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Summary

This dissertation details the development and evaluation of techniques to
enhance speech corrupted by unknown independent additive noise when only
a single microphone is available. It therefore seeks to address a deficiency
of many speech enhancement systems which require a priori knowledge of
the interfering noise statistics. Such a deficiency must be corrected if these
systems are to operate in real world situations.

The enhancement systems developed are based on an existing system
by Ephraim (Ephraim 1992a). This approach models the speech and noise
statistics using autoregressive hidden Markov models (AR-HMMs). Two
main extensions to this technique are developed in order to make it adap-
tive. The first estimates the noise statistics from detected pauses. The sec-
ond forms maximum likelihood estimates of the unknown noise parameters
using the whole utterance. Both techniques operate within the AR-HMM
framework.

Additional work in this dissertation improves the modelling power of AR-
HMM systems by incorporating perceptual frequency. The bilinear trans-
form is used to warp the frequency spectrum of the feature vectors to an
approximation of the Bark scale. This modification can be incorporated into
both AR-HMM recognition and enhancement systems.

The enhancement techniques are evaluated on the NOISEX-92 and Re-
source Management (RM) databases, giving indications of performance on
simple and more complex tasks respectively. Additional experiments inves-
tigating the incorporation of perceptual frequency into AR-HMM systems
were conducted on the E-set of the speaker independent ISOLET database.

Both enhancement schemes proposed were able to improve substantially
on baseline results. The technique of forming maximum likelihood estimates
of the noise parameters was found to be the most effective. Its performance
was evaluated over a wide range of noise conditions ranging from -6dB to
18dB and on various types of stationary real-world noises.

The incorporation of perceptual frequency into AR-HMM systems was
found to increase recognition performance substantially on both the ISO-
LET and RM databases. The improvement was less marked for the more
complex task, highlighting that AR-HMMs could benefit from the inclusion
of more variance information.
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Chapter 1

Introduction

As speech systems have evolved from laboratory demonstrations to real-
world applications, the need to maintain performance in a wide variety of
situations has emerged. For example, a mobile phone may be used at a
construction site, an automatic information system may be installed in a
crowded shopping centre or a hearing aid may be used at a party. Without
enhancement, the performance of these systems may be unacceptable. Thus
researchers are investigating new enhancement techniques so that speech
processing systems can be used in a wide range of environments.

1.1 Speech Enhancement

Speech enhancement is defined as the attempt to improve the performance
of speech communication systems when their input or output signal is cor-
rupted by noise (Ephraim 1992¢). This performance improvement generally
either takes the form of improving the perceptual aspects of the speech or
of changing the speech to match the templates used when training speech
and speaker recognition systems.

If the first criteria for performance improvement is used, the enhance-
ment system attempts to improve the quality and/or intelligibility of the
corrupted speech. These measures are related to listener fatigue and un-
derstanding respectively. Typically such enhancement schemes have appli-
cations as front ends to speech coders, hearing aids and forensic analysis
systems. The particular application will determine whether quality or intel-
ligibility or both are important. Here the ultimate test of the effectiveness
of the enhancement technique is human evaluation.

The second criteria for performance improvement involves evaluating
the accuracy of speech or speaker recognition systems. It is well known that
the performance of such systems degrades in the presence of noise (e.g. see
(Deller, Proakis & Hansen 1993)). This is due to the acoustic mismatch
between the features used to train and test these systems and the ability
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of the models to describe the corrupted speech. Typically clean speech is
used to train the acoustic models. Therefore enhancement techniques which
remove noise leaving an estimate of the clean signal are useful as a front
end.

Although it seems logical that optimising either of these criteria would
produce the same enhanced speech, this is not the case. People are able
to discern perceptual improvements but as yet the optimal way of math-
ematically describing this has not been developed. Therefore the distor-
tion measures used by speech and speaker recognition systems may not
correspond to a guaranteed quality or intelligibility improvement. Thus im-
proving the speech perceptually may not lead to improved recognition per-
formance. Conversely, optimising a mathematical distortion measure may
actually increase listener fatigue or decrease intelligibility.

In this dissertation both criteria for performance improvement are con-
sidered. This is because the work here has application to many types of
speech systems. Improvements in speech recognition scores and distortion
measures show quantitative improvement. Informal listening tests give an
indication of qualitative improvement.

1.2 Problem Dimensions

The speech enhancement problem is characterised by the type of noise
source, the way in which the noise interacts with the clean signal, the num-
ber of input channels or microphones available for enhancement and the
nature of the final application (Ephraim 1992¢).

The interfering noise may result from background sources such as com-
puter fans or road noise, room reverberation or the communications channel
including the microphone or the loud speaker. Usually noise from back-
ground sources is modelled as additive noise whereas echo and channel noise
are modelled as convolutional noise. Environmental influences can also cause
changes in speech articulation (Rabiner & Juang 1993). For example, a
speaker may shout to be heard in extreme noise. This phenomenon is called
the Lombard effect and is difficult to model.

The interfering noise may be stationary or non-stationary. For example,
background noise from computer fans and the like can be treated as station-
ary but noise due to slamming doors and competing speakers cannot. Noise
is typically modelled independently of the speech unless the Lombard effect
is prominent or there is echo.

The number of microphones refers to the number of sources of the cor-
rupted signal or parts of the signal which are available to be used in the
enhancement scheme. Having more than one microphone can simplify the
process (Deller et al. 1993). For example, if one microphone only records
a signal correlated with corrupting noise, then this signal can be used to
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cancel the noise in the speech signal. However the need for single micro-
phone techniques is unavoidable in many cases because of cost and other
implementation issues.

The application of the enhancement system also affects its design. If an
enhanced waveform is required then the system must be able to reconstruct
the time domain signal. However, if the enhancement system is to be used
as a front end to, for example, a clean speech recogniser, only enhanced
versions of the recognition parameters are required.

1.3 Techniques for Speech Enhancement

Many enhancement techniques have been proposed. The techniques are
categorised according to the type of models, if any, they use to model the
speech and noise, and the amount of prior information included. In general,
the use of more accurate speech and noise models and the incorporation of
relevant prior information leads to better enhancement at the expense of
greater computational complexity. A full description is given in Chapter 3.

1.4 Contribution of this Dissertation

This dissertation considers the problem of speech enhancement when only
a single microphone is used and when the statistics of the interfering noise
are not available a priori. Thus it seeks to address a deficiency of many
current enhancement techniques and looks toward a system which would
have application in the real world.

The interfering noise is assumed to be additive and statistically indepen-
dent of the speech. It is also assumed to be stationary over the utterance to
be enhanced. Although convolutional noise and the Lombard effect are not
considered, the technique still has wide application. For example it could
be used to implement hands-free dialling of a mobile phone or to improve a
speech recognition system in an office environment.

Several systems are developed. They are based on a proven enhancement
scheme by Ephraim (Ephraim 1992a) which models the speech and noise
using autoregressive hidden Markov models (AR-HMMs). The AR-HMM
framework is convenient for enhancement of signals corrupted by additive
noise since it models features which are additive.

The schemes developed extend this work by estimating the noise statis-
tics directly from the signal to be enhanced rather than using pre-trained
noise models. The first technique estimates the noise using pause detection.
The second uses maximum likelihood parameter estimation. Both operate
within the AR-HMM statistical framework.

Additional work in this dissertation improves the modelling power of AR-
HMM systems by the incorporation of perceptual frequency. The improve-
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ment can be incorporated into both AR-HMM recognition and enhance-
ment systems. Recognition tests on the ISOLET (Fanty & Cole 1990) and
Resource Management (Price, Fisher, Bernstein & Pallett 1988) databases
show that this extension improves performance substantially.

The enhancement schemes are evaluated on the NOISEX-92 (Varga,
Steeneken, Tomlinson & Jones 1992) and Resource Management (Price et
al. 1988) databases giving indications about the performance on both simple
and more complex tasks.

The results show that the enhancement scheme based on maximum likeli-
hood noise parameter estimation is superior to that based on noise estimates
from pauses. The maximum likelihood scheme is shown to substantially im-
prove on baseline results in terms of recognition performance and distortion
measures. Perceptually, the small vocabulary results were the most pleasing
with less improvement on the more difficult speaker independent task. An
audio Compact Disk containing enhancement examples is supplied with this
dissertation.

1.5 Organisation of Thesis

In Chapter 2, the theory of the hidden Markov model and its application to
speech modelling is outlined. Chapter 3 then summarises the main methods
of speech enhancement presented in the literature. In general, these methods
are not able to adapt to changing noise conditions. Therefore, in Chapter 4
existing techniques to adapt to changing environments are studied.

Chapters 5 and 6 contain the main original contribution of this disserta-
tion. In Chapter 5, adaptive enhancement schemes based on autoregressive
hidden Markov models are developed. Chapter 6 improves these models by
incorporating perceptual frequency.

Chapters 7 and 8 evaluate the techniques developed on small and medium
vocabulary tasks respectively. Chapter 9 presents conclusions and sugges-
tions for future work.



Chapter 2

Hidden Markov Models for
Speech Modelling

This chapter describes Hidden Markov Models (HMMs) and their applica-
tion to speech modelling. Particular focus is given to speech recognition
systems. In the interests of brevity, only a short description is given here
since HMMs are used extensively in the speech processing and other com-
munities and are well understood. Autoregressive HMMs are described in
more detail since they feature prominently in this dissertation yet are less
well known.

Comprehensive descriptions of HMM theory and its application to speech
modelling can be found in (Rabiner 1989), (Rabiner & Juang 1993) and
(Deller et al. 1993) and their references. Discussions of the issues involved
in building a practical HMM speech recognition system are given in (Young,
Woodland & Byrne 1993) and (Young 1996).

2.1 Basic Concepts

A discrete Markov process models a system that can be in one of N distinct
states. When in a particular state, an observation is generated according to
a probability density function. At regular time intervals, the system changes
state also according to a stochastic process. In a first order Markov process,
the probability of being in a state depends only upon the previous state.

If the states of the Markov process do not represent physically observable
events they are said to be ‘hidden’. In this case, the number of states and
the probabilities of state transitions must be estimated by observing the
output of the process. The resulting model is known as a Hidden Markov
Model.

Figure 2.1 shows a typical HMM topology used for speech modelling.
Here speech observations s are emitted from each state z; according to prob-
ability densities by, (s). Transitions between states are governed by transition
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Figure 2.1: Typical HMM for Speech Modelling

probabilities az,,, . Note that not all transitions between the hidden states
are legal.

2.2 Probability Distribution

The probability distribution of a HMM is made up of two parts: the distribu-
tion of the transition between states and the distribution of the observation
given a particular state. The probability density function (pdf) describing
a sequence of observations S given a model with parameters ) is given by

p(SA) = Z Azozy H Q4244102 (s¢)- (2.1)

Here:
S = a sequence of K dimensional observations {s;,t =1,...,T'}
X = a sequence of states {z,t=1,...,T}

Qz,z,,, = transition probability from state z; to state z¢ 1
bz, (s¢) = pdf of the observation vector s; given the state z;
N = the number of states in the model

A = the model parameters in general

xg is constrained to be the model entry state and x7; the model exit state.

The pdf b;,(s¢) describes the probability of generating s; given the model
is in state x;. This function can describe either a discrete or continuous pdf.
In this dissertation, by, (s;) will always describe a continuous function.
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In this case, it is usually assumed that b,,(s;) describes a multivariate
Gaussian mixture. Therefore

M
bz, (st) = Z Czymibzym (St)- (2.2)
me=1
Here:
my = denotes the mixture component chosen at time ¢
M = the number of mixture components per state
cz;m; = the probability of choosing the mixture component m; given that

the process is in state ¢

bz,m, (st) is the pdf of the given mixture component m; in state z; and
is given by

_ _ 1 _
bwtmt (St) = (271’) K/2|21‘tmt| 1/2eXp{—§(St - :ufctmt)lzwtlmt (St - ,Ufwtmt)}-

(2.3)
Here:
K = dimension of the observations
Wz,m, = mean of the distribution
Ygm; = covariance of the distribution

! = matrix transpose

2.3 Using HMMs in a Speech Recognition System

In a speech recognition system, 7' K-dimensional observations s; are created
from a spoken utterance. These observation vectors are modelled by HMMs.
A HMM is built for each recognition template (e.g. phone or word). The
problem of speech recognition involves determining a series of recognition
templates given the sequence of observation vectors using the given models.

In the isolated word case, each template represents a word. Each se-
quence of speech observations is assumed to be one word and a template
is chosen to match this. The template chosen is the one which maximises
the probability of the word given the observation sequence. Thus template
w; is selected from amongst the possible candidate templates in order to
maximise P(wj;|S).

P(w;|S) can be more easily calculated if it is rewritten using Bayes’ Rule.
Thus
P(S[ws) P(wi)

P(S)

The term P(S|w;) can be calculated using Equation 2.1 and the model
trained for each template. P(w;) can be used to incorporate prior probabil-
ities of templates.

P(wi|S) = (2.4)
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This concept can be extended to the continuous word case. Here, HMMs
are built for sub-word units such as phones. These are then joined together
to form a large HMM for each allowable sequence of phones according to the
grammar. Depending on the complexity of the grammar, a large number
of possible word sequences may be possible for a given utterance. The
recognition system must choose the most likely of these sequences.

The choice is still based on maximising P(w|S). However, in this case
the maximisation must be performed over all possible sequences of phones or
words. Typically, the Viterbi algorithm (e.g. see (Rabiner & Juang 1993)) is
used. It efficiently calculates the state sequence which maximises P(.S, X |)).
Thus the most likely word or phone sequence can be found by constructing a
network of all possible state sequences according to the allowable grammar.
For large vocabulary systems, pruning of the search space is necessary.

Phones can appear in many different contexts within words and this
causes considerable acoustic variation of these sounds (Young 1996). There-
fore, if models are constructed for only the 45 or so phones needed for English
(or the corresponding number for other languages), these will be poor. The
usual solution is to construct triphone models. Here, a model is created
for a phone in the context of the preceding and following phone (thus three
phones define a triphone hence the name).

However, the number of possible triphones is too great for a separate
model to be trained for each given a reasonable amount of training data.
Therefore, some form of clustering of acoustically similar triphones or tri-
phone states is required (e.g. see (Young 1996) and associated references).

2.3.1 Training the model

The model parameters are mostly determined using training speech data.
Notable exceptions are N, the number of states and M, the number of mix-
ture components per state for which no closed form solution exists. These
are chosen according to a priori assumptions.

The training process adjusts the model parameters to maximise the like-
lihood P(S|w;). Standard techniques allow this to be calculated efficiently.
The forward-backward algorithm (Rabiner & Juang 1993) can be used to
calculate P(S, z; = z|\). The Baum-Welsh algorithm (Baum, Petrie, Soules
& Weiss 1970) iteratively uses these probabilities to find maximum likelihood
estimates of the HMM parameters.

2.3.2 Observation Vector Parameterisation

An important factor determining the performance of a HMM is the choice of
observation vector parameterisation. The observation vectors are formed by
dividing the sampled speech into possibly overlapping frames and applying a
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transformation to each frame. As a minimum, the parameterisation process
involves applying a window to each frame to remove boundary effects.
However, much work has concentrated on deriving a suitable transform
which encapsulates the most important features of the speech signal (Ra-
biner & Juang 1993). Typically, features based on the short-time amplitude
spectrum of the signal are used since this has been found to be perceptu-
ally more important than the short-time phase. One of the most successful
parameterisations is Mel-frequency cepstral coefficients (MFCCs).

Mel-Frequency Cepstral Coefficients

The first step in computing the Mel-frequency cepstral coefficients is to gen-
erate the Fourier transform on a Mel scale. This scale is related to perceived
frequency and has been shown to improve recognition accuracy when used.
Typically the spectrum is also smoothed using overlapping windows.

The next step is to take the logarithm of the Fourier components. This
makes the statistics of the resulting vector approximately Gaussian (Young
1996). Finally, the discrete cosine transform is taken. The resulting cepstral
coefficients are then decorrelated enough to allow them to be modelled by
Gaussian distributions with diagonal covariance matrices. This has signifi-
cant computational benefits.

The lower order cepstral coefficients represent the slowly-varying part of
the speech spectrum. This is perceptually more important than the quickly-
varying part and as a result the cepstral feature vector typically consists of
only 10-20 of the lower order coefficients.

To incorporate information about changes in spectral information over
time, delta coefficients are often used. These are needed because HMMs as-
sume that each vector is independent of the next. This is a poor assumption
but including the first order differences alleviates it somewhat. Researchers
have also found the incorporation of acceleration or ‘delta-delta’ coefficients
to be beneficial. These incorporate information about changes in the delta
coeflicients.

2.4 Autoregressive Hidden Markov Models

The class of autoregressive HMMs are used extensively in this dissertation.
The main difference between this type of HMM and other types is that the
choice of observation vector allows the pdf bg,,,(s¢) to be simplified to an
autoregressive process with Gaussian error. A full derivation of the theory
is given by Juang (Juang 1984) with the multiple mixture case described in
(Juang & Rabiner 1985).

The observation vectors for these HMMs are windowed speech frames. It
is assumed that each vector is generated by a Pth order zero mean autore-
gressive process. That is, the elements s; of the K dimensional observation
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s¢ are assumed to satisfy

P
Si:_ZAnsi—n+ui ze{lavK} (25)
n=1

Here, A, is the nth filter coefficient of the autoregressive process. In the
literature, A, is also known as a linear predictive coding (LPC) coefficient.
u; is the ith term of the error sequence. This error sequence is assumed to
be Gaussian with zero mean and variance o2.

The autoregressive filter coefficients are usually augmented by an extra

term Ag which is defined to be unity and allows Equation 2.5 to be rewritten

P
Y Apsin=u; iefl,... K} (2.6)
n=0

Standard techniques exist to determine these filter coefficients and the vari-
ance given the observation (e.g. see (Deller et al. 1993)).

Using this autoregressive assumption, the expression for the distribution
of the observation vector given the state and mixture component, bz,m, (st),
can be simplified following the method of Juang (Juang 1984). Thus

_ _ 1,
b-’vtmt(st) :(27r) K/2|2-’Etmt| Uzexp{——slz ; S} (2'7)

2 Ttmyg

becomes
_ _ 1 _
bzym, (st) ~ (27) K/z(aazctmt) K2 exp{—ia(amtlmtst; Azym,)}- (2.8)

Here A =[Ay... Ap] is the vector of autoregressive filter coefficients.

a(o~ s A) is a function of 74 and rs, the correlations of A and s re-

spectively. It is defined as

P . .
1 74(0)rs, (0) ra(i)rs, (1)
a(ols; A) = S 2; = (2.9)
where
P—i
rai) = Y AnAnyi (2.10)
n=0
K—i
Tst(i) = Zst,nst,n+i- (2.11)
n=1

The term a0~ !sy; A) is sometimes known in the literature as the resid-
ual error since it calculates the power remaining after s; is filtered by the
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autoregressive filter. This can be demonstrated by writing Equation 2.9 in
the power spectral density domain:

. (2.12)

-

1 (7 ;
alo 5 A) = & [ S@)IAE*)P e

The residual reflects how closely the autoregressive filter models s;. There-
fore, AR-HMMs compare observation vectors to trained models according
to how closely the observations fit the autoregressive filter model for each
mixture component of each state.

2.5 Summary

This chapter has briefly described the theory of HMMs and their application
to speech modelling. The class of autoregressive HMMs has been described
in more detail. The following chapters will describe how HMMs can be used
in speech enhancement and recognition systems.



Chapter 3

Techniques for Speech
Enhancement

This chapter describes approaches to enhance speech signals degraded by
statistically independent additive noise when only one microphone is avail-
able. The discussion is also limited to wide-band noise. Most of the tech-
niques described produce an enhanced speech waveform. Some approaches
however produce enhanced speech parameters suitable for input directly
into, for example, a clean speech recogniser. These latter techniques thus
fall into the category of robust speech recognition as well as speech en-
hancement. It should be noted however that robust speech recognition is
a complete research topic in itself, and that using speech enhancement as
a front-end to a recogniser is only one solution to the problem. Recent
reviews of approaches to robust speech recognition can be found in (Gong
1995) and (ESCA-NATO Tutorial and Research Workshop on Robust Speech
Recognition for Unknown Communication Channels 1997).
The major approaches to speech enhancement are:

e spectral subtraction

e methods utilising the periodicity of speech
e noise masking

o filter-model-based approaches

e enhancement by synthesis

o statistical-model-based approaches.

The first three techniques incorporate assumptions about clean and noisy
speech but do not use explicit speech models. Filter-model-based approaches
model speech as an autoregressive process and determine the model param-
eters from the signal to be enhanced. The last two techniques incorporate

12
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prior information typically from training examples and use speech and noise
models of increasing sophistication. Each of these approaches is described
in more detail below.

3.1 Spectral Subtraction

Spectral subtraction (Boll 1979) is one of the most influential speech en-
hancement algorithms favoured for its simplicity and performance in sta-
tionary noise. This approach capitalises on the fact that the amplitude of
the short-time speech spectrum is perceptually more important than the
phase (e.g. see (Deller et al. 1993)). It estimates the amplitude of the
spectrum of the speech signal given a noisy signal and the noise statistics.
Specifically, for speech s, corrupted by additive noise d,, the corrupted
speech y, is given by
Yn = Sp + dp. (3.1)

Assuming that the speech and noise statistics are stationary and that the
noise is uncorrelated with the speech, the energy spectrum of the noisy signal
is given by

Y (@) = |S(@)* + D)/ (3.2)

The classic spectral subtraction technique (Boll 1979) estimates the speech
spectrum as

SW)P? =Y ()}~ E{|D(w)*} (3:3)

where E {|D(w)|?} denotes the expected value of the noise energy spectrum.
This is obtained by averaging the energy spectrums during non-speech ac-
tivity.

Since the phase of speech is assumed perceptually less important than
the amplitude, the noisy phase is used to reconstruct the enhanced signal.
Therefore the enhanced speech is estimated by

80 = F '[|S(w)] - exp(j LY (w))] (3-4)

where /Y (w) is the phase of y, and F~! denotes the inverse Fourier Trans-
form.

Since speech is only stationary over short time periods, the analysis
is performed over short 20-40ms sections of speech called frames. Typi-
cally overlapping frames are used. Windowing in the time domain compro-
mises the quality of estimates in the spectral domain. Therefore, a cus-
tomised smoothing window such as the Hamming window (e.g. see (Rabiner
& Schafer 1978)) is used rather than simply ‘blocking’ the speech into frames.

Many variations of the spectral subtraction technique can be found in
the literature (Lim & Oppenheim 1979a). The most general form of the
subtraction is given by

Y (w)[* = [S()|* + kE{|D(w)|*} (3.5)
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where the parameters a and k are chosen to optimise the enhancement.

The major problem with these techniques is that residual noise remains
in the enhanced spectrum because only the average noise spectrum is sub-
tracted. Fluctuations in the actual noise spectrum for each frame mean that
spurious spectral components are introduced at the frame rate. This noise,
known as ‘musical noise’, decreases speech quality both for human listeners
and recognition systems alike.

Another problem is that the speech spectrum estimate in Equation 3.3
may be negative. In this case some form of ad hoc solution must be ap-
plied which invariably involves a non-linear operation such as reflecting the
negative spectral component or setting it to zero.

A further problem is that the noise statistics must be known or esti-
mated from the non-speech portions of the signal to be enhanced. Since no
information about the speech is known, this may be non-trivial.

A related spectral domain method is Wiener filtering. The Wiener filter
is the optimal filter which gives the minimum mean squared error (MMSE)
estimate of the speech in the time domain (Anderson & Moore 1979). The
frequency response of this filter is

Py(w)

H() = B@) + Palw)

(3.6)
where P; is the power spectral density (PSD) of the speech and Py is the
PSD of the noise. Again the analysis is performed on a per frame basis with
only the spectral magnitude being estimated and the noisy phase being
used when the signal is reconstructed. The speech and noise PSDs must
be known a priori or estimates made from the noisy speech. Enhancement
systems based on Wiener filters will be discussed in the following sections.

In (Ephraim & VanTrees 1995), a technique is described which is shown
to be a generalisation of the spectral subtraction approach. The noisy signal
is decomposed using the Karhunen-Loeve transform into a signal-plus-noise
subspace and a noise subspace. Enhancement involves removing the noise
subspace and estimating the clean speech from the remaining subspace. Es-
timates are developed according to perceptually meaningful criteria such as
minimising signal distortion while curtailing residual noise energy. Listening
tests show improvement over the basic spectral subtraction approach.

3.2 Methods Utilising the Periodicity of Voiced
Speech
The techniques in this subsection rely on the fact that voiced speech is

almost periodic. They include comb filtering and single channel adaptive
noise cancelling.
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Comb filtering (Malah & Cox 1982) capitalises on that fact that voiced
speech segments have a harmonic spectrum whereas the spectrum for white
noise is essentially flat. A filter is constructed which passes the harmonic
components and attenuates the noise. To take into account the fact that
speech is not precisely periodic, some techniques use warping to improve
the periodicity of the speech before applying the filter, and then unwarp it
afterwards (Graf & Hubing 1993), (Ramalho & Mammone 1994).

