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Abstract We describe a sequence of experiments investi-
gating the strengths and limitations of Fukushima’s neocog-
nitron as a handwritten digit classifier. Using the results of
these experiments as a foundation, we propose and evaluate
improvements to Fukushima’s original network in an effort
to obtain recognition performance on a par with state-of-
the-art digit recognition systems.

The neocognitron’s performance is shown to be highly
dependent on the choice of selectivity parameters and we
present two methods to adjust these variables. Performance
of the network under the more effective of the two selectiv-
ity adjustment techniques suggests that the network fails to
exploit the features that distinguish different classes of input
data. To avoid this shortcoming, the network’s final layer
cells were replaced by a nonlinear classifier (a multilayer
perceptron) to create a hybrid architecture.

Tests of Fukushima’s original system and the novel sys-
tems proposed in this paper suggest that the neocognitron is
unable to achieve the performance of existing digit classifiers
due to its reliance upon the supervisor’s choice of selectiv-
ity parameters and training data. These findings pertain to
Fukushima’s implementation of the system and should not be
seen as diminishing the practical significance of the concept
of hierarchical feature extraction embodied in the neocog-
nitron.

Keywords— Neocognitron, handwritten character recogni-
tion, selectivity

I. INTRODUCTION

HE neocognitron [1, 2, 3, 4,5, 6, 7] is a massively par-

allel, hierarchical neural network, designed, primarily,
for 2-D pattern recognition. Proposed by Fukushima in
1979 [1], it was inspired by Hubel and Wiesel’s serial model
of biological vision [8] and, for the last decade, it has been
acclaimed as a shift and distortion tolerant character recog-
nition system.

Some of the neocognitron’s biological plausibility was
sacrificed in 1983 when Fukushima moved away from the
original paradigm of self-organization and introduced a su-
pervised training scheme in an effort to improve the net-
work’s handwritten character recognition performance [2].
However, to the best of our knowledge, there have been
no concrete performance statistics published to indicate
whether the desired improvement was achieved. Unlike
Hubel and Wiesel’s serial model of vision, which has under-
gone rigorous scrutiny to test its validity, the capabilities of
the neocognitron have not been critically reviewed to any
significant extent.

The neocognitron was proposed well before multi-layer
perceptrons and backpropagation became popular. Why
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has so little empirical research been published on this sys-
tem? One reason may be the relative complexity of the
network (as mentioned in [9, p.199], [10, p.187]) and, in
light of this, we present a review of the neocognitron’s op-
eration (Section IT) followed by a concise definition of the
system (Section IIT).

In Section IV, we examine how the neocognitron cal-
culates the similarity between an input pattern and the
pattern classes it has been trained to identify. Section IV
highlights the importance of S-cell selectivity in obtaining
good performance from the network.

Hildebrandt’s method for adjusting selectivities is briefly
reviewed in Section V before two new techniques are pre-
sented and evaluated using real-world digit data. The most
effective of these methods is used as a basis for further im-
provements to the neocognitron — described in Section VI
— in which the distinguishing features of different classes
of digits are exploited to achieve more accurate classifica-
tion. Effectively, in Section VI, we attempt to fine tune the
neocognitron in order to answer the question posed in the
title of this paper.

The paper concludes with a review of the empirical re-
sults obtained and the implications they have for the neo-
cognitron, and its variants, as practical digit recognition
systems.

II. OVERVIEW OF THE NEOCOGNITRON

The neocognitron classifies input through a succession
of functionally equivalent stages. Each stage extracts “ap-
propriate” features from the output of the preceding stage
and forms a compressed representation of those extracted
features. This representation preserves the spatial location
of the extracted features and becomes the input to the next
stage.

Classification is achieved by steadily extracting and com-
pressing feature representations until the input is trans-
formed into a vector whose elements are measures of the
similarity between the input pattern and the input classes
that the neocognitron has been trained to recognize. In a
winner-take-all fashion, the final layer unit with the highest
output determines the class assigned to an input pattern.

Feature extraction is performed by arrays of S-cells
(called S-planes) trained to respond to certain features
deemed by the supervisor to characterize input patterns.
Each S-cell receives input from a rectangular region of cells
in each C-cell plane (C-plane) of the preceding stage. The
set of weights between each S-cell and its input regions is
the same for every S-cell within a given plane. This weight
sharing ensures features are detected wherever they lie in
the input cell plane.
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C-plane activity is a compressed approximation of the
activity in the preceding S-planes. This compression of
representation also provides a degree of translational in-
variance to the neocognitron [11].

III. FORMAL DEFINITION OF THE NEOCOGNITRON

Despite the neocognitron’s complexity, its formal de-
scription can still be organized into a logical progression
of concepts. We address three major issues:

1. the organization of the cells in the neocognitron,

2. the interconnections between them,

3. the functional description of those cells.

We have adopted Fukushima’s system of terminology
(used in almost all neocognitron literature) but, for the
sake of both completeness and clarity, new notation to
describe training patterns is introduced in Section III-C
(completeness) and abbreviated vector notation is defined
in Section IV (clarity).

Since its inception, certain aspects of the neocognitron
have been altered by Fukushima. We shall adhere to Fuku-
shima’s most recent complete description of the neocogni-
tron [4] in the following discussion.

A. The “morphology” of the neocognitron

There are three types of processing element in the neo-
cognitron: S-cells, C-cells and V-cells. Any individual S or
C-cell is identified by four pieces of information:

o the type of cell (S or C)

o the layer, £, that the cell belongs to

o the cell-plane, k, that it is part of

o the location, n, of the cell within that cell-plane.

The outputs of S and C-cells are given the general notation
use(n, k) and uce(n, k).

V-cells provide information to S-cells about the amount
of activity present within each S-cell’s input regions. Only
one V-cell plane ( V-plane) per layer is necessary to store the
values of weighted root-mean-square input region activity
(see Figure 4), hence a particular V-cell is specified by

o the type of cell (i.e., V)

o the layer, ¢, that the cell belongs to

o the location, n, of the cell within the V-plane.

The outputs of V-cells are given the general notation
Uvye (n)

The possible values of parameters £, k and n are deter-
mined by the architecture of a specific network. In layer
£, S-planes are numbered 1 to Kg,; C-planes range from 1
to K¢y (see Figure 1). A cell’s location within an S, C or
V-plane is specified by a 2-dimensional position vector, n.
This vector describes the position of a cell’s receptive field
centre in relation to the input cell plane, UC0, as depicted
in Figure 2.

