Nonmonotonic Inference Systems for
Modelling Dynamic Processes

Craig MacNish

CUED/F-INFENG/TR.102 (1992)

Department of Engineering
University of Cambridge
Trumpington Street

Cambridge CB2 1PZ, UK

Nonmonotonic Inference Systems for Modelling
Dynamic Processes

Craig MacNish

Trinity College
Cambridge!

This report is a copy of a dissertation by the same name submitted in February
1992 for the degree of Doctor of Philosophy at the Unwersity of Cambridge

© Craig MacNish 1992

!Current address: Department of Computer Science, University of York, York YO1 5DD, UK

Declaration

This dissertation describes my own work and includes nothing which is the outcome of
work domne in collaboration. Any work which is derived from other sources is explicitly
cited in the text.

Craig MacNish
February 1992

i

Abstract

The ability to model dynamic processes mathematically is an important aspect of auto-
matic control. While traditional control theory has proven successful in characterising
continuous dynamic processes, it appears that different mathematical tools are required
for modelling processes characterised by discrete events. This thesis investigates the use
of nonmonotonic logics as a basis for modelling such processes.

We develop a nonmonotonic inference system which has a number of desirable features
for process modelling. The system is suitable for expressing causal relationships and
supports defeasible inferences from incomplete knowledge bases. The relationship between
the input and output of the system is precisely described. The system is guaranteed
to generate a single consistent output for any allowable input, and the output can be
generated using algorithms based on classical deduction.

The system is based on two well-known nonmonotonic reasoning formalisms—Shoham’s
logic of chronological ignorance (CI) and Reiter’s default logic. A number of improvements
to these formalisms are suggested.

We argue that the use of modal logic to represent knowledge of assertions in CI is
unwarranted and provide an alternative truth-functional language called asserted logic. A
simplified version of CI for causal theories is developed using asserted logic and shown to
be equivalent to Shoham’s original formalism.

We propose solutions to two problems associated with default logic, namely incoherence
and the multiple extension problem. The former makes use of asserted logic to normalise
defaults. The latter is based on an extension of default logic, called hierarchical default
logic (HDL), which incorporates an ordered default structure. In order to calculate the
belief set for HDL theories we redefine default logic in a way which “factors out” deductive
closure. This leads to a proof procedure for default logic which extends to the hierarchical
framework.

We provide a proof theory for chronological ignorance based on HDL, using asserted
logic as the underlying language. We then suggest improvements to the proof-theoretic
framework and, in particular, an alternative framework which does not require an epistemic
logic.

The use of the resulting system, called chronological augmentation, is demonstrated

by providing models for two simple assembly processes.
Keywords

Automated reasoning, nonmonotonic logics, knowledg-based modelling, discrete-event dy-
namic systems, artificial intelligence, planning.

iii

Acknowledgements

This work has been funded by Trinity College, Cambridge, under the Prince of Wales
Studentship. Without the generous support of the College it would not have been pos-
sible. Additional financial support for academic travel has been provided by Cambridge
University Engineering Department.

I would like to thank Frank Fallside, my supervisor, for valuable advice during the
course of this work. I would also like to thank Rajeev Goré and lan Green for many
stimulating and enjoyable discussions. Raj provided a number of useful theorem prover
implementations, and Ian provided valuable comments on an earlier draft of this thesis.
My work has also benefited from discussions with André Trudel, John Gooday and Mary-
Anne Williams, and from help with computing facilities from members of the CUED
Speech, Vision, Robotics and Al Group.

I would like to give a special thanks to my family in Australia for their understanding
and encouragement over the years, and to my friends and colleagues both here and in
Australia for keeping life enjoyable and morale high. Finally I would like to give a special
thanks to Jo for her patience and support.

v

Contents

Abstract
Acknowledgements

List of Figures

List of Tables

Notation and Abbreviations

1 Introduction
1.1 Towards Logic-Based Control,
1.1.1 Declarative Knowledge and Mechanised Logic
1.1.2 Nonclassical Logics oo o Lo
1.2 Logical Prerequisites Lo o L
1.3 A Declarative Modelo
1.4 Qutline of the Thesis o

2 Background Literature and Early Work
2.1 The Situation Calculus o oo
2.2 Question-Answering Systemso Lo oL
2.3 The Frame Problem and STRIPS,
2.4 Nonmonotonic Reasoning L.
2.5 Chronological Ignorance L o oo
2.6 An Example: Multiple Agent Collision Avoidance
2.6.1 The Collision Avoidance Problem
2.6.2 LCT: A Continuous Temporal Logic
2.6.3 Projection Theories o
2.6.4 Chronological Minimisation
2.6.5 Solving the Collision Avoidance Problem
2.6.6 Lessons from the Example L.

3 Reasoning Formalisms and Transfer Relations
3.1 Transfer Relations L oo

3.2 Properties of Transfer Relations

i

v

ix

x1

10
11
12
13
14
16
17
18
19
20

3.2.1 Properties of Relations o oo oL
3.2.2 Propertiesof Sets. L
3.2.3 Logical Properties L L L
3.3 The Closed World Assumption
3.4 Default Logic e
3.5 Autoepistemic Logic L
3.6 Chronological Ignorance
Asserted Logic
4.1 Modal Logics of Knowledge L.
4.2 The “Confidence” Spectrum o
4.3 Definition of Asserted Logic L oo,
4.3.1 Syntax of ALo
4.3.2 Propositional Semantics of AL 0000
4.3.3 Satisfaction and Tautological Consequence
4.3.4 FEpistemological Interpretation
4.4 Propositional Calculusin AL
4.4.1 Deductionsin AL. oo o
4.4.2 Soundness, Consistency and Completeness
4.5 Remarks Lo
Simplified Chronological Ignorance
5.1 Temporal AL o . e
5.1.1 The Temporal Logic BTK
5.1.2 TAL . . o o e
5.2 Chronological Minimisation
5.3 Causal Theories o e
5.4 Unique CMI Truth Valuations,
5.4.1 Finite Causal Theories,
5.5 Equivalence of the Formalisms
5.6 Remarks e
A New Look at Default Logic
6.1 Default Logic Without Deductive Closure
6.2 A Proof Procedure for Nonnormal Defaults
6.2.1 Previous Approaches L Lo oL
6.2.2 Exhaustive Search for Augmentations
6.3 Avoiding Incoherence Using Asserted Logic
6.3.1 Weakened Justificationso o oL
6.3.2 Normalising Defaults oL
6.4 Nondisjunctive Theories,
6.4.1 Horn Theories

vi

33
33
34
35
35
36
37
38
39
39
41
43

44
44
45
45
45
46
47
49
49
50

7

10

Hierarchical Default Logic 61

7.1 Recursive Transfer Relationso ... 61
7.2 Hierarchical Augmentations and Extensions 62
7.3 Example: The Yale Shooting Problem 64
7.4 Free Default Theories o Lo 66
7.4.1 Further Computational Short-cuts 67
7.5 Comparison with AEL and HAEL 68
Chronological Augmentation 70
8.1 A Proof Theory for Chronological Ignorance 70
8.2 Finite Causal Theories o o 73
8.3 Implicit Assumptions in Chronological Ignorance 75
8.3.1 Causal Rules and the Ostrich Principle 75
8.3.2 Causal Rules and “Real” Physics 76
8.4 Alternative Approaches L 77
8.4.1 Method I — Weak Assumptions 78
8.4.2 Method II — Strong Assumptions 79
8.4.3 Method III — Horn Causal Theories 80
8.4.4 Method IV — Classical Causal Theories 81
8.5 The Qualification Problem oo oo 82
Examples of Declarative Modelling 85
9.1 Implementation Lo e 85
9.2 Assembly of a Ball-Point Pen 86
9.2.1 Excitations L e 86
9.2.2 Defaults 87
9.2.3 The Knowledge Base 88
9.2.4 Examples of Assembly Plans 89
9.2.5 Changes to the Process 89
9.3 A Multirobot Workeello oo 90
9.3.1 Excitationso 91
9.3.2 Defaults L 91
9.3.3 The Knowledge Base 92
9.3.4 Example of an Assembly Sequence 93
Conclusions and Further Work 95
10.1 Summary of Results o oo o 95
10.2 Improvements to the System L L Lo 96
10.2.1 Non-causal Theories 96
10.2.2 A First-Order System 97
10.2.3 Quantitative Information 98
10.2.4 Representation of Time 0oL, 99
10.3 Adaptive Planning L Lo 99
10.4 Relationships with Non-Al Approaches 101

vii

A Mathematical Prerequisites

A.1 Relations and Functions
A2 First-order Logic e

A.2.1 Syntax of L

A.2.2 Propositional Semantics of L
A.2.3 First-Order Semantics of L .

A.2.4 Subclasses of First-order Logic

B First-order Semantics for Asserted Logic

B.1 Semantics e e e

C Details of the Logic LCT
C.1 Syntax of LCT e e e

C.2 Semantics of LCT

C.3 An Inference Algorithm for Projection Theories

Bibliography

viii

102
102
103
103
104
105
106

107
107

109
109
110
111

113

List of Figures

1.1 The structure of a typical feedback control system. 2
1.2 A “blocks world” system with one possible event indicated. 5
1.3 The structure of a logic-based declarative model. 6
2.1 Merged road maps for two agents in a common workspace.. 15
2.2 New nodes inserted to bound intersection segments. 15
2.3 Possible interpretations for a projection theory. 18
2.4 Automatic generation of projection rules. L. 20
3.1 A transfer relation R = {(®1, ¥q),(®3, ¥3), (P35, ¥4)}on O(L). 24
6.1 Extension as a composite relation Ep = ThoAp.. 53
9.1 The structure of a logic-based declarative model. 86
9.2 Parts of a ball-point pen.o L 87
9.3 Connection graph for the ball-point pen. 87
9.4 Configuration of the LAAS multirobot workcell [Fre91]. 90
10.1 The structure of a declarative feedback control system. 100
C.1 Conditions under which LCT formulas are satisfied. 110

1x

List of Tables

2.1

3.1

4.1
4.2
4.3

6.1

7.1

9.1
9.2
9.3
9.4
9.5
9.6

Results generated for the collision avoidance example.
A summary of properties for common reasoning formalisms.

The confidence spectrum for modal logic.
The confidence spectrum for Kp.
The confidence spectrum for AL.

A normalised representation of Etherington’s link types for inheritance net-
works with exceptions. Lo L L

A summary of properties for default logic and HDL.

Sentences describing the effects of assembly instructions.
Sentences characterising the modified assembly.
Actions performed by workcell elements.
Conditions describing the workcell state and their default values.
Frame axioms for the workeell. 0oL

Sentences describing the effects of actions in the workcell.

Notation and Abbreviations

List of Symbols

Sets and Relations

R,N, 7 real numbers, natural numbers and integers
U, N, \ union, intersection and difference of sets
G, G, ¢ subset, proper subset and element
0 empty set
Ay x Aqy cartesian product of A; and A,
A? Ax A
P(A), 24 power set of A
D(R), R(R) domain and range of relation R
Ri0Ro composition of relations Ry and Rq
Logic
t, f,u truth values “true”, “false” and “unknown”
-, A,V negation, conjunction and disjunction connectives
—, < implication and equivalence connectives
— strong negation connective
Y, universal and existential quantifiers
= satisfaction, logical and tautological consequence
F first-order and propositional deduction
g ar Nag A A ay,
L, Lg, Lp classical first-order, sentential and propositional logics
Th deductive closure (“theorems”)
Ap, Ep augmentation and extension over default set D
Ap, Ep recursive augmentation and extension of hierarchical default set D
a, & the modal operator and its dual
T, F,P, U the assertion operator and related “operators”
TRUE reification relation in CI
KI Kripke interpretation

xi

Notational Conventions

This work refers to various sources adopting a wide range of notational conventions. Where

possible we have attempted to standardise the notation according to the following con-

ventions.

Type style

lowercase Greek letters

uppercase Greek letters

typewriter style characters
—Ilowercase
—uppercase

lowercase (maths) italic letters

Uses (and examples)

variables ranging over wifs (a, 8,7, ¢, ¥, ...)
truth valuations and valuations (o, 7)

variables ranging over sets of wifs (¢, ¥, A, ...)
well-formed formulas

predicate, function and constant symbols
variables, metalevel relations

variables ranging over predicate, function and

constant symbols (p,f.t, ...)
variables ranging over base formulas (z, y, z, ...)
uppercase (maths) italic letters sets other than wifs (parameter sets, graphs, ...)
generic names (and wifs) of logics (L, L1, Lg, ...)
names of relations (R,Th,CWA,...)

hierarchical parameter sets (D, F, U, ...)

uppercase and lowercase italics
uppercase bold (maths) italics
recursive relations (Ap, Ep, ...)

uppercase roman letters the names (and wifs) of specific logics (L, AL, ...)

Abbreviations

Al artificial intelligence

AL asserted logic

AFEL autoepistemic logic

BTK the temporal logic of Bacchus et al
CI chronological ignorance

CWA closed world assumption

DEDS discrete-event dynamic system
GCH the temporal logic of Trudel
HAEL hierarchic autoepistemic logic
HDL hierarchical default logic

KB knowledge base

LCT continuous-time logic

MEP multiple extension problem

TAL temporal asserted logic

TK logic of temporal knowledge

cmi chronologically maximally ignorant
Itp latest time point

wit(s) well-formed formula(s)

Chapter 1

Introduction

A model means, in the context of a study of the dynamics and control of plant,
a representation of the plant behaviour in terms of mathematical statements. ..
The ‘representation [...]in terms of mathematical statements’ is open to var-
ious interpretations.

R. J. Richards, An Introduction to Dynamics and Control (1979)

The need for reliable theories of automatic control has been recognised by engineers for
more than a century. Central to this requirement is the ability to characterise mathemat-
ically or model the systems or processes under consideration. While traditional control
theory has proven successful for modelling and controlling continuous dynamic systems,
it is not applicable to many domains which are naturally characterised by discrete events.
It appears that different mathematical tools will be required for modelling these types of
systems.

The last 40 years have seen the emergence of systems which seek to mimic certain
aspects of “human reasoning” by automating the inference mechanisms of mathematical
logic. These systems have found applications in areas such as automatic planning and
“intelligent” knowledge-based systems and appear to provide a promising approach for
modelling dynamic systems.

Applications such as these have highlighted problems, however, which are not easily
handled by traditional or classical logics. In order to overcome the restrictions of tradi-
tional systems a number of extensions to classical logics have been proposed. Important
examples include nonmonotonic logics, which incorporate default information, and tem-
poral or state-based logics which can be used to reason about causality and the effects of
actions over time.

This thesis investigates and develops nonmonotonic and state-based reasoning systems
which are appropriate for modelling discrete-event dynamic systems.

1.1 Towards Logic-Based Control

The basic structure of a feedback control system is shown in Figure 1.1. The system con-
sists of the process (or a model of the process) to be controlled, a component for comparing

1

desired

behaviour error excitations process behaviour
—_— H
) comparison o control } or mode y

Figure 1.1: The structure of a typical feedback control system.

the behaviour of the process with the desired behaviour, and a controller which generates
excitations or inputs to the process based upon the error between the desired and actual
behaviour. (For an introduction to control concepts see [Ric79, Dor86].) The variables r,
e, u and y represent information which is passed around the system and the comparison,
control and modelling components perform some operation on this information.

In traditional or quantitative control theory the information passed around the system
is typically described in terms of continuous real-valued functions [Lei87b] and the oper-
ations are described by transfer functions based on differential or difference equations (or
their frequency domain counterparts). This type of representation has proven highly suc-
cessful in domains in which the quantities under consideration change continuously over
time. We call these continuous dynamic systems. Examples include electrical, mechanical
and thermodynamic systems in which the physical laws governing the processes can be
described by differential equations [Dor86].

There are many systems, however, which stand to benefit from the application of
feedback control concepts, but for which quantitative information alone is not adequate.
Typical examples include

¢ high-level control systems for robots, in which decisions must be made about where
the robots should go and what actions they should take,

e production scheduling systems, in which the delivery and assembly of components

must be co-ordinated,

o safety shutdown systems, in which alarm signals must be interpreted and acted upon,
and

o traffic control systems, in which mobile objects must be scheduled to avoid collisions
and optimise travel times.

These systems require descriptions of the operating environment, the relationships between
components, and the goals or tasks to be performed. They are often called discrete-event
dynamic systems (DEDSs) since events which change the state of the system occur over
distinct time intervals.

1.1.1 Declarative Knowledge and Mechanised Logic

Much of the information required for describing DEDSs appears to be expressed most
conveniently by declarations or statements about the world; for example “part A is con-

2

nected to part B”, “robot 1 is at the conveyor”, “the evacuation alarm is on” and so on.
Information of this type is often called declarative knowledge (see [GN87, Chap 2] for a
detailed definition). We use the term declarative control to refer to control systems that
deal with declarative knowledge.!

Since the 1950°s a great deal of effort has been devoted, primarily in artificial in-
telligence (AI) and theoretical computer science, to finding useful ways of representing
and reasoning about declarative information. Some of the more influential approaches
include mechanised logics (for example [Rob65]), production rules [NST72], semantic net-
works [Sim73], frames [Min75), truth maintenance systerns [Doy79] and fuzzy logic [Zad75].

Approaches based on the mechanisation of mathematical logic form an attractive basis
for declarative control for a number of reasons. The principles of mathematical logic have
been extensively studied and documented. These principles provide tools for investigating
the behaviour of logic-based systems, just as the principles of differential calculus provide
a basis for analysing traditional control systems. Furthermore, the techniques involved,
like those of differential calculus, are independent of the domain of application. This
allows us to develop a deductive analytic theory [Lei87b]; that is, a class of system with
very general properties which can be specialised to the particular system under study.
In addition the implementation of logic-based systems has been studied extensively, and
standard “theorem-proving” systems (for example [Fit88]) and logic-based programming
languages ([CM84]) are readily available.

Logic-based systems have a number of disadvantages, however, both from a representa-
tional and from a computational point of view. The attractive properties of logic systems
are a consequence of adhering to formal rules which limit the scope of the knowledge that
can be represented. In addition first-order logic is not decidable [BJ80] (that is, there is
no effective procedure for deciding whether one formula is a logical consequence of others)
and even its decidable subclasses, such as propositional logic, suffer from computational
explosion. The satisfiability problem for propositional logic, for example, is known to be
NP-complete [GJ79]. Problems such as these have prompted many researchers interested
in applications of declarative knowledge to choose alternative approaches. Rule-based sys-
tems, including production rules and fuzzy logic, are particularly common for applications
in modelling and control [Lei87a].

1.1.2 Nonclassical Logics

An alternative to abandoning logical systems is to investigate variations on classical logics
with the aim of improving their representational and computational properties. These
nonclassical logics generally fall into two categories. Fatensions to classical logic add new
symbols and inference procedures while preserving the existing framework. Restrictions to

'In fact a lot can be said about continuous dynamic systems using declarative knowledge. This is
achieved by discretising the domain. For example, motion of an object might be catagorized according
to whether the relevant derivatives are positive (4), negative (—) or zero (0). Systems based on this
approach are often called qualitative reasoning systems [Bob84]. This approach represents perhaps the
most extensive application of artificial intelligence to modelling and control (see for example [Lei87al) to
the extent that the term knowledge-based control is often used synonymously with qualitative control. In
order to avoid this association we use the term declarative control.

classical logic share the same symbols but do not support the same inferences [Haa78]. The
former category includes modal logics [HC68] which form the basis of logics of knowledge
and belief [Hin62, McD82, Moo85a]. Examples of the latter category include intuitionistic
logic [Hey66] and multiple-valued logics [Res69]. Overviews of these systems can be found
in [GN87, Haa78, Tur84].

In this thesis we examine variations to classical logic which appear to be appropriate for
modelling discrete-event dynamic systems. These variations are often called nonmonotonic
and temporal or state-based reasoning systems and have grown largely in response to
problems encountered in automatic planning and intelligent knowledge-based systems.
The motivation for these logics is discussed in Section 1.3.

1.2 Logical Prerequisites

We assume in this thesis that the reader has a working knowledge of first-order logic and
proof theory. General introductions to logic and automated theorem proving can be found
in [Bun83, CL73], while a good introduction to logics in the context of artificial intelligence
is contained in [GN87]. The first three chapters of [BM77] provide a rigorous account of the
syntax and semantics of propositional and first-order logic, and the conventions used in this
thesis are adopted largely from this source. For a thorough introduction to computational
aspects of logic the reader is referred to [BJ80], and for an accessible introduction to
philosophical issues [Haa78] is recommended.

The logics developed in this thesis are based on a classical first-order logic L, the precise
definition of which is given in Appendix A. For brevity we use the name of the logics (such
as L) to denote the set of all well-formed formulas (wffs) belonging to the logics.