Single channel adaptive noise cancelling (Sambur 1978) is a one micro-
phone implementation of adaptive noise cancelling (ANC). ANC estimates
the clean speech given two sources: the noisy speech and a signal correlated
with the noise. The single channel approach uses a delayed version of the
original signal as a second source. It can be shown that if a delay of T, the
pitch period, is used, then an estimate of the clean speech §,, from the noisy
signal y, is given by (Deller et al. 1993)

én = 0.5y, + 0.5y, (3.7)

One disadvantage of these methods is that they rely heavily on the ac-
curacy of the determination of pitch and degree of voicing in noise, which is
far from simple. A further problem is that they generally perform poorly on
unvoiced speech. This implies that intelligibility may not be improved since
consonants are generally more important than vowels in conveying informa-
tion. In fact evaluation of a comb filter technique in (Lim & Oppenheim
1979b) showed that although the signal to noise ratio (SNR) was improved,
intelligibility tended to decrease. Given these shortcomings, these techniques

are normally not used to attenuate broadband additive noise (Deller et al.
1993).

3.3 Noise Masking

People cannot detect sounds below a certain threshold if they are masked by
another sound such as noise. This phenomenon is known as noise masking
(Klatt 1976). It can be used to enhance speech parameters for recognition
or coding and hence make them more robust to noise.

For example, in (Van-Compernolle 1989) a noise-robust speech recogniser
is developed. Here the speech is pre-processed using spectral subtraction.
Noise is then added before parameterising the speech for recognition. The
advantage is two-fold. First, the environment-dependent residuals from the
spectral subtraction front-end are masked. Second, low-level speech events
are masked so that the recogniser does not learn features which may not be
distinguishable in noisy conditions.

Other work (Nadas, Nahamoo & Picheny 1989) develops a filterbank
speech recognition system assuming that the energy observed in each noisy
filterbank is the maximum of the speech and noise energies. This assumption
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is based on visual observation of spectrums corrupted by additive noise.
The speech is modelled by a mixture of Gaussian densities and techniques
to estimate the parameters of this model and the likelihood of a particular
model given a noisy observation are developed. The approach is shown to
substantially decrease the recognition error rate of a speaker independent
medium vocabulary task corrupted by noise at relatively high SNRs (around
30dB). A major drawback though is that it is necessary to train new models
for different noise conditions.

3.4 Filter-Model-Based Approaches

Filter-model-based techniques assume a linear filter model for the speech and
estimate its parameters given a noisy signal. The use of a model for speech
is advantageous because it gives the enhancement system more information
about the signal to extract.

The speech is modelled by a linear filter representing the vocal tract.
This filter is excited by either a turbulent source (unvoiced sounds) or a
periodic source (voiced sounds). In the z-domain, the speech S(z) is repre-
sented by

S(z) = H(z)-U(z) (3.8)

where H(z) denotes the filter and U(z) the excitation. Typically H(z) is an
all-pole linear filter so that Equation 3.8 becomes

1
S(z) = . ]
)= 47 U (39)
In the time domain this is written as
P
Sy = Z ApSp_k + Uy (3.10)
k=1

where Ag,k = 1,..., P are the filter parameters and P is the filter order.
This equation is equivalent to Equation 2.5 introduced earlier. It should be
noted thus that u,, can be viewed either as the excitation of the filter or as
the modelling error. By letting u,, be normally distributed with mean zero

and variance o2

P
Sp = ZAkSn—k + oep, (3.11)
k=1
where e, is normally distributed with zero mean and unit variance.

The model is known as an autoregressive or linear predictive model. It
is used extensively in many speech processing systems and particularly in
speech coders. Standard techniques exist to find the autoregressive param-
eters {Ag,k = 1... P,o} which minimise the modelling error (Deller et al.
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1993). Again, since the characteristics of the vocal tract are not station-
ary, the speech signal is segmented into frames and the filter parameters are
calculated on a per frame basis.

3.4.1 The Basic Technique

A filter-model-based enhancement system was first presented in (Lim &
Oppenheim 1978). Here the filter parameters are determined from noisy
speech using maximum a posteriori (MAP) estimation (Van-Trees 1968).
Since this procedure leads to non-linear equations, an iterative scheme is
proposed to estimate the parameters. This is shown under certain conditions
to be equivalent to iteratively applying Wiener filters to each frame.

As described in Section 3.1, the transfer function for the Wiener filter is
given by

Py(w)
Ps(w) + Py(w)
where P;(w) is the power spectral density of the speech and Pj(w) is the

power spectral density of the noise.
P;(w) is estimated using Equations 3.9 to 3.11 as

H(w) = (3.12)

0.2

— 1S(W)? =
PS(UJ) - |S( )| \A(w)|2

(3.13)

o? can be estimated using Parseval’s Theorem (Deller et al. 1993). Pj(w) is

typically estimated from non-speech portions of the signal.

Once determined, the filter parameters can be used to reconstruct the
enhanced speech. Alternatively these parameters (or transforms of them)
can be used directly in a speech coding or recognition system. If a speech
coding system is being developed, the pitch and degree of voicing must be
determined for each frame. Lim and Oppenheim (Lim & Oppenheim 1979a)
warn that these parameters (particularly the degree of voicing) are not easily
estimated in the presence of noise.

Aside from these considerations, this basic enhancement technique has
several other problems. It is computationally expensive and a heuristic con-
vergence criterion must be applied. As additional iterations are performed,
formants decrease in bandwidth and shift in location. Also, frame to frame
pole jitter is observed. Another problem is that the MAP estimator is biased
to certain speech classes. The fact that the statistics of the interfering noise
are assumed to be stationary and must be determined a priori is a further
deficiency.

In light of these problems many extensions to and variations on this en-
hancement method have been proposed. These are discussed in the following
section.
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3.4.2 Extensions and Variations

Hansen and Clements (Hansen & Clements 1991) solve some of the con-
vergence problems by enforcing inter-frame and intra-frame constraints on
the speech generated by the algorithm. This work is further extended in
(Arslan & Hansen 1994) using HMMs to partition the noisy speech into
broad phone classes which further determine which constraints are to be
used. These techniques however require more computation.

Musicus and Lim (Musicus & Lim 1979) consider modelling the speech
using a pole-zero model. Again the filter coefficients are estimated using
MAP estimation.

In (Ephraim, Wilpon & Rabiner 1987) autoregressive models determined
directly from noisy speech are used in a robust recognition system. The
scheme iteratively chooses model parameters such that the Itakura-Saito
distortion measure (Gray, Buzo, Gray & Matsuyama 1980) is minimised.

The use of Kalman rather than Wiener filters has also been investigated.
These filters also determine the MMSE estimator but have the advantage
that they intrinsically deal with non-stationary signals. Therefore, slight
variations in speech statistics during a frame can be accommodated.

In (Paliwal & Basu 1987), it is shown that if the ideal autoregressive
parameters are used then the Kalman filter outperforms the Wiener filter
in terms of output SNR values. In (Gibson, Koo & Gray 1991), scalar and
vector Kalman filters are applied to the additive coloured noise enhance-
ment problem. Here, the autoregressive parameters are estimated from the
noisy speech using a MAP approach similar to (Lim & Oppenheim 1978).
When the noise is coloured, it can be assumed to be modelled by a known
autoregressive process.

Some researchers have addressed the problem of finding the noise statis-
tics from the utterance to be enhanced (Paliwal 1988), (Lee, Lee & Ann
1997), (Saleh & Niranjan 1998). In (Paliwal 1988), an overdetermined sys-
tem is considered. An estimate of the autoregressive parameters is formed
using the high order Yule-Walker equations and then used to estimate the
noise variance from the low order Yule-Walker equations. The technique es-
timates the noise variance well, even in the presence of non-stationary noise.
However, the scheme is only applicable to Gaussian noise.

Saleh (Saleh 1996), (Saleh & Niranjan 1998) introduces a Bayesian frame-
work to the original Lim enhancement technique (Lim & Oppenheim 1978).
The advantage of this approach is that the variance of the additive noise
and the gain of the all-pole model appear as hyper-parameters within this
framework and can be estimated using standard Bayesian assumptions. This
means that it is not necessary to know the interfering noise statistics a priori.
The approach also works in non-stationary Gaussian noise. Although the
enhancement still suffers from residual noise problems, preliminary experi-
ments show that it outperforms the original Lim and Oppenheim technique
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in terms of SNR improvement and informal listening tests.

In (Lee et al. 1997), the parameters of coloured interfering noise are
estimated using a maximum likelihood approach. Autoregressive models are
assumed for both the speech and the noise. This technique will be further
discussed in Chapter 4 along with other maximum likelihood approaches.

Although filter-model-based enhancement schemes produce effective en-
hancement, their performance is always limited by the quality of the autore-
gressive models which can be obtained from the corrupted speech. Some
of the following techniques use models trained from speech samples and are
thus able to provide superior performance.

3.5 Enhancement by Synthesis

With the exception of Noise Masking, all the other enhancement techniques
described in this chapter involve estimation of the clean speech waveform or
parameters from a noisy observation. They are thus concerned with finding
the optimal filter which will produce an enhanced signal. The following two
techniques however consider enhancement as a detection problem. In this
case the aim is to determine the clean speech (or clean speech parameters)
that corresponds to the noisy observations. The enhanced speech (or its
parameters) is then synthesised from a combination of these clean templates.
The major difference between a filtering and synthesis system is that if
both are applied to clean speech, the operation of the ideal filter is transpar-
ent whereas the synthesised clean speech will always differ from the original.
Therefore the performance of an Enhancement by Synthesis system is upper
bounded by the quality of the synthesis technique (Ephraim 1992c).

3.5.1 Parameter Mapping

This approach tries to learn a mapping from noisy speech parameters to
clean parameters. These parameters can then be fed directly into a recog-
nition or coding system. No explicit model of the speech or noise or the
way in which they are combined is used. Approaches vary from using linear
transformations to artificial neural networks to implement the mapping.

For example, in (Mokbel & Chollet 1992), noisy MFCC vectors are
mapped to clean MFCC vectors using a linear transformation. The parame-
ters of this transformation are estimated to minimise the mean squared error
between the estimated vector and actual clean vectors. The transformation
is shown to improve recognition performance in a car and to be superior to
a Kalman filter approach.

A disadvantage of some of these techniques is that their performance
may be highly dependent on the noise level at which the mapping is learnt.
Also, to learn the mapping an amount of clean speech must be available in
stereo with noisy data. This may be unrealistic in some circumstances.
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3.5.2 Template-Based Enhancement

Template-Based enhancement techniques are similar to parameter mapping
in that they find the best sequence of clean speech templates given the noisy
data using some form of correspondence between the two. In this case some
form of speech model and information about the manner in which the speech
and noise are combined may be included. The parameters to be estimated
are restricted to a combination of clean templates.

In (Juang & Rabiner 1987), clean spectral vectors are vector-quantised
and noisy versions determined for each cluster. The nearest neighbour of
each observed noisy vector in the noisy parameter space is then determined
and this is mapped to the average of the corresponding clean speech cluster.
The distance measure used to compare vectors is either the likelihood ratio
or the cepstral distortion measure. A similar vector-quantised system using
formant-based distance measures for the noisy speech vectors is developed
in (O’Shaughnessy 1988).

Other template-based approaches include using a linear combination of
sine wave templates (Quatieri & McAulay 1990) and phone-based templates
(Gong 1993). The work in (Gong 1993) has been extended to use an extra
mapping to determine the level of interfering noise (Treurniet & Gong 1994).

3.6 Statistical-Model-Based Approaches

The class of statistical model-based techniques estimates the clean speech
signal from the noisy signal using statistical models of the speech and noise.
Given a distortion measure and the joint statistics of the speech and noise,
enhancement is performed using the estimator which minimises the expected
value of the distortion measure between the clean and estimated signals
(Ephraim 1992¢).

For a given distortion measure d(s¢,$§;) between the clean speech s; and
enhanced speech §;, and given noisy observations Y = yi,yo,...,yT, the
approach is to determine §; = f(Y) such that E{d(s¢,$;)|'Y} is minimised.
If the optimal distortion measure and the true speech and noise statistics
were known, optimal enhancement could be performed. Since this is not
the case, tractable distortion measures and parametric models trained from
existing speech and noise data are used.

3.6.1 Distortion Measures

Two commonly used distortion measures are squared error cost and uni-
form cost. Although more perceptually meaningful distortion measures ex-
ist (Gray et al. 1980), these two measures are often used because they allow
mathematically tractable solutions to be found.
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The squared error cost function yields Minimum Mean Squared Error
(MMSE) estimation which gives the conditional mean of the parameter given
the observation. Thus in this case §; is given by

= /Stps(St|Y)dSt- (315)

Here ps(s:|Y) is the pdf of the clean speech at time t given the complete
noisy observation.

The uniform cost distortion measure yields maximum a posteriori (MAP)
estimation which is the value that maximises the probability density function
of the parameter given the observation. Here

§; = arg max ps(s¢|Y). (3.16)
st

If the observations and parameters are jointly Gaussian, these estimates are
identical.

3.6.2 Speech and Noise Statistical Models

For reasons of reliability of model estimation and tractability it is best to use
parametric models for the speech and noise probability distributions (PDs)
(Ephraim 1992c¢). This is advantageous for three reasons. First, a sensibly
chosen model can provide a better estimate of a PD than a sample distribu-
tion estimate because it will capture intrinsic information about the signal
which may not be present in a particular set of training data. Second, since
generally only a small number of parameters are required to be estimated
they can be reliably estimated from a reasonable amount of training data.
Third, closed form expressions of the enhanced signal can be determined as
functions of the model parameters thus only these parameters and not the
entire training data need to be stored as part of the speech enhancement
system.

3.6.3 Spectral Amplitude Models

In (Ephraim & Malah 1984) enhancement is performed using a MMSE esti-
mator of the short-time spectral amplitude. The amplitude of each spectral
component is assumed independent with a Gaussian distribution. Strictly,
this assumption only holds as the analysis frame length approaches infinity.
However the authors justify its use on the grounds that it leads to simple
estimators and good enhancement.

The MMSE estimator can be improved by conditioning the estimate on
the presence or absence of speech, an idea first proposed in (McAulay &
Malpass 1980). This work is closely related to (Ephraim & Malah 1984)
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but differs in that a maximum likelihood rather than MMSE estimate of
the spectral amplitude is formed. The major contribution of (McAulay &
Malpass 1980) is the concept of forming different estimators according to
whether speech is present or absent, and then forming the enhanced speech
as a weighted sum of these estimators. Here the weighting is given by the
probability of speech presence or absence. This concept of using a weighted
sum of conditioned estimators is an important technique which appears in
many statistical model-based and other enhancement approaches.

The technique in (Ephraim & Malah 1984) produces better enhance-
ment than (McAulay & Malpass 1980) although both suffer from residual
noise problems. In the case of (Ephraim & Malah 1984) though, this noise
is colourless and considered less annoying. Later work (Ephraim & Malah
1985) looks at a MMSE log spectral estimator on the grounds that distor-
tion measures based on the log spectrum are perceptually more meaningful.
This results in a superior but computationally more complex enhancement
scheme. Other work (Porter & Boll 1984) develops a non-parametric imple-
mentation of (Ephraim & Malah 1984) which, although it does not make the
assumption that the speech spectral components have a Gaussian distribu-
tion, suffers from the disadvantages of non-parametric systems (see Section
3.6.2).

Erell and Weintraub (Erell & Weintraub 1993) implement MMSE esti-
mators to estimate the filterbank log energies used in a speech recognition
system. To incorporate information about the correlations between filter
channels, the estimator is conditioned on the total frame energy. The algo-
rithm is effective in improving recognition performance.

Another scheme by the same authors (Erell & Weintraub 1994) alter-
natively tries to solve the problem of the correlations by incorporating in-
formation about the pitch period. However, this estimator only improves
recognition for voiced speech. Since most errors occur in the unvoiced sec-
tions, the recognition accuracy is not significantly improved.

3.6.4 SNR-Based System

In (Gish, Chow & Rohlicek 1990), a probabilistic model conditioned on
the instantaneous SNR is used. Clean speech is partitioned using vector
quantisation and a mixture of Gaussians is used to model each cluster. Using
MMSE estimation, a linear mapping is then determined for each cluster to
map noisy vectors to clean speech vectors given the instantaneous SNR ~.
The enhancement process for each noisy observation y; with SNR « is as
follows. First, cluster k is chosen to maximise p(k|yt,7). Then the mapping
for cluster k is used to obtain the enhanced vector.

The technique is shown to improve the performance of a word spotting
system. It is an attempt to subvert some of the problems of the systems in
Section 3.5.
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3.6.5 HMM-Based Systems

A popular choice of parametric models for speech signals are HMMs. These
models (described in Chapter 2) have dominated the field of speech process-
ing in recent years. They are able to model the time-varying characteristics
of the vocal tract. A contributing factor to their popularity has been the
availability of tractable algorithms to train the model parameters and eval-
uate model probabilities.

The class of Gaussian mixture models also falls into the HMM category
since a Gaussian mixture model is equivalent to a one state HMM (Ephraim
1992¢). Here each mixture component represents a cluster of spectrally
similar speech signals. However, no Markovian constraint is placed on the
evolution of mixtures as in the case of a multistate HMM. Hence a multistate
HMM is better for speech modelling (Ephraim 1992¢).

The choice of observation vector modelled by the HMM determines which
type of HMM is used. Many state-of-the-art speech recognisers use cepstral
features (see Section 2.3.2 ). However, these vectors are formed by non-linear
transformations on the raw speech vectors and are inherently less suitable
for the additive noise case. Therefore, many enhancement schemes are based
on either spectral features or autoregressive HMMs which model raw speech
vectors. The various techniques are described below.

Autoregressive HMM-Based Enhancement

Ephraim has developed various enhancement schemes based on autoregres-
sive HMMs. These models have been described in Section 2.4. Each mixture
component of each HMM state represents observations that have similar au-
toregressive or equivalently spectral parameters. Thus a non-stationary au-
toregressive process is modelled. The autoregressive parameters are used to
construct Wiener filters to perform enhancement similar to the Lim and Op-
penheim technique (Lim & Oppenheim 1978). The difference here though is
that the speech autoregressive parameters are estimated from clean speech
training data rather than from the noisy signal as in (Lim & Oppenheim
1978). Two main schemes have been developed. These are discussed below.

Clean HMM Scheme

In (Ephraim, Malah & Juang 1989), the Expectation Maximisation (EM)
algorithm (e.g. see (Little & Rubin 1987)) is used to iteratively find the the
optimal MAP estimator of the clean speech. It can be shown that this is
equivalent to maximising p(S|Y) where S and Y represent clean speech and
noisy observation sequences as before. The estimator for the kth iteration
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is given by
-1
s = th(ﬂ,ﬂgf_l)ﬂv_'é Yt- (3.17)
By

Here qt(ﬁ,fy|Sf71) is the conditional probability of being in state 8 and
choosing mixture component v given observation gf_l at time ¢. This prob-
ability can be calculated using the clean speech HMM. H, 3 is the Wiener
filter for the output Gaussian process given state # and mixture component
~ and the noise process statistics:

S,
Hyg=—28 3.18
v|B S’y\ﬁ +D ( )
Here S, 3 and D are the power spectral densities of the speech mixture
component and noise process respectively. The noise statistics are trained
from silence portions of the signal. The algorithm is initialised by setting §?
to y¢ for all ¢.

An approximate MAP estimation method is also presented which uses
the most likely Wiener filter for each frame rather than the weighted sum.

Experiments show that the algorithm is very dependent on the accuracy
of choosing the correct state and mixture for each frame. For low SNRs,
this can be difficult since a clean model is used to calculate the probability
of each mixture of each state given initially the noisy observation.

This scheme is implemented in (Sheikhzadeh, Sameti, Deng & Brennan
1994) and compared with the spectral subtraction method on noise from
0 to 20dB. The HMM-based system was seen to be superior in terms of
SNR improvement and Mean Opinion Score (MOS) tests. The improved
performance is due to the use of filters based on prior speech and noise
information.

Compensated HMM Scheme
The work in (Ephraim et al. 1989) is extended in (Ephraim 1992a). In this
later work, the problem of estimating the clean state and mixture component
corresponding to each noisy observation frame is addressed and solved using
a compensated HMM formed by combining speech and noise statistics. This
alleviates the need for an iterative scheme and provides a better state-frame
alignment and hence a better selection of filters.

The pdfs describing the clean speech and noise processes are each given
by the usual HMM pdf first introduced as Equation 2.1. Thus

p(S) = ZX Azoz; HZ":1 awtwt+1bwt (St) (3'19)
PD) =g azei; [l aseesa b (de) (3.20)

Here S is a sequence of clean speech observations, X is a sequence of clean
speech states, az,q,,, is the transition probability from state z; to state z¢1
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and by, (s¢) is the pdf of the output vector s; from the state z;. Similarly D
is a sequence of noise observations and X isa sequence of noise states.
The pdfs by, (s;) and bz,(d;) are assumed Gaussian with zero mean and
covariance matrices 3, and Xz, respectively. Since the processes are as-
sumed autoregressive, these covariance matrices are dependent on only P+1
parameters where P is the order of the autoregressive process (Juang 1984).
For additive noise, these speech and noise models can be combined to
produce a model for noisy speech. The pdf for this model is given by Equa-

tion 3.21.
T

p(Y) = Z Az07, H az,211b3, (yt) (3:21)
X

t=1

Here Y is a sequence of noisy observations, X is a sequence of composite
states with Z; = (z¢, #1), az,z,,, is the transition probability from state Z;
to state Z;y1 and bz,(y¢) is the pdf of the output vector y; from the state
Z¢. For additive noise

Y = S+D (3.22)
Az4%p 11 —  Ozpzpg PdFeq .23
bz, (yt) = / byt — s¢)b(st)ds- (3.24)

The pdf bz, (y:) is Gaussian with zero mean and covariance matrix Xz given
by

3. = ¢’ + %;. (3.25)
Here g2 is a gain to take into account the mismatch between training data
(for the clean speech models) and testing data. The calculation of g? and a
mathematically tractable technique to calculate the determinant and inverse
of 3z are described in (Ephraim 1992b).

The conditional pdf of s; given Y can now be written

p(s|Y) =Y p(&:]Y)bz,(selye)- (3.26)
Tt
The MMSE estimate of s; given Y is therefore given by
§& = E{sY}
= Y p(@|Y)E {silys, 2.}

= 3 p(@lY) Ha,yi (3.27)

Tt

where Hz, is the MMSE estimator of the signal s; given y;. Here Hgz, is the
Wiener filter formed using composite state Z;. This corresponds to forming
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the Wiener filter from speech state x; and noise state Z;. The filter is given
by 5

H(wt,i't) — z:szZ‘%.
This is similar to the Wiener filter formed in Equation 3.18. Thus the
MMSE estimator is given by the weighted sum of Wiener filters for each
combination of speech and noise states, weighted by the probability of that
combination.

The model parameters for the clean signal and noise process can be
determined from training data as in a standard HMM training problem.
The p(#;|Y) term in the conditional process can be calculated using the
forward-backward formulas for HMMs.

Other estimators, such as the MMSE spectral amplitude estimator or
MMSE log spectral amplitude estimator can also be used instead of Wiener
filters. These estimators are similar to those described in Section 3.6.3 except
that each estimator is conditioned on the speech and noise state.

The MAP estimator of s; given Y is obtained by maximising p(s¢|Y)
over s;. This is done numerically using the EM algorithm to iteratively
maximise p(s¢|Y). This results in a reestimation formula similar to that
developed for the clean HMM scheme above.

(3.28)

-1
¥ = | p(@lsf L Y)HSH v (3.29)
Tt

Additionally, an approximate MAP estimator can be formed as
St = IT%%XP(CZ‘HY)HEM- (3.30)

The approach is evaluated using clean speech models trained on 5 min-
utes of conversational speech from 6 speakers. White noise at SNRs ranging
from 5dB to 10dB is added to test sentences. The enhanced speech is evalu-
ated in terms of SNR improvement and informal listening tests. Not a great
deal of variation is noted between the different algorithms in terms of SNR
improvement although all were successfully able to improve upon the SNR.
Listening tests on a MMSE waveform estimator demonstrate that although
some residual noise is still present after enhancement at 10dB, it is less
annoying than the ‘musical’ noise typical of spectral subtraction enhance-
ment systems. The MAP estimator has more residual noise than the MMSE
estimator and is thus judged inferior. This is fortuitous since the MMSE
estimator is less computationally expensive than the MAP estimator, the
latter being a iterative scheme.

Enhancement Based on Autoregressive HMM Variations

Lee et al. have developed enhancement schemes based on variations to the
basic AR-HMM. In (Lee, Lee, Song & Yoo 1996) and (Lee & Shirai 1996),
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schemes based on the Hidden Filter HMM (HF-HMM) are studied. This
model (Sheikhzadeh & Deng 1994) is a special case of the autoregressive
HMM with a frame size of one sample. It is assumed that such HMMs
are better able to model quickly-varying parts of the speech signal since
information is not lost at the frame boundaries.

In (Lee & Shirai 1996), the general coloured noise case is considered.
HF-HMM parameters and noise parameters are trained from a priori in-
formation. The noise is modelled as an autoregressive process. Since the
HF-HMM lends itself naturally to time domain analysis, the system is rep-
resented by a state-space model as follows.

Using the notation previously introduced, and letting s; = [St,S(t_l),

,8(t—p)]' be the speech observation and d; = [di,d_1),---,d—p)]' be
the noise observation, the augmented state is given by z; = [s; : d;]’ where
" denotes matrix transpose and P is the order of the state-space analysis.
This augmented state space formulation is also used in (Gibson et al. 1991).