B. The synaptic organization of the neocognitron

The neocognitron is structured like a large sandwich of
alternating S and C-plane layers. Only adjacent layers of
cell-planes are directly connected and an S-cell is connected
with cells in all immediately preceding C-planes. Individual
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Fig. 1. Cell-planes are identified by a serial number k. When nec-

essary to refer to two cell-planes in different layers, Fukushima
uses K to denote the second serial number. Layers of S-planes
are labelled US1, US2, etc., while layers of C-planes are labelled
UCO0, UC1 and so on.

links from C-cells to an S-cell! are identified by four pieces
of information

o the layer, £, of the S-plane that they connect to

o the serial number, k, of that S-plane

o the serial number, k, of the C-plane from which the

link originates

o the location, v, within the connection region, A,, of

the C-cell from which the link originates.

Weights from C to S-cells are given the general nota-
tion ay(v, k, k). Since all cells in S-plane k share the same
weights, the connection a,(v, &, k) does not contain the ar-
gument n to define a specific S-cell as the destination of
that link. The location of a link’s source cell is identified
by the position vector v (see Figure 3). S-cell weights have
non-negative values, as do all other weights and parameters
in the neocognitron.

S-cells also receive input from subsidiary V-cells (Fig-
ure 4). The degree that V-cells affect cells in a given S-
plane, k, is determined by the positive value of the in-
hibitory coefficient by (k).

Figure 4 shows that V-cells are linked with preceding C-
planes in the same way that S-cells are. Unlike C-plane to
S-cell weights though, connections between C-planes and
any V-cell are fixed and specified as a function of a C-cell’s
position, v, within the connection region A,. Each of the
sets of weights (or masks) between a V-cell in layer £ and
the previous C-planes is denoted ¢, (v).

Connections from S-cells to a C-cell are also fixed and
expressed as a function of S-cell position within a C-cell

I The prepositions to and from specify the direction of information
flow along a connection between cells. The output of a source cell
flows to a destination cell; a destination cell receives input from a
source cell.
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Fig. 2. A cell’s position within its plane is given by the coordinates
of its projection onto the input cell plane. This projection is the
centre of the cell’s receptive field and may lie outside the physical
input cell-plane, UCO. Here the UCO planeis 11 x 11 cells in size
and the location of the black cell is at n = (2,12).

Fig. 3. The weight sharing mechanism used in the neocognitron
makes it convenient to specify a particular connection in terms
of v, the position of a source cell within a destination cell’s input
region. In this 5 X 5 cell input region the black cell is at v =
(—1,0).

input region, Dy. A set of S-cell to C-cell weights is given
the notation d¢(v). Since a particular C-plane may receive
input from one or more S-planes, S to C-plane connectivity
is described by the factor j(k, k). If S-plane £ and C-plane
k are connected, then j(x, k) > 0, otherwise?, j(x,k) = 0.

The notation defined so far does not provide a way to
express the spatial relationships and interconnectivity be-
tween cells. Rather than formalize this issue with more
definitions, Fukushima presents this information diagram-
matically, as shown in Figure 5. For simplicity, this dia-
gram presents connection information as though there were
but a single S and C-plane in each layer of the network —
links between additional cell-planes obey the same scheme
of interconnection. Figure 5 shows how the ratios of S and
C-cells in layers two, three and four cause activity to con-
verge to a single cell. Overlapping connections ensure this
compression is achieved without undersampling. Note that
the finite width of cell planes can cause cells at the edge of
a plane to receive only partial connection to the previous
layer.

2Fukushima implies that the actual value of 7(k, k) for connected
cell-planes is 1 [4].
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Fig. 4. V-cells have fixed weight links to input regions in all immedi-
ately preceding C-planes. Each V-cell’s output is approximately
equal to the magnitude of activity within its input regions. In
layer £, every cell in S-plane k receives inputs from a V-cell that
has the same input regions. The strength of this input is weighted
by the inhibitory coefficient b, (k).

y L

k=1 k=2 k=3 k=4 k=5

C. The “cytology” of the neocognitron

Now the naming conventions used by Fukushima have
been presented, we can define the equations governing S, C
and V-cell function and the rules specifying the evolution
of weights in the neocognitron. This section is deliberately
terse; explanation of the following equations is relegated
to Section IV so that definition and interpretation of cell
function can remain distinct.

The output of an S-cell in the k*® S-plane of the £*" layer
of the neocognitron is given by

USg(n, k) déf Ty X

Kce-1
1+ Z Z ag(v,k, k) - uci—1(n+ v, k)
k=1 peA
v — —1]. (1)
Te \ \
1 cbe(k) -
o e (k) -uve(n)

The function ¢(-) is a threshold-linear transfer function,

defined by

. def 0 fz<0 .
ple) = {:b 10 < z. (2)

The selectivity parameter, vy, determines how closely the
cell’s input must correspond to the inputs it has been
trained with in order to elicit a response.

The double summation in the numerator of Equation (1)
is a weighted sum of the outputs of C-cells in the preceding
layer. C-cell output is expressed as

'Ucz(’n, ]ii) déf
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Fig. 5. This two dimensional ‘slice’ through the neocognitron shows
the interconnections between one S and C-plane from each layer of
the network. This information is based on the network described

in [3].
Kse
D Gk k) YD de(w) cuse(m+vR) | (3)
K=1 VEDl
where
do) e “)

1+ p(z)

The transfer function, (), limits C-cell output to the
range [0, 1).

V-cells have an inhibitory effect and normalize an S-cell’s
response with respect to its input region activity. A V-cell’s
output is equal to the weighted root-mean-square value of
the C-cell activity within its input regions:

def
'uVl(n) é

Kce-1

Yo D ) ubq(ntvk). (5)

K=1 VEAZ

There are four different kinds of weights used in the neo-
cognitron: a,(v, k, k), bs(k), ¢,(v) and d,(v). The first two
of these are determined during training, the last two are
specified as

Cz(") = ’Yllul (6)
dw) = & &, (7)

where 0 < 4,0, < 1 and 0 < &,.

Algorithm 1 uses pseudo-code to describe the training of
the neocognitron; this allows us to present modifications
to Fukushima’s learning algorithm as straightforwardly

as possible. To present Fukushima’s supervised training
algorithm?® in this way, it is necessary to define further no-
tation for the training exemplars.

Supervised training of the neocognitron requires that
each S-plane be exposed to one or more training patterns.
We define the set of training patterns for S-plane k in layer
{ as

def
the = {thet, - tkem, - kel ) (8)

where |tg¢| is the number of elements in ¢x,. The seed-cell
Tyem is associated with the m'" training pattern. Both
training patterns and their corresponding seed-cell loca-
tions are specified by the supervisor.

