function). In mean field annealing, probabilistic transitions of a Markov field are replaced
by direct evaluation of the average field at each site, given the local probability density function.
In this way, the system is able to attain its equilibrium state at a much faster rate leading to a
more efficient algorithm, typically 50 times faster [4]. Using our example of intensity based stereo
in Section 2.1, the mean field annealing algorithm consists of the following steps [6]:

1. Start with a high temperature (5.0 or higher) and initialize the mean disparity field d with
random values taken from the disparity range of R,.

2. Visit a site (4, j) and calculated its marginal a posteriori density function. Using the energy
functional from (1), we obtain :
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where Z;; is the localized partition function :

Zij = Z eXp(—Ei(dij |dn,g)> (5)
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3. Calculate the mean disparity field d;]- as :

dij= Y diP(dij |dn,g)= dijZLUeXP<—%[F(gadz’j)+aZ(dij—dn)z]) (6)
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4. Tterate steps 2 and 3 for the whole image until equilibrium at the current temperature is
attained. (see text for determination of an equilibrium state)

5. Lowering the current temperature and repeat step 2 to 4 until a sufficiently low temperature
is reached (usually 0.001 or lower). The temperature may be reduced according to the
cooling schedule of :

T(k+1)=0.7xT(k) (7)

There are various methods to detect the state of equilibrium for the relaxation. We do
this by measuring the average number of level of transition between two subsequent iterations.
When the average transition falls below a certain small value A, an equilibrium state is assumed
and iteration at the current temperature is terminated. For an image size of n; x n; and if
the number of possible disparity levels is n4, the equilibrium state is detected by checking the
following condition :

d; j(k+1)—d; (k)
d’\'* — 2] 2,J A 8
Z n; Xnj; X ng < ( )
0.j
If a very small value of A is used (0.0001 or less), the value of d™ may oscillate near freezing
temperature. When this happen, the iteration should be terminated after a fixed number of
iterations (about 10).

2.3 The Edge Based Stereo

In our implementation of an edge based stereo module, we use a Deriche edge detector to extract
the gradient and direction of edges in left and right images. Edgel? points with the same direction
(to within 22.5°) and similar gradient are considered as potential matches. The best match is
then selected from these potential matches using the matching algorithm described by Drumbheller

2an edgel is an edge having the extent of one pixel.



and Poggio [7]. Only a sparse disparity map is obtained from this method as no interpolation is
performed.

Next, the results from the edge based matching are corrected by imposing figural continuity
constraint [11]. Figural continuity constraints require disparity along an edge contour® to vary
smoothly. When the disparity values from the same edge contour are plotted against the length
of the contour, we derive a best-fitted straight line. Using this line, any wrong disparity value far
away from the line is treated as an outlier and is replaced by a value interpolated from the line.

2.4 Integration of Results from Edge Based Stereo using a MRF

In section 2.1, we have shown how to formulate an intensity based stereo algorithm using a MRF
model. With this model, together with the disparity estimates given by the edge based stereo, we
are now ready to integrate the edge based results with the intensity based module. Our strategy
is to couple the sparse disparity map from the edge based stereo as an external field to the
energy functional of the original MRF (see Figure 1). From Equation (1), the energy functional
of intensity based matching is repeated here as :

E(d|g) = Z[F(g:dij) +oa ) (di - d")z]
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At the sites where the edge based results d, are available, the energy functional is modified as :

E(d|d,g)=Y [Flg dy) + Flg.dy) v |dy—de| + 203 (dy—dn)?] (9)

where % is a normalization parameter for the value | d;; — d. | which measures the deviation of
current disparity estimate from edge based results d.. The cost for this deviation is weighted by
F(g,d;;), the matching cost of intensity based stereo. Therefore, the resultant cost is high only
when both | d;; — d. | and F(g,d;;) are high. Intuitively, the purpose of this weighting is to
cushion the effect of any false match caused by the edge based algorithm.