We often make use of two subclasses of L: a sentential language denoted Lg and
a propositional language denoted Lp. The sentential (or closed) language consists of
the sentences (or closed wifs) of L. First-order consequence (=) and deduction (F) are
restricted to sentences when used in this context.

The propositional language, Lp, consists of the sentences of Lg which can be formed
using only individual constants, extralogical predicate symbols and the logical connectives.
Thus we do not allow variables, quantifiers, equality, or function symbols with arity greater
than zero. We call the resulting formulas propositional sentences. In this context first-
order consequence and deduction are restricted to propositional sentences.

An advantage of dealing with Lp is that first-order (or logical) consequence and propo-
sitional (or tautological) consequence are equivalent (see Appendix A). The same is true
of first-order and propositional deduction. We can therefore use propositional proof pro-
cedures to determine the validity of Lp formulas. We adopt this approach, rather than
defining a separate propositional language, so that we can use the same syntax for our
propositional and first-order languages.

We call a set of well-formed formulas a theory or knowledge base (KB). The latter term
often refers more specifically to a store of declarative knowledge.

/7N

A B Cc

Figure 1.2: A “blocks world” system with one possible event indicated.

1.3 A Declarative Model

The task of a model is to transform a set of excitations (or input description) into an
output description which predicts the system response. In the control loop illustrated in
Figure 1.1 the excitations are instructions from the controller. Alternatively they may be
a set of initial conditions for testing a specific scenario.

The model itself must contain enough information to characterise the dynamic system
under consideration. The information we use to model DEDSs can be roughly divided
into the following three types:

A Priori Facts describe assertions about the system which are not conditional upon
other factors. They might include information which does not change over time,
such as “object R1 is a robot”, or initial conditions which hold each time the system

is tested on a new scenario.

Causal Relationships describe conditional assertions and changes (or lack of change)
in the state of the system due to events or actions. In the “blocks world” system
shown in Figure 1.2, for example, the event “block A is placed on block B” changes
the position of block A and the fact that the top of block B is clear, while preserving
the state of block C.

We will generally consider systems in which events (or chains of events) are initiated
by the excitations to the model.

Defaults describe what assumptions should be made about the system when the informa-
tion required is not available. They are necessary because the declarative knowledge
that we have about a system is usually incomplete. Consider, for example, a mobile
robot which is provided with a map (or set of facts) describing some terrain which
it must cross. The map may be inaccurate for a number of reasons: the detail of the
map may be insufficient due to storage limitations, the terrain may have changed
since the map was constructed, and the map cannot contain the positions of other
mobile objects. The robot must proceed on the assumption that the map is correct
and revise its knowledge as its sensors pick up contradictory information.

Inferences that are based on assumptions and which can later be withdrawn are

called defeasible inferences.

declarative model

| |
| |
! :
: knowledge defaults :
I base I
I /I\ :
|
o | A 4P | predicted
excitations : . ® inference : behaviour
o | -/ engine : W
! |
| |
| |
' :

Figure 1.3: The structure of a logic-based declarative model.

Logic systems which are designed to represent and reason about causal relationships in
dynamic systems are often called causal, temporal or state-based reasoning systems. The
latter terms reflect the need to attach some notion of state or time to assertions. This is
necessary for modelling discrete-event dynamic systems since we are primarily interested
in the way information changes over time. We need to be able to state when events occur
in relation to one another, for how long they occur, what must be true at the time they
occur and so on. The problem of adequately incorporating information about time in logic-
based systems has received much attention and a number of instructive contributions are
described in the following chapter.

Logic systems that have the ability to incorporate default information are often called
nonmonotonic logics. (The term “nonmonotonic” is defined in Chapter 3.) There are
many possible ways of augmenting incomplete knowledge using default information and
the behaviour of a nonmonotonic reasoning system is highly dependent on what strategy
is chosen. The characteristics of nonmonotonic systems are discussed, together with a
number of examples, in Chapter 3.

Our approach to modelling, taking these different types of information into account, is
illustrated in Figure 1.3. The model includes a knowledge-base, or set of sentences char-
acterising the dynamic process, and a procedure for generating the predicted behaviour,
often referred to as an inference engine. The knowledge-base consists of a priori facts and
causal relationships. The defaults are incorporated as part of the inference engine since
their applicability depends on what other information is present or can be inferred. The
knowledge-base A, the input £ and the output ¥ are all logical theories.

The knowledge-base and the inference engine together determine the relationship be-
tween the input Q and the output ¥ in an analogous way to the transfer function of a
model in a quantitative control system. If we are to use the model as a component in a
larger system then we need to know something about the properties of this relationship.
In particular, we want to make sure that the model produces a meaningful output for
any reasonable set of excitations. We also need an effective procedure for calculating the
output. Qur approach is aimed at attaining these properties in a nonmonotonic inference

6

system.

1.4 Outline of the Thesis

We begin in the following chapter by surveying some of the influential contributions to
nonmonotonic state-based reasoning and providing an example of our early work which
motivated the current approach.

In Chapter 3 we suggest a mathematical representation, called a transfer relation,
which can be used to describe a wide range of reasoning formalisms and compare their
characteristic properties. We identify the desirable properties for declarative modelling
and describe a number of nonmonotonic formalisms in this context. This serves both to
illustrate the properties described and to introduce formalisms referred to in later chapters.
Two formalisms in particular, chronological ignorance (CI) and default logic, form the basis
of subsequent work.

Of the formalisms considered, causal theories in CI appear to provide the most promis-
ing approach for declarative modelling. Closer examination shows, however, that the CI
formalism can be improved in a number of ways. We begin by showing that the use of
modal logic in CI is unwarranted. In Chapter 4 we present a truth-functional alternative
to modal logic called asserted logic (AL) along with a sound and complete proof theory. In
Chapter 5 we provide a “temporal” version of AL and use this to define a simplified version
of CI for causal reasoning. We then verify that this new framework produces equivalent
results.

The following three chapters are chiefly concerned with developing a proof theory for
CI based on default logic. In Chapter 6 we provide a new definition of default logic which
“factors out” deductive closure. This leads to a proof procedure which can be implemented
using a classical theorem prover. We then propose a method for overcoming the problem
of incoherence in default logic by using asserted logic as the underlying language.

In Chapter 7 we describe a new formalism, called hierarchical default logic (HDL),
which provides greater control over the application of default information. This approach
can be used to overcome the multiple extension problem in default logic. We show that the
proof procedure for default logic extends to HDL and that this procedure can be simplified
significantly for particular types of defaults.

The proof theory for causal CI, which is based on HDL, is presented in Chapter 8.
We show that this theory is sound and complete with respect to the semantics of CI. We
then discuss the intuitive meaning of causal sentences in CI and argue that the inference
mechanism in CI is misleading. We provide four alternative approaches in HDL which,
we argue, provide more natural representations. The last approach has the additional
advantage that it requires only classical logic rather than modal or asserted logic.

Chapter 9 describes the implementation of the final formalism and provides two ex-
amples of assembly tasks which illustrate its use in declarative modelling. Finally in
Chapter 10 we summarise the results of the thesis and suggest some promising areas for
further research.

Chapter 2

Background Literature and Early
Work

In order to model dynamic systems we need to use a logic which enables us to reason
about changes over time as well as incorporate default information. That is, we require
a nonmonotonic temporal (or state-based) logic. In this chapter we review some of the
contributions which led to the development of nonmonotonic temporal reasoning systems.
We then outline an early attempt to extend such a system to deal with more difficult

problems and discuss how this motivated the approach in this thesis.

2.1 The Situation Calculus

The idea of using a state-based logical framework for reasoning about the dynamic world
was proposed by McCarthy in 1963 [McC63]. McCarthy suggests that “human intelligence
depends essentially on the fact that we can represent in language facts about our situation,
our goals, and the effects of the various actions we can perform”. He defines a situation
to be the complete state of affairs at some instant of time and assumes that the “laws of
motion” will determine all future situations from a given situation. Facts about situations
were to be stated in an “extended predicate calculus” although the precise form of this
calculus is not provided. Instead McCarthy gives examples of the types of information

which the calculus should be able to represent. For instance, the fact
at(john,home)(s)

(or at(john,home,s)) is intended to mean that john is at home in situation s. Similarly

the action
moves(person, object,location)(s)

is intended to mean that person moves object to Llocation in the situation s. A predicate
or function which has a situation as an argument is called a fluent.
In order to express causal relationships, McCarthy proposes a second-order predicate

or modal operator) cause which ranges over fluents. For example,
g
VS,P,0,L (moves(P,0,L)(S)—cause(AS1at(0,L)(S1))(S))

8

is intended to describe the effect of a person P moving an object 0 to location L.

The ideas proposed by McCarthy were developed into a more complete framework
by McCarthy and Hayes [MH69]. This framework, known as the situation calculus, was
widely adopted and variations on it are still in use today (see for example [GN8T7]).

The situation calculus uses fluents of the form
result(p,a,s)

to express the effects of actions. The result function evaluates to the situation which
occurs when person p has carried out action a starting from situation s. For example, the

formula
has(p,k,s) A fits(k,sf) A at(p, sf, s)—open(sf,result(p, opens(sf,k),s))

asserts that if in a situation s a person p has a key k which fits the safe sf, then in the
situation resulting from p performing the action opens(sf,k) the safe is open.

This approach has the advantage that the term representing the state after a sequence
of actions contains a list of those actions. This list can be used as a plan for execution by
an intelligent agent. One of the disadvantages of this type of approach is that the sequence
of situations is determined by a sequence of individual actions. Therefore there is no way

of expressing actions which overlap or are performed in parallel.

2.2 Question-Answering Systems

The first working implementation of state-based theorem proving is believed to be Green’s
question-answering system QA3 [Gre69a, Gre69b]. The system uses the resolution princi-
ple [Rob65] with an answer literal used to keep track of instantiations.

Green’s first approach [Gre69b] was to use axioms of the form

p(s)—q(£(s))

where p is a predicate describing the initial state, £ is a function (or action) mapping the
initial state to a new state, and q is a predicate describing the new state. For example, a
problem in which a robot is at a start node a and has paths available from nodes a to b

and nodes b to c could be axiomatised as follows:

Vs (at(a,8) — at(b,move(a,b,S)))
Vs (at(b,S) — at(c,move(b,c,S)))
at(a, s0)

If the robot’s goal is to move to node ¢ then the question
3S at(c,S)
is posed to the theorem prover, which returns the answer
yes, S = move(b,c,move(a,b,s0))
indicating that the goal can be achieved by moving from a to b and then from b to c.

9

Green later refines this approach [Gre69a] to use axioms of the form

p(s)—a(f(a,s))

where a represents some action. The function £, which is called a state transformation
function, is a variant on McCarthy and Hayes’ result function. This revised approach
has the advantage that actions appear as arguments and can therefore be quantified over.

2.3 The Frame Problem and STRIPS

In general most facts about the world do not change when an action is performed. One
of the problems of a logical system such as QA3 or the situation calculus is that it must
include axioms describing all the facts which do not change from state to state as well as
those which do. The need to include a large number of axioms just to preserve knowledge
between states is referred to as the frame problem (see for example [Bro87, GN87, Gre69a,
MH69, Nil82]).

The frame problem caused many authors to abandon purely logical approaches in
favour of logic-like or hybrid approaches. A well-known example is the SRI problem solver
sTRIPS [FNT1]. In sTRIPS each state or world model is represented by a set of well-
formed formulas. However theorem proving methods are used only to answer questions
within a particular world. The effects of actions are encoded by operators (or production
rules[Nil82]). An operator consists of a precondition, an add list and a delete list. It is
applicable in some world if its precondition can be deduced from that world. When an
operator is applied a new world model is formed by adding and deleting facts according to
the add and delete lists. In this way, any facts not mentioned in the add and delete lists
are automatically propagated into the new world. To find a suitable sequence of operators
STRIPS uses a modification of a technique called means-ends analysis developed for the
problem solver Gps [EN69].

Due to the difficulties associated with the frame problem, many of the planning and
reasoning systems developed in the early 1970’s were based on the STRIPS paradigm. A
number of influential approaches are discussed by Waldinger [Wal77]. Waldinger also
points out a number of inadequacies of the sTrRIPS approach. For example, all of the
indirect side-effects of an action in sSTRIPS must be stated explicitly in the add and delete
lists. Thus if a complex subassembly is moved from one position to another, the add
and delete lists must change the position of every component in the subassembly. This
difficulty can be avoided in a proof-theoretic system such as Green’s since the indirect
consequences of an action will follow automatically from a suitable axiomatisation of the
problem.

Kowalski [Kow79] argues that a satisfactory treatment of the frame problem can be
obtained by using terms rather than atoms to express (nontemporal) statements about
the world. These statements are associated with states using a binary relation Holds. For
example, McCarthy’s statement

at(john,home,s)

10

would be expressed in Kowalski’s formalism as
Holds(at(john,home),s).

The treatment of statements as individuals in this way is often called reification.

The advantage of this approach is that we are able to quantify over non-temporal
statements. We can therefore express the frame axioms concisely using a statement of the
form

VA,X,S (Holds(X,S) A Preserves(A,X)—Holds(X,result(4,S)))

where Preserves(A,X) expresses the fact that the action A preserves the truth of the
statement X.

This approach requires some extensions to first-order logic since relations such as Holds
and Preserves are meta-level concepts. Also, while the frame axiom is concisely expressed,
the frame problem still exists since the Preserves clauses must be generated for every
appropriate action A and statement X. Kowalski achieves this using a technique called

Macro-processing.

2.4 Nonmonotonic Reasoning

Nonmonotonic logics emerged in the 1970’s in response to the need to be able to make
inferences from incomplete knowledge bases. The general idea of nonmonotonic reasoning
is to support beliefs which, while not being logically deducible from the knowledge base,
are justified in some weaker sense. This often involves some method for specifying “rea-
sonable” candidates and some method for determining whether those candidates can be
consistently believed. The term “nonmonotonic” comes from the fact that, unlike systems
based purely on deduction, increasing the size of the knowledge base can decrease the
number of inferences.

Numerous nonmonotonic systems have been proposed with various objectives in mind.
An introduction to some of the better known systems is provided by Genesereth and
Nilsson [GN87, Chap 6]. In Chapter 3 we provide a detailed description and comparison of
four influential systems—Reiter’s closed world assumption [Rei78] and default logic [Rei80]
formalisms, Moore’s autoepistemic logic [Moo85b] and Shoham’s logic of chronological
ignorance [Sho88a].

The frame problem provided an impetus for incorporating nonmonotonic reasoning in
state-based reasoning formalisms. The idea was to include one or more inference rules
stating that facts which were true before some action will by default be true after the
action unless they are explicitly changed by the action. Returning to Kowalski’s {rame
axiom, for example, rather than have to explicitly generate all the Preserves statements,
we would be able to say that all action/statement pairs are preserved by default and only
explicitly state the exceptions.

This idea was formalised in default logic by Reiter [Rei80] based on a proposal by
Sandewall [San72]. Reiter suggests a default schema of the form

r(z,s):r(z, f(z,s))
r(z, f(z,s))

11

which, roughly speaking, says that if any relation r of z is true in state s and it is consistent
to believe it is true in the state that results from state transition (or action) f, then it
can be concluded that r of z is also true in the resulting state. Note that a schema rather
than an axiom must be used to express the frame rule since the first-order framework does
not permit quantifying over relations.

A similar approach is advocated by McCarthy [McC86] in which events (or actions)
are considered to be abnormal with respect to some fact about an individual if they
change that fact. A nonmonotonic formalism called circumscription [McC80] is used to
minimise abnormality and thereby preserve most facts. Hanks and McDermott [HMR6]
demonstrate that these approaches on their own are not adequate since they are liable to
produce unintuitive conclusions.

2.5 Chronological Ignorance

The frame problem has been redefined by Shoham and McDermott in terms of the qual-
ification problem and the extended prediction problem [SM88]. The qualification problem
(previously called the initiation problem [Sho86]) is the problem of having to take into ac-
count a large (possibly infinite) number of facts about the past in order to make a sound
prediction about the future. The extended prediction problem is to do with the length of
time into the future about which sound predictions can be made. As a solution to these
problems and the problems highlighted by Hanks and McDermott, Shoham proposed a
combination of nonmonotonic and temporal reasoning called the logic of chronological
ignorance(CI)[Sho86, Sho88a, Sho88b)].

CI is based on a temporal logic in which primitive propositions are associated with
pairs of time points denoted by the integers. The pairs are intended to represent temporal
intervals. For example, the formula

TRUE(1,5, colour(housel7,red))

is intended to mean that the assertion colour (housel7,red) holds over the interval from
time 1 to time 5. An assertion about a single time point (or state) is expressed using an
interval of zero duration.

The temporal logic is extended to an epistemic logic (or logic of knowledge) by in-
troducing the modal operator O, interpreted as “known to be true”, and its dual <,
interpreted as “possibly true”. For example, the formula

OTRUE(2,2,fire gun) A OTRUE(2,2,firingpin)—OTRUE(3,3,noise) (2.1)

is intended to mean that if it is known that a gun is fired at time 2 and it is possible that
there is a firing pin (that is, it is not known that there is not a firing pin) at time 2 then
it is known that there is a noise at time 3. The resulting logic is called a logic of temporal
knowledge (TK).

Finally, the logic is rendered nonmonotonic by imposing a preference ordering on
interpretations. The order is chosen so as to minimise what is known, starting at the
earliest time point and proceeding in the direction of increasing time (hence the name
“chronological ignorance”).

12

The preference ordering can be used to give a sense of unidirectionality to sentences,
which is useful for representing causal relationships. In sentence (2.1), for example, the
ordering ensures that the truth values of the antecedents will be decided upon before the
truth value of the consequent. Thus what is known to be true at later times is determined
by what was known to be true (or not known to be false) at earlier times. Shoham defines
a class of theories called causal theories based on this idea.

Shoham concentrates on the prediction (or modelling) task rather than the plan forma-
tion problem. This fact, along with his adherence to well-defined logical semantics, allows
Shoham to guarantee certain properties of his system. In particular, it is shown that by
restricting the logical descriptions to causal theories, the system is guaranteed to produce
a single, consistent prediction. Furthermore, the important information in this prediction
can be computed efficiently. This guarantee of predictable behaviour makes the logic an
attractive basis for declarative modelling, and much of the work in this thesis is based on
Shoham’s approach.

Since this work began a number of enhancements and criticisms of Shoham’s approach
have emerged. Rayner [Ray89] argues that Shoham and McDermott’s account of the
extended prediction problem [SM8&8] is unfounded, particularly with regard to continuous
dynamic systems. Rayner also points out that CIin its current form is incapable of solving
typical problems in these systems.

Bell [Bel91] suggests that propositional causal theories are too limiting for many ap-
plications and proposes a first-order extension to the CI framework for causal theories.

Galton [Gal91b] questions the interpretation of Shoham’s operator O as a knowl-
edge operator and suggests that a more accurate reading would be “there is reason to

believe...”.

He argues further that since formulas which include this operator have a
different status in the logic to those which do not, the operator does not truly resemble a
modal operator.

Bacchus et al [BTK89] argue that Shoham’s reified temporal logic is overly restrictive
and sacrifices classical proof theory unnecessarily. They propose an alternative two-sorted
temporal logic, called BTK, which is shown to subsume Shoham’s temporal logic. Gal-
ton [Gal9la] also argues against reified temporal logics, and in particular the temporal

logics of Allen [All84] and Shoham [Sho88b].

2.6 An Example: Multiple Agent Collision Avoidance

In this section we describe some of our early work aimed at extending the chronological
ignorance formalism [Sho88a| and applying it to a control problem [MF90c]. This acts
both as an introductory example and to illustrate our motivation for developing a simpler
CI formalism based on classical proof theory.

The aim in this example is to use a CI based formalism to predict collisions between
robotic agents operating in a common workspace, and to modify their plans so that the
collisions are avoided. This is an important problem in the implementation of flexible
manufacturing systems [RSB85]. Traditional path planning systems (for example [Bro83,
LP83, RWR8T7]) are chiefly concerned with single robotic agents in static environments,

13

and attempts to extend these methods to environments containing more than one mobile
object are often limited to gross movements in sparse environments [RSB85, RB87] or
simplified shapes with few degrees of freedom [FS89].

Our approach is to separate the temporal and spatial components of the problem. We
then concentrate on the temporal aspect and develop a reasoning system which predicts
possible collisions and uses a local optimisation strategy for avoiding them.

2.6.1 The Collision Avoidance Problem

We assume that a number of robotic agents are operating in a common environment along
routes determined by a static path planner (for example [RW87]). We also assume that
an intersection detection program (for example [Cam89]) is available which can identify
areas in the paths where collisions are possible. The role of the temporal reasoning system
is to use information from such programs to predict collisions and alter the agents’ plans
accordingly.