In (Gibson et al. 1991), a Kalman filter is then used to form a MMSE
estimator of the speech given the state-space model. In (Lee & Shirai 1996)
however, an estimator z; ;j for each Markov state j of the HF-HMM is formed.
These estimators are then combined in the same way as in AR-HMM systems
above. That is, if the HF-HMM has N states, the MMSE of z; is given by

N

t= ) 7,p(j|Y) (3.31)
j=1

NP

where p(j|Y) is the probability of state j given the noisy observation at time
t and the HF-HMM.

The fact that this algorithm does not divide the speech into frames
makes it intuitively appealing. However, this strength has computational
consequences. In order to train the parameters of a clean HF-HMM system,
P + 1 autocorrelation coefficients must be calculated using P 4+ 1 speech
samples for each of the T speech samples in the training data (Sheikhzadeh
& Deng 1994). Conversely, frame-based AR-HMMs require P + 1 autocor-
relation coefficients to be calculated for each frame. K speech samples are
used for the calculation where K is the frame size, but the coefficients need
only be calculated for the % frames (Juang 1984). Thus the former training
procedure is of the order of a factor of P + 1 slower. This would restrict the
application of HF-HMM-based enhancement algorithms to systems which
only required limited training data.

Another potential problem with this enhancement algorithm is that the
pdf p(j|Y) is not rigorously calculated as in (Ephraim 1992a) but approx-
imated by a normal distribution. Also, there is little scope for forming
anything other than a MMSE time domain estimator which may be percep-
tually inferior to MMSE spectral estimators.



Techniques for Speech Enhancement 28

Other enhancement techniques based on different AR-HMM variations
are presented in (Lee, Lee, Song & Yoo 1996), (Lee, Rheem & Shirai 1996)
and (Lee & Rheem 1997). These follow the same pattern of MMSE esti-
mation using a Kalman filter and Equation 3.31 or appropriate variations.
These HMMs are even more computationally intensive.

Experimental support for this work is limited and consists mostly of SNR
value improvements for two enhanced sentences. In addition, it is stated that
the enhanced speech has good intelligibility.

Cepstral HMM-Based Enhancement

Because many state of the art HMM recognition systems use cepstral fea-
tures (e.g. see (Woodland, Gales, Pye & Young 1997)), researchers have
investigated enhancement schemes which adapt or use cepstral-based mod-
els.

In (Beattie & Young 1992), the goal is to improve recognition perfor-
mance of a cepstral-based HMM system in additive noise. Here it is noted
that a Wiener filter applied in the spectral domain corresponds to an addi-
tive correction in the cepstral domain. Thus using trained spectral domain
speech HMMs and given noise conditions, a Wiener filter can be designed
for each clean speech state. This can be used to correct the mean of the cor-
responding state in the cepstral domain. The technique is shown to improve
performance on small vocabulary tasks.

Seymour has developed an enhancement system along the lines of Eph-
raim which uses cepstral-based HMMs to determine p(Z;|Y) (Seymour 1996).
Enhancement can then be performed using statistics trained in the linear
spectral domain for each cepstral HMM state. Thus the enhanced speech is
determined using

8¢ = Zp(fl_"t‘Ycepstral>H5:t,linearYt,linear (3.32)

Tt

where the subscripts ‘cepstral’ and ‘linear’ denote features in the cepstral and
linear domains respectively and H is a Wiener filter or a MMSE amplitude
estimator. This system has been evaluated using clean speech recognition
scores of enhanced utterances and shown to perform well on both small and
medium vocabulary tasks.

3.7 Summary

This chapter has described the main techniques of speech enhancement.
Generally, it was seen that techniques which incorporated more prior infor-
mation about the speech were superior. A deficiency of many techniques
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however was the need for a method to determine the statistics of the in-
terfering noise. The next chapter reviews techniques of automatically or
adaptively estimating these statistics.



Chapter 4

Techniques for Adaptive
Environmental
Compensation

Few of the enhancement schemes presented in the previous chapter are able
to operate when the statistics of the degrading noise are unknown. This has
proved problematic when employing these systems in real world situations.
In this chapter, approaches to adaptive environmental compensation are
reviewed.

There are two main classes of approaches. The first involves detecting
speech-free portions of the signal and using these to estimate the noise. The
second class builds a statistical model for the system and reestimates the
noise statistics within this model using maximum likelihood estimation.

4.1 Noise Estimated from Non-speech Regions

The classic way to detect non-speech sections or ‘pauses’ is to combine the
information provided by the the zero crossing count and energy measure for
each frame (Deller et al. 1993). Typically the energy is higher during speech
regions than non-speech regions, while the zero crossing count is high during
fricatives (which may occur at the beginning of words) and low during voiced
regions. The combination of this information can lead to a good estimate of
the speech/non-speech divide.

Obviously however, this method relies heavily on thresholds which may
need to change if the background noise is non-stationary. Also, the assump-
tions about energy and zero crossings may be invalid for large amounts or
certain types of background noise.

A more recent technique (Abdallah, Montresor & Bauding 1997) uses
the ‘degree of organisation’ of the signal. Although some setting of thresh-
olds is still necessary, this technique can operate in situations where energy

30
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measures are not sufficient such as when the SNR is very low.

A related area in which there has been a great deal of research deals
with the problem of detecting word boundaries for isolated word speech
recognition systems (see review in (Junqua, Mak & Reaves 1994)). The
problem here is slightly different to pause detection because the assumption
is made that there is a single beginning and single endpoint of the speech.
However, much of the work in this area is applicable and methods based on
energy levels, zero crossing counts, duration information, pitch information,
linear prediction residual energy, and Viterbi search have been developed.
Some of these have been applied to enhancement systems.

For example, in (Sheikhzeheh, Brennan & Sameti 1995), a pause detec-
tor is developed for use in a real-time speech enhancement system. Non-
speech activity is detected using the combination of information from a
voiced/unvoiced detector based on the periodicity of the speech and en-
ergy levels before and after enhancement. Again however, thresholds must
be determined empirically for the various anticipated noise conditions. An
energy-based pause detector was used in an earlier system (Sheikhzadeh et
al. 1994).

Recently, researchers have investigated the use of HMMs to detect non-
speech activity in additive noise (McKinley & Whipple 1997). The advan-
tage here is two-fold. First, a HMM incorporates far more information about
speech than could be incorporated by energy levels, pitch information and
zero crossing information alone and most importantly, the temporal evolu-
tion of this information is modelled by the Markov process. Of course this
additional information adds complexity to the system and must be trained
on speech prototypes. These may not be major considerations if dedicated
hardware is used and suitable speech databases are available.

The second advantage is that a probabilistic framework can be used
to decide whether a particular frame is speech or noise. In (McKinley &
Whipple 1997), the framework of (Ephraim 1992a) is used. This models
the speech and noise as autoregressive HMMs and develops a model for
the noisy speech. The noisy speech model can then be used to determine
the probability of a particular frame being speech-free. Results presented
in (McKinley & Whipple 1997) show that this approach outperforms other
techniques. This was also the case in earlier work on endpoint detection
using HMMs (Wilpon & Rabiner 1987). Both these techniques train the
noise model on the first few frames of the speech.

Parallel work developed in this dissertation and previously published as
(Logan & Robinson 1996) also detects pauses using the AR-HMM frame-
work. This work does not assume that the first frames of the utterance are
speech. It will be discussed in the following chapter.
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4.2 Maximum Likelihood Parameter Estimation

The approach here is to build a statistical model for the speech and noise
and then to estimate the unknown parameters such that the likelihood of
the model given the observations is maximised. The various methods are
characterised by the type of models used and the amount of prior speech
information which is incorporated into these models. Many of the tech-
niques have been developed solely for robust speech recognition and these
are described first. This is followed by descriptions of adaptive techniques
for speech enhancement.

4.2.1 Robust Speech Recognition

A great deal of work in the robust speech recognition community has focused
on schemes to adapt existing speech models to different environments, or al-
ternatively to adapt speech parameters from new environments to existing
models (Lee 1997). Here the term ‘environments’ is used very loosely to
mean any difference between the conditions used to train and test speech
recognition systems. This difference could be caused by a change in speaking
style, accent, speaking rate, communications channel or background noise.
While distortion caused by additive noise is the prime concern in this disser-
tation, it is still instructive to review approaches that compensate for other
degradations. The focus will mostly be on ‘blind’ or ‘automatic’ model-based
adaptation schemes.

A landmark paper is (Rose, Hofstetter & Reynolds 1994). Here, a general
procedure is derived for estimating speech model parameters from noise
corrupted observations. In this work, the noise statistics were known a
priori but the technique illustrates a way of estimating model parameters
in noise. A brief description is given here.

The speech is modelled as a mixture of Gaussians. Thus the probability
density function is given by

T M
p(SIAs) = ] D_ pibi(se). (4.1)

t=1¢=1

Here S is the entire speech observation for time ¢ = 1,...,T. It is modelled
by model A; with M Gaussian mixture components. p; is the weight of the
ith mixture and b;(s;) is a Gaussian pdf. It is assumed that the components
of each observation vector are independent so that this Gaussian has a di-
agonal covariance matrix. Thus the model parameters are the means ;g
and variances Jik of each of the K components of the observation vector s;
and the mixture weights p;.
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The noise observation is also modelled by a mixture of Gaussians. Hence

T N
p(DAg) = [[ D gjai(de). (4:2)

t=1j=1

Here D is the entire noise observation for time ¢ = 1, ..., 7" which is modelled
using N Gaussian mixture components. g; is the weight of the jth mixture
and a;(d¢) is a Gaussian pdf. Again it is assumed that this Gaussian has a
diagonal covariance matrix.

Using these speech and noise models, a general expression for a noise
corrupted model is then derived. The noise parameters are assumed known
and maximum likelihood estimators are determined for the unknown speech
means, variances and mixture weights. Since no closed-form solution exists,
the EM algorithm is employed to iteratively reestimate the unknown param-
eters. Because the covariance matrices of the Gaussian pdfs are diagonal,
a separate estimator can be derived for each component of the mean and
covariance vectors.

The reestimation formulas are as follows. The kth component of the
mean of the ith speech mixture component, y; g, is reestimated using

, i g P(ie=1, 5o =5yt N E{ 81k Yt it =1, je =3, \}
Sty pie=4,Ge =1y A)

Mik (4.3)

Thus the speech mean for mixture component i is reestimated as the sum
over all observations and all noise mixture components of the expected value
of the speech given speech mixture component i and noise mixture compo-
nent j, weighted by the likelihood of speech mixture component ¢ and noise
mixture component j given the noisy observation at time ¢. The sum is
then normalised by the sum of the likelihood of each possible combination
of speech and noise mixture components.

Similarly, the kth component of the variance of the ith speech mixture
component, o; 1, is reestimated using

T N .. . .. .
o2 Sim1 2ojm1 Pt =1, Gt = j|ys, N E{8]  [Yt.k, it =1, jt =, \}
ik = —

Z Soimy pis =1, je =Gyt ks \)

- (H;,k)2-
(4.4)
Rose et al. then derive different expressions for the expectations in Equa-
tions 4.3 and 4.4 according to the type of interfering noise. A closed-form
solution is only easily obtained for the case when the speech and noise vec-
tors are assumed additive and independent and, as mentioned, when the
components of each observation vector are assumed statistically indepen-
dent.
Sankar and Lee (Sankar & Lee 1995), (Sankar & Lee 1996) apply this
technique to speech recognition in unknown noise when the speech model
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parameters are assumed known. They investigate the convolutional noise
case and use cepstral feature vectors. For convolutional noise, the speech
and noise vectors are additive in the cepstral domain and can be modelled
using mixtures of Gaussians with diagonal covariance matrices. Therefore,
the equations developed in (Rose et al. 1994) are directly applicable (albeit
for noise model reestimation rather then speech model reestimation). They
call the approach Stochastic Matching.

It is significantly harder to adapt to additive noise though if cepstral
features are used. This is because if the speech and noise cepstral features
are assumed normally distributed, then the feature vectors of the corrupted
process are log-normally distributed (Gales 1995). Thus Equations 4.3 and
4.4 cannot be used. In fact no closed form expressions exist to reestimate the
unknown noise parameters (Afify, Gong & Haton 1997). Thus the unknown
parameters must be reestimated using numerical integration or from speech
pauses as described in (Afify et al. 1997).

Despite this, some researchers have investigated schemes which assume
that the corrupted cepstral feature vectors are normally distributed. In this
work, a simplified function models the effect of additive and convolutional
noise. In the spectral domain, the corrupted speech Y (w) is formed by
applying an unknown filter H(w) to clean speech S(w) and adding noise
D(w) such that

Y (w) = S(w)|H(w)> + D(w). (4.5)

This can be rewritten in the log-spectral or the cepstral domain as

yi = s¢+qp+log(l+edsema) (4.6)
= s¢+ f(st,de, qr) (4.7)

where y, s, q¢+ and d; are in either the log-spectral or cepstral domain
respectively and q; = 2h;.

In Codeword-Dependent Cepstral Normalisation (CDCN) (Acero & Stern
1990), p(y¢|s:) is modelled as a multivariate Gaussian. A MMSE estimator
of y; is formed as the weighted sum of estimates where the weighting de-
pends on classes of speech called ‘codewords’. Maximum likelihood is used
to estimate q; and d; within this framework. The enhanced speech vector
is then tested using a clean speech recogniser.

One of the main problems with this technique is that it does not model
the effects of the environment on the noise variance. This affects the accu-
racy of the estimation at low SNRs.

A later approach (Moreno, Raj & Stern 1995) approximates the function
f(st,ds, q;) in Equation 4.7 with a vector Taylor series. Again maximum
likelihood is used to reestimate the unknown parameters, including the noise
variance. The algorithm is shown to perform better than CDCN on a large
vocabulary test set over a wide range of SNRs. Further extensions use
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a vector polynomial function (Raj, Gouvéa, Moreno & Stern 1996) and
sequential estimation (Kim 1998).

The problem of adapting to additive noise is easier in the linear spectral
domain. Here the corrupted feature vectors can be assumed to be normally
distributed and hence the Stochastic Matching technique applied (Lee 1997).
Strictly speaking, full covariance matrices should be used to model the corre-
lations between spectral components. This results in a considerable increase
in computational complexity (Afify et al. 1997). A further point to note
is that the distance measure used in this domain is the spectral difference
which is inferior to the log spectral distance used in the cepstral domain
(Rabiner & Juang 1993).

A theoretical framework which applies Stochastic Matching in both the
cepstral and linear domains to adapt to both convolutional and additive
noise is proposed in (Siohan & Lee 1997). The linear spectral domain is
modelled by a Gaussian mixture similar to the cepstral domain and Monte
Carlo simulations are proposed to map between the cepstral and linear do-
main. The computational complexity of this system limits its usefulness.
No results are published in this paper.

4.2.2 Adaptive Enhancement

Lee et al. have developed several adaptive speech enhancement schemes
based on making maximum likelihood estimates of unknown parameters.
They operate on time domain observations and are therefore able to use
Kalman filtering to perform the enhancement. They are also sequential
techniques in that the updating of parameters is performed at each time
step (sometimes after a delay for increased accuracy) rather than iterating
over the whole signal.

In (Lee, Lee, Song & Yoo 1996), the speech is modelled using a Hidden
Filter HMM (HF-HMM) as described in Section 3.6.5. The noise is assumed
Gaussian. This assumption allows p(z;|s;) to be modelled as a Gaussian also
and a simpler than otherwise expression to be obtained for the likelihood of
the model given the noisy speech. This can be maximised with respect to
the unknown speech and noise model parameters and new estimates of these
obtained. Experiments show SNR improvement on a small vocabulary task.
Computational considerations hinder the extension of this system to a large
vocabulary task.

In (Lee et al. 1997), the speech and noise are modelled as autoregressive
processes. Maximum likelihood estimates are made of both the speech and
noise model parameters. An advantage of this technique is that the unknown
coloured noise case can be accommodated. However, the lack of prior speech
information is a disadvantage.
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4.3 Summary and Conclusions

This chapter has reviewed strategies to automatically obtain the statistics
of the interfering noise. The first set of techniques estimates the noise from
pauses and so relies on pause detection. Here it was noted that a model-
based approach was superior.

The second set of strategies proposes models for the speech and noise
and forms maximum likelihood estimates of unknown parameters. It was
seen that for the additive noise case, three approaches are possible.

If cepstral feature vectors are used then the corrupted vectors are log-
normally distributed. Thus there are no exact solutions to the maximum
likelihood reestimation problem and the noise parameters must be reesti-
mated using numerical integration or from speech pauses.

Alternatively, researchers have assumed that the corrupted cepstral fea-
tures are normally distributed. Although this is in conflict with the models
proposed in (Varga & Moore 1990) and (Gales 1995), good results have been
obtained.

The third approach is to use linear spectral features which results in
a mathematically simpler system since in this case, the corrupted feature
vectors are normally distributed. The main disadvantage here is that a
linear spectral distance measure must be used rather than the superior log-
spectral distance measure used to compare cepstral features.

Enhancement schemes have traditionally studied the additive noise case.
Therefore it comes as no surprise that the adaptive enhancement schemes
studied in this chapter operate on time domain observations which pose no
mathematical difficulties for additive noise. These schemes use autoregres-
sive models of the speech and noise. As will be seen in Section 6.1, the use
of these models implies that the Itakura-Saito distortion measure is used.
This is related to the log spectral distance measure which is known to be
superior to a linear spectral measure (e.g. see (Gray et al. 1980)).

However, the adaptive enhancement schemes studied here either train
the speech models using the HF-HMM or estimate them directly from the
noisy speech. As was seen in the previous chapter, it is highly desirable
to use speech models trained using prior information. However, the HF-
HMM is too computationally expensive to contemplate using it to build a
vocabulary independent enhancement system.

Referring back to Section 3.6.5, it can be seen that two of the most suc-
cessful enhancement schemes in terms of perceptual improvement are the
model-based schemes of Ephraim (Ephraim 1992a) and Seymour (Seymour
1996). These techniques use the Itakura-Saito and cepstral distortion mea-
sures respectively and incorporate prior speech and noise information at
reasonable computational cost. Neither of these schemes however is adap-
tive.

In (Seymour 1996), cepstral features are used to calculate the probability
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of each state given the noisy observation. Thus an adaptive form of this
scheme would be mathematically difficult for the reasons described above.

The AR-HMM system proposed by Ephraim however is more suited to
adaptation. Its strengths are

e linearly combinable feature vectors
e Itakura-Saito distortion measure
e reasonable computational requirements.

The remainder of this dissertation will thus be concerned with extending
Ephraim’s system such that it can adapt to unseen noise.



Chapter 5

Adaptive Speech
Enhancement Schemes Based

on Autoregressive Hidden
Markov Models

Many of the enhancement systems described in Chapter 3 require estimates
of the statistics of the corrupting noise. Although it may be possible in some
circumstances to estimate these statistics from training data, in many real-
world situations this is not feasible. Therefore in Chapter 4, techniques to
estimate the noise from a corrupted signal were reviewed. It was seen that
these techniques fall into two broad categories: estimating the noise from
detected pauses and making a maximum likelihood estimate of the noise
parameters given a statistical model.

In both Chapter 3 and Chapter 4, a recurrent theme is that superior
performance can be achieved if a model-based approach is taken. In many
cases, the preferred model was the HMM since this is a well established
model for speech. The benefits of using a model come at the cost of increased
computational complexity.

At the end of Chapter 4, it was concluded that it would be advanta-
geous to develop an adaptive enhancement scheme based on the MMSE
compensated autoregressive enhancement technique described by Ephraim
(Ephraim 1992q) and in Section 3.6.5. This is a model-based enhancement
scheme. As discussed in Chapter 4, it is a suitable starting point for an
adaptive enhancement scheme because it uses linearly combinable feature
vectors, a proven distortion measure (Itakura-Saito) and has reasonable
computational requirements.

Interestingly, the technique uses autoregressive HMMs. These have been
neglected in recent years in favour of other HMM configurations. A further
motivation then for this approach was to investigate the performance of
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these models using computing resources which were unavailable when these
models were first proposed.

Two main extensions to the work of Ephraim are developed in this chap-
ter in order to make it adaptive. These correspond to the two main cate-
gories of adaptation discussed in Chapter 4. The first reestimates the noise
statistics using portions of the corrupted signal which have been identified
as non-speech or ‘silence’. The autoregressive probability framework is used
for the silence detection. The second scheme makes a maximum likelihood
estimate of the noise parameters within this framework. In this chapter, the
notation used in Section 3.6.5 will be followed.

5.1 Adaptive Speech Enhancement Using Recog-
nised Silences

As described in Section 3.6.5, the technique presented in (Ephraim 1992a)
models the clean speech S and noise D using autoregressive HMMs. These
models are combined to give a model for noisy speech Y. A MMSE and
MAP estimator for the clean speech are then formed using this model.

Both the clean speech model and noise model are trained using a priori
information. In (Ephraim 1992a), a general clean speech model is trained.
This model has a multiple mixture state representing speech and a single
mixture state representing silence. Transitions between the two states are
freely allowed. The clean speech state is trained using a vector quantisation
approach in which speech frames are clustered according to the similarity
of their autoregressive parameters. The silence state is trained using speech
frames with low energy.

An alternative approach to modelling speech is to train phone- or word-
based HMMs as in a conventional speech recogniser. Here each mixture
component of each HMM state still represents clusters of speech with similar
autoregressive parameters, but the features used to train each HMM are
(loosely) constrained to be those corresponding to each phone or word. A
separate silence HMM is also trained.

Regardless of whether a silence state or a silence HMM is trained, this
information can be used to make a decision about whether a given frame
is speech or noise. Consider for example a word-based HMM system. By
combining clean speech and noise HMMs as described in Section 3.6.5, a
compensated model can be created to represent each word in the presence
of noise. These models can then be used to recognise the noisy utterance
using conventional HMM speech recognition techniques.

If perfect speech recognition in noise could be achieved, the frames la-
belled as silence would correspond to estimates of the noise. Even if recog-
nition errors were made these frames could perhaps be used to give a better
estimate of the noise. This could then be combined with the clean speech
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models to form a new compensated model, and the process repeated. These
ideas can be used to develop a simple adaptive speech enhancement system.
The work described here has been previously published (Logan & Robinson
1996).

Figure 5.1 shows the algorithm for the system. Frames labelled as si-
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Figure 5.1: Basic Adaptive Enhancement Algorithm

lence by the recognition pass are used to reestimate the noise statistics.
These statistics are then used to form a new compensated model, and the
process repeated. When the likelihood of the utterance given the compen-
sated model has converged, the speech is enhanced using Wiener filters or a
spectral estimator as described in (Ephraim 1992a).

The work in this dissertation will consider two of the estimators proposed
in (Ephraim 1992a): the Wiener filter and a MMSE PSD estimator. As
described previously, the Wiener filter for state (x¢, ;) is given by

fa,
fa:t + .f:i':t‘

Here f,, and fz,, the power spectral densities of the speech and noise are
estimated using the autoregressive parameters of state z; and Z; respectively
similar to Equation 3.13.

The expected PSD of the clean speech at time ¢ given the noisy obser-
vations is given by (Ephraim 1992a)

H{Et,ft = (5'1)

E{|St|2|yt,:ct,:it,/\} = Hévt,ftfﬂvt + |H$t,$'tY?-f‘2' (5'2)

Here Y; is the Fourier transform of the noisy observation at time t.
The required noise statistic is thus the noise autocorrelation function
since this is used to generate autoregressive parameters for the noise model.
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Only stationary noise modelled by single state HMMs is considered so this
statistic is obtained by simply averaging the frames labelled as silence.

As described in Section 3.6.5, the estimator used for each frame is the
weighted sum of estimators for each possible combination of speech and
noise states, weighted by the probability of that compensated state given the
observation. If word or phone rather than general speech HMMs are used,
then Viterbi alignment is used to determine the most probable compensated
state for each frame. Thus in this case, the most likely estimator is used for
enhancement.

5.1.1 Weighted Noise Reestimation

A simple extension to the above ideas yields a weighted noise reestimation
scheme described here.

The pdf for the noisy speech is given in Equation 3.21 and reproduced
below.

T
p(Y[A) = Z Oz¢0z, H 3424102, (Yt) (5.3)
e =1

As discussed in Chapter 2, standard techniques exist to calculate P(Z|Y, A),
the probability of a particular state at time ¢ given this model and the noisy
observation. A probability of particular interest is the probability that ob-
servation y; is speech-free or noise. This is given by the probability that the
composite state Z = (x¢, Z) is (x¢ = silence, Z) i.e. P((z¢ = silence, Z;)|Y, A).
Once determined, either a likelihood ratio test or a Neyman-Pearson test can
be used to decide whether a given frame is silence (McKinley & Whipple
1997).
The likelihood ratio test labels the frame at time ¢ as silence if

P((z¢ = silence, Z;)|Y, \) > P((z¢, Z¢)|Y, ) Vay. (5.4)
The Neyman-Pearson labels a frame as silence if
P((z¢ =silence, &;)|Y,\) > 17 (5.5)

where 7 is empirically chosen to minimise the probability of false alarms.

P(z|Y, ) can also be used to weight each frame thus giving a simple
weighted noise reestimation scheme. Here the reestimated noise autocorre-
lation function ry, at time ¢ is given by

oo 7, P((z¢ = silence, )Y, A)ry, (5.:6)
YT P((z; = silence), &Y, \) '

where ry, is the autocorrelation coeflicients of the noisy observation for
frame ¢.
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It should be noted that if phone or word HMMs are used, the calcula-
tion of P(Z¢|Y,A) for all possible state sequences may be intractable. This
is because for continuous speech recognition, the noisy state sequence X rep-
resents all possible paths through all possible combinations of HMMs. For
large vocabulary systems, this search space can be quite large and pruning
of improbable sequences will be necessary.