This concludes the formal specification of the neocogni-
tron but there is still much more to tell. Several people
(including Fukushima) have analysed how the neocogni-
tron extracts features [13, 14, 15]. The following section
gives an interpretation of Equations 1 to 7 and establishes
concepts which will be useful to us later.

IV. THE CALCULATION OF SIMILARITY

The neocognitron is based on the notion of similarity. On
a small scale, individual S-cells calculate the similarity be-
tween the patterns of activity in their input regions and the
features they have been trained to respond to. On a large
scale, the outputs of the neocognitron represent the similar-
ities between the input pattern and each of the different in-
put classes that the network has been trained to recognize.
Only the similarity calculated by S-cells has a direct mathe-
matical representation (Equation (1)). This representation
has a geometrical interpretation, with weights and inputs
represented in Euclidean space. Before rendering this view
of S-cell behaviour, we must define some additional vector
notation.

If the connection region of an ¢*® layer S-cell is defined
as the set of all input cell position vectors in a preceding
C-plane, i.e.,

def

A = SVlah (9)

then the weight, mask and input vector of any cell in the
k'™ S-plane of layer ¢ can be written as

{Vl,V2, .

T Lk ] C () ]
ac(¥)a,, 1K) ce(|Ae])
def al(”l:2:k) def Cg(l)
ar = . yCt = .
al(VlAd;Q;k) Cl(lAlD
L ac(V)a,), Kce-1, k) | | ce(|As]) |

3Supervised training produces better recognition performance than
self-organization [2] and since we are interested in maximizing
the neocognitron’s performance we shall only discuss this so-called
training-with-a-teacher method of learning. The reader is referred to
[12] for information about unsupervised learning in the neocognitron.
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Algorithm 1: (Fukushima’s Supervised Training Algorithm)
Assuming that all connections described by a,(v, &, k) and b,(k) are initially equal to zero, the process of training a
neocognitron with layers 1 to L can be written as follows.

procedure train_neocognitron() {
for{=1to L {
train_layer(f) ;
}
}

procedure train_layer(¢) {
for k=1 to Kg, {
for m = 1 to |tge| {
UCO = trom ;
for layer = 0 to £ — 1 {
activate(layer) ;

train_S_cell(nyem, k, £) ;
}
}
}

procedure train_S_cell(mym, k, £) {
for k =1 to Kee—1 {
for all v € 4, {

} be(k) = bo(k) + g - uye(mpem) ;

H H H HH

#
#
#

For each layer of the neocognitron

learn S-cell weights.

Update S-plane weights
for each S-plane in layer £
and for each training pattern of the Eth S-plane.

Load the m'® pattern

into the input plane,

propagate activity from input to layer ¢ —1,

then update the weights of the seed cell.

Update the a;(v,k, k) and by(k) weights
for each C-plane in the preceding layer
and for all input region cell positions.

ag(v, K, k) = ag(v, 6, k) + q - ¢ (V) - uci—1(Mirem + v, K)

The procedure activate(f) represents the propagation of activity from the S-cell inputs to the C-cell outputs of layer ¢,
according to the transformations defined by Equations (1) to (5). The parameter ¢, is a positive number known as the
learning rate of layer £. Note that this algorithm is completely deterministic.

and wucy_1 =

respectively. The vector of seed-cell inputs corresponding
to the m'™® training pattern of the k*® S-plane in layer £ is

ucr—1(n + v, 1)

uce—1(n +v)a,, 1)
def uce-1(n +v1,2)

uce—1(n +v)a,),2)

L uce—1(n +vya,, Kceo1) |

denoted by

The inputs and w
space and a conven

| uce—1(rim +v)a,), Kceo1) |

uci—1(Ngim + 11, 1)
uci—1(Ngim + V2, 1)

uce—1(Pgim + V)4, 1)
uci—1(Ngim + v1,2)
uci—1(Ngim + v2,2)

Uct—1(Npim + V|4, 2)

eights of an S-cell are vectors in pattern
ient measure of their similarity is the

cosine of the angle between them. The degree of similarity
between these two vectors is defined as

s(ae,u

T
y def ay " UCi-1 \

ci— = — 10
) lag| luwce—1]|’ (10)
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(a) (b)

o

Fig. 6. (a) A two dimensional example of vectors z, y and the angle
between them, Ozy.
(b) The locus of cosfzy - § as y takes all possible directions in
the plane.

)

Fig. 7. The locus of s"(z,y) - § for all directions of y. Since 6, =
cos~1 7, the higher the threshold, the narrower the locus about
z becomes. Thus, high values of 7 restrict the range of input
vectors for which s”(z, y) is greater than zero (i.c., the acceptance
region, A). In two dimensions, A is a triangular region (between
the dotted lines above), in three dimensions it is conical, and in
higher dimensions the shape of the acceptance region is described
as a hypercone.

that is, the cosine of 0g,u,_, (see Figure 6(a)). Fig-
ure 6(b) shows a 2-dimensional example of the direction
cosine surface described when the similarity measure of
vectors @ and y is projected in the direction of y.

Since there may be no activity within a cell’s input re-
gions (i.e., every element of wcy—1 could be 0), Equa-
tion (10) cannot be used directly as a similarity measure.
The S-cell function described in Equation (1) is based upon
a variation of Equation (11)

o (@, ucs1) def 1+aeTuce_1.
’ 14 |as| |wci-1]

(11)
This modified similarity measure avoids the problem of zero
length input vectors and is approximately equal to the sim-
ilarity measure of Equation (10) when |a,||uci—1]| > 1 (a
condition which can be assured by using a large learning
rate, e.g., q¢ ~ 105 as suggested in [4]). The relation be-
tween Equations (1) and (11) is not immediately apparent;
subsequent equations should clarify the situation.

The purpose of an S-cell i1s to respond to an input suf-
ficiently similar to the patterns it has been trained with.
Fukushima has incorporated Equation (11) into the math-
ematical description of the S-cell so the degree of input
and weight vector similarity necessary for non-zero S-cell

response can be adjusted. By introducing a threshold pa-
rameter, 7 € [—1, 1], and a threshold-linear transfer func-
tion (Equation (2)), a further measure of similarity can be

defined by

! —
S aucer) = g s'(ag, uce-1) — 7

1—7 (12)
If s'(ae, wce—1) < 7, the non-negative function ¢(-) ensures
s"(ag,uce—1) = 0. If, however, the weight and input vec-
tors are similar enough that s'(as, wce—1) > 7 then 0 <
s"(ae, wce—1) < 1. Since s'(ag,uce—1) ~ cosfayucso_q
(for |ae| |wce—1]| > 1), the parameter 7 defines a threshold
angle, 0, = cos™' 7. Figure T is a geometrical interpre-
tation of Equation (12) and shows how 7 can control the
range of input vectors that make s”(-) positive. The vol-
ume of pattern space in which s”(-) > 0 is referred to as
the acceptance region, A.