Static path planners produce road maps [RW87] in which nodes connected by directed
arcs represent successive agent positions. The arcs may also be labelled with the cost
(generally in terms of time) of travel between the nodes. Figure 2.1 shows an example of
two road maps in a shared workspace.

As each agent executes its prescribed motion it sweeps a volume or envelope in three
dimensions. To isolate the possible collision areas we insert new nodes at the positions
where these envelopes converge and diverge as illustrated in Figure 2.2. This is called
merging the road maps. The new arcs bounded by these nodes are called intersection
segments, and the segments corresponding to an intersection are marked as intersection
pairs. In Figure 2.1, for example, the intersection segments are illustrated by bold lines.
The original nodes are marked v} to v! and v? to v2. Nodes v} to v and vZ to v}, have
been added to bound the intersection segments. Note that the intersection of envelopes
isolates the possible collision regions without knowledge of the agents’ temporal behaviour.

Graphical Representation

The information required by the reasoning system can be conveniently represented using

graphs. Given a collection of agents aq,as,...,a, each associated with a merged road

T

map, we make the following definitions.

Definition 2.6.1 The route graph for an agent a,,1 < r < n, is a weighted graph G, =
(Vi, ;) in which each vertex v € V., ¢ =1,...,n represents one of the n nodes in the
merged road map for a,, and edges (v},v7) € F, represent the accessibility of node v’
from node v}. Assigned to each edge (v],v%) is a weighting w{; equal to the time taken to
travel from v; to v}.

Definition 2.6.2 The intersection graph for route graphs G1,...,G,, is a graph G| =

(V1, Er) in which Vi = EyUFE,U---UFE, and edges (v,{, le) € Eyglink vertices v£7 le eVr
which correspond to intersection pairs in the merged road maps.

14

2 6
\Y) 2
6 v,
1
2
1 \"
V10 1 2 25 11 2

1 VG V8 1
\Y 2 1 \Y
4 7

a 8 3 % 2
2 3l 0 54 "V
9 V7
,| 05
Vs
: 85
9.5
2
Figure 2.1: Merged road maps for two agents in a common workspace.

ageﬂt& new nodes inserted
\ 7/
NN
| |

AR
Ny

Figure 2.2: New nodes inserted to bound intersection segments.

15

The intersection graph therefore indicates segments of the road maps which should not be
occupied simultaneously.

Route and intersection graphs are simple graphs and can be represented by adjacency
matrices.

Definition 2.6.3 Let G, be a route graph. The adjacency matrix M, = [mf]] of G, is

the n X » matrix defined by

— 1]7 17 7]
mr. = ;
“ 0, otherwise.

, { wi,, if (v],v}) € By

Definition 2.6.4 Let G| = (V7, Ef) be an intersection graph. If Vi = {v{,vd,... vl

2 nlo

then the adjacency matrix My = [mil] of G is the n X n matrix defined by

7 { 1, if (v,{,v{)EEI

mi; = .
M 0, otherwise.

This matrix will be symmetric since G is an undirected graph.

We show later how these graphs can be used to generate sentences for temporal rea-
soning. We also provide solutions for the example shown in Figure 2.1. First we introduce
our temporal logic and temporal reasoning system.

2.6.2 LCT: A Continuous Temporal Logic

In order to use chronological ignorance to reason about the collision avoidance problem we
need to extend the temporal language to overcome a number of restrictions. First, since
CI views time as the set of integers it does not permit intervals of arbitrary duratiomn.
Secondly, Shoham’s assertions over intervals are not homogeneous; that is, if an assertion
is true on an interval it does not follow that it is true over subintervals of that interval.
For example, if the assertion OTRUE(1,5, at(robot,position 1)) is true in CI it does not
follow that OTRUE(3, 4, at(robot,position 1)) is true. Finally, CI only allows a form of
weak negation over temporal intervals. If we assert O-TRUE(1, 5, at(robot,position 1))
this means that it is not true that, for the complete (nonhomogeneous) interval from
time 1 to time 5, robot is at position 1. Thus robot may be at position_1 for some
subinterval. There is no way in CI of saying that from time 1 to time 5, robot is not at
position 1.

The continuous-time logic LCT is based on Shoham’s modal logic of temporal knowl-
edge TK, modified to support continuous time, homogeneous assertions and strong nega-
tion. To achieve continuous time we take temporal constants from the set of reals rather
than the integers. In order to preserve continuity we only allow intervals which are closed
at the left and open at the right. We also allow points only in the antecedents of im-
plication formulas. A sentence OTRUE({y, 2, p) associates proposition p with the interval
[t1,12) if t1 < t2 or the point ¢ if {1 = t3. We introduce arithmetic terms, such as T — 8,
which can be used in place of temporal constants and are evaluated (once the variable T
is instantiated) according to the standard arithmetic rules. Also, where Shoham allowed

¢

primitive propositions p, we allow p or —p where ‘=’ is a strong negation connective. As

16

in TK the modal operator O is used as a knowledge operator and sentences in the modal
language are interpreted using Kripke interpretations. The syntax and semantics of LCT
are given in Appendix C.

2.6.3 Projection Theories

Shoham’s causal theories allow knowledge of the future to be inferred from knowledge
of the past. We extend this idea to define a class of theories in LCT which also allow
inferences that change information in the past. We call these theories projection theories
and construct them as follows.

A fact is an atomic formula TRUE(%1, 2, [—]p) where 1,1, € R, p € P (a set of primitive
propositions) and t; < t3. A known fact is a sentence of the form Oa where a is a
fact. Known facts are used to store a priori knowledge about the system and to describe
its state. Knowledge is therefore associated with temporal intervals rather than points,
preserving continuity.

A test literal is a wif O(T-dy,T-da,[—]p) or O(T-dy,T-dg,[—]p) where T € V' (a set of
temporal variables), p € P and dy,dy € R are constants such that dy > dy > 0. dy and dy
are called the maximum and minimum delays respectively. A test literal is further defined
as a point test if dy = ds.

An assertion literal is a wif O(T4e1, T+eg,[—]p) where T € V., p € P and e1,e3 € R are
constants such that eq < e3. €7 and ey are called the minimum and maximum extensions
respectively. An assertion literal is further defined as an immediate assertion if e = 0.

A projection rule is a sentence of the form
VT (a— f)

where T € V', a is a (non-empty) conjunction of test literals (with no free variables other
than T) and [is a (non-empty) conjunction of assertion literals (with no free variables other
than T). As all projection rules are universally quantified, we often omit the quantifier.

Projection rules derive new knowledge from what is already known. They are used
to project the consequences of earlier knowledge forward, and to update past knowledge
based on later results.

A projection theory is a collection of known facts and projection rules. As an example
of a simple projection theory, consider the following sentences which describe an agent a
travelling from position x1 to position x2 between times 0 and 100.

0(20, 100, reached(a,x1))
VT (O(T-8,reached(a,x1))A &(T-8,T, clear(x1,x2)) — O(T, 100, reached(a, x2)))

The first sentence is a known fact representing the initial boundary condition that agent a
has reached position x1 by time 20. The second sentence is a projection rule which requires
that the agent reaches x2 eight time units after reaching x1 if the path is clear, and contains
an assumption that the path is clear unless there is information to the contrary.

Figure 2.3 illustrates three of the (infinite number of) interpretations which satisfy
this theory. The first two interpretations make assumptions which do not follow from
the theory. For example, the first interpretation supports the knowledge that agent a

17

OTRUE(O, 100, reached(a, x2))

KL | OTRUE(O, 100, reached(a, x1)) |
: — Lt
0 20 28 100
. OTRUE(17.5,100, reached(a, x2)) .
I 1
KI . OTRUE(5, 100, reached(a, x1)) .
[I T T : t
0 20 28 100
: OTRUE(28, 100, reached(a, x2)) :
KIs , OTRUE(20, 100, reached(a, x1)) ,
‘ — Lt
0 20 28 100

Figure 2.3: Possible interpretations for a projection theory.

had reached x1 at time 0. The third interpretation, on the other hand, supports only
the knowledge which must be true in order to satisfy the theory. This is the preferred
interpretation; it contains the information we wish to be able to generate.

2.6.4 Chronological Minimisation

Notice that in the third interpretation in Figure 2.3 the known information is asserted for
as little time as possible. If, for example, the known fact OTRUE(28, 100, reached(a,x2))
in KI5 was “shortened” to OTRUE(30,100,reached(a,x2)) the resulting interpretation
would no longer satisfy the projection theory (consider for example a variable assignment
T = 28.5). This temporal minimisation of knowledge is captured by the CI minimisation
strategy.

We impose a partial order on interpretations which is similar to that advocated by
Shoham [Sho88a], modified to allow for continuous time. The preferred (or minimal)
interpretations under the partial order are those in which known information occurs as
late as possible and for the least amount of time.

Definition 2.6.5 A Kripke interpretation K1y is chronologically more ignorant than a
Kripke interpretation K[y (written K1y C. KI3) in LCT if there exists a time g such
that

1. for any (possibly negated) proposition z and time ¢ < {g, if K, |= O(¢,z) then
K1 |=0(,), and

18

2. there exists some (possibly negated) proposition z such that K1y = O(fp,z) but
K £ O(tg, 2).

Definition 2.6.6 K is a chronologically mazimally ignorant (cmi) interpretation for a
projection theory ® if KI satisfies ® and there is no interpretation KI’ such that KI'
satisfies ® and K1 C.; KI'.

The collection of known facts common to all cmi interpretations describes the predicted

behaviour.

Automatic Generation of Known Facts

The set of known facts common to cmi interpretations is built up, from a knowledge
base containing the initial conditions, by stepping through contiguous time intervals and
adding the consequences of current knowledge. Intuitively, projection rules can be regarded
as templates which slide forward along the time axis adding their consequents to the
knowledge base when their antecedents are satisfied. With non-causal rules (rules with
negative extensions) the knowledge base must be regenerated from the point where the
new knowledge was added, since the new knowledge may invalidate rules which have been
used previously.

An algorithm for generating the known facts in the cmi models is given in Appendix C.
The algorithm takes as arguments a list /' of known facts and S of projection rules (from
a projection theory @) and the times ¢y and ¢, at which model generation will start and
stop respectively, and returns a list of the known facts in the cmi models. The algorithm
has been implemented in Lisp.

If the theory ® includes non-causal rules then we must ensure that the algorithm will
terminate (reach t) and not keep looping back into the past. To achieve this we only
include non-causal projection rules which ‘invalidate themselves’. These rules are of the
form ¢(a1,a2,2) A ---—0(as,as,—x) A --- where [a1,a2) N [as,aqs) # O.

2.6.5 Solving the Collision Avoidance Problem

The collision avoidance system must be able to predict when and where collisions will
occur and employ some strategy for modifying the agents’ plans to avoid them. There are
many possible strategies for the latter task. For example, some agents may have automatic
priority over others, the priorities may depend on the tasks being performed, or they may
vary depending on external factors like the availability of components. Alternatively the
strategy may aim for local or global time optimisation or to minimise the completion times
of construction tasks. The choice of strategy depends on the application, and may vary
in a particular application due to external factors.

An advantage of a declarative system such as the one we have described is that differ-
ent strategies can be employed simply by changing the data presented to the prediction
algorithm. The algorithm itself is independent of the application.

The strategy we employ performs local optimisation (the solutions generated minimise
the time lost by two agents arriving randomly at a collision area) and subject to this,

19

For each route graph edge vi = (v7, U]T) SR%

if there exists no vf € V7 such that mf, = 1 then form the sentence

O(T-m;;, reached(ar, v.r_i)) — O(T, tmax, reached(ar, v.r_j))
else for each edge v/ = (v
O(T-mj;,
AO(T-mj;, T-m/, clear int(k',l"))

—0O(T-mj;, T, —clear int(k’,!")) A O(T-mj;, T,alloc int(a r, k', I'))

O(T-m;;, T-m’, alloc_int(a r, k', I'))— O(T, tmax, reached(ar, v.r j))

{I,U]'fl) € Vr such that mil = 1 form the sentences

reached(ar,v.r.i)) A O(T-m}

i —reached(a r,v_r_j))

1

r r r
717%']': T < mi;
r r r r
E(mz’j + mij), mg; > my;

and k¥’ = min(k,!), ! = max(k,1).

where m’ =

Figure 2.4: Automatic generation of projection rules.

models routes which minimise each agent’s total travel time. Explanation of the local
optimisation strategy and the form of the appropriate projection rules is given in [MF90c].

The required projection rules can be generated directly from the adjacency matrices
described earlier. Let G ...,G,, and G be route and intersection graphs with associated
adjacency matrices My, ..., M,, and Mj, and . be the maximum time to which model
generation is required. The required projection rules are constructed by substituting for

the variables (in italics) shown in Figure 2.4.

The Two Agent Example

We now return to the two agent problem in Figure 2.1 and show some examples of the col-
lision free models generated. The projection theory consists of projection rules described
above and initial conditions giving the times when the agents begin the routes. Table 2.1,
which should be examined in conjunction with Figure 2.1, shows part of the model gen-
erated for various initial conditions and explains what this means in terms of the agents’
plans. In each case efficient routes are taken while avoiding possible collisions.

2.6.6 Lessons from the Example

While the system described generates successful solutions for this particular example,
it is difficult to verify that this will be the case in general. Unless we can prove that
our algorithm for generating the consequences of projection theories (Algorithm C.3.1) is
sound and (to a lesser extent) complete with respect to our semantics (Figure C.1 and
Definitions 2.6.5 and 2.6.6) then the semantics are of little use. They are simply used as a
guide for writing the algorithm. In this case, particularly as our algorithm (like Shoham’s
[Sho88a, Thm 4.8]) makes no use of logical proof theory, it is arguable whether we are
using a logic-based system at all.

Proving the soundness and completeness of our algorithm is more difficult than in
Shoham’s case for a number of reasons. First, we have allowed projection rules in which
the consequents have earlier time points than the antecedents. This is necessary because

20

we are using the sentences not only to predict collisions but also to adjust the predictions
according to the control strategy. In the system described in this thesis we avoid this prob-
lem by adopting the feedback framework shown in Figure 1.1 which explicitly separates
the modelling and control functions.

The second problem is that by permitting more complex sentences we have strayed
even further from classical logic. Qur response to this problem is to return to the original
chronological ignorance formalism and investigate ways in which the formalism and the
language upon which it is based can be simplified.

Thirdly our algorithm, like Shoham’s, makes no use of classical proof theory. This
means that the algorithm must do all the deductive work which might otherwise be per-
formed by classical theorem provers. This has motivated us to investigate various proof-
theoretic approaches to nonmonotonic reasoning. We use these to develop a proof theory
for chronological ignorance based on classical deduction.

21

Table 2.1: Results generated for the collision avoidance example.
Initial Conditions Knowledge Generated

0(3,100, reached(a 2,v.2 1)) 0(18.5,100, reached(a 2,v_2.8))
0(6,100,reached(a1,v 1 1)) [0O(19.5,100,reached(a1,v 1 6))
0(25.5,100, reached(a 2, v 2 4))
0(26.9,100, reached(a 1,v_1_3))
The default: no collisions are predicted and the agents reach their goals in the minimum possible
time.

0(2.5,100,reached(a 2,v2 1)) [0(15.0,100,reached(a2,v 2.7))
0(3,100,reached(a1,v 1 1)) [0O(16.5,100,reached(a1,v 1 6))
0(18.0,100, reached(a 2,v 2 8))
0(20.0, 100, reached(7))
0(25.0, 100,reached(aj v_2 4))
0(25.4,100, reached(a 1,v_1.3))
A collision may have occurred since both agents would be crossing the second intersection area at
the same time. The local minimisation strategy allocates priority to as and ay is delayed by 1.5
time units.

0(3,100, reached(a 2,v 2 1)) 0(15.5,100, reached(a 2,v 2.7))
0(2,100, reached(a 1,v_1.1)) 0(15.5,100, reached(a 1,v_1.6))
0(17.5,100, reached(a 1,v_1.7))
0(20.5,100, reached(a 2,v 2 8))
0O(21, 100, reached(a 2, v_2 8))
0(22.9,100, reached(a 1,v_1_3))
(

0O(27,100, reached(a 2, v_2 4))
If the path via v2 were the only choice for ay both agents would arrive at the second intersection

at the same time, a; would be given priority, and as would be delayed by two time units. However
the longer route via v2 allows as to save 0.5 time units, so the alternative route is used.

22

Chapter 3

Reasoning Formalisms and
Transfer Relations

A large number of nonmonotonic reasoning formalisms have been proposed during the
past fifteen years and it is now apparent that there are many similarities between these
formalisms. For this reason much of the recent work in nonmonotonic reasoning has been
directed towards unifying the various formalisms. Omne of the obstacles to this process
has been the wide range of terminology used and the lack of a common framework for
characterising the formalisms.

In this chapter we provide a general framework for describing and comparing reason-
ing formalisms (both monotonic and nonmonotonic). The framework allows the common
characteristics of different formalisms to be categorised in terms of logical and mathemat-
ical properties—that is, properties which are not specific to any particular formalism. We
define a number of these properties and identify those which are appropriate for declarative
modelling. A number of well-known formalisms are then reviewed in this context.

3.1 Transfer Relations

In order to discuss a wide variety of reasoning formalisms an abstract representation is
required. We achieve this by viewing all reasoning formalisms as a set of transformations
from input descriptions to the inferences or beliefs which they sanction, or from object
descriptions to image descriptions. Each transformation is described by a pair consisting
of an object description and its image. Since there may be more than one way to augment
an incomplete description, there may be more than one transformation for each object
description. The set of all such transformation pairs is therefore a binary relation from
the object space to the image space. We call this relation a transfer relation.

If our object theories are subsets of some language L; and the image theories are
subsets of some language Lg, then a transfer relation R is a relation from the power set
©(Ly) to ©(Lz). If a common language L is used for object and image theories then R is
said to be a relation on ©(L). Such a relation is illustrated in Figure 3.1. The domain
of a transfer relation R, denoted D(R), consists of the sets from the object space which
appear in the first position of a pair in R. Similarly the range, denoted R(R), consists of

23

2 2

Figure 3.1: A transfer relation R = {(®1, V1), (®3, ¥3),(®3, ¥y)} on O(L).

the sets from the image space which appear in the second position of a pair in R. Our
conventions for describing relations are given in more detail in Appendix A.

A transfer relation is defined by declaring the object and image spaces and describing
which of the object-image pairs are elements of the relation. As an example, consider a
standard theorem prover for the propositional language Lp. The beliefs sanctioned by an
object theory are simply the theorems, or deductive closure, of the theory. The formalism
can therefore be described by a relation Th (read theorems of) on $(Lp) such that

(®,9) e Th iff ¥ ={¢| &F ¢}.

In this example D(Th) = ©(Lp) and R(Th) consists of the deductively closed sets in
©(Lp).

It is often convenient to distinguish a class of reasoning formalisms and hence transfer
relations which differ only in some set of parameters. We use the notation Rp to denote
a relation R taking parameter set P.

3.2 Properties of Transfer Relations

We can identify a number of properties of transfer relations which are not specific to
any particular reasoning formalism. These properties can be divided into three groups

according to their level of abstraction.

3.2.1 Properties of Relations

At the highest level of abstraction we have properties of the relations (or sets of pairs)
themselves—we are not concerned what the elements of the pairs consist of.

Partial and Total Relations

We call a relation R a total relation if every element of the object space has at least one
image. Otherwise it is called a partial relation. Thus a relation R from ©(Lq) to £(Lz) is
total if and only if D(R) = ©(Lq).

24

Many nonmonotonic formalisms fail to sanction a set of beliefs for some object theories,
and are therefore described by partial transfer relations. Total relations are desirable for
modelling since we do not want the inference procedure to fail to generate an output
description for some inputs.

Transfer Functions and Branching

A relation R is said to be branching if some object theories have more than one image and
nonbranching otherwise. Thus a relation R is nonbranching if and only if (®,¥,) € R and
(®,¥3) € R implies ¥y = Wy, The branching factor of a relation is the greatest number
of images designated for any object theory. A nonbranching relation is a function. In this
case we use the notation R(®) as shorthand for {¥ | (®,¥) € R}.

Branching is a common characteristic of reasoning formalisms which deal with incom-
plete knowledge since there are usually various ways of filling in the missing knowledge.
While some attempts have been made to deal with multiple images, branching is generally
seen as a disadvantage of nonmonotonic formalisms. In the case of modelling we wish to
avoid branching since we require a single output description.

3.2.2 Properties of Sets

At the next level of abstraction we have properties of sets. In this case we are concerned
with the sets which make up the pairs.