5.2 Maximum Likelihood Noise Estimation

The algorithms described in the previous section do not guarantee conver-
gence of the likelihood of the speech utterance given the models. They are
also sensitive to recognition errors, particularly the recognition of silence.
To this end a more formal noise estimation scheme has been developed. It
has been previously published as (Logan & Robinson 1997a).

The scheme is related to several adaptation techniques described in
Chapter 4 and in particular to the work of Rose et al. (Rose et al. 1994) and
Sankar and Lee (Sankar & Lee 1996). The basic principle is to form a max-
imum likelihood estimate of the unknown parameters given a model. In the
original paper by Rose et al., the speech and noise are modelled using mix-
tures of Gaussians with diagonal covariance matrices. The noise models are
assumed known and a procedure is developed to estimate the speech model
parameters. A closed-form solution is only easily obtained for the case when
the speech and noise vectors are assumed additive and independent.

In later work (Sankar & Lee 1996), the technique is applied to the esti-
mation of noise parameters rather than speech parameters. Here, the effect
of convolutional noise on cepstral parameters is compensated for. In this
domain, the speech and noise observations are additive so the procedure
developed in (Rose et al. 1994) is directly applicable.

However, this dissertation is concerned with the problem of additive
rather than convolutional noise. As discussed in the conclusion of Chapter
4, working with cepstral features is less appropriate for additive noise. This
is because the non-linearity introduced by the logarithm when forming cep-
stral features makes reestimation of unknown parameters using maximum
likelihood mathematically unattractive (Afify et al. 1997).

Ephraim has demonstrated that good enhancement of speech corrupted
by additive noise can be achieved using AR-HMMs (Ephraim 1992a). These
HMMs model feature vectors which are additive. However, the approach is
unable to adapt to unknown noise.

In this section, it will be shown that the technique of Rose et al. can
be combined with the work of Ephraim to develop an enhancement scheme
which can adapt to unknown noise. This is possible because the required
likelihood function is a linear function of the autocorrelation coefficients.

The procedure closely follows the work in (Rose et al. 1994) but applies
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it for the first time to AR-HMMs. A full description of the technique is given
in Appendix A. A summary is given here. To simplify notation, a single
mixture component per HMM state is assumed. The extension to multiple
mixture systems is straightforward.

Following the method of (Rose et al. 1994), a model for a sequence of
noisy observations Y is derived as

P(Y|)\) = P(S,D, X, X|)\)dSdD. 5.7
R o

Here S is a sequence of clean speech observations, X a sequence of clean
speech states, D a sequence of noise observations and X a sequence of noise
states. A refers generally to the model parameters. The contour of inte-
gration C is taken over all possible combinations of speech and noise which
can form the noisy observation. In this case, additive combinations are
considered.

Given this model, the noise parameters are chosen to maximise the
likelihood of the observed data. This is the method of maximum likeli-
hood parameter estimation. The model parameters A are: {az,z,,,V:Tt11},
{03,3,,,YE:Z111}, {E.Vx} and {¥zVZ}. (Here the notation of Section 3.6.5
has been used.) Thus it is required to find a new estimate of A\, X', which
maximises P(Y|A).

Since no closed form solution exists for this maximisation problem, the
method of Baum et al. (Baum et al. 1970) is used to find a solution. The
technique iteratively maximises an auxiliary function Q(\, \') with respect
to A'. For the case considered here, Q(-) is given by

Q(\, \) = E{log P(S,D, X, X|\)}. (5.8)

To reestimate the noise parameters, it is only necessary to maximise Q(-)
with respect to {az,s,,, V& %11} and {3zVZ}.

Consider first the maximisation of Q(-) with respect to {az, 3, ., V& Tr11}
As described in Appendix A, the new estimate of of az, 3, ,, is obtained using

' S p(E = Er E = 41, Y|
Br&ri1 T - _ -~ . (5.9)
>0 P(E: = &7, Y|X)

a

Thus the transition probability az,z,,, is reestimated as the sum over all
observations of the joint likelihood of state z, at time ¢ and state xri1
at time ¢ + 1 and the observation sequence Y, scaled by the sum over all
observations of the joint likelihood of state x, at time ¢ and the observation
sequence Y.

Now consider the reestimation of {£;VZ}. Because the noise is assumed
to come from an autoregressive process, each ¥z can be calculated from
its corresponding autocorrelation function. This is therefore the required
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statistic and is denoted by rz. This can be reestimated as described in
Appendix A using the following equation for each noise state Z

T

t;%:p(a:t =z,2:=2, YN E{rz|y:, vt =2,2 =%, \}
=== . (5.10)

T
> 2 p(ze=2,8=7,Y|))
t=1Vz

=D

r

Thus the reestimated autocorrelation function is given by the sum over all
observations and all clean speech states of the expected value of the autocor-
relation function given the particular speech state and noise state weighted
by the likelihood of being in that speech and noise state at time ¢ and given
the observation Y.

Note that the forms of Equations 5.9 and 5.10 are similar to the usual
parameter reestimation formulae for AR-HMMs (Juang 1984) and to the
reestimation equations for Gaussian mixture models presented in (Rose et
al. 1994).

Once each rz has been reestimated, it is used to form a model of the
noise spectrum which is required to form estimators of the enhanced speech
and for the construction of the noisy speech model.

For stationary noise, only maximisation with respect to X3 is required.
In this case, p(z; ==z, Z; =%, Y |\) can be calculated using the usual forward-
backward equations (e.g. see (Rabiner & Juang 1993)).

p(zy = =, = Z,Y|\) can also be approximated by noting that one
state sequence dominates P(Y,X,X|)\) (Merhav & Ephraim 1991). Thus
p(zy = z,& = Z,Y|\) can be replaced by by either one or zero depending
on whether or not z; is part of the dominant state sequence. Therefore
Equation 5.10 can be rewritten

, _ X Birslys o = o}, 8 = & A}
: |

r

(5.11)

&

Here, z* = {z},t = 1,...,T} is the most likely clean speech state sequence.
This can be found by performing Viterbi alignment using the compensated
model on the noisy observations.

The expected value of the autocorrelation function given the composite
state (z¢,%:) and y; is most easily obtained from the expected value of the
noise PSD function |[D|2. |D|? forms a Fourier transform pair with the
autocorrelation function which is convenient since it is simpler to work in
the frequency domain. Specifically,

E{rs, ()|yr, a7 = ot, 87 = &1, A} (5.12)

1= j2mik
— 2
= FE { E | Dy | exp ( >

k=0

Yr,Zr = T, Ty = .’L't,A}
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j2mik

K-1
= %ZE{|Dk|2‘yT,xT:xt,5:T:.fct,)\}exp( ) . (5.13)

k=0
Thus the term E{rz|z;, z; = x}, & = ¥, A\} in Equation 5.11 can be evaluated
as the inverse Fourier transform of E { |Dk\2| Y Tr = T}, & = B¢, A}

This can be estimated as shown in (Ephraim 1992a). Here, each compo-

nent k of | D|? is evaluated using Wiener filters designed to return the noise
PSD given the composite state information. Thus

E { ‘Dk|2‘ Yr Tr = -'EI: Tr = Ty, A} = sz,z"t,kfwz,k + ‘Hwi,it,ky;f,kﬁ' (5.14)

Here H,, s 1 is the kth component of the Wiener filter for the composite
state (z¢, £t), fz,kx is the kth component of the Fourier transform of the
autoregressive coefficients for clean speech state z; and Y; is the kth com-
ponent of the Fourier transform of the noisy observation at time ¢. Since
the Wiener filter is designed to return the MMSE estimator of the noise, its
transfer function is given by

__ fan
foz b+ ok
Equation 5.14 is derived assuming that the covariance matrices ¥, and

¥; of the speech and noise processes (see Equation 3.25) are circulant

(Ephraim 19926). This implies that the covariance matrices can be replaced
by a matrix of the form

Y~ Ck(f) = K'UD(f)UT. (5.16)

Hyr s,k (5.15)

Here K is the frame size, U is a KxK matrix whose (k,n)th element is
the complex exponential exp(—j2mkn/K) and D(f) is a KxK diagonal ma-
trix whose Kth diagonal element is given by the PSD of the autoregressive
process associated with that covariance matrix. Ck(f) assymtotically ap-
proaches ¥ as K approaches infinity. Thus the assumption holds assuming
sufficiently large K.

The new adaptive enhancement algorithm thus operates as shown in
Figure 5.2. Comparison of Figure 5.1 with Figure 5.2 shows that the only
difference between the systems is the technique of noise reestimation.

5.3 Summary

In this chapter, techniques to automatically estimate the noise from the
speech to be enhanced have been described.

The first technique estimates the noise statistics from detected pauses.
The AR-HMM framework is used for the pause detection. A variation of
this technique which weights the noise estimation according to how likely it
is that a particular frame is noise was also developed. The second approach
is to use maximum likelihood reestimation to estimate the noise parameters.
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Chapter 6

Autoregressive Hidden
Markov Models Using a
Perceptual Frequency Scale

The adaptive enhancement algorithms developed in the proceeding chapter
use autoregressive hidden Markov models. These are commonly used in the
speech enhancement community because they are mathematically well suited
to additive noise. This is in contrast to MFCC-based models which have
inherent non-linearities which make adaptation to additive noise difficult
(Afify et al. 1997).

However, MFCC-based models form the basis of many large vocabulary
speech recognition systems (e.g. (Woodland et al. 1997)). Clearly then the
modelling power of cepstral based features is greater than an autoregressive
system and it would be highly desirable to incorporate any advantages of the
first system into the second. This provides the motivation for this section
of work.

In this chapter, the distortion measures used in the two systems are ex-
amined. A major difference between them, the use of a perceptual frequency
scale in the MFCC system, is incorporated into the AR-HMM system. This
is found to improve recognition performance substantially.

6.1 Autoregressive HMM and MFCC HMM Dis-
tortion Measures

As noted in Chapter 2, one difference between AR-HMMs and ‘standard’
HMMs is the form of the state dependent pdf (b;,(s;) in Equation 2.1). In
both cases this pdf is a (possibly multiple mixture) Gaussian. However, in
the AR-HMM case, the covariance matrix of each Gaussian takes a special
form. The Gaussian pdf is then is a function of the P+ 1 autocorrelation co-
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efficients of the waveform where P is the order of the autoregressive process
(Juang 1984).

The equation for this pdf is reproduced here. A single mixture compo-
nent per state has been assumed for simplicity.

buu(se) & (20) /(02 Perp{~ a0 s A} (61)

aTt

Here
a(o;tlst; Ag,) =ra,,(0)rs, (0) +2 Z T A, ()7, (3 (6.2)

Refer to Section 2.4 or (Juang 1984) for more detall.
The difference between the log likelihood for a given observation s; using

its optimal autoregressive parameters and an arbitrary set is given by (Juang
1984)

L = logbg,(s)max — 10gba,(s)
K1 _

= 3% [a(c™!s,A) —logo?2 +logo? — 1] . (6.3)
Here o2 is the residual energy obtained when the optimal autoregressive
parameters corresponding to s; are used. As noted in (Juang 1984), the
bracketed term in Equation 6.3 is equivalent to the Itakura-Saito (I-S) dis-
tortion measure. Thus this measure is used to compare candidate models to

each observation.
The I-S distortion Ineasure between speech spectrum S(w) and autore-

gressive spectrum | A( TA(e7oyz Can also be written (Rabiner & Juang 1993)

ejw

dr s (s o = L T A —1ogo? +logo? — 1
I-S (W),W = 2 . (w)[A(e?)] g—og%‘l‘ 0go” —

™
= / Sﬁ;‘)) ;iw logo? +logo® —1. (6.4)
™ A "

Thus it can be seen that a major component of this distance measure is the
average of the ratio of the power spectral densities.

The cepstral distortion measure used in cepstral-based HMMs is also
related to a ratio of spectrums. Specifically, using the definition of the
cepstrum (Rabiner & Juang 1993)

log S(w Z cne I (6.5)

n=—oo
where ¢, is the nth cepstral coefficient, the cepstral difference can be shown
to be

9 dw

> e = [ logSw) -lgS @I (69
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S(w)

/ 8 51(w)

Thus the distortion measures used in AR-HMMs and cepstral-based HMMs
are related. However the distortion measure used in a typical cepstral-based
system differs from Equation 6.7 in two important ways. First, if the cepstral
features are modelled by Gaussians, a weighted distortion measure is used.
This aspect will be discussed in more detail in Section 8.2.2.

Second, the cepstral coefficients are generally derived using a warped
frequency spectrum yet AR-HMMs as described in (Juang 1984) use a linear
frequency spectrum. It is well known (Deller et al. 1993) that it is more
appropriate to use a warped frequency scale such as the Mel or Bark scale
since these correspond more closely to the frequency resolution of the human
ear. Therefore, in this chapter AR-HMMs are extended such that they use
a non-linear frequency scale. This work has been previously published as
(Logan & Robinson 19975).

2 dw
21’

(6.7)

6.2 Incorporation of Perceptual Frequency

In this section, frequency warping is incorporated into an AR-HMM recogni-
tion system. The approach taken here is to use the bilinear transform (Op-
penheim & Johnson 1972) to perform the warping. The inspiration came
from its use to improve the performance of linear prediction coding systems
(Strube 1980) and LPC-cepstral recognition systems (Shikano 1985).

The bilinear transform converts a time sequence to a new sequence with
a warped spectrum. By adjusting the so-called warping factor, the degree
of warping can be made to be a very good approximation to the Bark scale.
This is known to be related to perceptual frequency in a similar manner
to the Mel-scale (Deller et al. 1993). Further description of the bilinear
transform is given in Appendix B.

There are two main ways in which the bilinear transform can be imple-
mented. Using the recursion presented in (Oppenheim & Johnson 1972),
samples in the time domain, autocorrelation domain or autoregressive pa-
rameter domain can be transformed. In these cases, a new infinite sequence
results. The Fourier transform of this sequence yields a spectrum or PSD
on a warped frequency scale.

The second technique is described in (Strube 1980). Here the warped
autocorrelation coeflicients are given directly by

Xz 0
R, = I;)cos(nﬂk) <d_9>k P;. (6.8)

Here R, is the nth warped autocorrelation coefficient, Qj is the warped
frequency corresponding to €2 and Py is the non-warped PSD.
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There is a significant difference in computational complexities between
the two schemes. The first approach requires O(N?) calculations per frame
where N is the number of samples in the sequence to be transformed. N may
be the frame size, the number of autocorrelation coefficients or the order of
the autoregressive process according to which sequence is transformed. The
second technique requires calculations O(PK) per frame where P is the
number of autoregressive coefficients required and K is the frame size.

Figure 6.1 shows the way in which the bilinear transform is integrated
into a clean AR-HMM recognition system. It is seen that this can be eas-
ily achieved by warping the autocorrelation coefficients of the testing and
training data.

Training
Examples
'd N\ 'd N\ W d .
. - arpe
W -| Autocorrelation —{ Bilinear transform P
AN J . J
Clean
'd N\ 'd N\
] N Warped Speech
—-{ Autocorrelation —| Bilinear transform Models
AN J . J
'd N\ 'd
. - Warped
- Autocorrelation —| Bilinear transform

. J - J

Testing
Example

. - Warped .
—| Autocorrelation Bilinear transform Comparison

Figure 6.1: A perceptual frequency AR-HMM recognition system. Here the
autocorrelation functions of both testing and training examples are warped
using the bilinear transform such that all comparisons of testing and training
data are performed on a warped frequency scale.

6.2.1 Determination of the Warping Factor

The bilinear transform has one parameter: the warping factor. This deter-
mines how closely the transform approximates the Bark scale and must be
chosen according to the sampling rate. Figure 6.2 shows the approximation
for various warping factors at a 16kHz sampling rate. It can be seen that
the approximation is reasonable for warping factors in the range 0.5-0.6.
Smith and Abel (Smith & Abel 1995) have developed a formula to de-
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termine the optimal warping factor for a given sampling frequency. Their
technique is based on minimising the error between the Bark scale and the
bilinear transform approximation. This formula is reproduced here.

2
a ~ 1.0211 | Ztan 1(0.076f,)| — 0.19877 (6.9)
™

Here « is the warping factor and f, is the sampling frequency measured in
kHz. For the sampling frequency of 16kHz, Equation 6.9 gives a warping
factor of 0.57.

A final way to determine the warping factor is to build a warped AR-
HMM recognition system and investigate its performance for different warp-
ing factors. This is particularly interesting because it shows how sensitive
the system is to different warping factors and how critical it is that the Bark
scale is used. The experiments are described below.
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Figure 6.2: Bilinear transform approximation to the Bark scale for various
warping factors at 16kHz sampling rate. A warping factor of zero implies
no warping and is represented by the rightmost dotted line.

Initial Recognition Experiments

Experiments were conducted using the ISOLET database collected for use
in (Fanty & Cole 1990). This database contains two isolated tokens of each
letter of the alphabet for 150 American English speakers, 75 male and 75
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female. 120 speakers were used for training and 30 for testing. The speech
is sampled at 16kHz.

Experiments were performed using the English E-set letters {“B”, “C”,
“D”, “BE”, “G”, “P”, “T” and “V”} only. This is considered to be a diffi-
cult task due to the high level of confusibility between these letters. The
small number of classes however, means that recognition experiments can
be performed in a reasonable time.

The implementation of the clean AR-HMM system was as follows. The
speech was divided into frames of 32ms with a 16ms overlap. One 13 emitting
state HMM was trained for each letter using AR models of order 20. Warping
was performed in the frequency domain according to Equation 6.8. The clean
autocorrelation coefficients were normalised by their autoregressive variance
so that energy information was removed.
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Figure 6.3: Clean speech recognition error rates for various warping fac-
tors. Experiments performed on ISOLET data using 3 mixture AR-HMM
systems. A 4th-order polynomial is fitted to the data.

Recognition results for various warping factors using a 3 mixture system
are plotted in Figure 6.3 with a 4th-order polynomial fitted. The results
indicate that the choice of warping factor is not critical and indeed any
value in the range 0.5-0.6 will suffice. This is in agreement with the plot
of warping factors versus the Bark scale. In light of these observations and
given that the warping factor returned by Equation 6.9 is within this range,
0.57 is the chosen warping factor and is used for all subsequent experiments
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unless stated. Figure 6.4 shows the approximation to the Bark scale for this
warping factor.
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Figure 6.4: Bilinear transform approximation to the Bark scale for the cho-
sen warping factor of 0.57.

6.2.2 Comparison with MFCC Clean Recognition

The recognition results for various numbers of mixture components using
the chosen warping factor of 0.57 are shown in Table 6.1. Also in this table
are results for an AR-HMM system without warping and a MFCC-based
system.

The MFCC-based system had a comparable number of parameters to
the AR-HMM system. Specifically, one 13 emitting state HMM was trained
for each letter with 12 MFCC coefficients and one energy coefficient per
state. Recognition was performed with and without the 13 delta coefficients
and using various numbers of mixture components. The Gaussian mixture
components had diagonal covariance matrices.

The ‘% Error’ figure in Table 6.1 was calculated using

% Error = DtS+I, 100%. (6.10)
N
Here D, I and S represent the number of deletions, insertions and substitu-
tions respectively and N is the number of letters in the test set.
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Model Number % Error
Mixture (D,S,I)
Components
AR no warping 1 40.4 (0,192,2)
2 38.5 (0,192,0)
3 41.0 (0,137,0)
AR with warping 1 26.7 (0,127,1)
2 28.8 (0,138,1)
3 28.8 (0,138,1)
MFCC no deltas 1 24.4 (0,117,0)
2 25.4 (0,122,0)
3 25.4 (0,122,0)
MFCC with deltas 1 17.1 (0,82,0)
2 12.9 (0,62,1)
3 11.0 (0,53,0)

Table 6.1: Recognition results for clean speech tests using the E-Set from
the ISOLET database. AR-HMMs with and without frequency warping are
compared to MFCC systems with and without delta parameters.

It can be seen that warping the frequency scale decreases the recognition
error of the AR-HMM system quite considerably. In fact the results now
approach those of the MFCC-based system without delta parameters.

One obvious difference between the MFCC-no-delta and AR-HMM sys-
tem is the lack of energy information in the AR-HMM system. To investigate
the effect of this, energy information was incorporated into the AR-HMM
framework similar to (Juang & Rabiner 1985). Here, the likelihood expres-
sion for an observation given the current state was modified by the addition
of a term describing the probability of the state having a given energy. This
extra term was scaled by an empirically chosen factor.

Table 6.2 shows the error rates obtained as a function of this scaling
factor. It is seeing that by an appropriate choice of scaling factor, the error
rate decreases by about 1-2% absolute. It would appear then that in this
domain, the information in the delta parameters is now the main information
missing from this modified AR-HMM system.

6.2.3 A Perceptual Frequency AR-HMM Enhancement Sys-
tem

The work in the previous section has demonstrated that the incorporation
of perceptual frequency can improve the modelling power of AR-HMM clean
recognition systems. These benefits can also be incorporated into AR-HMM
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Model Number Scale % Error
Mixture Factor (D,S,I)
Components
AR with warping 1 0 26.7 (0,127,1)
1 10 | 26.5 (0,126,1)
1 20 | 24.8 (0,118,1)
1 30 | 25.0 (0,119,1)

Table 6.2: Recognition results for clean speech tests using the E-Set from
the ISOLET database. AR-HMMs with frequency warping are augmented
by the addition of energy information scaled by an empirically determined
factor.

enhancement systems as follows.

The enhancement systems described in Chapter 5 calculate which filter
to use to enhance each frame of corrupted speech based on the probability
of each mixture component given the noisy observation. This probability
is calculated using a compensated AR-HMM. Although this AR-HMM tra-
ditionally uses a linear frequency scale, it is fairly straightforward to build
a compensated AR-HMM using speech and noise models trained on ob-
servations with a warped frequency scale. Hence a perceptual frequency
compensated AR-HMM can be created. This compensated AR-HMM can
then used in conjunction with warped observation vectors to determine the
weights required for the filtering stage of the enhancement system.

This system is shown in Figure 6.5. Since it is computationally expensive
to warp and unwarp time domain observations, the filters are applied to non-
warped observations. Therefore, it is necessary to obtain unwarped versions
of each warped filter and hence of each speech and noise model for use with
the non-warped (i.e. unprocessed) observations.

However, because the warping process transforms a finite sequence to an
infinite sequence (Oppenheim & Johnson 1972), it is never possible to exactly
unwarp a given speech or noise model. This problem can be addressed using
single pass retraining to train non-warped models.

Given a set of models, single pass retraining (e.g. see (Young, Jansen,
Ollason & Woodland 1996)) generates a parallel set of models using different
training data. This is achieved by computing the state probabilities using
the original models and the original training data, but then switching to
a new set of training data to compute parameter estimates for the new
model. Thus given parallel warped and non-warped observations and warped
models, non-warped models which correspond exactly to the warped models
can be trained.

Therefore, in order to build a non-adaptive perceptual frequency en-
hancement system, the first step is to train warped speech and noise models
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Figure 6.5: A perceptual frequency enhancement system. Here the weights
for each filter are determined using perceptual frequency AR-HMMs. The
filters themselves are constructed using non-warped AR-HMMs.
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using warped observations. These are then used in conjunction with paral-
lel warped and non-warped observations to train non-warped models which
correspond exactly to the warped models.

The enhancement process requires warped and non-warped observations.
The warped observations are used in conjunction with warped models to
calculate the probability of each composite state. The statistics of each
state in the corresponding non-warped model are then used to construct
filters which operate on non-warped observations.

In order to implement the adaptive enhancement schemes described in
the previous chapter, the noise models must now be reestimated in parallel in
both the warped and non-warped domains. This can also be achieved using
the compensated warped models in conjunction with warped observations
for all probability calculations, and warped and non-warped data in parallel
with this to reestimate the noise statistics in the warped and non-warped
domain respectively.

A final point to note is that it is possible to obtain a version of the
unwarped spectrum by sampling the warped spectrum. Consider the warped
spectrum corresponding to a set of autocorrelation coefficients warped using
Equation 6.8. This can be written

)

o

1B@)[*

S(@) = (6.11)

Here @ is the warped frequency corresponding to w. As described in Ap-
pendix B, these are related by

(1 —a?)sinw
(14+a?)cosw —2a] "

@ = arctan (6.12)

B(w) = 25:0 bne ™ is the transfer function formed from the autoregres-
sive filter corresponding to the warped autocorrelation coefficients. 2 is
the variance parameter for this filter. For sufficiently large filter order P,
02 = &2 (Strube 1980). Therefore, given that the relationship between w
and @ is known, S(©) can be sampled to give S(w).

This unwarped spectrum will not correspond exactly to the original
non-warped spectrum. This original spectrum could only be obtained by
sampling if B(@) and &% were obtained by transforming the original filter
parameters. This would imply that B(w) had infinite order (Strube 1980).

However, a spectrum unwarped in this fashion will model the lower for-
mants with more precision at the expense of features at the higher frequen-
cies. Since low frequency features are perceptually more important, there is
reason to expect that using this technique to unwarp spectrums to create
filters for enhancement would lead to improved enhancement.

Preliminary experimentation with an enhancement system in which warp-
ed models are unwarped by resampling the warped spectrum indicated that
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there was no perceptual improvement over a similar system using non-
warped models trained using single pass retraining. These experiments were
performed at the given model order of 20. This agrees with the results in
(Strube 1980) where the incorporation of perceptual frequency into a coding
system did not improve intelligibility scores if the filter order was sufficient
for modelling.