Equation (12) and parameter 7 do not appear in other
literature about the neocognitron. Instead of 7, Fuku-
shima’s S-cell description uses a selectivity parameter, r,
to regulate the acceptance region. The threshold param-
eter is related to this quantity by 7 = r/(r + 1), where
r > —0.5, hence

s'(ap, wee—1) — ——
Sll(az,ucz—l) = ¥ , r+l
_r+1

= llr+ Vs’ ar, uce) — 1] (13)
and, using some algebraic manipulation and the fact that
o(r-z) = r-p(z) for positive values of r, it can be shown
that this equation is approximately equal to Equation (1).

What Equation (13) and Figure 7 show is that S-cell
output (and hence network classification performance) de-
pends strongly on selectivity. A high value of selectivity
will cause an S-cell’s acceptance region to be quite acute
— the cell will only respond to inputs highly similar to the
patterns it was trained with. Low selectivity produces a
broad acceptance region and an S-cell that will respond to
a wide range of inputs — possibly inputs quite unlike those
it was trained to recognize. In the next section we consider
how to adjust selectivity to maximize recognition.

V. ADJUSTING SELECTIVITY
Hildebrandt [15] was the

first to propose a comprehensive? scheme for adjusting S-
cell selectivities in the neocognitron. However, for reasons
not initially apparent, Hildebrandt’s Optimal Closed-Form
Training (OCFT) algorithm failed to produce a network
that performed well.

Without going into great detail®, the central idea of
OCFT is to adjust S-cell selectivity so the acceptance re-
gions of cells in different S-planes (within a given layer) are
as large as possible without overlapping. Hildebrandt rea-
soned that this would allow S-cells to tolerate the largest

4Selectivity adjustment was discussed briefly in [12].
S5OCFT and its mode of failure are discussed fully in [16, 17].
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Fig. 8.
proportional to the vector sum of the inputs presented during
training uée_l + u%e_l + ...

Once training is complete, an S-cell’s weight vector a, is

Fig. 9. If selectivity is chosen independently of training vectors, there
is a risk of setting r; so high that one or more training vectors
falls outside the acceptance region, as is the case for exemplar

1
Uoe—1-
a,
1
Uc.g
2
o L
Fig. 10. For a given training pattern, the output of the S-cell is

equal to the length of the line from the origin to the locus of
S-cell output (the teardrop shaped lobe) in the direction of the
appropriate input vector.

(0]

Fig. 11. SOFT adjusts the S-cell’s selectivity to ensure the small-
est output, in response to a training vector, is equal to USe
Note the increased response of the S-cell to the second and third
training patterns.

amount of distortion in input without compromising their
ability to discriminate.

In practice [16], it was found that OCFT adjusted selec-
tivities so that some S-cells would fail to recognize even the
exemplars they were trained with, severely degrading over-
all performance. This training feature rejection occurred
because OCFT determines selectivities on the basis of the
average of S-plane training features. OCFT does not guar-
antee that selectivity will be adjusted so individual training
vectors lie within the appropriate acceptance regions (as
depicted in Figures 8 and 9).

A. Sub-Optimal Feature-based Training

One solution to the problem of training feature rejection
is to adjust S-cell selectivity to guarantee a minimum S-cell
response to all training patterns. This is the basis of the
Sub-Optimal Feature-based Training (SOFT) algorithm
described here.

The strategy of SOFT is to scale an S-cell’s response to
a training feature by adjusting the cell’s selectivity from
its initial value. This adjustment is carried out using the
training pattern which elicits the weakest response from the
S-cell. Using the general notation of Sections III and IV,
the output of the seed cell in the k'™ S-plane of layer £, in
response to the m™ training pattern, is us(ngsm, k). The
initial selectivity of that cell is rg,. We define the weakest
response to a training pattern for this S-plane as

. def . \
MIN g, (k) = Hrlr%nusz(nkm,k)-

(14)
SOFT adjusts the selectivity of the S-cell from 7y, to 7},
so that the weakest S-cell response to a training pattern
becomes usL - The parameter use 1s referred to as
the guaranteed minimum S-cell response and satisfies 0 <
use .o < 1.

To explain how SOFT adjusts selectivity, we need to
define S-cell activation as

def

zse(n, k) = (rre+1)s'(ag, uce—1) —rre,  (15)

which is essentially the argument of ¢[] in Equation (13).
In a similar fashion to Equation (14), the minimum S-cell
activation in response to a training vector is defined as

. def .
min g,k = Minzs(Ngem, k).

(16)
From Equation (11) we know s'(a¢, wcs—1) depends only
on the angle formed between the vector of inputs to an S-
cell, ucy—1, and that cell’s weight vector, a,. Using Equa-
tion (15), we can calculate what the modified similarity
measure of an S-cell must be, given that the activation and
selectivity of the cell are min ., (x) and rge, respectively:

Phe + MIN o gy (k)
rre+ 1 .

The goal of SOFT is to adjust 7z to 7}, so that
MmN pq, (k) = Use, . - This means that

s'(ag, ucem1) = (17)

Usen = (The +1)8"(ag, wce—1) — i (18)
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Rearranging this to isolate the required selectivity value
gives

s'(ag, wee—1) — use_,
/ ) min
Tkt 1—s'(ag,uce—1) (19)

and substituting in Equation (17) gives an explicit expres-
sion for the value of ), in terms of the current selectivity
and cell activation, and the desired output:

Phe + MIN oo, (k) o
rre+ 1 Stmin

e = . (20)

1 _ <rkl + min ﬂfse(k)>
rre+ 1

Now we can incorporate Equation (20) into a precise spec-

ification of the SOFT algorithm (see Algorithm 2).

B. Implementation issues

While SOFT alleviates the problem of training feature
rejection, its implementation requires that three additional
issues be addressed:

1. Instead of eliminating (or even reducing) the number
of parameters that need to be chosen, SOFT replaces
the set of selectivity parameters with a set of guaran-
teed minimum S-cell response parameters. We have
no guidelines as to how to choose suitable values of
use . (see Figure 12).

2. We cannot apply SOFT to S-cells that have only one
training pattern (Figure 13). After training is com-
plete, an S-cell with only one training pattern will have
the weights a; = ¢, ul,_,, and when we compute this
cell’s activation in response to its training vector we
have zg¢(nge1, k) = 1. Equation (20) shows that this
activation means r,, — oo (for 0 < use, . < 1). If
it were possible to implement such a value of 7, the
S-cell would respond only when the inputs to the cell
were identical to the cell’s weight vector, effectively
removing any capacity for that S-cell to generalize.