Expansion and Contraction

A transfer relation is an ezpanding if each object theory is a subset of its images and
contracting if each object theory is a superset of its images. Thus R is an expanding
relation if (®,¥) € R implies ® C ¥ and contracting if (®,¥) € R implies ¥ C ®.

Most reasoning formalisms are expanding since inferences which are made explicit by
the proof procedure are added to the original knowledge. However some formalisms have
been proposed which allow contraction as part of belief revision [AGMB85]. Performing
revision operations directly on the image can be regarded as an alternative to expanding
a modified object theory [WF90].

Monotonicity

A function R is monotonic if the image of each object theory contains the images of all
subsets of that theory; that is, if ® C @ implies R(®) C R(®’'). Otherwise it is called
nonmonotonic. The use of the term “monotonic”, adopted from [MD80], is analogous to
its use for numerical functions, in which f is monotonically increasing if * < 2’ implies
f(z) < f(2'). Note that C, unlike <, is a partial order.

3.2.3 Logical Properties

At the lowest level of abstraction we are concerned with the logical properties of the object

and image theories.

25

Consistency and Determinism

A transfer relation is consistent (or more accurately preserves consistency) if no consistent
theory has an inconsistent image; that is, if (®,¥) € R and ® is consistent implies ¥ is
consistent.

Some authors argue that commonsense reasoning should be contradiction-tolerant and
formalisms have been examined which tolerate inconsistency [Lin87]. In general, however,
inconsistency is considered to be a disadvantage since it provides contradictory informa-
tiom.

A transfer relation which is total, nonbranching and consistent provides a single, un-
ambiguous image for all consistent object theories. We call such relations deterministic.

Deductive Closure

A transfer relation is deductively closing if every image theory specified by the relation is
deductively closed. Otherwise it is said to be nonclosing. A closing relation can be formed
from any transfer relation R on L by the composite relation Tho R.

From a practical point of view it is often preferable to deal with nonclosing relations
rather than closing relations, since the latter expand finite theories into infinite theories.

Completion

We define a theory to be complete if it entails every formula or its negation (or possibly
both). A transfer relation is completing if every image theory is complete.

Completion is generally undesirable from a practical point of view due to the large
number of formulas required.

We say that a class of relations is total if every member of the class is total, or in
other words, if each allowable set of parameters determines a total relation. Similarly for
nonbranching, expanding, nonmonotonic, consistent, closing and completing relations.

In the following sections we introduce four well-known nonmonotonic formalisms and
discuss their properties.

3.3 The Closed World Assumption

The closed world assumption (CWA) was proposed by Reiter [Rei78] as a method for
completing knowledge bases. It is one of the earliest nonmonotonic reasoning formalisms
used in AL The idea is simply that if any atomic sentence (or proposition) cannot be
deduced from the knowledge base then its negation is added to the knowledge base. The
default information used by the CWA is therefore implicit and consists of the set of all
negated atomic sentences.

The closed world assumption can be defined as a transfer relation (or function) CWA
on ¥(Ls) where

CWA(®) = ® U {-a | ais an atomic sentence and ® I/ a}. (3.1)

26

The relation C'WA is nonmonotonic since adding any new information to ® may reduce
the number of negated sentences added under the CWA. The relation is also total and
nonbranching. The latter property is achieved, however, at the expense of consistency.
For example, CWA({at(r,a)V at(r,b)}) includes —at(r,a) and —at(r,b) which along
with the object theory is inconsistent. The C'WA relation is completing since the image
theories entail every atomic sentence or its negation and therefore entail every sentence
or its negation. It is also expanding and nonclosing. A summary of the properties of the
CWA along with other formalisms defined in this chapter is given in Table 3.1.

The inconsistency problem of the CWA can be avoided by restricting the object space.
We define nondisjunctive theories as follows.

Definition 3.3.1 A theory ® is disjunctive if there exists positive literals aq,..., a, such
that ® =y V-V a, but @ [£ a;, 0 < i< n. Otherwise it is nondisjunctive.

Consistent nondisjunctive theories are exactly those which have a consistent augmentation
under the closed world assumption [She84]. The reason for this is that a nondisjunctive
theory augmented by negative literals does not entail any new positive literals, and since
each negative literal added under the CWA is consistent with the original theory, no
contradictions can be introduced. Nondisjunctive theories are considered further in Sec-
tion 6.4.

If we let end($(Ls)) be the set of consistent nondisjunctive theories in ©(Lg) then the
relation CWA defined from cnd($(Lg)) to £(Ls) according to (3.1) preserves consistency.

The CWA is not a very versatile form of nonmonotonic reasoning because of the limited
control over default information. Only negative information can be added and it cannot

be added selectively.

3.4 Default Logic

Default logic is a nonmonotonic formalism proposed by Reiter [Rei80] in which default
information is incorporated using additional rules of inference. A default is an inference
rule of the form
o: By, Pm
it

(also written « :f31,..., 0, /) where the formulas «, By ... 05, and 7 are known respec-
tively as the prerequisite, justifications and consequent of the default. If D is a set of
defaults then CONSEQUENTS(D) is the set {y|(a: f1,...,0m /7)€ D}.

A default is closed if it contains only closed formulas and open otherwise. We restrict
our attention to closed defaults. An open default can be treated as a schema for the set of
closed defaults which are its substitution instances [Rei80, Sec 7]. The results for closed
defaults can be extended to open defaults providing a countably infinite set of defaults is
allowed [Kon88b].

We also restrict our attention to defaults with single justifications since this simplifies
the discussion and it is believed that single justifications are sufficient for practical rea-
soning tasks (see for example [Eth87]). The results can be extended to include multiple

justifications in a straightforward way.

27

Table 3.1: A summary of properties for common reasoning formalisms.

Nmon | Tot | Nbra | Con | Nclo | Exp | NComp

Deductive Closure
Th VvV v v
Closed World Ass.
Cwa v vV v |V
Default Logic
Ep v Y, v v
Ep (normal defaults) Vv 4 Vv Vv Vv
AE Logic
Eywg, Emg, Fsg v v v v
CI
Ktk Vv v v vV vV v

Key

Nmon Nonmonotonic Nclo Nonclosing

Tot Total Exp Expanding

Nbra Nonbranching NComp Noncompleting

Con Consistent

Defaults in which the justification entails the consequent are called seminormal defaults
and are normally written in the form a : 8 A v /4. Defaults in which the consequent also
entails the justification are called normal defaults and are generally written in the form
a: 7 /7. Normal defaults in which the prerequisite is empty are called free defaults.

The literature on default logic focuses on pairs (D, ®), called default theories, where
D is a set of defaults and ® is a set of sentences called the underlying theory. The beliefs
sanctioned by such a theory are called an extension of the default theory.

We take a slightly different view and consider defaults as parameters to a transfer
relation. Extensions are then images under the relation. From this viewpoint the extension
relation can be defined in terms of Reiter’s original characterisation [Rei80, Def 1] as

follows.

Definition 3.4.1 Let D be a set of (closed) defaults and Lg be a closed first-order lan-
guage. The extension relation Ep is a relation on #(Lg) such that (®,¥) € Ep if and
only if

v=r (3.2a)

where I' is a minimal set satisfying

®CT (3.2b)
Th(I)=T (3.2¢)
if(a:8/7)eD,aecTl and - ¢V thenyeT (3.2d)

28

Like Reiter’s characterisation Definition 3.4.1 is self-referential since the elements of I' and
hence the extensions ¥ are defined in terms of I' and ¥. In other words the applicability
of defaults depends on which defaults are applied. Sets ¥ which satisfy conditions (3.2a)-
(3.2d) for some theory ® and default set D are called fized points.

For some object theories and default sets there are no fixed points satisfying (3.2a)-
(3.2d) while for others there are many. Thus the extension relation is in general partial
and branching. The former problem is often referred to as incoherence [Eth87] and the
latter referred to as the multiple extension problem (MEP).

Total relations can be ensured by restricting the parameter set to normal defaults
[ReiR0, Thin 3.1], or by restricting the theories and default sets to those which are ordered
in the sense defined by Etherington [Eth87]. Both of these solutions restrict the repre-
sentational scope of defaults, and we propose an alternative approach in Chapter 6. The
branching problem, or MEP, is considered further in Chapter 7.

The extension relation preserves consistency [Rei80, Cor 2.2], is noncompleting, and is
expanding due to (3.2b). It is also closing due to condition (3.2¢). We provide a nonclosing
alternative in Chapter 6.

3.5 Autoepistemic Logic

Autoepistemic logic (AEL) was proposed by Moore [Moo85b] as a solution to problems
encountered with the nonmonotonic logics of McDermott and Doyle [McD82, MDS8O0]. It is
intended to be a logic in which an intelligent agent can reason about its own beliefs (hence
the name “autoepistemic”). The formalism has been further investigated and clarified by
Konolige [Kon88b]. Our definitions are adapted from [Kon88b].

The symbols of AEL are those of a standard first-order language, Lg, along with the
modal self-belief operator which we denote O. The sentences of AEL are those of Lg plus
those generated by the rule:

if ¢ is a sentence of AEL, then O¢ is a wif of AEL.

Note that the argument of the modal operator never contains free variables and therefore
there is no quantifying into a modal context.

Sentences of Lg are called ordinary sentences. If ® is an AEL theory then we write @
to denote the ordinary sentences in ®; that is ®9 = ® N Ls. Sentences of the form O¢ are
called modal atorns.

A waluation on AEL is a pair (o,I') consisting of a standard first-order valuation o,
and an AEL theory I'. Ordinary atoms are evaluated with respect to ¢ in the usual way.
Modal atoms are evaluated according to the rule:

(3¢)) = ¢ if and only if ¢ € T.

The notions of satisfaction and logical consequence are extended to incorporate AEL
valuations in the obvious way.
An AEL theory I is said to be a stable set if it satisfies:

I' is closed under logical consequence (3.3a)

29

if $ €' then O¢ € I' (3.3b)
if ¢ I then -O¢ € T (3.3¢)

The symbol |=¢ is used to indicate logical consequence restricted to the valuations (o, T")
in which IT' is a stable set. Note that the definition of stable sets is self-referential; the
elements of I' are defined in terms of I' itself. Equations (3.3a)—(3.3¢) define fixed points
for the set I'.

A sentence is said to be in normal form if it is in the form

OV OB V...vO[E, Vw (3.4)

where «, §; and w are ordinary sentences. Any of the disjuncts other than w may be
absent. Konolige [Kon88b, Prop 3.9] shows that any AEL theory is equivalent to a theory
in normal form.

Finally, for any theory ® we let O® denote the set of formulas {O¢ | ¢ € &} and -0
denote the set of formulas {-0¢ | ¢ ¢ ®}.

Konolige’s weakly grounded extensions (Eyg), moderately grounded extensions (Emg)
and strongly grounded extensions (Esg) can now be defined as transfer relations on $(AEL)

as follows:
Definition 3.5.1 For all AEL theories ® and V:

(®,9) € Eywg ifand only if ¥ ={a|®UOT,U-0OY; |5 a} (3.5)
(®,V) € Ene if and only if ¥ ={a|®UO0® U0V, | a} (3.6)

Definition 3.5.2 For all AEL theories ® and ¥, where ® is in normal form,
(®,V) € Eqg if and only if (B,9) € Eywg and ¥ = {a | & UOP U -0V = a} (3.7)

where ®' is the set of sentences ~OaV OB V---vVOB, Vw of ® such that none of 31,...,[x
is contained in V.

All moderately grounded extensions are weakly grounded [Kon88b, Prop 2.8] and all
strongly grounded extensions are moderately grounded [Kon88b, Prop 3.10]. Thus F; C
Fing C Eyg.

Weakly grounded extensions (and hence moderately and strongly grounded extensions)
are stable sets [Moo85b]. The extension relations are therefore expanding, closing and
consistent. In general the relations are partial and branching since there may be zero, one
or many fixed points for equations (3.3a)—(3.3c).

Hierarchic autoepistemic logic (HAEL) [Kon88a] is a variation on AEL in which the
object theories are replaced by well-founded linearly ordered sets of subtheories. The
resulting formalism, like the CWA, avoids branching at the expense of consistency. HAEL,
along with Konolige’s equivalence result for default logic and AEL, is considered further

in Section 7.5.

30

3.6 Chronological Ignorance

The chronological ignorance formalism [Sho88a] was introduced in Section 2.5. The for-
malism differs from many nonmonotonic systems in that it is defined from a model-
theoretic rather than proof-theoretic standpoint. Instead of specifying image theories
directly from the (syntax of) the object theory, CI specifies preferred models (Kripke in-
terpretation/world pairs) for the object theory. The image theories can be considered to
be the formulas satisfied by the preferred models. Formalisms defined in this way are often
referred to as model preference logics.

As outlined in Section 2.5, CI is defined in the modal logic TK in which primitive
propositions are reified over pairs of integers representing time intervals. Although TK
allows temporal variables and temporal relations these are not allowed in causal theories.
The theories are constructed from a propositional part of TK whose well-formed formulas
can be defined as follows:

1. If o is an atomic formula of Lp and #1,%; € Z then TRUE(?y,12,) is a wif.
2. If ¢y and ¢, are wils, then so are ¢y, ¢1—¢ and Og¢y.

The connectives A, V, <+ and the operator & are defined in the usual way. A base sentence
is a sentence which does not contain the modal operator. The latest time point (Itp) of a
TKp sentence is the largest of the (temporal) integers appearing in the sentence.

The nonmonotonicity of CI comes from imposing a partial order on models for TK
theories.

Definition 3.6.1 [Sho88a, Def 3.4] A model M, is chronologically more ignorant than a
model My (written My T My) if there exists a time point ¢y such that

(1) for any base sentence ¢ whose ltp < 1o, if My |= O¢ then My = O¢ and

(2) there exists some base sentence ¢ whose ltp is g such that M; |= O¢ but M, [~ O¢.

Definition 3.6.2 [Sho88a, Def 3.5] M is said to be a chronologically mazimally ignorant
(or e¢mi) model of ¢ if M |= ¢ and there is no other M’ such that M' |= ¢ and M Ty M'.

We will often refer to this strategy for specifying preferred models as chronological minimi-
sation since it minimises assignments of ¢ to sentences (in this case known base sentences)
over time.

No method is provided for generating the formulas which are satisfied by the cmi
models of arbitrary object theories. Instead Shoham defines a class of theories whose cmi
models have desirable properties. These theories are called causal theories and are defined
as follows.

A causal statement is a sentence of the form

Oag A...AQa, AOBLA ... ANOS,—0Oy

where aq,..., 0, B1,..., 0, and v are (possibly negated) atomic base sentences and the
ltp of the consequent is greater than the lip’s of the antecedents. If aq, ..., a,, are missing
(that is, identically true) then the sentence is called a boundary condition, otherwise it is
called a causal rule.

31

Definition 3.6.3 A causal theory ® is a set of causal statements such that:

(1) There is a time point ¢ such that if $—0v is a boundary condition in ® and the
ltp of v is t1, then {p < 1.

(2) There do not exist two sentences in ® such that one includes GTRUE(Zq,%2,p) on
its left-hand side and the other includes G—TRUE(%1,%2,p) on its left-hand side for any p,
t1 and iq.

(3) If ¢y—OTRUE(ty,12,p) and ¢o—O-TRUE(l1,12,p) are two sentences in @ then
{1} U {¢2} is inconsistent.

We let causal(#(TK)) denote the causal theories of TK and define the images under
CI as follows.

Definition 3.6.4 Ktk is a relation from causal(£(TK)) to ©(TK) such that (®, ¥) € K1k
if and only if

¥ = {Oa | « is an atomic base literal and M |= O« for all cmi models M of ®}.

Shoham [Sho88a, Thm 4.4] shows that there is a unique consistent set of known base lit-
erals (and their tautological consequences) which is common to the cmi models of a causal
theory. The relation Ktk is therefore total, nonbranching and consistent. It is also non-
closing, and for finite object theories the set of known base literals is finite. An algorithm
for generating these literals is discussed in Chapter 5. The tautological consequences of
the known base literals are given by the closing relation Th o K1xg.

Since the relation Ktxk is deterministic and nonclosing, it makes an attractive basis for
a nonmonotonic modelling system. However, as we suggested in Chapter 2, the complex
semantics and lack of a proof theory make it difficult to modify or extend the formalism.
The following chapters are concerned with simplifying the semantics of the CI formalism
and developing an appropriate proof theory.

32

Chapter 4

Asserted Logic

The logic of chronological ignorance is a nonmonotonic version of Shoham’s modal logic of
temporal knowledge (TK) [Sho88a]. The “knowledge” part comes from an interpretation
of the modal operator O as asserting that its argument is known to be true and its dual
< as asserting that its argument is possibly true. In this chapter we argue that the utility
of this logic can be achieved without resorting to modal logic. We provide an alternative
logic, called asserted logic [MF90a], which provides the benefits of Shoham’s modal logic
without sacrificing truth functionality and classical proof-theory. The equivalence of the
logics with regard to chronological ignorance is verified in the following chapter.

4.1 Modal Logics of Knowledge

The use of modal logic to represent knowledge and possibility in nonmonotonic sys-
tems follows attempts to incorporate concepts such as consistency into an object lan-
guage [McD82, MD80]. The idea is to sanction weak inferences of the form ¢ a (read “a
is possible”) when an assertion a is consistent with the knowledge base—that is when —a
cannot be proven. This general principle is followed in CI by giving preference to interpre-
tations in which the assertions which are known are minimised. Thus if p is a proposition
and O-p cannot be proven, precedence is given to interpretations in which =O-p (or <p)
is true.

Modal logic has been adopted for this task with little supporting motivation, and it
is worth considering whether it is the appropriate choice of language. The shift from
classical to modal logic sacrifices truth functionality [Qui76]—for example, O« and Of
may have different truth values even though a and § have the same truth value—and
complicates the semantics, axiomatisation and proof theory of the logic. Interpretations
for modal logic require a family of structures or possible worlds related by an accessibility
relation [HC68, Kri63]). Different accessibility relations correspond to different modal
systems and axiomatisations, and classical proof theory is no longer adequate (see for
example [Wal90]).

In return for these sacrifices modal logic allows a great deal of freedom in the construc-
tion of formulas. The scope of the modal operator can include atomic formulas, compound
formulas, and formulas which themselves include the modal operator. One test of the ap-

33

Table 4.1: The confidence spectrum for modal logic.

Informal Formal Interpretation
Interpretation « Oa O-a
known to be true true in all worlds t f
possibly true true in some world — f
nothing known true in some worlds, false in others | f f
possibly false false in some world f —
known to be false false in all worlds f t

propriateness of modal logic is whether these compound and nested forms have practical
applications. For example, while it seems natural to interpret Op VvV Og as asserting that
p is known or ¢ is known, it is less clear why we would wish to be able to use O(p V ¢)
(in each possible world p or ¢ is true, but neither p nor ¢ need be known) or GOp (p is
possibly possibly true) in this context.

This issue is taken further by Galton [Gal91a] who argues that from a representational
point of view Shoham’s use of O does not resemble a modal operator, since the formulas
Oa and a have different statuses in the logic. Galton suggests that a more accurate reading
of Shoham’s operator would be “There is reason to believe that...”.

4.2 The “Confidence” Spectrum

The one respect in which Shoham’s operator does resemble a modal operator, according
to Galton, is that it does not commute with negation. That is, O-e« is in general not
equivalent to -Oa. Another way of saying this is that Oa VvV O-a is not tautologically true.
That is, the logic can be considered to escape the law of excluded middle at what might
be called the epistemic level—it is not necessary for a formula to be either known to be
true, or known to be false. The result is that the modal operator and negation connective
can be used to obtain the spectrum of interpretations shown in Table 4.1, which we call a
confidence spectrum. With this spectrum available, a minimisation strategy is no longer
forced to commit assertions to one extreme or the other, but can make use of the “middle
ground”. This is exactly what is done by the CI minimisation strategy: if an assertion is
not forced to take the values “known to be true” or “known to be false” then it is assigned
the value “nothing known”. In fact this is the only benefit of modality in chronological
ignorance.

If we only require knowledge of atomic formulas, as is the case in CI, then this spec-
trum can be achieved using classical logic. To illustrate this point consider a classical
propositional language. A simple language of knowledge, which we will call Kp, can be
constructed by replacing each proposition p by the two propositions formed by prefixing
p with known_ and known not_ (we will use known_p and known_not_p as meta-variables
representing the resulting propositions). An assignment of ¢ to known_p (respectively
known_not_p) is intended to mean that the original proposition p is known to be true

34

Table 4.2: The confidence spectrum for Kp.