The results in (Strube 1980) do indicate however that if a lower filter
order is used, then there could be perceptual advantage in using the re-
sampled warped spectrum rather than the more exact single pass retrained
spectrum. This could be exploited to construct a system with less parame-
ters. Investigation of this research path is left to future work.

6.3 Summary

In this chapter, perceptual frequency was incorporated into AR-HMM sys-
tems using the bilinear transform. Clean speech recognition experiments
showed that this improved recognition performance considerably. The con-
struction of an enhancement system incorporating perceptual frequency was
also described.



Chapter 7

Evaluation on the
NOISEX-92 Database

In order to evaluate the effectiveness of the developed enhancement algo-
rithms, initial experiments were conducted using the NOISEX-92 database
(Varga et al. 1992). This database is suitable for small vocabulary experi-
ments and was therefore used to verify the working of the algorithms and
to investigate variations.

7.1 The NOISEX-92 Database

The NOISEX-92 is a publicly available database often used for benchmark
experiments. It contains isolated digits and digit triplets spoken by both
male and female speakers. The speech is corrupted by various noise sources
at SNRs ranging from -6 to 18dB. The clean speech signal is also avail-
able. The database was generated by adding the noise to the clean speech
hence speech artifacts due to speaker stress in noise are not present. Speech
corrupted by convolutional noise is also available.

The experiments in this chapter used only the isolated digit task with
predominantly the male speaker. The female speaker was used for some
tests. Only additive noise was considered.

7.2 Noise Sources

The following four stationary noise sources are used: Lynx helicopter noise,
speech noise, car noise and F16 aircraft noise. These noises can be modelled
using single state HMMs. Appendix C shows a typical spectrogram and
spectrum for each of these noises.

59
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7.3 Evaluation Methods

Several methods were used to evaluate the effectiveness of the enhancement
algorithms. An informal qualitative assessment was made of enhanced wave-
forms and a Compact Disc is supplied as Appendix D in order that the main
characteristics of each algorithm may be heard. Quantitative assessment was
performed by recognition tests and distortion measures. These are described
more fully below.

7.3.1 Distortion Measures

The Itakura distortion measure (Gray et al. 1980) was used to provide a
quantitative measure of the quality of the enhanced speech. This measure
is related to human auditory perception since it is heavily influenced by
mismatch in formant locations. The distortion calculated was for both the
speech portions of the signal and the entire waveform.

7.3.2 Recognition Tests

Because the optimal distortion measure is unknown, the enhancement al-
gorithms were also evaluated by investigating the clean speech recognition
performance. Specifically, the enhanced speech was converted to MFCC
parameters and recognised using a clean speech MFCC system. Here the
features were derived directly from the enhanced spectra without resynthe-
sising the speech in the time domain. A MFCC recognition system was
used since it gave the best performance overall. These recognition exper-
iments gave an indication of the value of each enhancement scheme as a
front-end to a recognition system. They also provided quantitative evidence
of performance.

7.4 Recognition Systems

A clean speech MFCC HMM system is required for analysis. In addition,
warped and non-warped clean speech AR-HMM recognition systems are
needed for the word-based enhancement system and for baseline experi-
ments. These models were constructed using the HMM Toolkit V1.5 (Young
et al. 1993). It was necessary to make substantial additions to the toolkit
in order to accommodate AR-HMMs since these are not implemented. The
parameter reestimation formulae for these HMMs are provided in standard
references (e.g. see (Rabiner & Juang 1993)).

Both the MFCC and AR systems worked with frames of 32ms with
overlap of 16ms. The frame size and overlap were chosen to be convenient
for enhancement. For the given sampling rate of 16kHz, 32ms corresponds to
a frame size of 512 which is a power of 2. Therefore a fast Fourier transform
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algorithm can be used without zero-padding. The overlap of half the frame
size is useful for reconstructing the enhanced speech in the time domain.
Since Hamming windows are used to create each frame, the enhanced frames
can simply be overlapped and added together.

The MFCC clean recognition system consisted of an 8-emitting state
left-to-right HMM model for each digit and a l-emitting state model for
silence. The MFCC feature vectors contained 15 cepstral coefficients. Diag-
onal covariance matrices were used.

The standard recipe for training and testing models built using the HMM
Toolkit was used. Thus training was performed using Baum-Welsh reestima-
tion of parameters from an initial model. Connected word Viterbi decoding
was used for recognition (i.e. not isolated word recognition). The syntax
for the recognition network was constrained to be a string of digits each
followed by silence.

The AR-HMM recognition system also trained 8-emitting state left-to-
right digit models and a l-emitting state silence model. Each state had 2
mixture components. The autoregressive order was 20. Again continuous
speech recognition was performed during decoding. Systems were trained
using warped and non-warped parameterisations where the frequency warp-
ing was implemented as described in Chapter 6.

Similar to (Seymour 1996), it was found that improved recognition per-
formance could be obtained by increasing the log observation probability of
the silence model by a fixed value. Particularly in the case of low SNRs, this
improves the chance of low energy frames at word boundaries being recog-
nised correctly as silence. It was found though that the optimal value of
this parameter is a function of both the SNR and the noise type. Therefore,
since the noise type is assumed unknown, the silence probability increment
was only varied for the baseline experiments to investigate the empirical
best performance.

The models were trained on 100 clean digits and tested on 100 unseen
clean digits and 100 digits for each noise type at each SNR from -6dB to
18dB. For processing, the digits were grouped into 5 files of 20 digits each
similar to (Gales 1995) and (Seymour 1996).

7.5 Result Presentation

In order to enhance legibility, summary results are shown in this chapter.
Full results for each test condition are given in Appendix E. The summary
results are the distortion measures and recognition error rates averaged over
all noise types for each SNR.
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SNR Distortion % Error (D,S,I)

dB | Overall | Speech MFCC Models | AR Models

6 1.18 | 1.1895.00 (380,0,0) |95.00 (380,0,0)
0 1.10 | 1.00 | 95.00 (380,0,0) | 94.50  (378,0,0)
6 0.99 | 0.78 [92.00 (300,0,0) |93.75  (375,0,0)
12 0.84 | 0.55 | 77.00 (88,160,60) | 80.50 (127,156,26)
18 0.66 | 0.34 | 54.50 (57,97,64) | 65.75 (27,214,22)
00 0.00 | 0.00| 000 (0,0,0) 0.00  (0,0,0)

Table 7.1: Distortions and word error rates for speech corrupted by the
four noises and recognised using clean MFCC and AR models; derived from
Table E.1.

7.6 Statistical Analysis

In order to compare whether the differences between the various algorithms
are significant, statistical analyses of the recognition errors were performed.
The technique used was the Matched-Pairs test described in (Gillick & Cox
1989). The statistic used by this test is the difference in the errors given by
two different algorithms on the same set of utterances. The MFCC recogni-
tion results were compared since these are available for all test systems. A
confidence level of 95% was used.

7.7 Baseline Performance

Table 7.1 shows the summary distortion and recognition error rates for
speech corrupted by each of the four noise sources tested with clean models.
Results for both clean MFCC and clean non-warped AR models are shown.
The insertion penalties and silence probability increments were chosen to
maximise the accuracy at each SNR and for each noise type. It can be
seen that the performance degrades rapidly with decreasing SNR for both
systems.

Table 7.2 summarises the word error rates achievable when the training
and testing conditions are matched. This gives an indication of the upper
bound performance achievable by any enhancement system. The matched
system was obtained using single pass retraining.

Results are shown for AR systems with and without frequency warping.
It can be seen that only the warped system approaches the performance of
the MFCC-based system.

Table 7.3 summarises the word error rates for the compensated non-
warped and warped AR systems. Here the compensated systems were
formed using noise models trained on portions of the noisy signal labelled as
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SNR % Error (D,S,1)
dB MFCC Models | AR Models | Warped AR Models
-6 | 32.50 (37,81,12) | 42.00 (33,109,26) | 33.50 (14,108,10)
0| 250 (0,10,0) |24.00 (6,80,10) 6.50 (3,23,0)
6| 0.25 (0,1,0) 9.75 (0,39,0) 0.75 (0,3,0)
12 | 0.00 (0,0,0) 3.75 (0,15,0) 0.00 (0,0,0)
18 | 0.00 (0,0,0) 1.75 (0,5,0) 0.00 (0,0,0)

Table 7.2: Word error rates for corrupted speech recognised using matched
MFCC and AR models; derived from Table E.2.

SNR % Error (D,S,I)
dB AR Models | Warped AR Models
-6 | 38.75 (30,100,25) | 20.75  (14,57,12)
0| 225 (13,67,10) 4.75 (2,17,0)
6 | 8.00 (3,29,0) 0.75 (0,3,0)
12 | 3.25 (0,13,0) 0.00 (0,0,0)
18 | 1.00 (0,4,0) 0.00 (0,0,0)

Table 7.3: Word error rates for corrupted speech recognised using compen-
sated AR models; derived from Table E.3.

noise. Therefore they represent the best compensated models available to
calculate the probabilities required for enhancement. Again the performance
of the warped system is superior.

In light of these results, the remainder of the work in this chapter will
focus on enhancement systems based on warped AR-HMMs.

7.8 Enhancement Experiments

The configuration of the enhancement systems studied was as described
in Section 6.2.3. That is, warped AR-HMMs were used to calculate the
probabilities required for noise reestimation and choice of filters, whereas
non-warped AR-HMMs were used to construct the filters required. The
frame size, frame overlap and parameterisation of the speech used for the
enhancement schemes were identical to that used previously. The noise was
modelled using a single state AR-HMM with autoregressive order 20. This
model was initialised by assuming the whole utterance was noise.
The variations investigated can be divided into three main categories:

e enhancement using Wiener filters versus enhancement using MMSE
PSD estimation
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e noise estimation from silences versus maximum likelihood noise pa-
rameter estimation

e word-based HMMs versus general speech HMMs.

Two types of recognition results are given in the following tables. The
‘MFCC Recoded’ column lists recognition results obtained by recognising
the reparameterised enhanced speech using the clean MFCC models. The
‘AR Compensated’ column lists the results obtained when recognising the
noisy speech using the compensated AR models. Hence the ‘Recoded’ col-
umn indicates how close the enhanced speech is to clean speech and the
‘Compensated’ column indicates the quality of the filters used to enhance
the speech.

It was found for the word-based HMMs that the optimal insertion penalty
for each test varied according to the noise type and SNR. However, the SNR
was the dominating factor with deletions more prominent at low SNRs and
insertions more prominent at high SNRs. In order to automatically choose
the insertion factor, the NIST tool wavmd was used to approximate the
SNR for each test file. This was then mapped to an insertion penalty. The
mapping from SNR to insertion penalty was determined separately for each
system tested.

7.9 Word-Based Models

The first set of experiments used systems constructed from word-based
HMDMs. The warped frequency clean speech word-based HMMs were identi-
cal to the warped clean AR-HMM models used for the baseline experiments.
The non-warped clean speech models were trained using single pass retrain-
ing on the warped models in order that the data used to train each mixture
component corresponded in both systems.

For these experiments, Viterbi alignment was used to obtain the most
likely speech and noise state for each frame given the noisy observation. The
most likely mixture component given this state was determined. The speech
and noise statistics for this mixture component were then used to construct
Wiener filters or MMSE PSD estimators for enhancement. These statistics
were also used for the maximum likelihood noise reestimation scheme.

7.9.1 Noise Estimation Using Recognised Silences

Table 7.4 summarises the recognition performance and distortion measures
for the system enhanced by the first (unweighted) scheme described in Sec-
tion 5.1 in which the noise is reestimated from the recognised silences. These
results are for a system using Wiener filters at the enhancement stage. Table
7.5 summarises the results for the same system with a MMSE PSD estimator
at the enhancement stage.
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Distortion % Error (D,S,I)
SNR | All | Speech MFCC AR

dB Recoded Compensated

-6 | 1.50 1.23 | 76.75 (122,137,48) | 74.25 (103,109,85)

0| 1.34 1.06 | 63.25 (150,89,14) | 44.50  (130,73,2)
6 | 0.94 0.68 | 39.50  (44,84,30) | 17.50 (2,60,8)
12 | 0.59 0.44 | 21.75  (23,44,20) 5.75 (0,20,3)
18 | 0.52 0.38 | 39.00 (102,37,17) 1.75 (0,5,2)

Table 7.4: Distortions and word error rates for corrupted speech enhanced
adaptively using recognised silences to estimate the noise; Wiener filters and
word-based HMMs; derived from Table E.4.

Distortion % Error (D,S,I)
SNR | All | Speech MFCC AR

dB Recoded Compensated

-6 | 1.20 1.00 | 73.50 (100,109,85) | 74.25 (103,109,85)

0]0.97 0.77 | 51.25  (132,71,2) | 44.50  (130,73,2)
6 | 0.61 0.40 | 17.75 (2,60,9) 17.50 (2,60,8)
12 | 0.34 0.23 | 6.00 (0,21,3) 5.75 (0,20,3)
18 | 0.22 0.17 | 1.75 (0,5,2) 1.75 (0,5,2)

Table 7.5: Distortions and word error rates for corrupted speech enhanced
adaptively using recognised silences to estimate the noise; MMSE PSD es-
timation and word-based HMMSs; derived from Table E.5.
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Naturally the ‘AR Compensated’ columns in both these tables are iden-
tical since the two systems differ only in the function applied to perform the
enhancement. It can be seen however, that the recognition performance and
distortion measures are superior for the MMSE PSD estimator.

The inferior performance of the Wiener filter estimator arises because
it is a MMSE time domain estimator yet the Itakura distortion measure
and MFCC recognition results are influenced by errors in the short-time
spectrum. Appendix F derives the expected short-time spectral amplitude
given by a Wiener filter. This is seen to be highly dependent on the SNR.
In particular, it is seen that when the signal and noise have approximately
the same magnitude, the expected value of the enhanced spectral amplitude
is a scaled version of the original signal rather than the original signal itself.

Both systems however have improved considerably on the original base-
line in Table 7.1. It should be noted though that even the performance of
the MMSE PSD system does not approach the theoretical best performance
given in Table 7.2.

Perceptual Characteristics

Listening tests showed that the quality of the enhanced waveform was quite
good unless gross recognition errors were made. These errors affect the fil-
ters used for enhancement. A particular problem was substitution errors
which sometimes caused a digit to sound like the mis-recognised one. In
addition, insertion errors and badly aligned digits led to portions of inad-
equately suppressed noise and deletion errors caused digits to be omitted.
These general characteristics were observed for all the enhancement systems
studied whenever recognition errors were made.

In general, the Wiener filter system sounded better than the MMSE
PSD estimator system. This was because in the latter system, the silence
portions of the wave were not completely suppressed, even if the silence filter
was correctly chosen. This is an example of a situation in which perceptual
improvement does not guarantee improved recognition accuracy.

Figures 7.1 and 7.2 show the spectrograms for a portion of clean speech
and the same portion with Lynx noise at 12dB added. Figures 7.3 and 7.4
show the enhanced waveforms for the Wiener and MMSE PSD estimator
systems respectively. It can be seen that the Wiener filter system suppresses
more of the noise in the silence portions.

The trend of the Wiener filter enhancement system sounding superior
yet having inferior recognition performance was observed across all systems
studied. Therefore for the remainder of this dissertation, recognition results
and distortion measures will only be given for MMSE PSD estimators. Con-
versely, spectrograms will only be shown for systems using Wiener filters.
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Figure 7.1: Clean speech spectrogram for the male speaker; first 4 test digits
‘ONE’, ‘SIX’, ‘THREE’, ‘FIVE’.
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Figure 7.2: Spectrogram for speech with Lynx Noise at 12dB.
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Figure 7.3: Spectrogram for speech with Lynx noise at 12dB; Enhanced
using noise from recognised silences and Wiener filters.
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Figure 7.4: Spectrogram for speech with Lynx noise at 12dB; Enhanced
using noise from recognised silences and MMSE PSD estimators.
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Distortion % Error (D,S,I)
SNR | All | Speech MFCC AR
dB Recoded Compensated

61063] 0.69]2650 (30,53,23) | 26.75 (27,57,23)
0/039| 042| 625 (1,14,10) | 6.25 (1,14,10)
6026| 027| 050 (0,200 | 075  (0,2,1)
12018 | 0.18| 000 (0,000 | 0.00 (0,0,0)
18013 | 0.12] 000 (0,000 | 0.00 (0,0,0)

Table 7.6: Distortions and word error rates for corrupted speech enhanced
adaptively using maximum likelihood noise parameter estimation; MMSE
PSD estimation and word-based HMMs; derived from Table E.6.

7.9.2 Maximum Likelihood Noise Parameter Estimation

Table 7.6 summarises the results obtained using the maximum likelihood
parameter estimation scheme described in Section 5.2. Here it is seen that
the results are much improved over the technique of estimating the noise
from the recognised silences. Analysis shows that they are significantly
better. The results are also comparable to the matched model baseline
results in Tables 7.2 and 7.3.

Figure 7.5 shows the convergence of the noise spectrum for the Lynx noise
at 12dB. It is seen that convergence is achieved within several iterations.

Listening tests confirmed the superior performance of this algorithm over
the previous one in which the noise is estimated from the recognised silence
regions. A major benefit was fewer recognition errors giving superior filters
for enhancement. Figure 7.6 shows the enhanced spectrogram for the same
portion of speech studied earlier.

Variation of Autoregressive Order

As mentioned, an autoregressive order of 20 was used for the experiments.
However, recognition systems tend to model the spectrum using less param-
eters. Therefore, the maximum likelihood MMSE PSD estimator system
was implemented using an autoregressive order of 15.

The results from this experiment are summarised in Table 7.7. Although
these seem comparable to the results for order 20, analysis shows that they
are significantly worse. Therefore, for the remainder of this dissertation, an
autoregressive order of 20 was maintained.

Comparison with a Linear Spectral System

In order to determine whether the AR-HMM system has any advantage over
a linear spectral system, a linear spectral enhancement system was built and
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Figure 7.5: Convergence of the noise estimate for Lynx noise at 12dB.
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Figure 7.6: Spectrogram for speech with Lynx noise at 12dB; Enhanced
using maximum likelihood noise estimation and Wiener filters.
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Distortion % Error (D,S,I)
SNR | All | Speech MFCC AR
dB Recoded Compensated

6067 0.71]2825 (30,68,15) | 26.75 (28,62,17)
0042 | 044| 750 (518,7) | 650 (3,15,8)
6|028| 029| 200 (0,5,3) 150  (0,3,3)
12018 | 019] 025 (0,1,0) | 0.00 (0,0,0)
18014 | 0.13] 000 (0,000 | 0.00 (0,0,0)

Table 7.7: Distortions and word error rates for corrupted speech enhanced
adaptively using maximum likelihood noise parameter estimation; MMSE
PSD estimation and word-based HMMs; autoregressive order 15; derived
from Table E.6.

tested. This system was analogous to the AR-HMM system except a linear
spectral distortion measure was used to determine the probabilities required
for choosing the enhancement filters.

Specifically, a clean speech recogniser was built using data parameterised
into 13 Mel spectrum bins. These features were modelled using standard
HMDMs with Gaussian state probabilities with diagonal covariance matrices.
The digit and silence models had the same number of states as the AR-
HMM system. Again two mixture components per state were used. The
Mel spectrum system was then used to train non-warped AR models for the
filtering stage as before.

The enhancement system was constructed as follows. The Mel spectrum
models were used to determine the probability of each state given the noisy
observations. The non-warped AR models were then used to filter the ob-
servations according to these probabilities. The system is analogous to that
in Figure 6.5 and is shown in Figure 7.7. The number of parameters for
both systems is approximately the same since the Mel spectrum system has
twice the number of parameters per mixture component.

Table 7.8 summarises the distortion measures and recognition results
for the linear system. A MMSE PSD estimator was used to determine the
enhanced spectrum.

Comparison of Tables 7.6 and 7.8 shows that the two systems produce
comparable results. However the results for the linear system are signifi-
cantly worse than the AR-HMM results. Possibly the linear system’s results
could be improved using full covariance matrices but this would be at con-
siderable computational expense. Thus in this domain it appears that there
is some advantage in using the distortion measure provided by an AR-HMM
system.
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Figure 7.7: A linear spectral enhancement system; The probability of each
composite state is given using a linear distortion measure.

Distortion % Error (D,S,I)
SNR. | All | Speech MFCC
dB Recoded

-6 | 0.61 0.89 | 43.75 (66,58,51)

0] 0.50 0.72 | 25.25  (69,32,0)

6 | 0.28 0.37 | 0.50 (1,1,0)

12 | 0.22 0.29 | 0.00 (0,0,0)

18 | 0.20 0.22 | 0.00 (0,0,0)

Table 7.8: Distortions and word error rates for corrupted speech enhanced
adaptively using linear spectral models; derived from Table E.8.
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7.10 General Speech Models

The work so far has demonstrated that good enhancement can be achieved
using maximum likelihood noise parameter reestimation and word-based
HMMs. In this section, a system based on simpler models is studied.

The system is similar to the original enhancement system proposed by
Ephraim. Instead of using word or phone based HMMs, a general, multiple
mixture speech model was trained. Here each mixture component models
sounds with similar spectral characteristics. Although there is less prior in-
formation in this system, it is still possible to perform effective enhancement
since ultimately it is the filter used that is important.

The HMM topology for the initial experiments consisted of a two-state
model with the first state modelling speech using 128 mixture components
and the second state modelling silence using a single mixture component.
Transitions between the states were freely allowed.

Both warped and non-warped models were required for the enhancement
systems as before. The warped models were initialised using single-pass
retraining on a MFCC general speech system. The speech state of this
MFCC system was trained using K-means clustering of MFCC vectors of
size 30 on speech data as described in (Seymour 1996). The silence state was
initialised on labelled silences. The MFCC system was used for initialisation
in order to take advantage of its superior distortion measure.

After initialisation, the AR HMMs were reestimated using Baum-Welch
reestimation. Single pass retraining was then used to train the non-warped
AR models from the warped AR models as before. The same clean word-
based MFCC models used previously were used to recognise the MFCC
parameters calculated from the enhanced spectra.

In the previous experiments, Viterbi alignment was used to obtain the
most likely speech and noise states corresponding to each frame. In this
section, the forward-backward equations (e.g. (Rabiner & Juang 1993))
were used instead to calculate the likelihood of each mixture component of
the compensated model. This was then used to construct a weighted sum
of estimators for enhancement. Also, when maximum likelihood estimates
of the noise are made, a weighted sum of estimators is used.

The experiments here are mostly concerned with the maximum likelihood
noise parameter estimation scheme since this has been shown to be superior.
However, since the likelihood of each compensated mixture component is
available, the weighted recognised silence noise estimation scheme described
in Section 5.1.1 is studied here for the first time.

7.10.1 Noise Estimation Using Weighted Recognised Silences

Table 7.9 summarises the results for a 128-mixture system. Here the prob-
ability of an observation being in the ‘silence’ state was used to weight the
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Distortion % Error (D,S,I)
SNR | All | Speech MFCC
dB Recoded

6]1.02] 0.83]89.25 (345,10,0)
0/080| 0598375 (318,17,0)
6|053| 0.38]5650 (137,79,10)
12032 0232525 (36,53,12)
18016 | 0.13| 250  (3,7,0)

Table 7.9: Distortions and word error rates for corrupted speech enhanced
adaptively using weighted silences to estimate the noise; MMSE PSD esti-
mation and general HMMs; 128 mixture components; derived from Table
E.9.

Distortion % Error (D,S,I)
SNR | All | Speech MFCC
dB Recoded

6090 0.79]85.75 (332,11,0)
0|067| 0567875 (274,41,0)
6043 | 0.37 | 5150 (93,103,10)
12025 | 0221575  (16,44,3)
18015 | 0.13| 250  (3,6,1)

Table 7.10: Distortions and word error rates for corrupted speech enhanced
adaptively using maximum likelihood noise parameter estimation; MMSE
PSD estimation and general HMMs; 128 mixture components; derived from
Table E.10.

noise estimates. The results in this table show that this system is inferior
to any of the enhancement systems studied so far. This was confirmed by
listening tests.

7.10.2 Maximum Likelihood Noise Parameter Estimation

Table 7.10 summarises the results for a 128-mixture system using maximum
likelihood noise parameter estimates. These results are significantly better
than those for the weighted silence technique above. However they are still
inferior to the word-based system despite having a comparable number of
parameters. Thus it can be concluded that some performance is sacrificed
by the use of simpler models.

Figure 7.8 shows the enhanced spectrogram for the usual test segment of
speech enhanced using this system with Wiener filters at the output stage.
Listening tests showed some residual noise was present at 12dB. The residual
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Figure 7.8: Spectrogram for speech with Lynx noise at 12dB; Enhanced
using maximum likelihood noise parameter estimation and Wiener filters;
128 mixture components; general models.

noise is annoying in that it constantly fluctuates in the silence regions. This
is because the filters used for enhancement can vary widely from frame to
frame. This phenomenon was rarely observed for word-based systems since
in this case, the language model combined with Viterbi alignment resulted
in the same filter being used for many consecutive frames.

Increasing the Number of Mixture Components

The above experiment was repeated for a 256-mixture system. The results
are summarised in Table 7.11. These are significantly better than the 128-
mixture system results yet still do not approach the results of word-based
systems. Listening tests showed a slight perceptual improvement over the
128-mixture system with less residual noise. The enhanced spectrogram for
the usual test segment is shown as Figure 7.9.