3. The experimenter’s choice of training features indi-
rectly determines S-cell selectivity. A set of highly
similar training vectors will produce an S-cell with a
very narrow acceptance region. Certainly, all training
vectors will elicit a non-zero response from that S-cell,
but, unless the actual distribution of typical features
is tightly clumped within the acceptance region, the
cell will be far too selective (Figure 14).

On the other hand, a training vector substantially dis-
similar to other training vectors will cause an S-cell’s
acceptance region to balloon out to encompass it (Fig-
ure 15). An S-cell with such a low selectivity will be
responsive to almost any feature and, therefore, prob-
ably not be of much use within the neocognitron. To
use Hildebrandt’s terms, finding the appropriate bal-
ance between generalization and discrimination is still
a problem.
In the next section we determine whether these problems
are a major handicap in applying SOFT to the neocogni-
tron.

Fig. 12. By varying rgy, we can produce a family of S-cell output
loci, giving a range of feasible ugy . ~values. This figure shows
how three different choices of rp; give three different non-zero
S-cell outputs for the input vector ulce—l' It is unclear which
choice is best.

a;

\

o

Fig. 13. If an S-cell has a single training vector, the cell’s output
in response to that vector will be 1, regardless of the value of
selectivity.

a;

\

o

Fig. 14. Highly similar training vectors cause SOFT to produce a
highly selective S-cell.

a;

A

Fig. 15. One unusual training feature will radically alter the accep-
tance region produced by SOFT.
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Algorithm 2: (The Sub-Optimal Feature based Training Algorithm)
As with Fukushima’s supervised training algorithm, this training scheme commences with all connections a, (v, &, k) and
bs(k) set to zero.

procedure train_neocognitron() {

for {=1to L { # For each layer of the neocognitron
train_layer(f) ; # learn S-cell weights
tune_layer(f) ; # then adjust S-cell selectivities.

}
}

procedure train_layer(¢) { # Update S-plane weights
for k =1to Kgy { # for each S-plane in layer ¢ and
for m = 1 to |Ty| { # for each training pattern of
# the k'M S-plane.
UC0 =tgim ; # Load the m'" pattern into the input plane,
for layer = 0 to £ — 1 { # propagate activity from input...
activate(layer) ; # to layer (—1,

}
train_S_cell(nyem, k, £) ; # then update the weights of the seed cell.
}
}
}

procedure train_S_cellmym, k, £) { # Update the a,(v,k, k) and by(k) weights
for k =1 to Kgoo1 { # for each C-plane in the preceding layer
for all v € A4, { # and for all input region cell positions.

ag(v,k, k) = ap(v, 6, k) + g0 - co(V) - uci—1(Mpem + v, K)

} be(k) = bo(k) + g - uve(mpem) ;

procedure tune_layer(f) { # Tune the selectivities
for k=1 to Kgsy { # for each S-plane in layer /.
ree = 1 # Initialize selectivity of the th S-plane,
min g o, k) = 1 ; # initialize minimum S-cell response, and
for m = 1 to |Ty| { # for each training pattern of
# the k" S-plane
UCO =tgm ; # load the m'" pattern into the input plane
for layer = 0 to £ { # and propagate activity from input...
activate(layer) ; # to layer /.

}

# If seed-cell’s activation < current minimum then
# update the current minimum S-cell response.
if s¢(nrem, k) < min z ) then

| MiN g, (k) = £5e(Nktm, K) ;

# Adjust rpy so that the minimum S-cell response

# to any training pattern will be uge . .

Phe + MIN o gy (k) rr;?énﬁ— Min ¢ o, (k)
Tpe = | ———————— — Uge, Il —;
rre+ 1 min Thet+ 1
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TABLE 1
IN THIS COMPARATIVE TABLE “KF-1988” REFERS TO THE NETWORK DESCRIBED IN [3], “DL-1992” 1S THE NETWORK DESCRIBED IN [17].
Expt | Network | Training Alg. | Test Digits % Correct | % Misclassified | % Rejected | % Reliability
1 KF-1988 | Algorithm 1 Lovell’s 52.50% 26.25% 21.25% 66.67%
2 KF-1988 | OCFT Lovell’s 3.25% 10.00% 86.75% 24.53%
3 KF-1988 | SOFT Lovell’s 74.00% 26.00% 0.00% 74.00%
4 KF-1988 | SOFT CEDAR 47.25% 52.00% 0.25% 47.61%
5 KF-1988 | SOFT CEDAR (thinned) 51.50% 48.50% 0.00% 51.50%
6 DL-1992 | SOFT CEDAR 55.75% 26.75% 17.50% 67.58%
7 DL-1992 | SOFT CEDAR (thinned) 58.75% 26.00% 15.25% 69.32%
8 DL-1992 | SHOP CEDAR (thinned) 75.75% 23.75% 0.50% 76.13%
9 NCMLP | SHOP 4+ BP | CEDAR 84.73% 3.14% 12.13% 96.43%
C. Ezperiments with SOFT Handwritten character recognition systems often thin

As experiments with OCFT demonstrated [16], the ef-
fect of any changes to a complex system like the neocogni-
tron must be assessed empirically. Table I shows the per-
formance of the neocognitron for a variety of architectures,
training algorithms and test data.

Initially, we did not have access to a database of test
digits so a set of 400 digits was ‘constructed’ by the first
author®. Under the assumption that test set performance
is binomially distributed, this size of test set provides es-
timates within +£5% of the network’s true recognition rate
with 95% confidence.

Our first experiment (results of which were indepen-
dently verified [?]) evaluated the performance of the neo-
cognitron described by Fukushima® in 1988 [3]. (We refer
to this version of the neocognitron as “KF-1988”.) We then
assessed this KF-1988’s performance after OCFT and it
became clear that Hildebrandt’s scheme had some short-
comings (see rows 1 and 2 of Table T).

The next step was to apply SOFT to KF-1988 — this
presented two difficulties. First, a number of S-planes (in-
cluding all first layer S-planes) within Fukushima’s network
had single training patterns; we decided not to adjust the
selectivities of these planes. Given that one of the final
layer S-planes had a single training pattern, we also de-
cided to set all final layer selectivities to 1.0, to ensure all
S-planes in this layer had equal sized acceptance regions.

Second, we had to choose guaranteed minimum S-cell
response parameters for layers 2 and 3 of the network. In
the absence of any firm guidelines, we set ugs, . = 0.5 and
uss, .. = 0.75.