Informal Formal Interpretation
Interpretation known_p known_not_p
known to be true t f
possibly true — f
nothing known f f
possibly false f —
known to be false f 1

(respectively false). To complete the formalism we add the formula
=(known_p A known _not _p) (4.1)

for each pair of propositions to ensure that p cannot be known to be true and false
simultaneously. The resulting confidence spectrum, which is shown in Table 4.2, is identical
to the spectrum for modal logic. In this case, however, the formal interpretation is simply
a classical truth valuation.

Chronological ignorance can be redefined using a temporal version of the classical
logic Kp, although the representation is somewhat unwieldy. The intended predicate
symbols must be altered and formulas in the form of (4.1) must be explicitly added for
all atomic formulas. What we would like instead is a language which has the convenient
representation found in Shoham’s TK without sacrificing the truth functional semantics
and proof theory of Kp. Our solution is a language called asserted logic (AL). Asserted
logic replaces the ‘known_’ part of Kp formulas by a truth functional operator and the
‘not_’ part by a strong negation connective. The collection of formulas of the form (4.1)
can then be replaced by an axiom schema which is incorporated in the logic.

4.3 Definition of Asserted Logic

We begin by defining the syntax and semantics of asserted logic and then discuss its
interpretation. Only the propositional semantics is provided since this is sufficient for a
discussion of Shoham’s causal theories. A first-order semantics for AL is suggested in
Appendix B.

4.3.1 Syntax of AL

Let L be a classical first order language in which the connectives = and — and the quantifier
V are taken as primitive (see Appendix A). The symbols of AL are the symbols of L, a

¢

(3-valued negation) connective ‘—" and the (assertion) operator T.

A new construction, called a base formula, is defined as follows:
1. If p is an atomic formula of L. then p is a base formula of AL.

2. If z is a base formula of AL, then —z is a base formula of AL.

35

If p is an atomic formula of L, then p is called an atomic base formula of AL and p and
—p are called base literals. We will refer to base formulas with no free variables as base
sentences, and to variable-free atomic base formulas as propositions.

The well-formed formulas (wffs) of AL are defined as follows:

1. If z is a base formula then Tz is a wil.

2. If o is a wif then -« is a wif.

3. If a and § are wifs then a — 3 is a wif.

4. If o is a wif and v is a variable then Vva is a wil.

The connectives A, V and < and the existential quantifier 3 are defined in terms of —,
— and V in the usual way, and parentheses are used for clarity where necessary (see
Appendix A). Formulas constructed according to rules (1), (2), (3) and (4) are called
atomic, negation, implication and universal formulas respectively. A literal is an atomic
formula or a negated atomic formula.

It is important to note that base formulas are not well-formed—they only appear in a
theory within the scope of the assertion operator (hence the name asserted logic). Thus Tp
and T—p — —Tq (where p and ¢ are base formulas) are examples of wifs while p, =p A Tp,
T(p—¢q) and TTp are not wifs.

Connectives which are outside the scope of the assertion operator (the standard con-
nectives) are called ezternal connectives. Those within its scope (in this case only 3-valued
negation) are called internal connectives.

We say that a formula « is a (propositional) combination of formulas 34,. .., 3 if it
can be compounded from them using = and — according to rules (2) and (3). The degree
of complezity of a formula a (written deg «) is the sum obtained by adding 2 for each
occurrence of — and 1 for each occurrence of = in a.

As with the classical language L., we may sometimes wish to restrict our attention
to the propositional part of AL. We let ALp denote the wifs of AL that can be formed
using only individual constants, extralogical predicate symbols, the (internal and external)
logical connectives and the assertion operator.

4.3.2 Propositional Semantics of AL

AL differs from the classical language L in that statements involving a single predicate,
such as at(john,home,s), can be assigned one of three truth values; ¢ (true), f (false)
or u (unknown). A 3-valued negation connective ‘-’ is also provided. The connective is
defined by the following truth table:

Yyl -y
L f
U U
Floe

The need for 3-valued connectives other than negation is avoided, however, by encasing
3-valued statements (or base formulas) within the scope of Bochvar’s assertion operator

36

T [Haa78]. The assertion operator maps the three truth values ¢, f and u onto the two
traditional values ¢ and f according to the following truth table:

y | Ty
L]t
ul| f
I/

Note that the connective — and the operator T are truth functional. If base formulas x
and y have the same truth value, then —z and —y have the same value as do Tx and
Ty. Therefore, as in classical logic, truth tables can be used to check the validity of AL
formulas.

Whereas classical truth-valuations make assignments to well-formed formulas subject
only to the constraints imposed by the logical connectives (see Appendix A), truth-
valuations on AL must assign values to both wis and base formulas subject to the added
constraints imposed by the operator T and the connective —.

Definition 4.3.1 A truth valuation on AL is a mapping o assigning to each base formula
x a value 27 from the set {¢, f,u} and to each wff & a value a? from the set {¢, f}, such

that for all base formulas y and wffs § and v
L (-y)? =t iff y7=f and (—y)" =[iff 37 =14,
2. (Ty) =1t iff y* =14,
3. (=p)” =1 iff 57 =],
4. (f—=v) =t iff p7=for 77 =1t

Conditions (1) and (2) define the properties of the assertion operator and negation con-
nective according to the above truth tables. Conditions (3) and (4) are the standard
constraints on truth valuations for the connectives = and —.

We call a literal Ta or T—2 a strong assertion since satisfying the literal requires that
x take a particular truth value. A literal - Ta or = T—z is called a weak assertion since
satisfying it constrains the allowable truth values, but does not force one particular value.
Similarly we call the connectives — and — strong and weak negation respectively.

If a” is fixed arbitrarily for all atomic and universal formulas «, then (as with classical
logic) conditions (3) and (4) define 37 for all wifs 3. Similarly, if 7 is fixed arbitrarily for
all atomic base formulas z, then conditions (1) and (2) define a? for all atomic formulas
«. Thus, a mapping of the atomic base formulas onto {¢, f,u} and the universal formulas
onto {t, f} can be extended in a unique way by conditions (1)—~(4) into a truth valuation.

4.3.3 Satisfaction and Tautological Consequence

As in classical logic a truth valuation o on AL satisfies a set ® of wifs (written o = ®) if
¢? =t for every formula ¢ € ®.

We say ¢ is a tautology if o |= ¢ for every truth valuation o. It is always possible to
check whether a formula ¢ is a tautology in a finite number of steps by constructing a
truth table for ¢ in terms of its universal and atomic base formulas.

37

Theorem 4.3.2 Let a be a tautology of L. Then a wff o obtained by replacing each
atomic subformula of a with any atomic formula of AL is a tautology of AL.

Proof. Clearly any truth assignment to the universal and atomic formulas of o’ satisfies
o/ since the connectives of L and AL have the same meaning. Any assignment of truth
values to the universal and atomic base formulas of ¢’ must induce one of these truth

assignments. a

Thus the tautological schemata of classical logic also represent tautologies in AL. The

converse, however, is false. For example,
~(Tp A T—p)

is a tautology in AL which is not a tautology when the atomic formulas are replaced by
those from classical logic.

Tautological consequence and equivalence are defined as for classical logic (see Ap-

pendix A).
Lemma 4.3.3 A wff a is a tautological consequence of a set of wffs {¢1,...,01} iff

Pr1—P2— ... =P

1s a tautology.

Proof. Let {¢1,...,¢r} | a. For each truth valuation o such that o | {¢1,...,ér}
clearly ($p1—¢o— ... —=¢p—a)? =t since ¢f = ... = ¢ = a” = t. For each truth
valuation ¢ such that o [£ {¢1,...,¢r} there exists a minimum j, 1 < j < k such that
¢7 = f. Then (¢;— ... —=¢r—a)? =t and hence (p1— ... —=(dj—...a)) = L.
Conversely, assume ¢1—¢o— ... —¢dr—a is a tautology. For any truth valuation o
such that o = {¢1,...,0%}, ¢ = ¢35 =... = ¢7 =t and as (p1—P2— ... —Pp—a)’ =1,

it must be the case that a? = ¢. a

4.3.4 Epistemological Interpretation

The assertion operator T, like the modal operator O, can be interpreted as asserting that
its argument is known to be true or, using Galton’s interpretation [Gal91a], that there is
reason to believe that its argument is true. This leads to the confidence spectrum shown
in Table 4.3. The logic escapes the law of excluded middle at the “epistemic” level since
Tz vV T—z is not tautologically true.

For notational convenience we define P (possibly), F (known to be false) and U (un-

known) as follows.

Pr =44 -T-—x
Fr =4 T-z
Uz =g ~(TazVvT-z)

The five levels of the confidence spectrum therefore correspond to assignments of ¢ to Tz,
Pz, Uz, P—2 and Fa respectively. Note that P, F and U are not additional operators

38

Table 4.3: The confidence spectrum for AL.

Informal Formal Interpretation
Interpretation x Ter T-=z
reason to believe t t f
no reason to disbelieve toru | — f
no reason to believe or disbelieve U f f
no reason to believe uor f | f —
reason to disbelieve f f t

(although it may sometimes be convenient to refer to them as such) but meta-language
symbols with the substitutions defined above.

While T exhibits epistemological characteristics often associated with the modal op-
erator O it is important to remember that T is simply a truth functional operator. In
fact, any propositional AL theory can be mapped directly onto an equivalent classical
theory [MF90b]. Classical “off the shelf” theorem provers can therefore be used to test
the validity of propositional AL theorems.

4.4 Propositional Calculus in AL

The propositional calculus provides a sound and complete method for generating the
tautological consequences of any set of wffs. It is sound in the sense that a formula a can
be deduced from a set of formulas ® only if it is a tautological consequence of ®. It is
complete in the sense that if a formula « is a tautological consequence of a set of formulas
®, then there is a deduction of o from ®.

In this section we show that a simple modification to the standard propositional cal-
culus is needed to transport it to AL, and outline a sequence of results proving soundness
and completeness. Many of the proofs are based on those for the standard propositional
calculus, for which further details can be found in [BM77]. An alternative proof of sound-

ness and completeness based on a mapping from AL theories to classical theories is given

in [MF90b)].

4.4.1 Deductions in AL

A deduction is an application of propositional axioms and rules of inference to a set of
formulas in order to derive a tautological consequence of those formulas. The axioms
described by the following schemata, where a, § and v represent wifs, are sufficient for

defining deductions in the classical propositional calculus:

Ax. 1 a—f—a
ATl (amfr)—(a—f)—a—y
Ax. 1T (ma—p)—(~a—-f)—a

39

To modify the calculus for AL we add the axiom schemata

Ax. IV =(Ta A T-2)
Ax.V Tz < T-——x

where 2 represents a base formula.! Axiom IV ensures that Tz and T—z cannot both
be deduced from a consistent theory, thus capturing the intuitive fact that a proposition
cannot be both known to be true and known to be false. Axiom V permits the nesting of
strong negation connectives.

It is important to note that since base formulas do not appear outside the scope of the
assertion operator we do not require rules such as necessitation (Fz /F Oz) and axioms
such as reflexivity (Oz—ua) which are associated with modal logics.

Following [BM77] we use one rule of inference, modus ponens, which allows a formula /3
(the conclusion) to be deduced from formulas a— 3 (the major premiss) and a (the minor
premiss). The following lemma shows that modus ponens is (semantically) sound in AL.

Lemma 4.4.1 For any wffs a and § in AL,
{a,a=p} | 8.

Proof. The formula a—(a—f3)—f is a tautology in L and hence AL from Theorem 4.3.2.
Therefore {a,a—fF} |= 3 from Lemma 4.3.3. O

Deductions can now be defined more rigorously as follows.

Definition 4.4.2 A (propositional) deduction from a set ® of wifs is a non-empty sequence
of wifs 11,...,%, such that for each k, 1 < k < n, ¥} is a propositional axiom, @ € @,
or ¥y can be obtained by modus ponens from earlier formulas in the sequence (i.e. there
are 4,7 < k such that ¥; = ¢¥;—1y).

In this regard ® is often called a set of hypotheses. A formula « is deducible from &
(written ® k-) if there is a deduction from ® whose last formula is a.
Clearly if ® C ¥ then any deduction from & is also a deduction from W¥. Also, if
b1y, 0, is a deduction from @ and 1 < k < n, then ¢1,..., ¢, is a deduction from ®.
A (propositional) proof is a deduction from the empty set of hypotheses. A formula «
is provable (written F «) if there is a proof whose last formula is a.

Theorem 4.4.3 (Deduction Theorem) Given a deduction of § from ® U {a} we can
construct a deduction of a—p from ®. (Thus, if ® U {a}t 3, then ® Fa—p.)

Proof. (Sketch) Let y,...,%, be a deduction of § from ® U {a}. It can be shown
[BM77, Thm 1.10.4] by induction on k = 1,...,n that a deduction of a—1;, from ® can
be constructed by considering each of the possible cases: ¥y is an axiom, ¥ € ¢, ¥ = «,
or 1y is obtained by modus ponens from two earlier formulas v; and v;, ¢,5 <k. a

'Note that adding Tz V T—z as an axiom schema would revert the logic to a classical 2-valued system.

40

4.4.2 Soundness, Consistency and Completeness

Theorem 4.4.4 (soundness) [BM77, Thm 1.10.2] If® F a, then ® |= a. In particular,
if Fa, then |= a.

Proof. Let ¢y,...,%, be a deduction of a from ¢ (thus ¢, = a). We show by induction
onk=1,...,n that ® = v.

If 4, is a propositional axiom it is tautologically true and therefore satisfied by any
truth valuation. If ¢ € ® then clearly ® |= ¢y. Finally, if for some ¢,j < k we have
;= =y, then {1, ¥;} |= ¥ by Lemma 4.4.1, but by the induction hypothesis ® |= 1
and @ |= ¢, hence clearly ® |= 1. O

Definition 4.4.5 A set ® of wifs is (propositionally) inconsistent if for some 3 both ® - 3
and ® F =3. Otherwise ® is (propositionally) consistent.

The set {Tz,Fz} is inconsistent, for example, since {Tz,Fa} F Fz and {Tz,Fz} F -Fa«
using Axiom IV and modus ponens.

It can be shown [BM77, Thn 1.10.5(c¢)] that {3, -8} F « for any formulas § and a. It
follows that if ® is inconsistent, then ® F « for any formula «.

The soundness of the propositional calculus leads to the following result.

Theorem 4.4.6 [BM77, Thm 1.10.6] No truth valuation satisfies an inconsistent set of

wffs.
Proof. Let ® - 3 and ® - =f3. If 0 = ® then by Theorem 4.4.4, o |= 3 and o | —f.
Contradiction. a

Theorem 4.4.6 shows that the empty set of formulas is consistent as it is satisfied (vacu-

ously) by every truth valuation.

Theorem 4.4.7 [BM77, Thm 1.10.8(a)] For any ® and o, ® U {-a} is inconsistent iff
DI a.

Proof. If ® U {-a} is inconsistent, then for some 3 we have ® U{-a}F 3 and ® U
{—a} F =3. By the Deduction Theorem, ® - -a—f and ® F —a—-p. Using Axiom III
with two applications of modus ponens we get a deduction of a from {-a—f,~a—-5}.
Thus @ F a.

Conversely, if ® F a then ® U {-a} is inconsistent because ® U {-a} F a and
U {-a}t —a. a

Theorem 4.4.7 has practical importance because it shows that if we can test the con-
sistency of a knowledge base then we can also show whether a formula is deducible from

the knowledge base.

Theorem 4.4.8 A set of formulas ® is consistent iff every finite subset of ® is consistent.

Proof. Let ® be consistent and assume there exists a set @ C ® such that © is inconsis-
tent, that is ©® - 8 and © F =3 for some formula 5. As @ C ® any deduction from O is
also a deduction from ®. Therefore, ® - 3 and ® F =/ so ® is inconsistent. Contradiction.

41

Conversely, let all finite subsets of ® be consistent and assume @ is inconsistent, that
is @ F 8 and ® - =3 for some formula 8. Construct the set © of all formulas ¢ € ® used
in the deductions of § and =f3. Then O is a finite subset of ®, but ® - 8 and © - =f so

O is inconsistent. Contradiction. a

A set ® of formulas is mazimal consistent in AL if it is propositionally consistent but
is not a proper subset of any consistent set of formulas. Note that a consistent set ® is
maximal consistent iff @« € ® or —a € ® for every formula a.

The following proof makes use of Zorn’s Lemima which states that for each element b
of an inductive set (A, <) there is a maximal element a € A such that b < a.

Theorem 4.4.9 [BM77, Thm 1.13.3] Let ® be a consistent set of wffs. Then there is a
maxzimal consistent set ¥ such that ® C V.

Proof. Consider the family of all consistent sets of formulas, partially ordered by inclu-
sion C. If {®; : i € I} is an arbitrary totally ordered subfamily of that family, then by
Theorem 4.4.8 the union [J{®; : ¢ € I} is also consistent, as every finite subset of the
union is included in some ®;. The result follows from Zorn’s Lemma. a

We can now show the converse of Theorem 4.4.6.

Theorem 4.4.10 If ® is a consistent set of formulas then there is a truth valuation o
satisfying ®.

Proof. By Theorem 4.4.9 we can assume that ® C ¥, where ¥ is maximal consistent
in AL. Therefore, for each atomic base formula x, ¥ must include exactly one formula
from each pair in the sequence (Tz,-Tz),(T—z,-T—z),(T——2,~T——=z),.... There
are three possible options:

1. If Tz € ¥ then - T—2z € ¥ (since Tz - ~T—2 by Axiom IV) and T——2z € ¥ (since
Ta F T——=2 by Axiom V). Similarly “T———2 € ¥, T————2 € ¥ and so on.
These are precisely the formulas satisfied by the assignment z° = t.

2. If T—2 € ¥ then VU includes the formulas T———z, T————— z,... (due to Ax-
iom V) and the formulas =Tz, -T——z,... (due to Axiom IV). These are precisely
the formulas satisfied by the assignment z% = f.

3. If neither Tz € ¥ nor T—xz € ¥ then both =Tz € ¥ and -T—2z € V. By Axiom V,
¥ also includes -T——x, “T———2 and so on. These are precisely the formulas
satisfied by the assignment z° = u.

A truth valuation o can therefore be determined by requiring that for every atomic base

formula z,
t Tz eV
U otherwise

and for every universal formula «a,

a":{t acV¥

f otherwise.

42

The resulting truth valuation is such that for every atomic or universal formula ¢, ¢° =1
iff ¢ € V. By induction on deg ¢ this holds for every wil ¢. Since ® C ¥ it follows that
ol ®.]

Theorem 4.4.11 (strong completeness) [BM77, Thm 1.13.5] If ® = a then ® F «.
In particular, if |= « then F a.

Proof. If & |= a then no truth valuation can satisfy ® U {-a} (if o |= ® then o’ = ¢
and (-a)? = f, so o [£ —a). Hence by Theorem 4.4.10, ® U {-a} is inconsistent, and by
Theorem 4.4.7, ¢ - «. a

4.5 Remarks

We have shown the propositional calculus defined in AL to be sound and complete. Sound-
ness is important in a reasoning system because it ensures that only (semantically) correct
results will be deduced from a set of hypotheses. Completeness guarantees that it is pos-
sible to deduce all such results.

In the derivation of the above results we have shown that a number of theorems from
classical propositional calculus can be transported to asserted logic. Of course this is also
the case for many others which have not been shown. Some of these results provide useful
guarantees for practical reasoning systems. For example, the following lemma shows that
deduced formulas can be added to a consistent knowledge base without fear of introducing
inconsistencies.

Lemma 4.5.1 If ® is a propositionally consistent set of wffs and ® - «, then ® U {a} is
propositionally consistent.

Proof. If & is consistent, then by Theorem 4.4.10 there is a truth valuation o satisfying
®. Also, if ® F « then from Theorem 4.4.4, ® |= «. Hence o |= «, and from Theorem 4.4.6,
® U {a} is consistent. O

Guarantees of this sort support the use of logic-based formalisms for manipulating declar-
ative knowledge. The results outlined above are intended to illustrate that the advantages
of logic-based systems are not lost when asserted logic is used in place of classical logic.
Finally, theorem provers for AL can be obtained by straightforward modifications
to classical theorem provers. We have modified Fitting’s propositional tableau theorem
prover [Fit&8] for use with AL by further reducing the nodes of the tableau containing
atomic formulas to leaves containing base formulas.? The implementation is in Prolog.

2An earlier version of the theorem prover was implemented by Rajeev Goré.

43

Chapter 5

Simplified Chronological
Ignorance

This chapter describes the first stage of the development of a calculus for causal chrono-
logical ignorance. We show that the use of modal logic in CI is unnecessary, and that the
same results can be achieved using asserted logic. In fact we could use any language which
gives access to the confidence spectrum described in Chapter 4.

The translation of CI to asserted logic simplifies the semantics of CI, and makes it easier
to prove that CI is deterministic for causal theories. Since we will develop our calculus
using asserted logic, it also gives us a semantics against which we can prove soundness

and completeness.