Including Temporal Information

In (Seymour 1996) it was noted that a general speech model could be im-
proved by the addition of temporal information. Specifically, rather than
model the clean speech by a single state several states were used.

To test this, a 33 state general speech model was trained. The first 32
states contained 4 mixture components each and modelled the speech. The
final state contained a single mixture component and modelled silence as
before. The model was trained by continually splitting mixture components
from an initial single mixture system.

Table 7.12 shows the performance for this system. The results are sig-
nificantly better than both the 128 and 256 mixture component systems.
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Distortion % Error (D,S,I)
SNR | All | Speech MFCC
dB Recoded

61086 0.81]87.50 (332,18,0)
0|064| 0.57]|76.00 (23859,7)
6|041 | 0.37|48.00 (79,104,9)
12023 | 0221000 (8,28,4)
18 | 0.15 | 014 | 2.00 (1,6,1)

Table 7.11: Distortions and word error rates for corrupted speech enhanced
adaptively using maximum likelihood noise parameter estimation to esti-
mate the noise; MMSE PSD estimation and general HMMs; 256 mixture
components; derived from Table E.11.
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Figure 7.9: Spectrogram for speech with Lynx noise at 12dB; Enhanced
using maximum likelihood noise parameter estimation and Wiener filters;
256 mixture components; general models.
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Distortion % Error (D,S,I)
SNR | All | Speech MFCC
dB Recoded

61085] 0.75] 81..00 (182,96,46)
0|057| 0.52]|76.00 (95,119,38)
6|0.34| 0.35|48.00 (26,70,27)
12022 | 0221000 (4,24,13)
18 | 015 | 014 | 2.00  (1,6,0)

Table 7.12: Distortions and word error rates for corrupted speech enhanced
adaptively using maximum likelihood noise parameter estimation; MMSE
PSD estimation and general HMMs; 32x4 mixture components; derived from
Table 7.12.

The enhanced speech also had less residual noise. Thus there appears to be
some advantage in adding temporal information.

8 I = E
=6 Y a3 1
I E -
X [ =
2 E =
car o =
g i L ==
oy = =] = - s
o = = _-:_ :i-ii'
Lol 3 ; o E
o E
O‘i B i i 1 E ! -

o
=
N s
w
N
al

Time (s)

Figure 7.10: Spectrogram for speech with Lynx noise at 12dB; Enhanced
using maximum likelihood noise parameter estimation and Wiener filters;
32x4 mixture components; general models.

7.11 Toward Real World Systems

In this section, some implementation and other issues are highlighted which
show the way toward real-time, vocabulary and speaker independent imple-
mentation.
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7.11.1 Approximation of bz, (y:)

For the relatively small NOISEX database, the computational burden is
reasonable. A word-based maximum likelihood noise estimation system runs
at approximately 25 times real time without pruning on a HP 9000/735
125MHz!.

The main computational burden in the enhancement system centres
around the calculation of bz,m,(y:), the pdf of the noisy observation given
state Z; and mixture component m;. It will be recalled from Section 3.6.5
that this pdf is Gaussian with zero mean and a covariance matrix given
by the sum of the corresponding speech and noise covariance matrices. Al-
though the speech and noise processes are assumed autoregressive, this is
not the case for the noisy process. Thus the covariance matrix in bz,m, (y¢)
cannot be simplified such that it only depends upon P +1 parameters. How-
ever, since this covariance matrix has size KxK where K is the frame size,
some approximations are necessary to give a tractable system.

One simplification is described in (Ephraim 1992a). Here the covariance
matrix is approximated by a circulant matrix. This was the assumption
made throughout this chapter so far.

An alternative approximation is suggested in (Sheikhzeheh et al. 1995).
Here it is assumed that the noisy process is autoregressive so its pdf is simply
given by the usual equation

—K/2( )—K/2

2
Uitmt

1
bz,mq (yt) = (27) exp{—5(05m, ¥t Azem,)}- (71)

To obtain the autoregressive parameters for state £ = (z,Z) and mixture
component my, it is assumed that the noisy autocorrelation function is given
by the sum of the speech and noise autocorrelation functions. For each mix-
ture component of each speech state and noise state, the average autocor-
relation is stored. The autocorrelation function for each combined state is
then given by the sum of these averages.

Tzm = Tgm + Tim (72)

The autoregressive parameters are then obtained from this autocorrelation
function in the usual way.

This assumption results in substantial computational savings. For the
NOISEX system, these are of an order of magnitude.

To investigate the effect of this approximation, a version of the maxi-
mum likelihood MMSE PSD estimation system was implemented using the
approximation for bz,m,(y:). Table 7.13 summarises the results of this ex-
periment. Comparing these with the results in Table 7.6 it can be seen that
very little performance is sacrificed for this task, particularly for the higher
SNRs. The performance difference is not significant.

!This machine has a SPECint95 of 3.97 and a SPECfp95 of 4.61.
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Distortion % Error (D,S,I)
SNR | All | Speech MFCC AR
dB Recoded Compensated

61060] 0.75]28.75 (26,69,20) | 28.75 (26,69,20)
0/039| 043| 825 (1,14,18) | 850 (1,14,19)
6026| 028| 200 (0,44) | 2.00 (0,2,6)
12018 | 0.19| 000 (0,000 | 000 (0,0,0)
18013 | 0.17| 000 (0,000 | 0.00 (0,0,0)

Table 7.13: Distortions and word error rates for corrupted speech enhanced
adaptively using maximum likelihood noise parameter estimation; MMSE
PSD estimation and word-based HMMs; approximate bz,m,(y:¢); derived
from Table E.13.

7.11.2 Energy Considerations

One strength of AR-HMM systems is that they model a smoothed spectral
contour. Hence the shape of the spectrum is important when distinguishing
models. However, experience with MFCC systems has shown that they can
benefit by the inclusion of energy information.

For clean AR-HMM recognition systems, this can be included as de-
scribed in (Juang & Rabiner 1985) and implemented in Section 6.2.2. Here,
the clean training observations are normalised by their autoregressive vari-
ance and the likelihood function is augmented by an extra term describ-
ing the probability of energy. Although this approach is successful, it is
unfortunately not easily applicable to noisy AR-HMM recognition systems
(Ephraim 19925). This is because each noisy observation would need to be
normalised by the variance of its corresponding clean speech autoregressive
process, the determination of which is non-trivial.

A related issue is gain normalisation, the purpose of which is to correct
mismatch between the clean speech training and testing data. One approach
described in (Ephraim 1992a) and (Ephraim 1992b) is to normalise the clean
training observations by their autoregressive variance as above, and then to
match the gain of each noisy observation. At time ¢, the covariance matrix
for the noisy observation is given by

Sfl'?tmt = Q?Swtmt + Sa":t,mt (7.3)

where all symbols are as previously described and g7 is the gain at time t¢.
Although this approach is shown to improve recognition on small vo-
cabulary tasks, it is computationally expensive and hence less applicable to
large vocabulary systems. This is because the gain and hence the compen-
sated covariance matrix Sz,,,, must be computed for each observation vector.
This precludes the possibility of precomputing the compensated model be-
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Distortion % Error (D,S,I)
SNR | All | Speech MFCC AR
dB Recoded Compensated

6]0.79 | 1.01]48.00 (84,99,9) | 42.75 (44,92,35)
0/056| 0.72|21.00 (1563,6) | 1450 (0,40,18)
6039 053] 625 (221,2) |15.00 (0,44,16)
12028 | 035| 200 (08,0 |10.00 (0,30,10)
18021 023| 025 (0,1,00 | 1.00  (0,4,0)

Table 7.14: Distortions and word error rates for corrupted speech enhanced
adaptively using maximum likelihood noise parameter estimation; MMSE
PSD estimation and word-based HMMs; female speaker; derived from Table
E.14.

fore recognition?. Second, the actual process of estimating the gain contour
is computationally expensive as it is iterative.

Another approach is to estimate a global gain factor as described in
(Ephraim 1992a). This is computationally much less expensive and hence
more applicable to a vocabulary independent system.

For the experiments described in this dissertation, the mismatch is small
because the training and testing conditions do not vary widely given that in
all cases, the testing and training data are from the same database. There-
fore, no gain normalisation is used in the results presented here. It should
be noted however that in a real-world system, some form of gain normali-
sation would be necessary and that for computational reasons, global gain
normalisation would be the most applicable approach.

7.11.3 Variation of Test Speaker

So far, all the experiments have used the male speaker for testing and
training. This section investigates the performance of the maximum like-
lihood PSD estimator enhancement scheme on a speaker which was not
used to train the models. Specifically, the female speaker supplied with the
NOISEX-92 database was used.

Table 7.14 shows the results for this test. The distortion measures are rel-
ative to clean female speech in order that the enhanced speech be compared
to the original. Similarly, the error rates in the ‘MFCC Recoded’ column
were obtained using MFCC models trained on the clean female speech.

It can be seen that although some performance has been sacrificed, the
male models still provide reasonable enhancement on an unseen speaker.

*In investigative experiments with the medium vocabulary RM database, pruning did
not decrease the computational load to an acceptable value.
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Listening tests though showed that the enhanced speech had a not incon-
siderable amount of residual noise in the speech portions and a distinct
tendency to sound male. This phenomenon was more apparent at lower
SNRs.

This is hardly surprising since the models used for filtering are speaker
dependent. Unless it is desirable to transform a speaker’s voice, it is there-
fore preferable to use speech models trained on many speakers in order that
general filters be formed.

7.12 Summary

This chapter has investigated the performance of the enhancement algo-
rithms developed in Chapter 5 and 6 on a small vocabulary speaker de-
pendent task. Enhancement performance was evaluated objectively using
the Itakura-Saito distortion measure and recognition performance. Some
informal listing tests provided subjective results.

All the schemes developed were able to improve on the baseline results
and provide effective enhancement. For the higher SNRs, the best perfor-
mance was comparable to the best recognition performance achievable using
models matched to the noise conditions.

The enhancement scheme based on maximum likelihood estimates of
the noise parameters was the most effective. The enhancement provided
by this technique was superior to that achieved using noise estimates from
recognised silences as recognition errors in the latter technique due to poor
noise estimates led to a poor choice of enhancement filters. The maximum
likelihood scheme was also found to be superior to a similar scheme based on
linear spectral models. Thus the distortion measure used in the AR-HMM
framework provides some advantage.

Other conclusions from the work in this chapter are as follows. Using
Wiener filters to perform the enhancement results in an enhanced signal
which is perceptually pleasing but which may not necessarily be as useful
as a front-end to a clean speech recogniser. This is because a Wiener filter
gives the MMSE of the time domain signal yet recognition performance is
influenced by errors in the short time spectrum. Conversely, a MMSE PSD
estimator provides better performance as a front-end to a recogniser yet is
less perceptually pleasing.

General speech models were also investigated as an alternative to the
word-based models used in the earlier experiments. These were found to be
inferior. Including a greater number of parameters or temporal information
gave slight improvements in performance.

The chapter concluded with a discussion focusing on the changes neces-
sary to implement a large vocabulary speaker independent system. Further
experiments showed that a simplification of the compensated model did
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not adversely affect performance. The maximum likelihood enhancement
technique was also shown to perform reasonably well on an unseen speaker
although the enhanced speech exhibited some distortion.



Chapter 8

Evaluation on the Resource
Management Database

In order to investigate the applicability of the enhancement schemes to a
vocabulary independent system, experiments were conducted using the Re-
source Management (RM) Database (Price et al. 1988). The main focus of
work in this chapter was to build a medium vocabulary speaker independent
enhancement system.

8.1 The Resource Management Database

The RM database is suitable for medium vocabulary continuous speech ex-
periments. It contains speech relating to a naval resource management task
originally used by the DARPA speech community for benchmark tests. The
total vocabulary size is 992 words.

The database is divided into speaker dependent and independent sec-
tions. Both sections contain speech sampled at 16kHz. The speaker de-
pendent section contains speech from 8 speakers. There are 600 training
utterances and 100 test utterances per speaker.

In the speaker independent section, the training data consists of 100
speakers with 40 utterances per speaker. The testing data is divided into
four sets each consisting of 300 utterances comprising 30 sentences spoken
by 10 speakers.

8.2 The Effect of Perceptual Frequency

In order to ascertain whether the results in Chapter 6 extended to a system
with greater variance, clean speech recognition experiments were conducted
using the RM database. To the author’s knowledge, these experiments rep-
resent some of, if not the first, attempts to use AR-HMMs for anything but
a simple recognition task. This is partly because this style of HMM was

83



Evaluation on the RM Database 84

popular before the computing resources required for large scale recognition
experiments were widely available.

In (Juang & Rabiner 1985), an isolated digits task was studied. Ephraim
also investigated digit recognition and additionally recognition of the E-Set
in (Ephraim 19925). AR-HMMs have also been used for a speaker recogni-
tion task (Tishby 1991).

8.2.1 Speaker Dependent Experiments

Before moving on to a speaker independent system, experiments were con-
ducted using speaker ‘bef0_3’ of the speaker dependent database. Multi-
ple mixture 3 emitting state word-internal triphone-clustered HMMs were
trained for this task using the RM Toolkit provided with HTK V1.5 (Young
et al. 1993). The language model used was the word-pair grammar supplied
with the database. A more complete description of the RM Toolkit can be
found in (Woodland & Young 1993).

Both MFCC-based and AR-HMM-based systems were trained. The
frame rate and frame size were 10ms and 32ms respectively.

The features for the MFCC-based system consisted of 12 cepstral coef-
ficients plus one energy coefficient. Pre-emphasis was not used. A system
with and without delta coefficients was trained. Diagonal covariance matri-
ces were used.

The AR-HMM system had an autoregressive process of order 20. A
system with and without perceptual frequency was trained. The clean auto-
correlation coefficients were normalised by their autoregressive variance so
that energy information was removed. The triphones were clustered using
the Euclidean distance between the average autocorrelation coefficients for
each state as the distance measure.

Word error rates for both the AR-HMM and MFCC-based systems are
shown in Table 8.1. It can been seen from these results that again recognition
has been improved using the bilinear transform. However, the performance
of the AR-HMM systems fall far short of the performance achievable using a
MFCC-based system. It appears then that for this system, while the use of a
perceptual frequency scale does improve recognition, it does not completely
explain the difference between the information provided by the non-warped
AR-HMM system and the MFCC-no-delta system.

8.2.2 Discussion

It was seen in Section 6.2.2 that the incorporation of energy information as
an extra term in the AR-HMM likelihood function could decrease the error
rate. Therefore the same procedure was followed here. It was found though
that only slight decreases in recognition error of the order of 1-2% absolute
could be achieved by the use of this technique. Hence energy information
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Model Number % Error
Mixture (D,S,I)
Components
AR no warping 3 23.6 (14,103,76)
4 22.0 (12,83,85)
AR with warping 3 19.0 (19,77,59)
4 17.8 (15,80,51)
MFCC no deltas 3 9.2 (13,40,22)
4 7.8 (12,32,20)
MFCC with deltas 3 7.7 (11,29,23)
4 6.9 (8,26,22)

Table 8.1: RM clean speech recognition error rates for speaker bef0_3. AR-
HMDMs with and without frequency warping are compared to MFCC systems
with and without delta parameters.

does not account for the difference between the AR-HMM and MFCC-no-
delta systems as was the case for the earlier experiments in Section 6.2.2.

The major source of deviation between the two systems is the distortion
measure used. As discussed in Section 6.1, both systems essentially use
spectral ratios to compare an utterance to trained templates. However,
the MFCC-based system uses a more powerful distortion measure. While
the AR-HMM system treats errors in any part of the spectrum equally,
the MFCC-based system effectively weights the error in each part of the
cepstrum by the trained variance of each estimate.

A point to note is that this is done at the expense of twice the number
of system parameters. That is, the MFCC-based system has both a mean
and a variance for each state whereas the AR-HMM system has a mean
and a single variance per state. However as shown in Table 8.2, increasing
the number of AR-HMM system parameters by increasing the number of
mixture components does not solve this problem. This latter result was also
observed in (Juang & Rabiner 1985) on a simpler task and essentially the
same conclusion was reached.

8.2.3 Speaker Independent Systems

Speaker independent speech recognition is significantly harder than the
speaker dependent task. State-of-the-art results are typically achieved using
MFCC feature vectors augmented with both delta and delta-delta param-
eters (Young et al. 1993). Therefore, given the speaker dependent results
in the previous section, it is unlikely that a medium vocabulary speaker in-
dependent AR-HMM system can be built without further extensions to the
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Model Number % Error
Mixture (D,S,I)
Components
AR with warping 4 17.8 (15,80,51)
5 16.1 (15,70,47)
6 15.4 (17,60,49)

Table 8.2: RM clean speech recognition error rates for speaker bef0_3 show-
ing dependence on the number of mixture components for an AR-HMM
system with frequency warping.

AR-HMM paradigm. Even if a solution could be found to the problem of
the single variance in the AR-HMM system, a further extension would be
needed to incorporate delta information since this plays an even greater role
in speaker independent systems.

Some attempts were made to build an AR-HMM speaker independent
system but the results were not encouraging. A typical error rate for a 4
mixture component system using perceptual frequency was over 40%.

8.3 Enhancement Experiments

The enhancement experiments investigated the feasibility of vocabulary and
speaker independent enhancement systems based on AR-HMMs.

Preliminary experiments with the speaker dependent triphone models
indicated that a system incorporating language model information was not
feasible. As in the previous word-based HMM experiments, Viterbi align-
ment was used to select the most likely filter to enhance each frame. How-
ever, because the performance of the clean recognition system was poor,
gross errors often resulted when choosing this filter with a detrimental effect
on the enhancement. For the digits system studied in the previous chapter,
the recognition rate was extremely good due to the simplicity of the task.
Therefore, the extra information provided by the language models helped
the enhancement. For systems with more variance however, this extra in-
formation is a disadvantage.

Therefore a system based on a much simpler general speech mixture
model was studied. This system does not use a language model. A simi-
lar non-adaptive enhancement system based on compensated MFCC models
without delta parameters has been shown to perform well on this task (Sey-
mour 1996).
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8.3.1 Enhancement System

The enhancement system was modelled closely on the general speech systems
studied in Section 7.10. In particular, the models were trained in the same
manner. The first three utterances for each training speaker were used as
training data similar to (Seymour 1996) in order to avoid overtraining of the
models. Only the maximum likelihood noise parameter estimation scheme
was investigated since this gave the best performance.

As before, warped AR-HMMSs were used to calculate the probabilities
required and non-warped models were used for enhancement. The approx-
imation of bz,m,(y:) described in Section 7.11.1 was used to calculate the
compensated models to make the system computationally tractable.

In this section, the noise models were initialised from the frame of the test
utterance with the minimum power. This was found to give enhanced speech
which was perceptually superior to that from a system which initialised the
noise using all of the test frames. A small amount of recognition performance
was sacrificed by this initialisation technique (about 1% absolute on the 512
mixture system at 18dB).

8.3.2 Evaluation Methods

The recognition error rate was the main figure of merit for these experiments
since it is difficult for a human assessment to be made on such a large dataset.
MFCC parameters were derived directly from the enhanced spectrum as
previously and tested using a clean speech MFCC recognition system.

The clean recognition system was trained using the RM Toolkit as a tem-
plate. The feature vectors used contained 13 cepstral coefficients including
the Oth coefficient augmented with delta and delta-delta coefficients. These
were the first 13 coefficients returned from a MFCC analysis of order 24.
The data was pre-emphasised by the filter H(z) = 1—0.97z"1. The features
were modelled using diagonal covariance matrices.

A non-standard frame rate and frame size of 16ms and 32ms respec-
tively were used as in previous enhancement experiments. A 5 mixture
component/state triphone-clustered system was built. Each triphone was
modelled by a 3-state left-to-right HMM.

The non-standard frame rate affects the modelling of short phones by
increasing the minimum duration. This problem was alleviated by the in-
troduction of a skip state into each triphone model. The frame rate also
affects the period of time used to calculate the delta and delta-delta coeffi-
cients. This effect was not considered since the baseline performance of the
modified system was adequate.
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8.3.3 Formation of Noise Corrupted Data

Since the RM database contains clean speech only, noise was added to the
test sets in order to conduct enhancement experiments. Specifically, a ran-
dom segment of Lynx noise was taken from the NOISEX-92 database, scaled
appropriately and added to each utterance.

Two noise conditions were considered corresponding to the attenuation
of the Lynx noise by 20dB and 12dB respectively. The NIST utility wavmd
was used to estimate the SNR of the corrupted utterances.

wavmd estimates the SNR without prior knowledge of the noise statis-
tics. Therefore, the SNR values calculated are not exact. Figure 8.1 shows
SNRs calculated using wavmd on the NOISEX-92 database verses the quoted
SNRs. It can be seen that for this noise, wavmd tends to overestimate the
SNR, especially when the SNR is low. This should thus be borne in mind
when comparing results from this chapter with those in Chapter 7.

25

SNR returned by wavmd

L L
5 10 15 20
NOISEX-92 Quoted SNR

Figure 8.1: Performance of wavmd on Lynx Noise in NOISEX-92 with a
straight line fitted to the data. Note that wavmd tends to overestimate the
SNR.

Table 8.3 shows the SNRs returned by wavmd on the test sets for the
two noise conditions. These will henceforth be referred to by their average
SNRs 18dB and 12dB respectively.

8.3.4 Baseline Performance

Table 8.4 shows the word error rates for the clean and noisy speech on the
four test sets. The clean baseline is worse than state-of-the-art performance
on this database because of the decreased frame rate as discussed. It can be
seen that the addition of noise has a substantial effect on the error rate.
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Noise SNR (dB)

Attenuation | Feb89 | Oct89 | Feb91 | Sep92 | Avg.
Clean 48.7 | 48.5 48.5 49.4 | 48.8
20dB 17.7 17.9 18.2 19.0 18.2
12dB 11.1 11.5 114 12.5 11.6

Table 8.3: SNR values returned by wavmd on the RM Database with Lynx
noise added at various attenuations.

Noise % Error (D,S,I)

Feb89 | Oct89 | Feb9l | Sep92 | Avg.
Clean 6.3 7.3 5.9 11.0 7.6

(66,86,9) (73,115,9) (47,86,13) (99,157,25)

Lynx 38.9 30.4 35.8 43.1 37.0
18dB | (212,691,92) | (182,550,85) | (150,646,92) | (207,755,141)
Lynx 80.4 81.0 7.7 85.2 81.1
12dB | (498,1268,163) | (556,1490,131) | (498,1268,163) | (561,1473,147)

Table 8.4: Baseline results for the RM database speaker independent test

sets for clean speech and speech corrupted using Lynx noise at various at-
tenuations.
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Noise % Error (D,S,I)

Feb89 Oct89 Feb91 Sep92 Avg.
Lynx 16.7 14.8 14.1 21.0 16.7
18dB | (139,266,23) | (139,242,16) | (107,227,16) | (163,333,41)
Lynx 40.8 31.3 34.0 40.4 36.6
12dB | (360,654,31) | (296,508,35) | (268,544,33) | (319,653,61)

Table 8.5: Results for the RM speaker independent test sets tested using
matched models for various noise conditions.

Nr. % Error (D,S,I)

Mixes Feb89 | Oct89 | Feb91 | Sep92 | Avg.
128 23.6 20.1 21.7 27.6 23.2
(117,419,69) | (114,359,66) | (87,377,74) | (131,470,104)

256 18.7 16.5 18.9 23.9 19.5
(106,320,52) | (117,275,50) | (82,323,64) | (133,402,76)

512 18.1 15.5 18.1 24.2 19.0
(110,301,52) | (119,253,43) | (80,301,68) | (132,412,76)

Table 8.6: Enhancement results for the RM speaker independent test sets
for Lynx noise at 18dB SNR. Speech enhanced using general speech models
with varying numbers of mixture components.

Table 8.5 shows the word error rates achievable when the training and
testing conditions are matched. The matched MFCC models were obtained
by adding Lynx noise to the training set and then using this data to train
models using single pass retraining. These results give an indication of the
best performance achievable by any enhancement system.

8.3.5 Enhancement Performance

Experiments were first conducted on the test files at 18dB. Table 8.6 shows
the word error rates for the described enhancement system for various num-
bers of mixture components in the models. It can be seen that a substantial
improvement has been made on the baseline performance. The performance
improves as the number of mixture components increases although only a
slight, non-significant improvement is noticed for the 512-mixture system
over the 256-mixture system.

The error rates for speech at 12dB enhanced using a 512 mixture com-
ponent system are shown in Table 8.7. Again the baseline performance has
been substantially improved upon. From these two test conditions, it ap-
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Nr. % Error (D,S,I)

Mixes Feb89 | Oct89 | Feb91 | Sep92 | Avg.

512 42.8 35.7 379 46.7 40.8
(154,752,189) | (138,628,193) | (95,657,189) | (158,804,232)

Table 8.7: Enhancement results for the RM speaker independent test sets
for Lynx noise at 12dB SNR. Speech enhanced using general speech models
with 512 mixture components.

pears that the improvement gained by the enhancement technique halves
the error rate. However this performance is significantly worse than the
matched model results given in Table 8.5 suggesting that there is a mod-
elling deficiency.

Inclusion of Temporal Information

In Section 7.10 and (Seymour 1996), it is seen that including temporal in-
formation improves the performance of general speech models. Therefore
a 32-state, 16 mixture component/state model was implemented similar to
(Seymour 1996).

The results of this experiment for the two noise conditions are shown
in Table 8.8. The results at 18dB are not significantly different to the 512
mixture component system. The 12dB results are significantly worse than
the 12dB 512 mixture component system.