As shown in row 3 of Table I, SOFT boosted the classifi-
cation rate of Fukushima’s network by over 20%. However,
when this system was evaluated on real world data from the
CEDAR database® [18] it was clear that the ‘constructed’
testing data was considerably easier to classify than actual
handwritten digits (compare rows 3, 4 and 5 of Table T).

6Lovell's test digits are public domain and are currently available
via e-mail (contact drl@eng.cam.ac.uk).

“We gratefully acknowledge Professor Fukushima’s kind assistance
in providing us with his training data.

8 Test data was drawn from the TEST/BINDIGIS/BS directory of the
CD-ROM.

data before attempting classification. Row 5 of Table I
shows thinning® gives a slight improvement in performance.
To further enhance recognition, a new set of training pat-
terns (based on features present in CEDAR database train-
ing digits) was created and a new network structure was
implemented. (Full details of this new architecture — re-
ferred to as “DL-1992” — are given in [17, Appendix C].)
The performance obtained is shown in rows 6 and 7 of Ta-
ble T but, unfortunately, the degree of improvement was
not enough to suggest that SOFT could produce a neo-
cognitron capable of state-of-the-art digit recognition per-
formance (i.e., correct classification of around 90% with
close to 100% reliability [20, 21]).

SOFT represents a significant improvement upon
OCFT and salvages some of the ideas put forward by Hil-
debrandt. However, it is the authors’ conviction that the
geometric assumptions upon which OCFT and SOFT are
based, should be put aside.

D. Selectivity Hunting to Optimize Performance

If OCFT and SOFT are not the best selectivity ad-
justment techniques, what issues should be considered in
designing an effective method? The experiments described
above, as well as results of some additional tests, led us to
conclude that a suitable algorithm

1. needs to incorporate extensive amounts of real-world
data into the adjustment process. Even though the
neocognitron makes use of hand-crafted exemplars to
determine S-cell weights, actual handwritten digits can
still be used in the selectivity adjustment procedure.

2. must utilize a meaningful performance measure dur-
ing training, i.e., one directly related to the network’s
ability to generalize, not just its capacity to associate
the correct output with each training pattern.

3. should not be based on unnecessarily restrictive as-
sumptions about the distribution of patterns or fea-
tures in input space; both OCFT and SOFT have
demonstrated the dangers of making assertions in this
regard.

?Data was thinned using the Safe Point Thinning Algorithm [19]



LOVELL et al.: IS THE NEOCOGNITRON CAPABLE OF STATE-OF-THE-ART DIGIT RECOGNITION? 11

4. must not introduce new parameters that have to be
carefully chosen to obtain satisfactory behaviour from
the network.

Taking these points into consideration, we propose a
simple method of selectivity adjustment called SHOP —
Selectivity Hunting to Optimize Performance. The con-
cept behind this new algorithm is to take a number of iden-
tically structured neocognitrons, with different selectivity
parameters, train them (using the same set of exemplars),
then see which one is best at classifying a validation set of
handwritten digits; the ideal selectivities are taken to be
those of the network with the highest classification perfor-
mance on the validation set.

Obviously, such a naive method for determining selectivi-
ties must be subject to certain constraints and assumptions
for it to be feasible. Instead of attempting to individually
adjust the selectivity of each S-plane, SHOP maximizes
the classification performance of the network with the con-
straint that all S-planes within a given layer have the same
selectivity value. Also, because S-cell selectivity is a con-
tinuous variable, SHOP relies upon sampling the range of
possible selectivities to obtain a finite number of perfor-
mance estimates for a specific neocognitron.

SHOP is described in Algorithm 3, where R, is the set
of all £'" layer selectivities to be considered when testing
the performance of the neocognitron.

E. Problems with SHOP

Although SHOP has the potential to make good use
of real-world data and employs a more realistic measure
of network performance than any of the algorithms dis-
cussed previously, the exhaustive search approach to find-
ing a good set of selectivities has a number of drawbacks:

1. Execution time cannot be ignored in our assessment

of SHOP’s feasibility. If ¢ is the time taken to train
the neocognitron, tp is the time taken to propagate
activity through the network and Ny is the number of
examples in the validation set, then the time taken to
execute SHOP is

tshop = |R1| X |R2| X oo X |RL| X (tT + Ny tp).

Fukushima [4] cites values of t7 = 780s,tp = 3.3sfor a

simulation of the neocognitron, written in FORTRAN

and running on a SUN Sparcstation. If we specified 10

possible selectivity values for each layer of a four layer

network and used a validation set with 400 patterns,

SHOP would take about 8 months to come up with a

good set of selectivities on Professor Fukushima’s com-

puter. In a commercial /industrial situation, a SHOP
trained neocognitron would have to be implemented

with dedicated hardware (e.g., [22]).

2. The success of SHOP relies upon the stability of the
neocognitron’s performance with respect to changes
in selectivity. If small changes in the selectivity of
any layer cause the performance of the neocognitron to
fluctuate wildly, then sampling the net’s performance
for a variety of selectivities will be of little use to us.

F. Experiments with SHOP

As indicated in the previous section, execution time was
a major concern in our experiments with SHOP. The du-
ration of each experiment was reduced by two orders of
magnitude by restricting the first and fourth layer selec-
tivity values tested. Since the relation between the input
pattern and the outputs of the first layer S-planes was read-
ily observable, a suitable r; value could be determined by
trial and error. Hence, the set of first layer selectivities to
be tested contained only one value: Ry = {1.7}.

With respect to final layer selectivity it i1s important to
remember that, while r4 determines the value of the out-
puts of the network, it has no effect on which of the out-
puts is the largest. Since input patterns are classified on
a winner-take-all basis, r4 tends not to affect the classifi-
cation performance of the network (providing it is not so
high as to make US4 cells reject a large proportion of in-
put patterns). The arbitrary restriction of Ry = {1.0} did
not appear to cause any problems in the tests on SHOP.
As well as saving time, restriction of first and fourth layer
selectivities allowed the classification performance of the
network to be readily visualized as a performance surface
— a function of ro and rs.

Figures 16 and 17 show that peak recognition perfor-
mances obtained using SHOP on Fukushima’s 1988 net-
work are fairly poor. We reasoned that this may have been
due to the stylized digit fragments used to train this system
so, to test this hypothesis, we applied SHOP to the DL-
1992 network (which used more “realistic” digit fragments
during training). Figures 18 and 19 show this gave around
30% improvement in peak performance. Furthermore, the
network’s peak classification rate on the validation set of
unthinned digits was slightly in ezcess of that achieved with
the validation set of thinned digits — a finding contrary to
Fukushima’s comments that implied the the first layer of
the neocognitron would have to be redesigned to cope with
unthinned input patterns [4, Section V].