5.1 Temporal AL

In order to minimise knowledge over time we need to attach temporal information to
assertions. As we discussed earlier, Shoham [Sho88a] achieves this by reifying propositions
with pairs of temporal arguments which are intended to denote intervals. Bacchus et
al [BTK89] argue that this approach is overly restrictive and sacrifices classical proof
theory unnecessarily. They show that a two-sorted logic called BTK is more expressive and
subsumes Shoham’s temporal logic. Galton [Gal91b] also argues against reified temporal
logics.

Since causal theories are propositional our choice here is not particularly important.
However we will follow the approach of Bacchus et al for two reasons. First we would
like to take advantage of the less restrictive syntax of BTK and allow single temporal
arguments. The reason for this is that we will want to use the logic for state-based
reasoning. Shoham’s solution of representing states or time points as intervals with zero
duration is more cumbersome and, as argued by Bacchus et al, offers no advantages in
return. The second reason is that we would like to allow for a later extension of our system
to first-order logic. Since we are developing a proof-theoretic formalism we will require a
logic with a well-established proof theory. Standard proof theories for many sorted logics
are directly applicable to BTK. Moreover, Bacchus et al provide a mapping from BTK
theories to classical first-order theories which permit the use of standard theorem provers.

44

5.1.1 The Temporal Logic BTK

BTK is a standard many-sorted logic with two disjoint sorts, for nontemporal and tem-
poral objects. The syntax of BTK is that of a classical first-order language L with a few
exceptions. The variables are divided into temporal and nontemporal sorts. Function
symbols and the constants (which are taken to be 0-ary function symbols) are classed
according to the sort which they return, and each predicate or function symbol has arity
(m,n) where m and n are natural numbers—the first m arguments being nontemporal
while the last n are temporal.! Well-formed formulas are constructed in the usual way
with the restriction that arguments of the correct sort must be given to predicates and
functions.

The propositional semantics of BTK is the same as that of classical logic. The first-
order semantics is modified to include two non-empty universes, U and T'. An interpreta-
tion function o maps each (m,n)-ary nontemporal function symbol to an operation from
U™ x T™ to U, each (m,n)-ary temporal function symbol to an operation from U™ x T
to T, and each (m,n)-ary predicate symbol to a relation on U™ x T™. Finally, quantified
variables are understood to range only over the appropriate universe.

5.1.2 TAL

Temporal asserted logic (TAL) is formed in the same way as AL, described in Chapter 4,
except that the underlying classical language L is replaced by the two-sorted language
BTK. For consistency with Shoham we take all temporal constant symbols from the set of
integers Z. We also use only predicate symbols with arity (m, 1) or (m,2). The former can
be interpreted as associating an assertion with a particular time point or a state, while the
latter associates an assertion with an interval. Thus loaded(gun, 1) is intended to indicate
that a gun is loaded at time 1, while red(house17,2,12) indicates that a particular house
is red in the interval from 2 to 12.

Finally we require Shoham’s notion of the latest time point (ltp) appearing in a propo-
sitional sentence.? This is simply the greater (with respect to the normal interpretation of
the integers) of the temporal constant symbols appearing in the sentence. For simplicity
we will follow the convention that the latest time point in an atomic base sentence is
always written as the last argument. Thus the l{p of a base sentence p(...,t1,12) is 3.

5.2 Chronological Minimisation

TAL is made nonmonotonic by imposing a partial order on truth valuations and choosing
a least element in the partial order which satisfies the object theory. The partial order
gives preference to truth valuations in which the base formulas that are known occur as
late as possible. Our partial order is simpler than Shoham’s [Sho88a, Def. 3.4] since the
truth functionality of TAL allows us to specify the truth values of base formulas directly.

'We have changed the order of temporal and non-temporal terms from [BTK89] to conform with the
bulk of the literature on state-based reasoning (see Chapter 2).

2See [Sho88a, Sec. 3.3] for the definition of Itp for quantified sentences.

45

Definition 5.2.1 A truth valuation o9 is chronologically more ignorant than a truth
valuation oy (written oy <, 07) if there exists a time ¢y such that

1. for any base sentence x whose ltp < tg, if 2°? = u then 272 = u, and

2. there exists some base sentence y whose ltp is {p such that y?2 = u but y?! # w.

Definition 5.2.2 ¢ is a chronologically mazimally ignorant (cmi) truth valuation for a
theory @ if o |= ® and there is no o’ <. o such that o’ &= ®.

According to Definition 5.2.2, preferred truth valuations assign the value u to base
formulas wherever possible, choosing base formulas with smaller lfp’s where necessary.
For example, if an object theory entails a disjunction T, V Tao but does not entail either
Taq, or Tag, then the preferred truth valuation assigns the value u to the base formula x4
or xo with the smallest ltp. If there is a choice between base formulas with the same ltp’s
then there will generally not be a unique c¢mi truth valuation. Causal theories, which are
considered in the following section, are designed so that this problem does not arise.

5.3 Causal Theories

Causal theories are intended to capture the notion of physical causality—that what is true
prior to some point in time determines what is true after that time. They can be defined
in TAL as follows.

Definition 5.3.1 A causal sentence is a sentence of the form

/\Tmi A /\ Py, — Tz, m,n €N (5.1)
=1 7=1

where
1. if m = 0 or n = 0 the corresponding (empty) conjunction is identically true, and
2. x4, y; (i, > 0) and z are base literals such that
(a) Up(x;) < Up(z) for i =1,...,m, and
(b) Up(y;) < ltp(z) for j =1,...,n.
A causal sentence is called a boundary condition if m = 0, and a causal rule otherwise.
Definition 5.3.2 A causal theory ® is a set of causal sentences such that
1. there is a time point ¢y such that for all boundary conditions g € ®, #, < ltp(3),

2. there do not exist sentences a;—Tz and ay—T—z in ® such that {a1,a2} is con-
sistent, and

46

3. there is no z such that Pz and P—2x both appear on the left-hand side of sentences
in ®.2

Causal sentences are thus implications from knowledge prior to some point in time to
knowledge at that time. The partial order on interpretations gives a sense of unidirection-
ality to the implication connective since earlier assertions, which appear to the left of the
connective, are minimised preferentially. This unidirectionality appears to be useful for
modelling causality [Sho88b]. More importantly from a technical point of view, however,
the constraints on causal theories guarantee that the partial order on interpretations has
a unique least element satisfying any given theory. We now prove this to be the case.

5.4 Unique CMI Truth Valuations

Shoham’s causal theories are shown to be deterministic by the “unique model theorem”
[Sho88a, Thm. 4.4] which says that the same base sentences are known in all cmi interpre-
tations of a causal theory. A stronger result follows in our formalism; namely, that there
is exactly one cmi truth valuation for any causal theory.

Theorem 5.4.1 (Unique cmi truth valuation) Let ® be a causal theory and Y. be the
set of all truth valuations on TAL. Reduce X to Y., as follows:

o Let tg be a time point such that for all boundary conditions € ®, to < ltp(3). Let
Yo be the set of truth valuations o € 3 in which x° = u for all atomic base sentences
x whose ltp < 1.

e Foralli > 0,1i€ N, let t; = t;_1 + 1 and X; be the set of truth valuations o such
that o € ¥;_1 and

t a—=Teredandol=a (5.2a)
*=¢ f a—=T-zedandofa (5.2b)
u otherwise (5.2¢)

Jor all atomic base sentences x whose ltp is t;. Lel Yoo = (2o Xi-
Then
1. Yo contains a single truth valuation,
2. ifo € X, then o |= ®, and

3. o is a cmi truth valuation for ® if and only if 0 € Y.

3The third condition is not strictly necessary since we do not require Shoham’s soundness conditions
[Sho88a, Def. 5.1], and there is therefore a consistent interpretation of {Pz, P—z} in which z is assigned the
value u. We include the condition here for compatibility with Shoham’s formalism (see Definition 3.6.3).
The soundness conditions are discussed further in Chapter 8.

47

Proof.

[1] The second condition of Definition 5.3.2 ensures that (5.2a) and (5.2b) cannot be
satisfied simultaneously. The construction therefore defines a mapping from each atomic
base formula onto a unique truth value in {t, f,u}. The mapping extends according to
Definition 4.3.1 to a unique truth valuation.

[2] Let 0 € Y. Any sentence ¢ € ® whose lip < ty must be a causal rule of the
form Tay A ...—Tz where ltp(z1) < tg. Therefore 2{ = u, (Tz1)? = f and ¢ |= ¢. Any
sentence whose lip > 1o must also be satisfied since it is of the form a—Tz and from
(5.2a)—(5.2¢),if a? =t then (T2)” =t.

[3] (<) Assume o € Y is not a cmi truth valuation for ®. From [2] o = ® so there
must be some o’ <. o such that ¢’ |= ®. Let t. be the earliest time point at which o
and o’ differ. Then, since ¢’ <. o, there is some atomic base sentence x with lip ¢, such
that 27 # w and z # 2?. From the construction there must be some sentence a—Tz or
a—T—z such that o = t. But lip(a) < t. so a’ =a’ = 1. Clearly o’ does not satisfy
this sentence and hence o/ [£ ® — contradiction.

(=) Assume o is a cmi truth valuation for ® but ¢ € ¥,. From [1] and [2] there
exists 0’ € ¥, such that o’ = ®. Since o € ¥ either

1. 27 # u for some atomic base sentence x whose ltp < {g, or
2. there exists ¢ such that o € ;1 but o € %;, in which case either

(a) a—Tz € @ for some atomic base sentence z whose ltp = {; and o = «, but
e # 1,

(b) a—T—z € ® for some atomic base sentence whose ltp = ¢; and o |= a, but
x? # f,or

(c) there is no base sentence z whose ltp = ¢; such that a—Tz € ¢ and o0 | a,
but 27 # u.

In the case of 1 or 2(c), 0’ <. 0, and in the case of 2(a) or 2(b), o [£ ®. Therefore
o is not a cmi truth valuation for ® — contradiction. a

The following are direct consequences of Theorem 5.4.1:
o All causal theories are consistent.
e All causal theories have a unique cmi truth valuation.

We let causal($(TAL)) denote the causal theories of TAL and define the images under
CI as follows.

Definition 5.4.2 Kar, is a relation from causal(£(TAL)) to §(TAL) such that (®,¥) €
Ktar if and only if

¥ = {Tz | = is a base literal and o |= T2 where o is the cmi model for ®}.

Theorem 5.4.1 ensures that the relation Ka1, is deterministic.

48

5.4.1 Finite Causal Theories

The construction in Theorem 5.4.1 shows that if @ is a finite causal theory then the number
of atomic base sentences which are assigned a value other than u by the cmi truth valuation
for @ is finite and no greater than the number of sentences in ®. To see this note that
atomic base sentences can only be assigned a value of ¢ or f according to conditions (5.2a)
and (5.2b) respectively, and each formula in ® can satisfy at most one of these conditions.

The atomic base sentences assigned values other than w are found by the following
algorithm which simply assigns the truth values determined by (5.2a)—(5.2b) .

Algorithm 5.4.3 Let ® be a finite causal theory with ¢mi truth valuation o.

Step 1 Let T be a list of all the sentences in ® and 5 be a list of all the atomic base
sentences appearing in 7.

Step 2 Sort the sentences in T and S by lip.

Step 3 If T is empty then halt. The atomic base sentences assigned ¢ by o are labelled ¢
in §, and the atomic base sentences assigned f by o are labelled f in 5.

Step 4 Remove the first element AL, Tz; A Ay Py; — Tz from 7. If one of the
following conditions holds:
1. for some i, z; is a positive base literal and z; is not labelled ¢ in 5,
2. for some 1, x; is a negative base literal —z! and ! is not labelled f in 9,
3. for some j, y; is a positive base literal and y; is labelled fin S,
4. for some j, y; is a negative base literal —y; and y; is labelled ¢ in §,

then go to Step 3. Otherwise label the atomic part of z either ¢ or f in 5 depending
on whether z is a positive or negative base literal, and go to Step 3.

Thus

KraL(®) = {Tz | z is labelled ¢ in S} U {T—y |y is labelled fin S}.

5.5 Equivalence of the Formalisms

Other than syntactic variations, Algorithm 5.4.3 is precisely the algorithm provided by
Shoham [Sho88a, pp. 300-301]. This correspondence is formalised by the following corol-
lary. We make use of a syntactic mapping TK from TAL base sentences to TK base
sentences defined by:

TK(p(...,t)) =aet TRUE(L,t,p/(...)); phas arity (m,1), p’ has arity m
TK(p(...,t1,t2)) =def TRUE(t1,l2,p'(...)); p has arity (m,2), p’ has arity m
TK(—z) =qef —TK(z)

49

Corollary 5.5.1 Let ® be a finite causal theory with cmi truth valuation o. Let
(I)/:{/\ OTK(z;) A /\<>TK(yj)—>EITK(z) /\Tfﬂi A /\Pyj—>Tz E‘P}.
i=1 j=1 i=1 j=1

Then for any base literal w,
Tw € Kyar(®) if and only if OTK(w) € K1k(®').

That is, the base literals assigned ¢ by the cmi model of a TAL theory correspond to the
base sentences which are known in all cmi models of the corresponding TK theory.

5.6 Remarks

We have shown that the chronological minimisation strategy which forms the basis of CI
does not require the use of modal logic. In fact it can be stated more succinctly using
asserted logic, which has a simpler, truth functional semantics. By providing an equivalent
nonmodal account of CI for causal theories we have simplified the semantics of CI and the
proof of the “unique model theorem”.

The most important advantage of using asserted logic rather than modal logic, however,
is that we do not sacrifice classical proof theory. As we described in Chapter 4, a sound
and complete version of the propositional calculus can be transported to AL with the
addition of two axiom schemata. Alternatively, we can map propositional AL theories
onto the classical language Kp and thereby use standard theorem provers to verify AL
theorems. In Chapter 8 we will show how this can be used to provide a calculus for causal
CIL

On a broader level this result calls into question the ready acceptance of modal logic for
representing epistemic concepts such as knowledge and possibility. Since the inclusion of
modality complicates the semantics and proof theory of a logic, its use should be justified—
for example by the need to nest modal operators or apply them to compound formulas.

50

Chapter 6

A New Look at Default Logic

In Chapter 3 we introduced default logic and outlined a number of properties of the
extension relation. While default rules provide a versatile mechanism for incorporating
assumptions, the extension relation suffers from a number of undesirable properties. It is
deductively closing, partial for seminormal defaults, and branching for all types of defaults.
In addition default logic lacks a proof theory for arbitrary defaults and a local proof theory
with respect to seminormal defaults.

We now proceed to address each of these problems. In this chapter we show that
deductive closure can be factored out of the extension relation providing a nonclosing
definition of default logic. This in turn suggests a procedure for testing extension mem-
bership for nonnormal defaults based around a classical theorem prover. We then propose
an approach for converting seminormal defaults to normal defaults thus overcoming the

problem of partial relations (or incoherence).

6.1 Default Logic Without Deductive Closure

Returning to the definition of the extension relation (Def. 3.4.1) in Chapter 3, recall
that condition (3.2c) ensures that extensions are deductively closed. This means that
finite theories have infinite images under the extension relation, and even for finite sets of
defaults the images cannot be generated. Reiter [Rei80, Thm 2.5] shows that any extension
can be written as the deductive closure of a set consisting of the object theory and the
consequents of some of the defaults. The result can be expressed as follows.

Lemma 6.1.1 Let Ep be defined according to Definition 3.4.1. If (®,¥) € Ep then
U = Th(©) where

O=QU{y|(a:8/7)eD, acVand -3¢ V}. (6.1)

Lemma 6.1.1 is important because it shows that for finite sets of defaults, the extensions
of finite theories are finitely axiomatisable. Furthermore, the proper axioms are a subset
of ® U CONSEQUENTS(D).

The converse of Lemma 6.1.1 does not hold. That is, if ¥ = Th(©) where O sat-
isfies (6.1), it may not be the case that (®,¥) € Ep. Consider for example a default

51

set

=15}
p
and an object theory ® = {}. The set © = {p} satisfies (6.1) but ({ }, Th({p})) € Ebp.
The correct extension is Th({ }) as is intuitively expected since the default is sanctioned
only by its own conclusion.

A more manageable definition of default logic can be provided by considering minimal
sets of proper axioms whose deductive closure is an extension; that is, those for which
a bidirectional result similar to Lemma 6.1.1 holds. At first sight it may appear that
the solution is to demand that © be a minimal (with respect to set inclusion) theory

satisfying the right-hand side of equation (6.1). This restriction is insufficient, however,
as the following example shows.! Consider a default set

D:{P:7 ”P}
p q

and an object theory ® = {}. The set ® = {p} is a minimal set satisfying (6.1) but
({}, Th({p})) € Ep. In this case the correct extension is Th({q})-

The required sets, which we call augmentations of the underlying theory, are defined
as follows.

Definition 6.1.2 (Augmentations) Let D be a set of (closed) defaults and Lg be a
closed first-order language. The augmentation relation Ap is a relation on £(Ls) such

that (®,0) € Ap if and only if

O=0U{y|(a:8/7)€D, OFa and O I/ -3} (6.2a)
and there is no set @' C © such that

O =0U{y|(a:8/7)€ED, ©Fa and O If -3}. (6.2b)

The extra constraint on the set © allows us to replace Lemma 6.1.1 with a stronger
bidirectional result. The following theorem shows that a set of formulas is an extension if
and only it is the deductive closure of an augmentation.

Theorem 6.1.3 Let Ep be defined according to Definition 3.4.1 and Ap be defined ac-
cording to Definition 6.1.2. Then (®,V) € Ep if and only if there exists some © such that
(®,0) € Ap and ¥ = Th(O). That is,

Ep = Tho Ap. (6.3)

Proof. (<) Let (®,0) € Ap. From Definition 3.4.1, (®, Th(®)) € Ep if and only if
I' = Th(©) where I' is a minimal set satisfying:

¢CT (6.4a)
Th(I')=T (6.4b)
if(a:8/v)eD,aeT and - ¢ Th(O) then y €T (6.4c)

LI this restriction were sufficient then there would be no need to distinguish between ¥ and T in
Definition 3.4.1.

52

|

A Th

object aligmentations extensions

theories

Figure 6.1: Extension as a composite relation Fp = Tho Ap.

The set Th(O) satisfies (6.4a) for IT' since from (6.2a), ® C O, and satisfies (6.4b) since
Th(Th(©)) = Th(®). It also satisfies (6.4c) since from (6.2a), if o € Th(O) and - ¢
Th(©) then v € ©. Therefore by the minimality of I' we have I' C Th(0©).

Let

O =0U{y|(a:8/7)€D,acl and =5 ¢ Th(O)}. (6.5)

From (6.5) and (6.2a), ©’ C O since I' C Th(0). Also ©' C I since O’ is a minimal set
satisfying (6.4a) and (6.4c). Therefore Th(®’) C Th(T'), and from (6.4b), Th(©') C T.
But Th(@') satisfies (6.4a)(6.4c) so by the minimality of T' we also have T' C Th(0')
and hence I' = Th(©'). Substituting for I', (6.5) reduces to (6.2b), so it cannot be the
case that ©' C O since then from Definition 6.1.2, (®,0) ¢ Ap. Therefore ©® = O and
I' = Th(©). Hence (®, Th(0)) € Ep.

(=) Let (®,¥) € Ep. Then from Lemma 6.1.1, ¥ = Th(0O) where O satis-
fies (6.2a). Also, from Definition 3.4.1, I' = Th(O).

Assume (®,0) ¢ Ap. Then there exists a set ©' C O which satisfies (6.2b). The
set Th(O') satisfies condition (6.4a) for I' since from (6.2b), ® C ©’, and satisfies (6.4b)
since Th(Th(©")) = Th(©'). It also satisfies (6.4c) since from (6.2b), if @ € Th(0') and
-8 ¢ Th(©) then v € O', so by the minimality of I' we have I' C Th(©’) and hence
Th(©) C Th(O'). But O’ C O so it must be the case that Th(©) = Th(O'), in which case
the r.h.s. of (6.2b) is equivalent to the r.h.s. of (6.2a) and @' = O contradicting the choice
of @'. Hence (®,0) € Ap.]

Extensions can therefore be defined as composite relations as illustrated in Figure 6.1.
The existence of an augmentation is a necessary and sufficient condition for the existence
of an extension.

6.2 A Proof Procedure for Nonnormal Defaults

In this section we describe a proof procedure for default logic. In the following we call a
default set instance-finite if it contains a finite number of closed defaults, or if it contains a

53

finite number of defaults and the underlying language contains a finite number of variables,
constant symbols, predicate symbols and no function symbols with arity greater than zero.
The latter restriction makes the Herbrand Universe finite, ensuring a finite number of
closed instances of open defaults [Eth87].