Thus there appears to be no advantage to using more than one speech
state. One possible reason for the inferior results may be the different train-
ing procedures for the models since the 32x16 system was formed by con-
tinually splitting a AR-HMM system whereas the 512 system was initialised
from single pass retraining on a MFCC system. It seems that the supe-
rior distortion measure of the MFCC system provides some advantage for
initialisation.

Perceptual Analysis

Informal listening tests showed that the enhanced speech contained some
residual noise. This was quite considerable and annoying for the speech at
12dB. Seymour reported much less noise in (Seymour 1996). Since in this
previous work, the filters were chosen according to MFCC probabilities, it
seems likely that the inferior modelling ability of AR-HMMs is causing the
increased distortion.

Figures 8.2 to 8.6 show the clean, noisy and enhanced speech for the
first sentence for speaker ‘alk0_3’. The enhancement was performed using
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SNR % Error (D,S,I)

dB Feb89 | Oct89 | Feb91 | Sep92 | Avg.

18 18.0 16.4 18.0 24.5 19.2
(119,280,52) | (115,278,48) | (82,312,53) | (137,401,90)

12 46.0 38.9 42.3 48.5 43.9
(145,819,214) | (127,703,213) | (102,711,238) | (152,852,236)

Table 8.8: Enhancement results for the RM speaker independent test sets for
Lynx noise at various SNRs. Speech enhanced using general speech models
with 32-state, 16 mixture component/state models.

the 512-mixture system. The text of this sentence is ‘WHEN WILL THE
PERSONNEL CASUALTY REPORT FROM THE YORKTOWN BE RE-
SOLVED’.
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Figure 8.2: Clean speech spectrogram for the first sentence for speaker
alk0_3.
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Figure 8.3: Speech corrupted by Lynx noise at 12dB; first sentence for
speaker alk0_3.
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Figure 8.4: Speech corrupted by Lynx noise at 12dB enhanced using Wiener
filters formed from 512 mixture component models; first sentence for speaker
alk0_3.



Evaluation on the RM Database 94

!H'**"J

(o]
T

I\I mi I

II“- ol wihidle
i

i

Frequency (kHz)

Figure 8.5: Speech corrupted by Lynx noise at 18dB; first sentence for
speaker alk0_3.
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Figure 8.6: Speech corrupted by Lynx noise at 18dB enhanced using Wiener
filters formed from 512 mixture component models; first sentence for speaker
alk0_3.
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8.4 Summary

This chapter has investigated the performance of AR-HMM recognition and
enhancement systems on a medium vocabulary database.

The first section investigated whether the addition of perceptual fre-
quency to AR-HMMs improved the modelling power of these systems. Ex-
periments on clean speaker dependent data showed that a relative reduction
in error of 19% was possible.

The improvement did not however bring the AR-HMM results up to the
same level as a MFCC system without delta parameters as had been observed
in earlier experiments. This was because of the larger variance in the RM
task. In AR-HMM systems, the variance of the spectrum is modelled using
a single variance per mixture component whereas MFCC systems are able
to model the variance of each cepstral coefficient.

Since the recognition results were not encouraging for clean speaker de-
pendent data, it was not surprising that speaker independent results were
poor. Here, a MFCC system requires delta-delta coefficients in addition to
delta coefficients in order to achieve good performance. Thus even if the
AR-HMM variance modelling problem can be solved, further additions to
the AR-HMM paradigm would be necessary to deal with this more difficult
task.

The second section investigated medium vocabulary speaker indepen-
dent enhancement. Since a medium vocabulary AR-HMM system could
not be built for the reasons outlined above, enhancement based on general
speech models was studied. Only the maximum likelihood noise reestimation
scheme was investigated. Performance evaluation was performed in terms of
recognition accuracy of enhanced speech. Informal listening tests were also
conducted.

The experiments showed that substantial improvements over baseline
results could the made using the enhancement technique at noise levels of
18dB and 12dB. Perceptually, the enhanced speech was inferior to the speech
generated using speaker dependent models in the previous chapter. However,
reductions in interfering noise were achieved.



Chapter 9

Conclusions and Future
Work

The work in this dissertation has aimed to enhance speech corrupted by
additive noise in an unknown noisy environment when only one microphone
is available.

Speech enhancement has wide application in the field of speech pro-
cessing. It is used to improve the perceptual aspects of speech to increase
intelligibility and decrease listener fatigue. In addition, it is useful for clean-
ing up corrupted speech prior to input to coding and recognition systems in
order to improve their performance. However, many existing enhancement
techniques are unable to adapt to unknown noise. This provides the primary
motivation for the work in this dissertation.

The techniques developed are based on an enhancement system by Eph-
raim (Ephraim 1992a) which models speech and noise statistics using AR~
HMDMs. These statistics must be trained using a prior: information. Given
these models, very effective enhancement can be achieved.

Working in the AR-HMM domain has three advantages for enhancement
of additive noise. The first is that the feature vectors used are linearly com-
binable. This is important when forming a compensated system to model
the corrupted speech and also when forming maximum likelihood estimates
of unknown parameters. The second advantage is that the distortion mea-
sure used to compare features to templates is the Itakura-Saito distortion
measure. This is more effective than a linear spectral distortion measure
which would be the metric used if a linear spectral HMM system was built.
Finally, the computational requirements of AR-HMMs are reasonable.

It should be noted that AR-HMMs have been neglected in recent years.
Thus a further reason for working in this domain was to investigate the
performance of such systems on difficult tasks which were computationally
infeasible when these models were first proposed.

The work in this dissertation extends (Ephraim 1992a) by estimating
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the noise statistics directly from the signal to be enhanced. Two main
approaches were developed. The first considers estimating the noise from
detected pauses. The AR-HMM framework was used for the pause detec-
tion. The second approach uses maximum likelihood parameter estimation
to estimate the noise statistics given a compensated AR-HMM model of the
noisy speech.

Additional work in this dissertation investigates improving the perfor-
mance of AR-HMM systems. Here perceptual frequency is incorporated
using the bilinear transform. This extension can be used in AR-HMM recog-
nition and enhancement systems.

9.1 Summary of Results

The enhancement schemes developed were evaluated using the NOISEX-92
and RM databases providing information about performance on small vo-
cabulary speaker dependent and medium vocabulary speaker independent
tasks respectively. The addition of perceptual frequency to AR-HMM sys-
tems was also evaluated on these databases with additional small vocabulary
speaker independent experiments performed using the ISOLET database.

The performance of the enhancement schemes was evaluated using dis-
tortion measures and recognition results obtained using features directly
parameterised from the enhanced spectra. Informal listening tests were also
conducted. The perceptual frequency extension was evaluated using recog-
nition scores.

The main result of this dissertation is that maximum likelihood param-
eter estimation can be used in the AR-HMM domain to provide effective
speech enhancement in unknown stationary additive noise. The scheme
showed substantial improvement over baseline results. Perceptual improve-
ment was also observed. Performance was shown to be effective on a variety
of stationary noises at various SNRs on several tasks of varying complexity.

For the small vocabulary task, it was found that the performance of the
enhancement system which estimated the noise statistics from recognised
pauses was significantly worse than the maximum likelihood system. In this
domain, the performance of a linear spectral estimator was also significantly
worse. Further experiments showed that word-based models were superior
to general speech models but that temporal information could improve the
latter.

The addition of perceptual frequency to AR-HMM systems was shown
to improve clean recognition performance substantially on both small and
medium vocabulary tasks. The results for the former system were compa-
rable to a MFCC system without delta parameters. This was not the case
for the medium vocabulary system. This was because AR-HMMs are less
able to model systems with increased variance since they only have a single
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variance parameter per mixture component, whereas MFCC systems have a
variance parameter for each cepstral coefficient in each mixture component.

AR-HMMs are not at present able to incorporate delta features. Since
these have a substantial impact as the complexity of a recognition task
increases, it was not possible to build a medium vocabulary speaker inde-
pendent AR-HMM recognition system. Therefore, the medium vocabulary
speaker independent enhancement tests were performed using general speech
models rather than word or phone based models.

These tests showed that effective enhancement could be performed on a
larger system at several noise levels for the Lynx helicopter noise. Substan-
tial improvements over baseline results were obtained with the error rate
decreasing by an absolute factor of approximately 50%.

Perceptually, the enhanced speech was best for the speaker dependent
system. As more speakers were introduced, the quality of filters available
for enhancement decreased as did the probability of choosing an appropriate
filter.

9.2 Future Directions

Future research directions can be divided into two categories: improvements
to the enhancement algorithm and improvements to AR-HMMs.

One extension to the enhancement algorithm would be to investigate
sequential techniques of noise parameter estimation. These approaches esti-
mate the unknown parameters to maximise the likelihood at each time slice
and thus allow adaptation to slowly varying noise.

In general, the performance of the algorithms in non-stationary noise was
not studied. However, the maximum likelihood algorithm is able to enhance
speech corrupted by noises which can be modelled by multi-state HMMs.
Therefore, it would be interesting to investigate how well the algorithm
performs in such circumstances.

Another path for investigation is an examination of the method used
to obtain the maximum likelihood estimates of the noise parameters. At
present, this is achieved using the expectation maximisation algorithm which
is known to be slow and to often converge to a local likelihood maximum.
Other gradient descent methods may lead to more optimal or less computa-
tionally expensive algorithms.

Careful investigation of AR-HMM systems has led to an improvement
in their performance by the incorporation of perceptual frequency. Further
extensions are necessary however to improve the performance of these models
on large vocabulary systems.

Comparison with MFCC systems has suggested that the inclusion of
more variance information and delta parameters should be the primary areas
of investigation. There are also unresolved issues in the areas of inclusion of
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energy information and clustering techniques.
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Appendix A

Maximum Likelihood
Estimation of Noise Model
Parameters

In this appendix, maximum likelihood estimation of the noise parameters
is described within an autoregressive HMM framework. The technique is
similar to that described in (Rose et al. 1994) but differs in that AR-HMMs
are used instead of mixtures of Gaussians to model the speech and noise.
This affects the type of parameters reestimated. In (Rose et al. 1994), the
means and covariances of Gaussian mixture models are estimated whereas
here, the estimated parameters are the transition probabilities and the au-
tocorrelation function corresponding to each HMM state. Also, in (Rose et
al. 1994) the speech statistics are unknown whereas here the noise statistics
are unknown.

The notation used in this appendix is identical to that used in Chapter
3. To simplify the equations, it is assumed that there is a single mixture
component per AR-HMM state. The extension to the multiple mixture case
is straightforward.

A.1 Probability Density Functions

The pdfs describing the clean speech and noise processes are given by Equa-
tions A.1 and A.2 below respectively.

P(SIAs) =D x Azon H{:l Azyzyyq b (st|As) (A1)
p(Dp‘d) = Zf{ Aio7y H?:l aititﬂbit (dt|’\d> (A'2>

Here S is a sequence of K dimensional clean speech observations, X is a
sequence of clean speech states, ag,q,,, is the transition probability from
state x; to state x;,1 and by, (s¢|\s) is the pdf of the output vector s; from
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the state x;. The sum over X represents the summation over all possible
clean speech state sequences. Similarly D is a sequence of noise observations
and X is a sequence of noise states. A; and Ay refer generally to the speech
and noise model parameters.

The pdfs by, (s¢|\s) and bz, (d¢|Agq) are assumed Gaussian with zero mean
and covariance matrices ¥,, and X3, respectively. Later it will be assumed
that the speech and noise models are autoregressive. However, the initial
part of the analysis holds for general covariance matrices.

Since additive noise is being considered, the speech and noise at time t,
s and d;, are related to the noisy observation y; by

yt =8¢ +de. (A.3)

The likelihood of the noisy speech observation is given by
PYN)=> Y // P(S,D,X,X|\)dSdD (A.4)
X x c

where

T

P(S, D, X, XP‘) = Qgpozy Ao H a$twt+1bzt(st)aitit+1bftt (dt)' (A'5)
t=1

Here [ [ is taken over the contour C; defined by the relationship f(s¢, d¢) =
v+ (Equation A.3).

A.2 Auxiliary Function

The method of maximum likelihood parameter estimation chooses unknown
parameters to maximise the likelihood of the observed data. Thus in this
case, Equation A.4 must be maximised with respect to the unknown pa-
rameters. The parameters of interest in this case are the noise parameters
in Equation A.2. These are the noise transition probabilities and the noise
autoregressive parameters for each noise state.

No closed form solution exists to find the maximum likelihood esti-
mates of these parameters from Equation A.4. However, the Expectation-
Maximisation algorithm can be used to iteratively find a solution. This al-
gorithm is based on the use of an auxiliary @ function introduced in (Baum
et al. 1970). There it is shown that maximising the auxiliary or @ function
with respect to an unknown parameter produces a new model X’ such that
P(Y|X') > P(Y|A). The Q function is defined for this problem as

Q(\X) = E{log P(S,D,X,X|\)} (A.6)

= ZZ//P(SaD,X,XI/\)logP(S,D,X,XM’)deD_
X x C
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Substituting from Equation A.5 leads to
QAN

— ;;//CP(S’D’X’X"\)

T

-log |:a;0$1a'a~:0a~:1 11 ¢hices 1 (56)05,5,,, b5, (dr) | dSID
t=

= EX:%://CP(S,D,X,XM)
Z Z Z Z no(xT,xT+1,fT,fr+1,X7X)

Ver Ver41 VEr VE, 41

log [a' a ] dSdD

TrTr+1 £T£T+l

+§T:ZZ//CP(S,D,X,X|A)

t=1 X x

Z Z Z Z nt(l'r,iUT—}-l,iT;i:T—{-l;X’X)

V&, Yoy i1 Vi, VEr 11

log [a' B (s . . b (dy)] dSdD (A7)

TrZr4+1 Tr iTiT+1 T
where ny(z;, s 41, Zr, 741, X, X) is the counting function defined by

1 if & =27, %441 = Tr 11, T¢ = Tr, Tgy1 = Try1

nt(:L'T,SL'T-i—l,j'T"i'H'l) = { 0 otherwise

(A.8)
By defining é‘t(xTa Zr41, Tr, -’ir-l-l) as

ft(xTaxT—Fl:jT)'%T—Fl) = ZZnt(l‘7,$7+1,Li‘T,.’i‘T_Fl,X,X)P(S,D,X,X‘A)
X x
(A.9)

Equation A.7 can be further simplified to

Q\N) = Z Z Z Z f/cﬁo(xr,ivrﬂ,f?r,ﬁrﬂ)

YTy VTri1 VEr VEr41
! !
10g |}, ,,,05,5,.,] 4SdD

£T£T+1

—I-ET:Z Z Z Z //C&(xnmrﬂ,fr,i‘rﬂ)

t=1 V.’BT V.’B-,-+1 Vfit-,— Vfi?-,-+1

log [a;TzT+1bgT (st)ah 5. by (dt)] dSdD (A.10)

irw7+1
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A.3 Maximum Likelihood Reestimation

Now consider maximisation of Equation A.10 with respect to % Gri1 and
b (dy), the required noise model parameters.

The reestimation of az, 3, ., is fairly straightforward in that it follows
almost exactly the derivation in (Rose et al. 1994). The only difference
is that here a transition probability is reestimated whereas in (Rose et al.
1994) a mizture weight probability is reestimated. This does not affect the
derivation a great deal. The reestimation formula is

T ~ - o~ ~
d . = 240 P(@t = Tr, Btp1 = $r+1aY|>\)_ (A.11)

e S iop(E: = &7, Y|A)

Here p(Z; = #;,#1+1 = &r41, Y |A) is the joint likelihood of state z, at time ¢
and state x4 at time ¢+ 1 and the observation sequence Y. p(%; = Z,, Y|\)
is the joint likelihood of state z, at time ¢ and the observation sequence Y.

The reestimation of the state-dependent noise statistics for each state
is less straightforward. Let Qp; be the terms of @ which depend on the
b;-:T (d¢). Thus

(AN = ZZ I // E(Try Tri1, Fr, Brp1) log by (dy)dSdD.

t=1 Vo, Ve, 41 VE; VE; 41
(A.12)

By defining vy:(z., Z,) as
wrax'r Z Z &t .’137-,.’137-+1,.'L‘7-,.'II7-+1) (A-13)
V1 VEr 41

and dropping the dependence on 7 since it is no longer necessary to make
this explicit, Equation A.12 can be rewritten

(AN = ZZZ / / v¢(z, &) log by(d;)dSdD. (A.14)

t=1 Vo V&

Assuming that b} describes an autoregressive Gaussian process,
1,
bh(ai) = (2n) P2 e {~Jalos"asan | (A1)
where U%' and A are the variance and autoregressive filter parameters of

noise state  and K is the frame size (Juang 1984). Here a(o} Va,; AL L) is
given by

a(oztdy AL) =1y Td* +2Z ’"dt (A.16)



Maximum Likelihood Estimation of Noise Model Parameters 104

where rq, (i) and r;_(i) are the autocorrelation functions of the noise and
the noise autoregressive filter parameters respectively and P is the order of
the autoregressive process. Substituting Equation A.15 into Equation A.14
yields

Qo (N, N) =

(A.17)

ZZZ// Ye(z, & [——log(%r)—glog( )—Ea(ailldt;A%) dSdD.

t=1 Vz V&

Now, consider maximisation of Qp, (A, \') with respect to a particular
set of autoregressive parameters A’ for a particular state . The required
parameters will minimise the function

5\ N) = ZZ// vi(z, &) (o5 ' dy; A%)dSID (A.18)

t=1 Vz
or equivalently, by substituting from Equation A.16,
I

5 [74:©) 7l () ]
5 (A, ') 2, &) |22 "rg, (0 Tas rt dSdD.
B J RTEE L SNUPE e

5:
(A.19)

Now consider each of the terms in the integral separately. In particular,

consider [ [7i(x,#)rq, (i)dSdD. From (Rose et al. 1994), it is seen that

//%mxrdt )dSdD

= Hp (yr|\) // ra, ()p(se, di, v¢ = @, Ty = Z|N\)dsidd,
T#t

Y A)
= | // Tdt st,dt\xt =x,T = X, >\) (xt =T,T = xl}‘)dstddt

= (Y|)\) (-Tt =T,Tt = $|>\)E{7'dt( )|Yt,wt =z, T = T, )\}
= p(Y,z¢ = 2,3y = |\ E{ra, (?)|y, z: = =, & = T, A} (A.20)

Equation A.19 is thus rewritten as

Fi()"/\l>
AUNES - -
= ;2, ZZp(Y,xt =z,% = Z|A)E{ra, (0)|yt, e = z, & = &, \}
z t=1 Ve

i [tha:

'~‘°’r Lo (0)

ZZp (Y, 2y =z, & = Z|\)E{rq, ())|yt, 2t = 2,3 = & )\}]

(A.21)
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where

T
(i) =23 p(Y, 2 = 2,8 = &N E{ra, (i)lys, ze = ¢, = &,A}.
t=1 Vz
(A.22)

Thus by using this reestimated autocorrelation function, reestimates of

!

the noise autoregressive parameters for noise state Z, A%, can then be found

in the usual way (e.g. the autocorrelation method in (Deller et al. 1993)).

These will then minimise the desired function in Equation A.21.
To obtain o*%', consider maximisation of Hz(\, \') with respect to o

where the optimal values A% and r} have been substituted.

2!
z

Hz(\ N = (A.23)
T
K 1
ZZZ// Y (z, Z) [—Elog(agl) — ia(aglldt;A%) dSdD
t=1 vz vz’ ’C

Taking the derivative of Equation A.23 with respect to o2’ yields

T

o s Or5(0) + 255 7y, ()75 () (A.24)

: KZ?:I ZVzp(Yaxt:xyfit :§|A)

It should be noted that the same solution for A:E and O'?E, will be ob-
tained even if 7 (¢) is scaled by an arbitrary scaling factor. Therefore it is
convenient to write

T ~ ~ ~ —~
Elzv:p(Y, zi =2, 8=\ E{rz|y:, =2, 8, =%, A}
t=1 Vz

ry, = = (A.25)
Ezp(Yaxt:xai‘t:j|yt7)‘)
t=1Vz
and thus
rly (0)r5(0) + 2300, vy (i)ri (i
2 OO + 258, ) a26)

K
p(Y,zy=z,%;=7%|)\) is the joint likelihood of states z, and Z, at time ¢ and
the observation sequence Y.



Appendix B

Digital Warping of Spectra
Using the Bilinear Transform

This appendix summarises relevant parts of (Oppenheim & Johnson 1972)
in which the representation of a continuous signal by a digital sequence is
described. Of most interest is the result that several sequences can represent
the same continuous signal and that a simple conversion exists between
these two sequences. This conversion can be used to implement a non-linear
warping on the digital frequency axis.

Consider first the digital representation {f,} of the continuous signal

£ (@) .
FO) = D fadnlt) (B.1)

n=—oo
Here ¢, (t) is a continuous-time function. It can be shown that for continuous
convolution to be mapped to discrete convolution, ¢,(t) must satisfy

D (s) = [@1(s)]" (B2)

where ®,(s) is the Laplace transform {¢y(t)}.
A common example of a choice of {f,} and ¢,(¢) is periodic sampling.
Choosing

fn = Tf(nT) (B'3)
where T is the sampling period and
dn(t) = sin %(t — nT)/n(t — nT) (B.4)

satisfies Equations B.1 and B.2. Therefore f(t) is faithfully represented by
{fn} while the property of convolution is preserved.

Other choices of {f,} and ¢,(t) are possible however. Consider an al-
ternative representation

+oo
FE) = > gre(t) (B.5)

k=—o0
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where again
Ax(s) = [Ax(s)])". (B.6)

It is possible to map between the sequences {f,} and {gx} as follows.
Assuming that {¢,(¢)} is complete, each Ax(¢) can be expanded in terms
of {¢n(t)}. Thus

+00
Ae(t) = Z Vg nPn(t). (B.7)
n=—o0o0
Hence the sequences {f,} and {gx} are related by

+o00

fn= Z 9kPk,n- (B.8)

k=—o00

Again it can be shown that for the mapping from f(¢) to f, and from
f(t) to g to preserve convolution, {¥Uy(z)} must satisfy the relation

Uy (2) = [T1(2)])* (B.9)

where {¥;(2)} is the z-transform of )y, ,,.
Given this relation, the z-transform of f,, can be written as

+o0
F(z) = Y faz ™ (B.10)

n=-—00
—+00 —+o00

= Z Z gk")bk,nz_n (B'll)

n=—o0 k=—o0

+o0 +o0
= Y % S e (B.12)
k;—;ooo n=-—00
= > aW(2) (B.13)
= ) a[@i(x)] (B.14)
k=—00
£ G(3) (B.15)
B.16)
where
2 =[U1(2)]! 2 m(z). (B.17)

Thus by a suitable choice of m(z) it is possible to transform the sequence
{fn} to a new sequence {gx} which represents the same continuous time
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function and preserves convolution. The z-transforms of these sequences
will be related by
F(z) = G[m(2)] = G(2). (B.18)

Therefore, to obtain the sequence {gx} with Fourier transform equal to
the Fourier transform of {f,} but on a warped frequency scale, m(z) is
chosen to satisfy )

e/ = m[edY] (B.19)

so that the unit circle in the z plane is mapped to the unit circle in the 2
plane and the angular frequency is mapped according to

~

Q= 0(Q). (B.20)

(Taking the Fourier transform of a sequence is equivalent to evaluating the
z-transform at e/ i.e. on the unit circle.)
A useful choice for m(z) is
11— az !

Z2=m(z) = o= (B.21)

In this case

A (1 —a2)sinQ
N =0(Q) = .
6(2) = arctan (14+a?)cosQ —2a

(B.22)

The parameter a determines the amount of warping.
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Analysis of Noise Sources
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Figure C.1: Spectrogram and Typical Spectrum of Speech Noise
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Figure C.2: Spectrogram and Typical Spectrum of Lynx Noise
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Figure C.3: Spectrogram and Typical Spectrum of F16 Noise
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Appendix D

Audio Compact Disc

A Compact Disc (CD) is provided with this dissertation such that the reader
may assess the various algorithms studied. The CD contains samples from
both the NOISEX-92 and RM databases. A detailed list of contents is
given in Tables D.1, D.2 and D.3. In these tables, the enhancement scheme
estimating noise from silences is denoted ‘sil’ and the maximum likelihood
scheme is denoted ‘ML’.

The NOISEX-92 examples are based on the first 20 digits in the digits
test set. The correct transcription for this utterance is:

ONE, SIX, THREE, FIVE, TWO, FOUR, EIGHT, NINE, SEVEN, ZERO,
SIX, THREE, SEVEN, FOUR, EIGHT, FIVE, NINE, ZERO, ONE, TWO.