Performance surfaces are only useful if they can be used
to predict good selectivity values. To see if this was the
case, we compared the performance surface of Figure 19
to that given by a test set of 400 thinned CEDAR dig-
its. Not only was the correlation between these two sur-
faces high (p = 0.9961), the maxima of both surfaces was
achieved with the same (rq, r3) combination: rq = 2.022,
rg = 0.5990. SHOP appears to provide an accurate pre-
diction of good selectivity values. The peak performance
obtained with the test digits is shown in row 8 of Table I.

Since SHOP allows us to systematically evaluate the
neocognitron’s behaviour, it can be used to investigate the
effect of parameters other than selectivity. We know how
to choose good values of selectivity (r;) and that the learn-
ing rate (¢q¢) should be high, but we do not know how to
choose the mask parameters, 4;, 8, and §, (Equations (6)
and (7)) or even (as Hildebrandt suggested [15, Section ITI-
B]) whether such parameters are necessary. To explore this
issue, we set all mask parameters of the DL-1988 network
to 1.0 — effectively removing their influence on the net-

work — and used SHOP with 400 thinned CEDAR digits
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Algorithm 3: (The Selectivity Hunting to Optimize Performance Algorithm)
In the pseudo-code below, the procedure train_neocognitron() refers to Fukushima’s original training algorithm (Algo-

rithm 1).

The purpose of the test_neocognitron() procedure is to evaluate the performance of the network using a validation set
of real-world data. It is up to the experimenter to decide exactly how the network’s performance is to be measured.
Correct classification rate and reliability are examples of statistics that could both be used to measure the network’s

performance

procedure SHOP() {
for all ry € Ry {

for all r, € Ry, {
train_neocognitron() ;
test_neocognitron() ;

if performance > best_so_far {
best_so_far = performance ;
Ryest = (r1,72,...,7L) ;

H H HH HH R H

}
}
.
}

Using every possible combination

of selectivities,

in all layers of the neocognitron,
train the network...

and then test it.

If the current network has

the best performance (so far),

update the best performance value

and store the L-tuple of selectivities
used by the present network.

When the algorithm terminates, Rpest contains the selectivities that elicited the highest performance from the network.
These selectivities can then be used in practical implementations of the system.

to evaluate the network’s performance surface. The surface
obtained differed from the one shown in Figure 19 but the
peak classification performance was not significantly dif-
ferent (a peak correct classification rate of 78.00%, with
78.20% reliability, occurred for r4 = 1.000, rs = 1.269).
Mask parameters do not seem to have a significant effect
on the peak performance attainable.

VI. FURTHER IMPROVEMENTS TO THE NEOCOGNITRON

We have investigated all parameters that affect cell func-
tion in the neocognitron. We know that by using a high
learning rate (g, ~ 10%), appropriate mask parameter val-
ues (7,8, ~ 0.7-1.0; §; ~ 1.0-4.0) and selectivities deter-
mined by SHOP, a correct classification rate of around
76%, with 76% reliability, is feasible. If state-of-the-art
performance is to be achieved with the neocognitron, it
seems we must alter the network to attain it.

Researchers often decompose the problem of handwritten
character recognition into two stages. Feature extraction
obtains some numerical (or logical) measure of the charac-
teristics of the input image, then the image undergoes clas-
sification and is labelled (or rejected) on the basis of the
features extracted. Our attention has been focussed mainly
on the neocognitron’s feature extracting abilities and we
have tended to ignore the 1% of cells in the network (i.e.,
those in the final layer) that tell us what class has been
assigned to an input pattern. For reasons explained in the
previous section, SHOP does not alter the selectivities of

these cells; examination of the network’s outputs during
operation gives an indication of the problems that occur as
a result.

Figure 20 shows typical levels of output activity for fifty
correctly classified input digits. Clearly, the neocognitron
is not discriminating effectively between different classes of
input. The outputs, as with all other cells in the network,
simply indicate the degree to which certain features are
present in the input image. Should some of the features
detected by one cell also be detected by others, a number
of cells can show high levels of activity at the same time.
Consequently, the neocognitron is apt to confuse certain
digits (such as ‘2’s and ‘3’s) because of the number of fea-
tures they have in common.

We need final layer cells to exploit the idiosyncratic as-
pects of each kind of digit to obtain more robust classifi-
cation. The multilayer perceptron (MLP) has been popu-
lar as a distribution free classifier [23]. Perhaps coupling
the neocognitron and MLP would create a system that
could perform distortion tolerant feature extraction and
robust classification? We refer to this hybrid system as the
NCMLP (NeoCognitron plus MLP).

Put simply, the NCMLP takes a neocognitron that has
been trained using SHOP and replaces the final layer C-
cells with a two layer MLP (Figure 21). The MLP portion
of the network is then trained to associate the outputs of
the final layer S-cells with a single output that represents
the class of the input image.
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Fig. 16. The performance surface obtained with the KF-1988 network
using a validation set of 400 unthinned CEDAR digits. Peak
correct classification was 49.00% (54.60% reliability) for ro =
2.563, rg = 0.7805.
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Fig. 17. The performance surface obtained with the KF-1988 1988
network using a validation set of 400 thinned CEDAR digits.
Peak correct classification was 46.75% (49.34% reliability) for rp
= 2.022, r3 = 1.602.
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Fig. 18. The performance surface obtained with the DL.-1992 network
using a validation set of 400 unthinned CEDAR digits. A peak
correct classification was 79.00% (79.40% reliability) for ro =
1.602, r3 = 1.000.
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Fig. 19. The performance surface obtained with the DL-1992 network
using a validation set of 400 thinned CEDAR digits. A peak
correct classification was 78.75% (79.15% reliability) for ro =
2.022, r3 = 0.5990.
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Fig. 20. Each row in the two large columns represents the outputs of
the 10 final layer C-cells in the DL-1992 network after training
with SHOP using unthinned CEDAR digits (see Figure 18).
The class of input digit is indicated at the left of each column;
UC4 cell numbers are shown at the top. The fifty digits that
evoked these outputs were correctly classified. However, in many
cases the margin between the largest and second largest output
is small, making the classification vulnerable to error.