6.2.1 Previous Approaches

The proof theory for default logic provided by Reiter [Rei80] is applicable only to normal
defaults. The theory has the advantage that it is local with respect to defaults; that is, it is
possible to prove that a formula is a member of some extension of a given theory without
taking all defaults into account. This result is a consequence of the semi-monotonicity
property of closed normal defaults [Rei80, Thm 3.2]. The procedure is decidable for
decidable first-order subclasses. Reiter argues that the extension membership problem for
(closed normal) default theories in first-order logic in general is not semi-decidable [Rei80,
Thm 4.9].

Etherington [Eth87, Sec 5] describes a proof procedure which is applicable to arbitrary
instance-finite default sets. The procedure generates sets of formulas whose deductive
closure are extensions. It is not immediately clear whether these sets obey the minimality
requirements of Definition 6.1.2 and are therefore augmentations, however they must be
logically equivalent to augmentations due to Theorem 6.1.3.

A problem with Etherington’s procedure is that it may cycle between candidates for
extensions indefinitely. The procedure is therefore not guaranteed to halt even when the
language is restricted to a decidable subclass of first-order logic. This problem is shown to
be overcome only for a severely restricted class of default theories called network theories

[Eth87, Thm 2].

6.2.2 Exhaustive Search for Augmentations

Definition 6.1.2 provides a procedure for determining augmentations which requires only
a standard theorem prover and simple set manipulation. The procedure can be described
as follows.

Algorithm 6.2.1 Let D be a set of (closed) defaults and P = ©(CONSEQUENTS(D)). Let
¢ C Lg and A = {}.

Step 1 If P is empty then halt. A contains the augmentations of ®. Otherwise remove
the first element Q from P.

Step 2 Let © = ® U Q. If O satisfies (6.2a) then let P/ = ©(Q)\ {2} and go to Step 3,
otherwise go to Step 1.

Step 3 If P’ is empty then replace A by A U {0} and go to Step 1. Otherwise, remove
the first element €' from P’.

Step 4 Let ©' = & U Q. If O’ satisfies (6.2b) then go to Step 1, otherwise go to Step 3.

54

The tests (6.2a) and (6.2b) are not decidable for countably infinite default sets since
each test appeals to all defaults; that is there is no locality with respect to defaults. The
procedure is therefore not semidecidable for infinite sets of defaults. Also, like the proof
procedures of Reiter and Etherington, the procedure relies on a provability test and is not
semidecidable for the full first-order logic. This is to be expected given Reiter’s decidability
result [Rei80, Thm 4.9].

For instance-finite default sets in a decidable first-order subclass, however, the tests
are decidable. Equation (6.2a) shows that the candidates © are limited to the union of
the object theory ® with subsets of CONSEQUENTS(D). If D is instance-finite then there
are finitely many candidates and also finitely many subsets of the candidates which must
be tested against subcondition (6.2b). Every augmentation can be found by exhaustively
searching the set of candidates for those which satisfy conditions (6.2a) and (6.2b). Al-
gorithm 6.2.1 therefore provides an effective procedure for generating the augmentations
of a given theory whether or not the defaults are normal. Extension membership can be
tested for any formula ¢ by constructing the augmentations and checking the consistency
of =¢ with each augmentation.

In practice the restriction to instance-finite default sets will not concern us since it will
follow from our use of finite knowledge bases and decidable languages. However, while
the procedure is guaranteed to halt with the correct answer under these conditions, it is
computationally explosive and impractical for large numbers of defaults. In the following
sections and in Chapter 7 we investigate, along with the problems of incoherence and
multiple extensions, some techniques which permit improved proof procedures.

6.3 Avoiding Incoherence Using Asserted Logic

Although default logic was proposed as an enhancement to classical logic, it is equally
applicable to other logic systems. In this section we show how a switch to asserted logic as
the underlying language can be used to normalise defaults, thereby avoiding incoherence
and restoring semi-monotonicity. The approach was first reported in [Mac91b].

6.3.1 Weakened Justifications

One of the advantages of using AL for default reasoning is that it allows the weakening of
default justifications while maintaining the intended function of the defaults. To illustrate
this consider the default

Tz :Py/ Tz

which can be interpreted “if x is known and it is consistent to believe that y is possible,
then infer 2”. Given Tz and no information about y, the default will support the inference
of Tz. If the information Ty (‘y is known to be true’) is added the inference will remain.
However, if the information T—y (‘y is known to be false’) is added the default will no
longer be applicable and the inference withdrawn. Thus the weak justification controls

53

the applicability of the default in the usual way.?
Extending this idea gives the following general form for seminormal defaults.

/\Txi:/\Pyj A /\Tzk
7 ki k
/\Tzk
k

Note that we could equivalently have written —|Ty9 where y; = —y; in place of Py; in the

(6.6)

justification.
Example 1 In a robotics environment where it is assumed that the only obstacles are
the ones that the agent knows about, the default

Do {T at(r,1,1): -Tobstacle(1,1,2,1) A Tmove(r,1,1,2, 1)}
N Tmove(r,1,1,2,1)

can be interpreted “if robotic agent r is at position (1,1) and no obstacles are known to be
blocking the route from (1,1) to (2,1), then r can move to position (2,1)”. As expected, ap-
plying this default to the theory {T at(r,1,1)} leads to the inference {Tmove(r,1,1,2,1)},
while applying the default to the theory {T at(r,1,1), T obstacle(1,1,2,1)} allows no
additional inferences.

6.3.2 Normalising Defaults

Seminormal defaults permit incoherence because applying a seminormal default does not
update the knowledge base to reflect one of the reasons for its application, namely the
consistency of its justification. In order to overcome this problem we need to be able to
update the knowledge base to reflect the outcome of a test of the form “is y possible”
without asserting that “y is true”. In classical logic we can ascertain that y is possible
if we cannot deduce —y, but the only way to update the KB to reflect this is to make
the stronger assertion that y is true. In asserted logic, however, it can be achieved using
the normal default (: Py /Py). Notice that the consequent of this default will not add
any known information to the KB, but it will prevent the application of any seminormal
default which contradicts Py.

This technique can be used to convert the seminormal default (6.6) into the normal

default
/\Tmi : /\Pyj A /\Tz;c
7 7 k
/\Py]‘ A /\Tzk
7 k

We call this process normalising the default.
When a normalised default is invoked, the weak assertions A;Py; added to the KB
reflect the fact that the addition of the strong assertions A, Tz, depends on the consistency

(6.7)

of A; Py;. The amount of known information in the KB does not increase as a direct result

2Tt is important here not to confuse the source of nonmonotonicity, which comes from the default

formalism and not from the P ‘operator’ (recall that AL itself is monotonic).

56

of normalising the default. In fact, the amount of known information will only increase due
to normalising defaults if the KB entails weak to strong implications (which we consider
further in the following section). Otherwise the weak assertions serve only to inhibit any

contradicting defaults, and so prevent incoherence.

Example 2 FEtherington [Eth87] proposes default logic representations for inheritance
networks in which default links with exceptions are represented by seminormal defaults.

To illustrate this he encodes the following information.

Molluscs are normally Shell-bearers.
Cephalopods must be molluscs but normally are not Shell-bearers.
Nautili must be Cephalopods and Shell-bearers.

The corresponding default theory is
B m(x) : sb(x) A —c(x) c(x):sb(x)A -n(x)
b= { sb(x) ’ -sb(x) }
¢ = {c(x)—m(x), n(x)—c(x), n(x)—sb(x) }.

Adding n(x) to the theory ® gives an extension containing c(x), m(x) and sb(x); that is, a
Nautilus is known to be a Cephalopod, a Mollusc and a Shell-bearer. On the other hand,
adding c(x) gives an extension containing m(x) and —sb(x); that is, a Cephalopod (not
known to be a Nautilus) is inferred to be a Mollusc with no shell.

We begin by verifying that the AL theory corresponding to Etherington’s seminormal
default theory produces the same result. The theory is given by

{ Tm(x): Tsb(x) A =Tc(x) Tec(x): T—sb(x)A-Tn(x) }
T sb(x) ’ T —sb(x)
¢ = {Tc(x)—Tm(x), Tn(x)—=Tc(x), Tn(x)—Tsb(x) }.

D =

Adding T n(x) to ® gives an extension containing T c(x), Tm(x) and T sb(x), while adding
T c(x) to ® gives an extension containing Tm(x) and T —sb(x). These extensions corre-
spond to those above.

Normalising the above defaults gives type (6.7) defaults

D

{ Tm(x): Tsb(x) A -Tc(x) Tc(x): T—sb(x)A-Tn(x) }
T sb(x) A =T c(x) ’ T —sb(x) A - Tn(x)

The extension for Tn(x) is the same. The extension for T c(x), however, contains the
additional weak assertion =Tn(x). This assertion records the fact that the inference
regarding the Cephalopod not being a Shell-bearer depends on it not being a Nautilus.
Notice that no other strong assertions are entailed by this weak assertion, so the known
information in the extension remains the same. Finally, it should be noted that this theory
responds correctly to new information. For example, if Tn(x) is subsequently added to
® U {Tc(x)} then both T —sb(x) and =T n(x) disappear from the extension.

Table 6.1 shows the normalised AL representation for all of Etherington’s (proposi-
tional) link types [Eth87, p56].

57

Table 6.1: A normalised representation of Etherington’s link types for inheritance networks

with exceptions.

Name Symbol Normalised AL representation
Strict IS-A A-— B TA—TBHB

Strict ISN'T-A A-+»-B TA—FB

Default IS-A A-—-B TA:TB/TB

Default ISN'T-A A-4+-B TA:FB/FB
TA:TBA-TCiA...AN-TC,

TBA-TCiA...AN-TC,
TA:FBA-TCiA...AN-TC,

FBA-TCiA...AN-TC,

Exceptions Ci-—=>

Example 3 The seminormal default theory

o= {1, D:{:—'Ty/\Tw : Tz ATy :ﬁT:cATz}

Tx ’ Ty ’ Tz
is incoherent. Normalising gives a coherent theory

= {1, D:{:—'Ty/\Tx : 2Tz ATy :—|Tx/\Tz}

“TyATae —-TzATy -TazATz
which has three extensions containing { Tz, =Ty}, {Ty, -Tz} and {Tz, ~Ta} respectively.

As this example shows, incoherence in a seminormal theory will often manifest itself
as multiple extensions in a normalised theory. This is not surprising since incoherence,
like multiple extensions, is caused by conflicts among defaults. In this example no pair of
assertions from {Ta, Ty, Tz} can be true at the same time, so it seems reasonable that
only one appears in each extension.

There is some doubt as to whether theories like that in Example 3 have practical
applications. In most examples from the literature the effect is similar to that shown in
Example 2. The extensions are equivalent for seminormal and normalised theories except
for the presence of weak assertions. However, from a proof-theoretic point view there is a

significant gain in using normalised defaults.

6.4 Nondisjunctive Theories

We now examine the class of theories which is free from unwanted side-effects due to weak
assertions. Intuitively these theories must be free of weak to strong implications that can
play a part in the deduction of new strong assertions. Formally, it is the class of theories
which entails a disjunction of atoms only if it also entails an atom which subsumes it. In
other words, it is the class of nondisjunctive theories defined in Section 3.3.

As we explained in Section 3.3, augmenting a nondisjunctive theory by negative literals
does not add to the positive literals entailed. This can be formalised by the following

58

theorem. Note that since we are dealing at the level of wils, the subsequent discussion
applies to both classical logic and AL.

Theorem 6.4.1 If ® is a nondisjunctive theory then for any positive literal o such that
® I/ «a there are no positive literals By, ..., 3, such that ® U {=0,...,~0,} is consistent
and ® U{=p1,...,~0,} F a.

Proof. Assume such an a and fq,...,05, exist. Then ® U {=3,...,-8,} F a so from
the Deduction Theorem @ F (=f81— ... —=(=fn-1— (=fp—a))...) or equivalently &
B1V ...V B_1V B,V a. Since ® is nondisjunctive and @ I/ a it follows that ® + 3; for
some i, 1 < 7 < n. But then ® U {-f,...,~8,} is inconsistent which contradicts the
choice of Bq,...,B,. a

6.4.1 Horn Theories

In general the conditions for nondisjunctiveness are difficult to ensure. There are, however,
classes for which nondisjunctiveness is guaranteed. One important class is Horn theories.
(A Horn theory is one which consists solely of Horn clauses; that is, disjunctions of literals
a1 V...V a, at most one of which is positive.)

Lemma 6.4.2 All Horn theories are nondisjunctive.

Proof. Let ® be a Horn theory. If ® is inconsistent then it entails all literals and is
clearly nondisjunctive. If ® is consistent then CWA(®) is consistent [Rei78, Thm 6] and
therefore @ is nondisjunctive [She84, Thm 6].]

The following weak converse to Lemma 6.4.2 also holds.

Lemma 6.4.3 Any nondisjunctive theory is equivalent to some Horn theory.

Proof. Let ® be a nondisjunctive theory. Convert ® to conjunctive normal form and
rewrite as a set of clauses. Replace each clause which contains a disjunction of positive
literals by a literal which entails it. In this way all non-Horn clauses can be removed and
the resulting theory is Horn. a

Since Horn theories are easier to deal with than general nondisjunctive theories and are
equivalent in the above sense, we will extend Theorem 6.4.1 to the desired result for Horn
theories.

We call a set D of defaults Horn if for all defaults (a: 5 /v) € D, v is a conjunction
of Horn clauses. We also make use of the following notation. If D is a set of defaults and

(®,¥) € Ep then
GD(V,D)={(a:8/v) € D| ac V¥ and -3 ¢ V}.

Furthermore, if ¢ is a Horn theory, then HEADS(®) is the set of positive literals appearing
in ®.

Theorem 6.4.4 Let D be a set of Horn defaults, ® be a consistent Horn theory and
(®,¥) € Ep. Then for any positive literal ¢, if ® UHEADS(CONSEQUENTS(GD(Y, D))t/ ¢
then ¢ ¢ V.

59

Proof. Assume ¢ U HEADS(CONSEQUENTS(GD(V,D))) I/ ¢ and ¢ € ¥. From [Rei80,
Thm 2.5], ¥ = Th(®UcONSEQUENTS(GD(W¥, D))) and therefore & U CONSEQUENTS(GD(VY,
D)) F ¢. Since D is Horn, CONSEQUENTS(GD(¥, D)) can be expressed as the union
of a set of headed Horn clauses Q = {wy,...,w,} and a set of headless Horn clauses
Y ={vy,...,v,},where PUQUT I ¢. Also, since ® is consistent ¥ is consistent [Rei80,
Cor 2.2], and therefore ® U Q U Y and its subsets are consistent.

For+=1,...,n each clause v; € T is a disjunction of negated literals v; = ~v; V...V
-y, for some k; > 0. But @UQU{wvq,...,05-1, 70p1 V... Vv, }is consistent so for some
J, PUQU{w1, ..., U1, Uy } s consistent. But —wy,; b vy, s0if QUQU{v1, ..., 051,05} F
¢ then U QU {v1,...,05-1, s} F ¢. But @UQ U {v1,...,0,-1,70p;} is consistent
and U QU {vy,...,v,_1}is Horn and therefore nondisjunctive, so from Theorem 6.4.1,
QUQU{vy,...,vp_1} F é. Repeating this argument n times shows that if eUQU T F ¢
then ® U Q F ¢.

For+=1,...,m each clause w; € Q can be written w; = w;j; V ~w;2 V...V —w;; where

each w;;, 0 < j < k, is a positive literal and & > 1. But for each ¢, wy F w;. Thus if
dUQ - ¢ then ®U{wi1,...,wm1}F ¢. Thatis, PUREADS(CONSEQUENTS(GD(V, D))) F ¢;
contradiction. a

Since ap(¥, D) C D, Theorem 6.4.4 ensures that only the positive literals appearing
in the consequents of D (along with ®) figure in the deduction of positive literals in
extensions. For Horn theories and defaults in AL this means that only strong assertions
in the consequents (along with ®) can lead to strong assertions in an extension.

Horn theories and defaults are sufficiently descriptive for many practical applications.
Any defaults in the form of (6.6) and (6.7) are Horn, as are the formulas and defaults
corresponding to Etherington’s link types (Table 6.1) for inheritance networks and the
other examples appearing in this chapter.

60

Chapter 7

Hierarchical Default Logic

In this chapter we address the remaining obstacle to determinism in default logic—the
branching or multiple extension problem. Our approach to the problem, called hierarchical
default logic (HDL) [Mac91al, is based on linearly ordering sets of defaults and subsumes
Brewka’s prioritized default logic [Bre89].

Many authors have proposed modified nonmonotonic formalisms which overcome the
branching problem by ordering formulas or interpretations. Examples include prioritized
circumscription [Lif85], graded default logic [FG90], hierarchic autoepistemic logic [Kon88a]
and chronological ignorance [Sho88a]. HDL is attractive because of its compact represen-
tation, and more importantly because it inherits (and improves upon) the proof procedures
for default logic described in the previous chapter. We show that these procedures are
substantially simplified if the defaults are restricted to free defaults.

7.1 Recursive Transfer Relations

We approach the branching problem by decomposing transfer relations into sequences of
subrelations with different parameter sets. The subrelations are then recursively applied

to the object theory.

Definition 7.1.1 Let R be a relation on ©(L) for some language L and Py, P;,... be
sets of parameters for R. A hierarchical parameter set is a well-founded linearly ordered
set P = ({P1,P,,...},=<). Assume without loss of generality that the parameter sets are
labelled so that P; < P; if and only if ¢« < j. Then the recursion of R over P, denoted
Rp, is defined by the composite relation

Rp=...0Rp,0oRp, 0o Rp,. (7.1)

In practice we will deal with finite hierarchical parameter sets P = ({ P, P2,..., P.}, <)
in which case the recursion relation is defined by Rp = Rp, 0...0 Rp,.

The decomposition of transfer relations reduces the problem of guaranteeing desirable
properties for the overall relation to that of ensuring the properties for each of its com-
ponents. The following lemma can be verified from the properties of relations and simple

set theory.

61

Lemma 7.1.2 Let P = ({P1, P»,...}, =) be a hierarchical parameter set for R. Then
1. if each Rp, is consistent then Rp is consistent,
2. if each Rp, is total then Rp is total,
3. if each Rp, is nonbranching then Rp is nonbranching,
4. if each Rp, is deterministic and monotonic then Rp is monotonic.
5. if each Rp, is expanding then Rp is expanding,
6. if each Rp, is closing then Rp is closing, and
7. if each Rp, s completing then Rp is completing.

The hierarchy obtained by separating and ordering parameter sets can be used to arbi-
trate between competing parameters without separating those which are compatible. This
hierarchical separation appears to be appropriate for many applications. An example is
given in Section 7.3.

Note that we have not specified any particular way in which the hierarchy should be
chosen, thus allowing the use of previously proposed strategies such as shortest paths or
inferential distance [THT87], specificity [Poo85], causal ordering [Sho88a] or any other
method which is appropriate to the language and application.

7.2 Hierarchical Augmentations and Extensions

Hierarchical default logic (HDL) is the recursive version of default logic, in which the
object theory is expanded by recursion of the augmentation or extension relations over a
linearly ordered set of default sets.

Definition 7.2.1 Tet Dy, Dy,... be default sets. A hierarchical default set is a well-
founded linearly ordered set D = ({Dy, Dy...},<X). The recursive augmentation relation
Ap is the recursion of A over D. The recursive extension relation Ep is the recursion of

F over D.

For finite hierarchical default sets the recursive extension relation Ep corresponds to
Brewka’s prioritized default logic extensions [Bre89].

Algorithm 6.2.1, which specifies how augmentations can be constructed using a classical
theorem prover, extends to hierarchical augmentations in a straightforward way. The
image theories of each augmentation relation become the object theories of its successor.
If the original object theory @ is finite and the hierarchical default set D is instance finite
(that is D is finite and all default sets in D are instance-finite) then all the images will
be finite and effectively computable for decidable first-order subclasses.

We now show that Theorem 6.1.3, which relates augmentations and extensions, extends
to recursive relations. That is, recursive extension is equivalent to the deductive closure
of recursive augmentation. The proof makes use of three intermediate results which adopt
the notation of Definition 3.4.1.

62

Lemma 7.2.2 A setl I satisfies (3.2b)~(3.2d) if and only if it satisfies (3.2¢), (3.2d) and
Th(®) CT. (7.2)

Proof. (=) Assume I' satisfies (3.2b)~(3.2d). Then from (3.2b), ® C I' and hence
Th(®) C Th(l'). But from (3.2c), Th(l') = I' and therefore Th(®) C I'.