The RM examples are for speaker ‘alk0_3’ and ‘meb0_3’ showing perfor-
mance on a female and male speaker respectively. The correct transcriptions
of the utterances are:

alk0_.3 WHEN WILL THE PERSONNEL CASUALTY REPORT
FROM THE YORKTOWN BE RESOLVED
meb0_3 WHO HAS TASM CAPABILITY IN BISMARK SEA.
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Track | Noise | SNR | Algorithm Models Estimator
dB Type | State/Mix
1 - 00 - - - -
2 Lynx 0 - - - -
3 Lynx 12 - - - -
4 Lynx 0 sil word - Wiener
5 Lynx 12 sil word - Wiener
6 Lynx 0 sil word - MMSE PSD
7 Lynx 12 sil word - MMSE PSD
8 Lynx 0 ML word - Wiener
9 Lynx 12 ML word - Wiener
10 Lynx 0 ML word - MMSE PSD
11 Lynx 12 ML word - MMSE PSD
12 speech 0 - - - -
13 speech 0 ML word - Wiener
14 speech | 12 - - - -
15 speech | 12 ML word - Wiener
16 F16 0 - - - -
17 F16 0 ML word - Wiener
18 F16 12 - - - -
19 F16 12 ML word - Wiener
20 car 0 - - - -
21 car 0 ML word - Wiener
22 car 12 - - - -
23 car 12 ML word - Wiener
24 Lynx 0 - - - -
25 Lynx 0 ML general 1/128 Wiener
26 Lynx 0 ML general 1/256 Wiener
27 Lynx 0 ML general 32/4 Wiener
28 Lynx 12 - - - -
29 Lynx | 12 ML general 1/128 Wiener
30 Lynx 12 ML general 1/256 Wiener
31 Lynx 12 ML general 32/4 Wiener

Table D.1: Contents of Part 1 of the audio Compact Disk; Male Digits
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Track | Noise | SNR | Algorithm Models Estimator
dB Type | State/Mix
32 - 00 - - - -
33 Lynx 0 - - - -
34 Lynx 0 ML word - Wiener
35 Lynx | 12 - - - -
36 Lynx | 12 ML word - Wiener

Table D.2: Contents of Part 2 of the audio Compact Disk; Female Digits

Track | Speaker | Noise | SNR | Algorithm Models Estimator
dB Type | State/Mix
37 aem0_3 - 00 - - - -
38 aem0.3 | Lynx | 12 - - - -
39 aem0_-3 | Lynx | 12 ML general 1/512 Wiener
40 aem0_3 | Lynx | 18 ML - - -
41 aem0-3 | Lynx | 18 ML general 1/512 Wiener
42 meb0_3 - 00 - - - -
43 meb0_3 | Lynx | 12 - - - -
44 meb0.3 | Lynx | 12 ML general 1/512 Wiener
45 meb0.3 | Lynx | 18 ML - - -
46 meb0.3 | Lynx | 18 ML general 1/512 Wiener

Table D.3: Contents of Part 3 of the audio Compact Disk; RM Examples
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Full Results of Evaluation on
the NOISEX-92 Database
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Noise | SNR Distortion % Error (D,S,I)
Source dB | Overall | Speech | MFCC Models | AR Models
Speech -6 1.05 1.08 | 95  (95,0,0) |95 (95,0,0)
0 0.98 091 | 95 (95,0,0) |95 (95,0,0)
6 0.87 0.69 | 95 (95,0,0) |95 (95,0,0)
12 0.75 0.47 | 69 (18,31,20) | 75 (39,28,8)
18 0.60 0.30 | 49 (24,14,11) | 59  (7,46,6)
Lynx -6 1.46 1.24 | 95  (95,0,0) |95 (95,0,0)
0 1.38 1.08 | 95  (95,0,0) | 95 (95,0,0)
6 1.27 0.87 | 95 (95,0,0) |95 (95,0,0)
12 1.09 0.64 | 79 (43,32/4) | 78 (59,17,2)
18 0.83 0.40 | 64 (10,25,29) | 57  (3,48,6)
F16 -6 1.19 1.52 | 95  (95,0,0) | 95 (95,0,0)
0 1.09 1.29 | 95  (95,0,0) | 95 (95,0,0)
6 0.95 099 | 95 (95,0,0) |95 (95,0,0)
12 0.80 0.68 | 83 (15,51,17) | 92 (20,50,13)
18 0.64 0.42 | 65 (11,38,16) | 67  (6,59,2)
Car -6 1.02 0.88 | 95 (95,000 |95 (95,0,0)
0 0.95 0.73 | 95 (95,0,0) |93 (93,0,0)
6 0.86 0.56 | 82 (61,20,1) | 90  (89,1,0)
12 0.73 0.40 | 77 (12,46,19) | 77 (9,65,3)
18 0.55 0.25 | 40 (12,20,8) | 80 (11,61,8)
0 0 0 0| 0 (0,0,0) 0 (0,0,0)

Table E.1: Distortions and word error rates for speech corrupted by various
noises recognised using clean MFCC and AR models



Results of Evaluation on the NOISEX-92 Database 118

Noise | SNR % Error (D,S,I)

Source dB | MFCC Models | AR Models | Warped AR Models

Speech | -6 | 22 (1,19.2) |24 (6,16,2) | 16 (5,13,1)

0| O (0,0,0) 10 (1,9,0) 0 (0,0,0)

6| 0 (0,0,0) 6 (0,6,0) 0 (0,0,0)

12 0 (0,0,0) 1 (0,1,0) 0 (0,0,0)

18| 0 (0,0,0) 1 (0,1,0) 0 (0,0,0)

Lynx | -6 |42 (17,21,4) | 45 (11,28,6) | 27 (1,24,2)

0| 6 (0,6,0) 16  (1,15,0) 2 (0,2,0)

6| 0 (0,0,0) 7 (0,7,0) 0 (0,0,0)

12| 0 (0,0,0) 4 (0,4,0) 0 (0,0,0)

18] 0 (0,0,0) 1 (0,1,0) 0 (0,0,0)

F16 -6 | 48 (16,29,3) | 70 (18,35,17) | 59 (5,49,5)

0| 4 (04,0) |34 (3229 |21 (3,16,2)

6| 1 (0,1,0) 9 (0,9,0) 3 (0,3,0)

12| 0 (0,0,0) 4 (0,4,0) 0 (0,0,0)

18| 0 (0,0,0) 1 (0,1,0) 0 (0,0,0)

Car -6 |18 (3,12,3) |52 (8,43,1) | 30 (6,22,2)

0| O (0,0,0) 36 (1,34,1) 5 (0,5,0)

6| 0 (0,0,0) 17 (0,17,0) 0 (0,0,0)

12| 0 (0,0,0) 6 (0,6,0) 0 (0,0,0)

18] 0 (0,0,0) 2 (0,2,0) 0 (0,0,0)

Table E.2: Word error rates for corrupted speech recognised using matched
MFCC and AR models
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Noise | SNR % Error (D,S,I)
Source dB | AR Models | Warped AR Models
Speech | -6 | 20 (1,15,4) | 12 (1,9,2)

0| 9 (18,0 0 (0,0,0)

6| 5 (0,50) 0 (0,0,0)

12| 1 (0,1,0) 0 (0,0,0)

18] 1 (0,1,0) 0 (0,0,0)

Lynx -6 |33 (4,245) | 21 (3,15,3)
0|13 (1,12,0) 2 (0,2,0)

6| 7 (0,7,0) 0 (0,0,0)

12| 3 (0,3,0) 0 (0,0,0)

18] 1 (0,1,0) 0 (0,0,0)

F16 -6 |34 (8,18,8) | 37 (7,25,5)
0|21 (514,2) |14 (2,12,0)

6|12 (0,12,0) 3 (0,3,0)

12| 4 (0,4,0) 0 (0,0,0)

18| 0 (0,0,0) 0 (0,0,0)

Car -6 | 68 (17,43,8) | 13 (3,8,2)
0|47 (6,33,8) 3 (0,3,0)

620 (3,17,0) 0 (0,0,0)

12| 5 (0,5,0) 0 (0,0,0)

18| 2 (0,2,0) 0 (0,0,0)
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Table E.3: Word error rates for corrupted speech recognised using compen-

sated AR models
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Distortion % Error (D,S,I)
Noise | SNR | All | Speech MFCC AR
Source dB Recoded Compensated

Speech | -6 | 1.56 | 121 |74 (13,36,25) | 71  (6,37,28)
0/1.26| 099 |57 (3521,1) |56 (37,18,1)
6076 | 059|27 (713,7) | 4 (04,0
12046 | 036|16 (664) | 0 (0,0,0)
18041 | 0.31]28 (1963) | 0  (0,0,0)
Lynx | -6 | 136 | 108 |77 ( ) 179 (5,33,41)
0124 09963 ( ) |51 (31,19,1)
6093 | 06837 ( ) |11 (0,11,0)
12074 | 06033 (13173) | 5  (0,4,1)

( )

( )

( )

18 | 0.58 |  0.46 | 48 0 (0,0,0)
F16 | 6| 1.58 | 1.36 | 81 76 (37,29,10)
0|1.65| 1.35]75 63 (41,22,0)
6|1.22| 0.86|49 (6,36,7) |35 (1,30,4)
12066 | 046 |21 (1,12,8) |13  (0,12,1)
18 | 0.55 | 034 |34 y | 7 (05,2)
Car | -6|150| 1267 ( ) |71 (55,10,6)

0119 0.89 |58 (3321,4) |35 (21,14,0)
6084 | 05844 ( ) |20 (1,15,4)
12049 | 033]17 (3,95 | 5 (04,1)
18| 052 | 04246 (38,7,1) | 0  (0,0,0)

Table E.4: Distortions and word error rates for corrupted speech enhanced
adaptively using recognised silences to estimate the noise; Wiener filters and
word-based HMMs
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Distortion % Error (D,S,I)
Noise | SNR | All | Speech MFCC AR
Source dB Recoded Compensated

Speech | -6 ] 1.13| 0.87 |71 (6,37,28) | 71 (6,37,28)
0094 | 0.76|56 (37,18,1) |56 (37,18,1)

6045 032] 4 (040 | 4 (0,40
12024 018] 0 (0,00 | 0 (0,0,0)
18014 012] 0 (0,000 | 0 (0,0,0)

Lynx | -6 1.17| 08876 (2,33,41) |79 (5,3341)
0/092| 075|510 (31,19,1) |51 (31,19,1)
6057 | 036|11 (0,11,0) |11  (0,11,0)
12035 023] 5 (041) | 5 (0,41)
18021 014] 0 (0,000 | 0 (0,0,0)
F16 | 6123 | 108 |76 (37,29,10) | 76 (37,29,10)
0117 | 096 |63 (41,22,0) | 63 (41,22,0)
6078 | 054(35 (1,30,4) |35 (1,30,4)
12041 | 02913 (0,12,1) |13 (0,12,1)
18028 | 018] 7 (052 | 7 (05.2)
Car | -6|127| 118 |71 (55,10,6) | 71 (55,10,6)
0086 | 062]|35 (23,120) |35 (21,14,0)
6064 036]20 (1,154) |20 (1,15,4)
12037 | 020 6 (051) | 5 (0,41)
18024 | 014] 0 (0,000 | 0 (0,0,0)

Table E.5: Distortions and word error rates for corrupted speech enhanced
adaptively using recognised silences to estimate the noise; MMSE PSD es-
timation and word-based HMMs
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Distortion % Error (D,S,I)

Noise | SNR | All | Speech MFCC AR
Source dB Recoded Compensated
Speech -6 | 0.42 0.48 | 10 (4,6,0) |11 (47,0

00.30 034 | 1 (1,0,0) 1 (1,0,0)
6| 0.19 023 | 0 (0,0,0) 0 (0,0,0)
12 | 0.15 0.16 | 0 (0,0,0) 0 (0,0,0)
18 | 0.12 0.12 | 0 (0,0,0) 0 (0,0,0)
Lynx | -6|0.74| 07226 (2,13,11) |26 (1,14,11)
0042 043 | 4 (04,0) 4 (04,0)
6 | 0.25 027 | 0 (0,0,0) 0 (0,0,0)
12 | 0.17 0.17| 0 (0,0,0) 0 (0,0,0)
18 | 0.12 0.11 | 0 (0,0,0) 0 (0,0,0)
F16 -6 | 0.66 0.66 | 36 (12,20,4) | 36 (12,20,4)
01043 0.44 |10 (0,6,4) |10 (0,6,4)
6 | 0.27 028 | 1 (0,1,0) 1 (0,1,0)
12 | 0.19 020 | 0 (0,0,0) 0 (0,0,0)
18 | 0.14 014 | 0 (0,0,0) 0 (0,0,0)
Car -6 | 0.70 0.87 | 34 (12,14,8) | 34 (10,16,8)
01042 0.46 | 10 (0,4,6) |10 (0,4,6)
6 | 0.31 028 | 1 (0,1,0) 2 (0,1,1)
12 | 0.21 0.19| 0 (0,0,0) 0 (0,0,0)
18 | 0.14 0.12 | 0 (0,0,0) 0 (0,0,0)

Table E.6: Distortions and word error rates for corrupted speech enhanced
adaptively using maximum likelihood noise parameter estimates; MMSE
PSD estimation and word-based HMMs



Results of Evaluation on the NOISEX-92 Database

Distortion % Error (D,S,I)

Noise | SNR | All | Speech MFCC AR
Source dB Recoded Compensated
Speech -6 | 0.50 0.53 | 16 (5,11,1) | 15 (5,10,0)

00.33 035 | 2 (1,1,0) 1 (1,0,0)
6| 0.19 025 | 0 (0,0,0) 0 (0,0,0)
12 | 0.15 0.17| 0 (0,0,0) 0 (0,0,0)
18 | 0.12 0.13| 0 (0,0,0) 0 (0,0,0)
Lynx -6 | 0.63 0.72 | 29 (4,19,6) | 26 (2,18,6)
010.39 044 | 4 (1,3,0) 3 (0,3,0)
6| 0.25 028 | 0 (0,0,0) 0 (0,0,0)
12 | 0.17 0.17| 0 (0,0,0) 0 (0,0,0)
18 | 0.12 0.11 | 0 (0,0,0) 0 (0,0,0)
F16 -6 | 0.84 0.78 | 34 (12,17,5) | 34 (12,17,5)
0| 0.54 051 |11  (2,7,2) |11 (2,7,2)
6| 0.34 033 | 7 (04,3) 5 (0,2,3)
12 | 0.20 022 | 1 (0,1,0) 0 (0,0,0)
18 | 0.15 0.15| 0 (0,0,0) 0 (0,0,0)
Car -6 | 0.72 0.82 |34 (9,21,4) |32 (9,17,6)
0043 047 |13 (1,76) |11 (0,5,6)
6| 0.33 030 1 (0,1,0) 1 (0,1,0)
12 | 0.21 021 0 (0,0,0) 0 (0,0,0)
18 | 0.15 0.13| 0 (0,0,0) 0 (0,0,0)
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Table E.7: Distortions and word error rates for corrupted speech enhanced
adaptively using maximum likelihood noise parameter estimates; MMSE
PSD estimation and word-based HMMs; Autoregressive order 15



Results of Evaluation on the NOISEX-92 Database

Distortion | % Error (D,S,I)
Noise | SNR | All | Speech MFCC
Source dB Recoded
Speech -6 | 0.42 0.74 | 15 (1,10,4)
0039 063|15 (11,4,0)
6 | 0.23 033 | 0 (0,0,0)
12 | 0.19 025 | 0 (0,0,0)
181021 017 0  (0,0,0)
Lynx -6 | 0.57 0.78 | 38  (2,14,22)
0064 094]48 (36,12,0)
6 | 0.27 037| 0 (0,0,0)
12021 027| 0  (0,0)0)
18 | 0.17 022| 0 (0,0,0)
F16 -6 | 0.59 0.90 | 52 (17,21,14)
0| 0.50 0.70 | 24  (15,9,0)
6|030| o040| 2 (1,1,0)
12 | 0.22 030 | 0 (0,0,0)
181019 024] 0  (0,0,0)
Car | 6|085| 11570 (46,13,11)
0046 | 062|114 (7,7,0)
6031 038] 0 (00,0
12 | 0.26 032| 0 (0,0,0)
18 | 0.20 025 | 0 (0,0,0)
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Table E.8: Distortions and word error rates for corrupted speech enhanced
adaptively using linear spectral models



Results of Evaluation on the NOISEX-92 Database 125

Distortion | % Error (D,S,I)
Noise | SNR | All | Speech MFCC
Source dB Recoded

Speech -6 | 1.10 0.83 | 91 (87,4,0)
0]078| 0588  (84,2,0)
6044 | 035|54 (25254)
12021 019]12  (38,1)
181013 011] 0  (0,0,0)
Lynx | 6099 | 07887 (83,4,0)
0l079| 058|8  (76,6,0)
6053 03853 (31,21,1)
12027 | 02125 (4,183)
18014 012] 1 (1,00)
F16 -6 | 1.05 0.88 | 87 (84,1,2)
01]0.80 0.66 | 81 (76,5,0)
61052 | 04364 (42,21,1)
12035 | 0.28|20 (1810,1)
18019 | 015| 8  (2,6,0)
Car | 6|005| 081]92 (91,1,0)
0081 | 0558  (82,4,0)
6064 03755 (39,12,4)
12044 | 023 |45 (11,17,7)
18017 | 014] 1 (0,1,0)

Table E.9: Distortions and word error rates for corrupted speech enhanced
adaptively using weighted silence to estimate the noise; MMSE PSD esti-
mation and general speech HMMs; 128 mixture components
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Distortion | % Error (D,S,I)
Noise | SNR | All | Speech MFCC
Source dB Recoded

Speech -6 | 0.94 0.78 | 91  (90,1,0)
0]067| 0548  (77,9,0)
6038 | 03454 (25263)
12018 019] 3 (21,0
18012 011] 0  (0,0,0)
Lynx | 6092 | 074]83  (79,4,0)
0lo71| 056|709 (71,8,0)
6044 | 03752 (22,29,1)
12 | 0.23 0.21 | 12 (2,9,1)
18 | 0.13 012 | 1 (1,0,0)
F16 | -6 | 086 | 080 |84  (79,3,0)
0061 0.59 | 76  (64,12,0)
61039 03948 (22,233)
12 | 0.24 0.25 | 12 (2,10,0)
18016 | 015| 7 (24,1)
Car | 6086 0848  (8430)
0]067| 05474 (62,12,0)
6050 03652 (24,253)
12033 | 02336 (10,24,2)
18017 013] 2 (0,2,0)

Table E.10: Distortions and word error rates for corrupted speech enhanced
adaptively using maximum likelihood noise parameter estimates; MMSE
PSD estimation and general speech HMMs; 128 mixture components



Results of Evaluation on the NOISEX-92 Database

Distortion | % Error (D,S,I)
Noise | SNR | All | Speech MFCC
Source dB Recoded
Speech -6 | 0.91 0.78 | 89 (85,4,0)
0064 054|811 (64,16,1)
6036 034]54 (23274)
12 | 0.17 018 | 0 (0,0,0)
18 | 0.12 012 | 0 (0,0,0)
Lynx -6 | 0.86 0.77 | 86 (81,5,0)
0| 0.66 0.56 | 77  (61,15,1)
6041 | 03749 (19,29,1)
12022 021 6  (2,4,0)
18013 013] 2 (1,0,1)
F16 | -6 |086 | 08085  (78,7,0)
01 0.64 0.57 | 72 (59,13,0)
6041 | 037]41 (20,19,2)
12023 | 022[10 (18,1)
18 (015 | 014 5 (0,50
Car -6 | 0.86 0.89 | 90  (88,2,0)
0059 | 057|710 (54,152)
6 | 0.39 0.37 | 48  (17,29,2)
12023 | 023|24  (5,16,3)
181015 014 1 (0,1,0)
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Table E.11: Distortions and word error rates for corrupted speech enhanced
adaptively using weighted silence to estimate the noise; MMSE PSD esti-
mation and general speech HMMs; 256 mixture components
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Distortion | % Error (D,S,I)
Noise | SNR | All | Speech MFCC
Source dB Recoded

Speech | -6 ] 0.86 | 0.65 |85 (28,32,25)
0051 | 04561 (17,24,18)
6026 | 0.30]22 (511,6)
12 0.16 | 0.19 (0,1,0)
18 012 | 0.13 (0,1,0)
Lynx | -6|089| 06875 (36,30,9)
0/064| 04968 (17,42,9)
6035 | 0.35|31 (3,17,11)
12019 021] 1  (0,1,0)
18013 | 013] 0  (0,0,0)
F16 | 6| 081 | 0.73 |77 (37,28,12)
0/051| 0.54|63 (2630,7)
6034| 03832 (12,182)
12024 | 025[13  (2,10,1)
18017 | 016| 5  (0,5,0)
Car | -6|084| 09487 (31,6,0)
0/060| 05862 (35234)
6042 | 0.37|38  (6,24,8)
12029 | 02426 (2,12,12)
18016 | 015| 1  (0,1,0)

— =

Table E.12: Distortions and word error rates for corrupted speech enhanced
adaptively using weighted silence to estimate the noise; MMSE PSD esti-
mation and general speech HMMs; 32 States, 4 mixture components
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Distortion % Error (D,S,I)

Noise | SNR | All | Speech MFCC AR
Source dB Recoded Compensated
Speech -6 | 0.40 0.53 | 13 (4,9,0) 13 (4,9,0)

010.29 034 | 1 (1,0,0) 1 (1,0,0)
6| 0.19 023 | 0 (0,0,0) 0 (0,0,0)
12 | 0.15 016 | 0 (0,0,0) 0 (0,0,0)
18 | 0.12 012 | 0 (0,0,0) 0 (0,0,0)
Lynx -6 | 0.54 059 | 12 (0,12,0) |12 (0,12,0)
0]0.37 039 1 (0,1,0) 1 (0,1,0)
6| 0.24 0.28 | 2 (0,1,0) 1 (0,1,0)
12 | 0.17 0.18| 0 (0,0,0) 0 (0,0,0)
18 | 0.12 011 | 0 (0,0,0) 0 (0,0,0)
F16 | -6 |0.60 | 0.68 |31 (11,19,1) |31 (11,19,1)
0040 043 | 8 (0,4,4) 8 (0,4,4)
6 | 0.26 029 | 0 (0,0,0) 0 (0,0,0)
12 | 0.19 020 O (0,0,0) 0 (0,0,0)
18 | 0.14 014 | 0 (0,0,0) 0 (0,0,0)
Car -6 | 0.87 1.20 | 59 (11,29,19) | 59 (11,29,19)
00.49 0.55 | 23 (0,9,14) |24 (0,9,15)
6| 0.33 030 | 6 (0,2,4) 7 (0,1,6)
12 | 0.22 020 O (0,0,0) 0 (0,0,0)
18 | 0.14 013 | 0 (0,0,0) 0 (0,0,0)
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Table E.13: Distortions and word error rates for corrupted speech enhanced
adaptively using maximum likelihood noise parameter estimates; MMSE
PSD estimation and word-based HMMs; Approximate bz,m, (¥+)



Results of Evaluation on the NOISEX-92 Database

Distortion % Error (D,S,I)

Noise | SNR | All | Speech MFCC AR
Source dB Recoded Compensated
Speech -6 | 0.71 0.95 | 50 (22,24,4) | 39 (0,31,8)

0054 0.73 |16 (0,15,1) | 11  (0,9,2)
6 | 0.39 058 | 4 (04,00 |20 (0,15,5)
12 | 0.27 036 | 2 (0,200 |12 (0,9,3)
18 | 0.20 022 | 0 (0,0,0) 1 (0,1,0)
Lynx -6 | 0.81 1.00 | 48 (21,25,2) | 43 (1,24,18)
0| 0.55 0.72 | 28 (12,15,1) | 15  (0,9,6)
6 | 0.37 051 | 5 (23,0 |15 (0,9,6)
12027 033] 1 (0,10 |11 (0,7,4)
18 | 0.19 022 | 0 (0,0,0) 1 (0,1,0)
F16 -6 | 0.86 1.04 | 56 (26,28,2) | 50 (38,22,0)
0| 0.60 0.77 | 17 (2,15,0) 6 (0,6,0)
6 | 0.42 053 | 6 (0,6,0) 9 (08,1
12 | 0.33 043 | 4 (04,0) 8 (0,8,0)
18024 | 029] 1 (0,1,0) | 2 (0,2,0)
Car -6 | 0.79 1.04 | 38 (15,22,1) | 29 (5,15,9)
0| 0.55 0.67 | 23 (1,18,4) | 26 (0,16,10)
6 | 0.37 0.45 |10 (0,8,2) |16 (0,12,4)
12 | 0.26 029 | 1 (0,1,0) 9 (0,6,3)
18 | 0.19 020 | 0 (0,0,0) 0 (0,0,0)
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Table E.14: Distortions and word error rates for corrupted speech enhanced
adaptively using maximum likelihood noise parameter estimates; MMSE

PSD estimation and word-based HMMs; Tested on the female speaker



Appendix F

Analysis of Wiener Filters

As described in Section 3.1, the frequency response of the standard Wiener

filter is given by
Py(w)

Ps(w) + Py(w)
where P; is the PSD of the speech and Py is the PSD of the noise. Only the
spectral magnitude is estimated with the noisy phase being used when the

signal is reconstructed. The estimated spectral magnitude |$(w)| is given
by

Hw) = (F.1)

15(w)| = HW)|Y (w)| (F.2)

where Y (w) is the Fourier transform of the noisy signal. For additive noise,
this is given by
Y(w) = S(w) + D(w) (F.3)

where S(w) and D(w) are the Fourier transforms of the speech and noise
respectively. The PSDs of these signals can be approximated by

P(w) = |S’(u))|2 .
Piw) =~ |D(w)% (F.5)

Ignoring cross correlation between the speech and the noise

Y (W) = VISW)? + [D(w)[>- (F.6)

Substituting Equations F.1, F.4, F.5 and F.6 into Equation F.2 gives

I |S(w)*
ISP [sE+ 1D@P (7
Let |D(w)|? = K|S(w)|* where K is a constant. Now
1S(w)| ~ % (F.8)
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For small K (negligible noise)
S(w)| = [S(w)|. (F.9)

For large K (large noise) R
15(w)| — 0. (F.10)

For intermediate K (SNR approximately zero), |S(w)] is given by Equation
F.8.
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