A. Problems with the NCMLP

On top of the variables attendant to the neocognitron,
the NCMLP requires the experimenter to specify learning
rate (1), momentum (a), number of hidden units, initial
random weight variance, etc. One consolation is that the
sheer volume of research involving MLP systems provides
some empirical guidelines for selecting these parameters.
But regarding the number of hidden units needed for the
task at hand, the only practical answer seems to be to
evaluate a variety of network architectures and choose the
one that offers the best generalization performance (much
in the same way that SHOP settles upon good selectivity
values).

B. Ezperiments with the NCMLP

NCMLP training involves two phases: the first uses
SHOP to determine effective selectivities for the neocog-
nitron portion of the network; the second uses validation
techniques in conjunction with backpropagation to deter-
mine the structure and weights for the MLP section.

We used SHOP and a validation set of 400 unthinned
CEDAR digits to find selectivities for the DL-1992 network
(Rpest = {1.700,1.602,1.000,1.000}). Determining an ap-
propriate architecture for the MLP portion of the network
was more involved.

To ensure inputs would not be classified on the basis
of low or ambiguous outputs, we applied two thresholds,
tyva = 0.9 and t.onp = 0.1, to the outputs of the NCMLP.
tya denotes the threshold of validity and t.,,; the threshold
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Fig. 21. The end portion of the NCMLP architecture. Final layer
C-cells in a neocognitron are replaced by a two layer, fully con-
nected MLP. The MLP receives input from the US4 cell planes
and propagates activity through a layer of hidden units to the
ten output units that indicate the NCMLP’s classification of
the input image.

of confusion. For a given test digit, if no final layer unit’s
output was above t,4; or more than one one unit’s output
was above t.,,, the digit was rejected. Otherwise, the digit
was classed according to the unit with the highest output.

As well as thresholds to ensure rejection of illegible or
ambiguous digits, the NCMLP was {rained to reject im-
ages of ill-formed digits. Bromley and Denker [24] advocate
the training of MLP type classifiers with “rubbish” subim-
ages (i.e., ambiguous digits, multiple or partial digits, and
noise) to enhance rejection performance. The set of digits
used to train the MLP portion of the network contained
440 examples of each digit!® and 440 “rubbish” images.

Ten different MLP structures were evaluated; each had
207 inputs (19 US4 planes, each with 3 x 3 cells) and 10
outputs, and the number of hidden units varied between
each network from 5, 10, 15,..., up to 50 units. Back-
propagation training was applied to all networks using a
learning rate of 1.0 and a momentum of 0.9. The perfor-
mance of each architecture during training was monitored
using a validation set of 4400 digits'!

Under the assumption that validation set performance
correlated highly with generalization ability'?, the most
effective MLP was the one that achieved the highest classi-
fication rate on the validation set. This turned out to be a
network with 45 hidden units, after 280 epochs of training.
The test set'® performance of this NCMLP is shown in
row 9 of Table I.

10Taken from the TRAIN/BINDIGIS/BR section of the CEDAR CD-
ROM.

1 Again taken from the TRAIN/BINDIGIS/BR section of the CEDAR
CD-ROM.

12 An assumption justified by the correlation between validation and
test set performances — p > 0.98 for the 10 different MLPs.

13 An unbalanced test set of 2711 digits was taken from the
TEST/BINDIGIS/BS section of the CEDAR CD-ROM.

There is an inherent difficulty in comparing the
NCMLP’s performance to other digit recognition systems.
As Suen et al. point out in their survey “...recognition
systems cannot be compared simply by their reported per-
formances since most systems are still tested on data bases
with very different characteristics.” [21, p.1176]. With this
in mind, we note that the peak classification rate shown
in row 9 of Table I is lower than that of the 19 systems
cited by Suen et al. and it is ranked 15th in terms of re-
liability. While looking for ways to raise the NCMLP’s
performance further still, it became clear that the neocog-
nitron section of the network was not extracting all the fea-
tures necessary for the MLP to distinguish between certain
classes of digit. Additional training of the MLP would not
remedy this situation; the feature extraction process would
have to be altered either (a) by retaining the NCMLP
paradigm and designing a more effective feature extraction
network or (b) by rejecting the NCMLP model and try-
ing to develop a system with a greater ability to learn to
exploit distinguishing features of digits. The time and ef-
fort needed to redesign and retest the NCMLP renders
the first option impractical. The second alternative has
already been explored by Le Cun et al. [25, 26] who have
applied gradient descent techniques and second derivative
pruning methods to a hierarchical network very similar in
structure to the neocognitron.

At this point we believe we have gone as far as possible
in our investigation of the neocognitron and networks that
are recognizably derived from it (yet distinct from exist-
ing systems). Our experiments have pointed us away from
Fukushima’s method of supervised training with digit frag-
ments towards more effective, performance-driven learning
schemes (i.e., gradient descent style training). But, given
the success of the NCMLP and the system described by
Le Cun et al., it seems likely that Fukushima’s concept of
a hierarchy of shared-weight feature extractors will be used
in the classification of images by artificial neural networks
for some time to come.

VII. CONCLUSIONS

In this paper we have critically reviewed the formulation
and capabilities of Fukushima’s neocognitron. To the best
of the authors’ knowledge, this is the first time an empirical
assessment of the neocognitron with a substantial set of
publicly available test data has been published.

The neocognitron’s performance has been shown to be
highly dependent upon the selectivity of the feature ex-
tracting S-cells and we have presented and evaluated two
methods to set these parameters. The first technique,
SOFT, avoids the shortcomings of Hildebrandt’s OCFT
algorithm by setting selectivity such that S-cells produce a
guaranteed minimum response to their training patterns.
Experiments with SOFT led to the proposal of SHOP, a
selectivity adjustment algorithm that relies upon a valida-
tion set of real world digits to determine effective selectiv-
ities.

Analysis of final layer S-cell outputs after training with
SHOP showed that classification implemented in the final
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layer of the network did not fully utilize the distinguishing
features extracted in preceding stages. We addressed this
problem with an extension to the neocognitron which uses
an MLP as the final layer classifier. We showed how this
NCMLP architecture could be trained using SHOP and
backpropagation, as well as a validation set of digits to
determine an appropriate number of hidden units for the
MLP portion of the network.

Though the peak test performance of the NCMLP
(84.73% correct with 96.43% reliability) was a significant
improvement upon Fukushima’s original network, this clas-
sification rate fell short of those obtained with state-of-the-
art systems. Examination of S and C-cell outputs within
the network suggested that the neocognitron fails to ex-
ploit the features that distinguish different classes of input.
This result has implications for those conducting research
with the supervised, unsupervised and selective attention
versions of the neocognitron. Even if special consideration
is given to the choice of the neocognitron’s parameters it
seems unlikely that systems of this type would be able to ri-
val the performance of today’s most advanced handwritten
digit classifiers.
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