To gain further insight into our integration scheme, we show how the Bayes’ theorem can be
used to justify the energy functional in (9). Given the image data g and edge based result d.,

the a posterior: distribution of d becomes? :

P(d.,g|d)P(d
P(d]d, g = (o8 DD (10)
2.d
If we treat d. as an external field, then the equivalent interpretation in probabilistic terms implies
that d. and g are independent. Thus we may write :

P(d,g|d)P(d) _ P(d. |d)P(d)- P(g|d)P(d)
>d >d

Expressing this result in the domain of energy functional, equation (9) can be rewritten as :

(11)

E(d|d.,g) E(d|d.)+ E(d]g)
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3contour is defined herein as a segment of connected edge bounded by corners or the end of the curve.

42(1 denotes the normalization constant of the density function.

Z[F(gadij) e | dij —de | +a )y (dij — dn)z] + Z[F(g;dij)+ ay (dij— dn)z]

(12)
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Figure 1: Scheme of integration of edge and intensity based stereo modules

3 Results

We tested our implementations with a computer generated stereo pair and the 256 x 256 Pentagon
stereo pair. For the computer generated stereo pair, the right image is derived from the intensity
values of its left image, added with Gaussian noise. Next, the pixels in the image are shifted to
the right or left, giving rise to the effect of a disparity map as shown in Figure 3¢. Given the
true disparity map, we can then measure the percentage of the error of the results from each
algorithm. The error of the disparity estimate given by the intensity based stereo (Figure 3e) is
found to be 16% , compared to 11% after the integration of edge based stereo results (Figure 3f).

For the Pentagon stereo pair, results from the intensity based stereo (Figure 2d and f) is
similar to the results obtained by Chang and Chatterjee [6]. However, the results obtained with
the integration of edge and intensity based stereo (Figure 2e and g) are shown to be consistently
better.

(d) (e) (f) (8)

Figure 2: Results of The Pentagon Stereo Pair a. left image b. right image c. results of edge based
stereo. d. results of intensity based stereo, using correlation window as matching primitive. e.
result with integration of edge and intensity modules, using correlation window. f. results of
intensity based stereo, using SSD as matching primitive. g. result with integration of edge and
intensity modules, using SSD.
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Figure 3: Results of computer generated stereo pair a. left image b. right image c. disparity used
to generate the stereo pair (disparity used: left region 2, middle 0 and right -2). d. results of
edge based stereo. e. results of intensity based stereo, using SSD as matching primitive. f. result
with integration of edge and intensity modules, using SSD. g. error of the results in e (shown as
white). h. error of the results in f.

) 1 L .
) (h)

4 Conclusions and Future Work

The MRF model is shown to be an effective framework for the integration of low level visual
modules such as stereo. Using this framework, we have derived a new scheme of integrating
edge based and intensity based stereo. Results from our implementations have demonstrated a
consistent increase in matching accuracy after the integration. The success of this scheme stem
from the fact that edge based stereo is more robust to the noise and imperfect epipolar alignment
in stereo images. On the other hand, results from intensity based matching degrade rapidly with
these two factors. By integrating the edge based results, we can reduce the number of false
matches, hence increase the system accuracy.

One unique feature of our scheme is that the edge based results are generated by an inde-
pendent algorithm. This allows one to impose higher level physical constraints like the figural
continuity constraint. Our scheme works best on images with rich edge information, and when a
fairly reliable edge based stereo algorithm is used. When the amount of edge information in the
images is too low, other visual cues like shading become more important. In future, we plan to
extend this framework to include shading information and other monocular cues.

Interestingly, the computational scheme of simulated annealing leads naturally to neural net-
work processing models such as the Hopfield network and Boltzmann machine [4] [1]. Using
MRF framework and Bayes’ theorem, it is very likely that low level vision algorithms and their
integration may be mapped onto a neural network model leading to useful theoretical insights.
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