(<) Assume I' satisfies (7.2), (3.2c) and (3.2d). Clearly I' also satisfies (3.2b)
since ® C Th(®).]

Corollary 7.2.3 T' is a minimal set satisfying (3.2b)—(3.2d) if and only if T is a minimal
set satisfying (7.2), (3.2¢) and (3.2d).

Theorem 7.2.4 Let Ep be defined according to Definition 3.4.1. Then (®,¥) € Ep if
and only if there exists © such that @ = Th(®) and (0,¥) € Ep. That is,

ED = ED o Th. (73)

Proof. (=) Assume (®,¥) € Ep and let © = Th(®). Then ¥ = I' where I is a minimal
set satisfying (3.2b)~(3.2d). From Corollary 7.2.3, I' is a minimal set satisfying (7.2),
(3.2¢) and (3.2d) and therefore (Th(®),¥) € Ep.

(<) Assume © = Th(®) and (O,¥) € Ep. Then ¥ = I' where I' is a minimal
set satisfying (7.2), (3.2¢) and (3.2d). From Corollary 7.2.3, I' is a minimal set satisfy-
ing (3.2b)—~(3.2d) and therefore (®,¥) € Ep. m]

The desired result follows from repeated application of Theorem 7.2.4.
Theorem 7.2.5 Let D = ({Dy, Dq,...}, <) be a hierarchical default set. Then
Ep=Tho Ap. (7.4)
Proof. By induction.
1. Ep, = Tho Ap, from Theorem 6.1.3.

2. For ¢ > 1 assume FEp, ,o0...0Fp, = ThoAp, ,o0...0Ap,. Then

Ep,okp, ,o0...0FEp, = FEp,oThoAp, ,o...0Ap,
= FEp,0Ap, ,0...0Ap, [subs. (7.3)]
= ThoAp,oAp, ,0...0Ap, [subs. (6.3)]

a

This result shows that the procedure for generating recursive augmentations provides
an extension membership test for recursive extensions. Once again we can generate the
augmentation, in this case recursive, and use a classical theorem prover to test extension
membership. Note that proof procedures which test extension membership directly from
a finite object theory cannot be applied recursively in the same way since the images of
each extension relation are infinite. Thus the extension membership test relies on the use
of augmentations.

The following lemmas extend two of Reiter’s results to recursive augmentations and
extensions.

63

Table 7.1: A summary of properties for default logic and HDL.

Nmon | Tot | Nbra | Con | Nclo | Exp | NComp

Default Logic, HDL
Ep, Ep

Ep, Ep (normal defaults)
Ap, Ap

Ap, Ap (normal defaults)
Ap (normal, singletons)

LK
<<
LK
LK
LK
LK

Vv

Key

Nmon Nonmonotonic Nclo Nonclosing
Tot Total Exp Expanding
Nbra Nonbranching NComp Noncompleting
Con Consistent

Lemma 7.2.6 All recursive augmentations and extensions preserve consistency.

Proof. Follows from [Rei80, Cor 2.2], Theorem 6.1.3 and Lemma 7.1.2.]

Lemma 7.2.7 If a hierarchical default set D is normal (that is each D in D contains
only normal defaults) then Ap and Ep are total relations on Ls.

Proof. Follows from [Rei80, Thm 3.1], Theorem 6.1.3 and Lemma 7.1.2. a

Other properties of augmentations and extensions extend to their recursive counterparts
in a similar manner according to Lemma 7.1.2. A summary of the various properties is
shown in Table 7.1.

The final requirement for determinism, that the relations are nonbranching, can be
trivially achieved by restricting each set of defaults in D to a single default; in effect
imposing a total order on the defaults. In many applications however a hierarchical struc-
ture is more appropriate and other methods of preventing branching at each step in the
recursion need to be sought.

7.3 Example: The Yale Shooting Problem

As a solution to the frame problem in the situation calculus (see Chapter 2) McCarthy
[McC86] proposed including a general frame axiom schema which can be written in the
form

t(f,s) A —ab(f,e,s)—t(f, result(e,s))

and circumscribing over —ab, thus minimising the changes to facts. This schema conveys
the information that any fact f persists over successive states unless the event e terminates
it (the “abnormal” case).

64

Hanks and McDermott [HM86] show by means of an example, commonly called the
Yale shooting problem, that this proposal can lead to the occurrence of unintuitive (or
anomalous) inferences. The problem is not confined to circumscription but applies gener-
ally to branching transfer relations. We illustrate the problem using default logic.

The idea behind the shooting problem is that an infallible sharpshooter lies in wait for
a victim. Initially the sharpshooter’s gun is loaded and the victim is alive. After some
delay the sharpshooter fires the gun. The question is whether or not the victim survives.
The task of the frame axioms is to preserve the facts stating that the gun is loaded and
the victim is alive until the gun is fired.

Hanks and McDermott’s argument can be illustrated by the following theory:

¢ = {t(loaded,sl),
t(alive, s2),
t(loaded,s1) A ~ab(loaded,wait,s1)—t(loaded, s2),
t(alive,s2) A —ab(alive, shoot,s2)—t(alive,s3),
t(loaded,s2)—ab(alive, shoot, s2),
t(loaded,s2)—t(dead,s3)}

In this theory s2 represents the state result(wait,s1) and s3 represents the state
result(shoot,s2). The third and fourth sentences of ® are instances of the frame ax-
iom. The fifth sentence states that a loaded gun causes an exception to the second frame
axiom—that is, the victim may not remain alive if the loaded gun is fired.

In order to minimise abnormality the following defaults are used:

D = {:-ab(loaded,wait,s1)/ —ab(loaded,wait,s1),
: mab(alive, shoot,s2) / —ab(alive, shoot,s2)}.

The theory has two augmentations. The intuitively correct augmentation includes the sen-
tence —ab(loaded,wait,s1) and entails t(dead, s3); that is, the victim dies as expected.
The anomalous augmentation includes —ab(alive, shoot,s2) and entails t(alive,s3);
that is, the gun becomes mysteriously unloaded and the victim survives.

This problem can be avoided using HDL by choosing the default hierarchy so that
normality assumptions are made in chronological (or causal) order. In other words, we
make the sequence of default sets correspond to the sequence of states. In this case the
appropriate hierarchy is given by D = ({D1, D3}, <), D1 < Dy where

Dy = {:-ab(loaded,wait,s1)/ -ab(loaded,wait,s1)}, and
D, = {:-ab(alive,shoot,s2)/ —ab(alive,shoot,s2)}.

It is easily verified that ® has a single augmentation under Ap which provides the intu-
itively correct solution.

Of course, this scheme is not on its own sufficient to guarantee a unique solution
when there is more than one normality assumption for each state. However it reduces
the problem to that of ensuring a unique augmentation based on the assumptions in each
state. One way to achieve this is to impose further restrictions on allowable sentences in
the style of Shoham’s causal theories [Sho88a]. We adopt this approach in the following
chapter to give a proof theory for Shoham’s chronological ignorance framework.

65

7.4 Free Default Theories

Reiter argues that most realistic problems can be tackled using only normal defaults
[Rei80]. In problems which require seminormal defaults (see for example [Eth87, RC81])
the technique described in the previous chapter can be used to normalise the defaults.
In fact many practical reasoning tasks can be handled using only prerequisite free nor-
mal defaults, or free defaults. This is evidenced by the fact that many nonmonotonic
reasoning formalisms, such as the closed world assumption [Rei78] and chronological ig-
norance [Sho88a], have no mechanism for incorporating prerequisites. The normality as-
sumptions corresponding to the frame axioms in the previous section are typical examples.
The application of the assumptions depends only on their consistency and not on any other
preconditions. A transformation from normal to free defaults is proposed in [BQQS83].

Since free defaults are a subclass of normal defaults they adopt the desirable properties
of normal defaults, such as totality and semimonotonicity. However free defaults permit a
more economical proof theory. In the following discussion we abbreviate free defaults by
writing their consequents only. Thus a free default v is shorthand for :vy /~.

The definition of augmentations (Def. 6.1.2) simplifies for free defaults as follows.

Lemma 7.4.1 Let F be a set of (closed) free defaults. Then (®,0) € Ap if and only if
O = dU{y|y€F and O —v}. (7.5)

Proof. For free defaults the r.h.s. of conditions (6.2a) and (6.2b) are identical. Therefore
any set satisfying (6.2a) cannot have a strict subset satisfying (6.2b) and must be an
augmentation. Condition (6.2a) reduces to (7.5). o

Algorithm 6.2 for generating defaults simplifies to two steps accordingly.
Notice that the right hand side of (7.5) is simply a consistency requirement; that is,
for all ¥ € F either v € ® or © U 7 is inconsistent.

Corollary 7.4.2 Let F be a set of free defaults and ® be consistent. Then © is an
augmentation of ® if and only if © is a mazimal (with respect to set inclusion) consistent
subset of ® U F containing 9.

In particular, if F'is a singleton then the augmentation relation is described by the function

duU if U is consistent,
Ap(®) = { {} {}

P otherwise.

Similarly, the augmentation relation for hierarchical default sets containing only singletons

reduces to the following.

Corollary 7.4.3 Let F = ({{71},{72},-.-}, =) be a (countably infinite) hierarchical free
default set where {y1} < {72} <X ---. Then Ap(®) = O, where

Op=9®
and fort=1,2,...
0. — { 0,1 U{v} if ©;_1 U{v;} is consistent,

0,1 otherwise.

66

Corollary 7.4.3 describes a simple construction for augmentations in which formulas are
sequentially either added to the knowledge base or rejected based on a consistency test.
The cost of the algorithm (neglecting the consistency test) grows linearly with the number
of defaults. The overall complexity is therefore dominated by the consistency test rather
than the default reasoning aspect. The following theorem shows that this construction

can be used to generate the augmentations for finite free default sets.

Theorem 7.4.4 Let F' = {v1,...,7.} be a finite free default set. Then (®,0) € Ap if
and only if © = Ap(®) where FF = ({{71},...,{vn}}, X) for some linear order <.

Proof. If @ is inconsistent the result is trivial. Assume @ is consistent.

(=) Choose < so that for any v;,7; € F, if 7, € Ap(®) and 7; ¢ Ap(®) then
{7} =% {7;}. The construction of Ap(®) given in Corollary 7.4.3 will add only those
defaults which appear in Ap(®) since Ap(®) is maximally consistent in the sense of
Corollary 7.4.2.

(<) Let © = Ap(®) for some <. For each default v € F,

1. if v € © then O I/ = since O is consistent by Lemma 7.2.6, and

2. if v € O then from Corollary 7.4.3, ©; F =7 for some 7, 0 < ¢ < n — 1, and since
0, C0O,0F .

Thus © = ®U {7y |~ € F and O I/ =7} and hence ($,0) € Ar by Lemma 7.4.1. 0

In the worst case we must try each ordering < in order to generate all the images of ®
under Ap. However if we require only a single augmentation then a single ordering can be
chosen. In particular, if it can be guaranteed that A is nonbranching then any ordering
can be used in the construction.

Corollary 7.4.5 Let F and F be defined according to Theorem 7.4.4. If Ap is non-
branching then Ap(®) = Ap(®) for any <.

Proof. From Theorem 7.4.4, (&, Ap(®)) € A for any order <. Since Ap is nonbranch-
illg, AF((I)) = AF(Q) O

The construction in Corollary 7.4.3 can therefore be used for hierarchical default sets con-
taining nonsingletons providing each application of defaults leads to a single augmentation.
We simply split each default set up into singletons, imposing an arbitrary ordering between
defaults from the same set. In the shooting problem, for example, if it can be guaranteed
that the normality assumptions for each state are compatible, then Corollary 7.4.3 can be

used to compute the augmentations.

7.4.1 Further Computational Short-cuts

Corollary 7.4.3 provides a procedure for generating the augmentations of hierarchical free
default theories with unique augmentations and hence determining whether any formula is
a member of the corresponding extensions. However it is not always necessary to compute
the entire augmentation in order to prove extension membership. The following lemma
shows that if a formula can be deduced from a subset of the augmentation then it is

included in the extension. The results adopt the notation of Corollary 7.4.3.

67

Lemma 7.4.6 For any wff a, if ©; F a for some i then o € Er(®).

Lemma 7.4.6 shows that Corollary 7.4.3 provides a semidecidable extension membership
test for countably infinite default sets in decidable languages. If a formula is contained
in the extension then eventually the construction will generate a set from which it can be
deduced.

As with all nonmonotonic reasoning systems, if new facts are added to the theory (due
to say, further observations) the extension may change. In this case it is undesirable to
have to recompute the entire augmentation. The following lemma allows a backtracking
scheme.

Lemma 7.4.7 For any set of wffs ®', if O, U’ is consistent for some k, 0 < k < n, then
Q! = Ap(® U P') can be constructed as follows.

For0<:<k
@;-:G)iU@/
and fork+1<i<mn

o — 0!, U{vi} if ©'_; U{v;} is consistent,
‘ Ly otherwise.

Thus, when we add new information to the object theory, we only need to recalculate the
augmentation from the point where the inconsistency manifests itself. Of course finding
this point may in itself be expensive, but the expense can be substantially reduced using
simple heuristics. For example, it may be the case that most new observations do not
contradict the current extension. In this case we have £k = n and the following corollary

applies.

Corollary 7.4.8 Ifa € Ep(®) and ®' is a set of wffs such that Ap(®)U®’ is consistent
then o € Ep(® U @').

This result shows that the formalism is monotonic with regard to the addition of consistent
formulas. For example if we wish to add an observation § where Ap(®) I/ =3 then the
augmentation becomes Ap(®)U {4} and all formulas previously in the extension remain.

7.5 Comparison with AEL and HAEL

Konolige [Kon88b] has established an equivalence between default theory extensions and
strongly grounded autoepistemic logic (AEL) extensions. The equivalence result can be
expressed in terms of transfer relations as follows.

Definition 7.5.1 Let D be a set of defaults. Then the autoepistemic transformation on

©(Lg), denoted AEp, is defined by
ABp:® — ®U{(OaA-0-F)—7 | (a: 8 /7)€ D). (7.6)

The kernel of an AEL theory ®, denoted KRN(®), is the set of ordinary sentences ap-
pearing in ®.

68

Theorem 7.5.2 [Kon88b, Thm 5.5] Let Egg denote the strongly grounded extension rela-
tion (see Section 3.5). Then

Ep = KRNo Eg,o0AEp (7.7)

The AEL relation corresponding to the recursive extension relation is therefore defined as

follows.
Corollary 7.5.3 Let D be a hierarchical default set. Then
Ep=...0KRNo Eg,o0AEp,o KRNo Eg 0 AEp, (7.8)

The resulting extensions differ markedly from the extensions of Konolige’s hierarchic au-
toepistemic theories [Kon88a]. In the latter case the problems of partial and branching
relations associated with autoepistemic stable sets (see Section 3.5) are avoided by apply-
ing belief operators only to subtheories lower in the hierarchy. This alters the nature of
the self-belief operator and sacrifices the consistency preservation property.

69

Chapter 8

Chronological Augmentation

In this chapter we provide a proof theory for chronological ignorance based on hierarchical
default logic. We verify that, as expected, the HDL formalism is deterministic when
restricted to causal theories and is sound and complete with respect to causal CI. We then
consider the assumptions which are implicit in causal CI and argue that more intuitive
representations can be provided using explicit assumptions in HDL. In particular we show
that adopting an explicit representation can remove the need for an epistemic logic. Finally
we discuss the qualification problem in relation to chronological ignorance.

8.1 A Proof Theory for Chronological Ignorance

We consider a proof theory for chronological ignorance to be a syntactic method (based
on classical proof theory) for transforming object theories ® into image theories Kyap,(®)
(or Th o K7Ar(®)) as defined semantically in Chapter 5. The proof theory is sound and
complete if it specifies all such image theories for ® and no others.

Intuitively the required image theories can be found by stepping forward through time
looking for base sentences whose truth value is not uniquely constrained, and adding
sentences which constrain their truth values to u. These base sentences can be found
(using consistency tests) without reference to the semantics. Eventually this process will
constrain the possible truth valuations to a single one (not necessarily unique for noncausal
theories since there may be a choice of truth values between base sentences with the same
ltp). We conjecture that this will be a cmi truth valuation for arbitrary object theories,
although we only prove it to be the case for causal theories.

This method for generating the formulas entailed by cmi truth valuations can be for-
malised using hierarchical default logic. In order to force the values of unconstrained base
sentences to the value u we create a hierarchical free default set which contains the as-
sumption Uz for every atomic base sentence z. These assumptions are applied in order of
increasing time by organising the assumptions into sets with the same lip, and arranging
the sets in chronological order. We call this approach chronological augmentation (CA).

The hierarchical default set must be well-founded and therefore must have a least
element. We allocate to this set all the assumptions with lip prior to some time point.
Since the assumptions in this set will not be applied in chronological order, this time point

70

must be chosen so that the set does not contain any conflicting defaults. This is achieved
by choosing a sufficiently early time point. For arbitrary finite theories we can choose
any time point preceding the earliest ltp appearing in the theory. The truth-values for
all base formulas with lt{p prior to that point will be unconstrained and therefore all of
the assumptions can be consistently applied. For causal theories we can choose any time
point which precedes the lip of all boundary conditions in the theory. Such a time point
is guaranteed to exist due to the first condition of Definition 5.3.2.

The formal definition of the required hierarchical default set for causal theories follows.
Recall that Uz is an abbreviation for =Tz A = T—z.

Definition 8.1.1 Tet ® be a causal theory and %y be a time point such that for all
boundary conditions g € ®, to < lp(F). A set of u-defaults for ® is a hierarchical free
default set U = ({Uyg, Uy, Us, ...}, =) where

Up = {Uz | 2 is an atomic base sentence and lip(z) < {p}
and for all ¢ > 0,7 € N,

U; = {Ux | x is an atomic base sentence and ltp(z) = tg + ¢},
and U; X Uy if and ounly if j < k.

The following theorem verifies that the augmentation of a causal theory over its u-

defaults is nonbranching and precisely matches its cmi truth valuation.

Theorem 8.1.2 Let ® be a causal theory with cmi truth valuation ocm; and U be a set
of u-defaults for ®. Let Ay be the recursive augmentation over U on ©(TAL). Then

1. Ay is deterministic,
2. Oemi E Au(®), and
3. Ocmi is the only truth valuation satisfying Ay (®).

Proof. Lemma 7.2.6 shows that Ay preserves consistency, and Lemma 7.2.7 shows that
Ay is a total relation since U contains only normal defaults.

To prove items 1 and 2 it remains to show that Ay is nonbranching and ocmi = Ay (®).
The proof is by induction on increasing time (indicated by the subscript 7) and follows the
construction and notation of Theorem 5.4.1. Note that in (5.2a) and (5.2b), if ¢ |= a for
some o € Y;_q then o |= a for all 0 € ¥;_; since lip(a) < t; and all o € ¥;_; agree on

truth assignments to formulas whose ltp < ;.

1. (boundary step) For all 2 such that Uz € Uy, 2%mi = u and therefore o¢m; = Us.
From Theorem 5.4.1, ocmi = ® and hence oemi = O¢ where Qg = ® U Uy. Qg is
therefore a maximally consistent subset of ® U Uy and from Corollary 7.4.2, Ay, is
nonbranching and Ay, (®) = .

Finally, since Uz € ©¢ for each atomic base sentence x whose lip < {p, the truth

valuations which satisfy ©¢ assign u to these sentences and are therefore a subset of
Yo.

71

2. (induction step) For i > 1 assume Agy,,...,Ay,_, are nonbranching, oemi F ;-1
and {o| 0 = 0;-1} C ¥;—1 where ©;,_1 = Ay,_, o...0 Ay, (®).

Consider all atomic base sentences x such that Ux € U;.

(a) If 29mi = ¢ then from (5.2a), a—Tz € ® and for all 0 € ¥;_;, 0 |= a. But by
assumption o | ©;_1 only if ¢ € ¥,y and hence ©,_; = a. Thus 0,1 - a,
0O;,_1 F Tz, and ©;_1 U {Ux} is inconsistent.

(b) If 29%mi = f then from (5.2b), a—=T—z € ® and for all 0 € ¥;_4, 0 |= a. But
by assumption o |= ©;_1 only if 0 € ¥;_; and hence ©;,_; |= a. Thus 0;_1 «,
O;_1 F T—2, and ©;_1 U {Uz} is inconsistent.

Let {1, 22,...} be the remaining atomic base sentences not satisfying (a) or (b), that
is those assigned u by oemi. Then oemi = {Uz1,Uzg,...} and since oemi = Oi-1,
Oemi = ©; where ©; = O;_; U {Uzq,Uxz,,...}. 0; is therefore consistent. From (a)
and (b), ©; is a unique maximally consistent subset of ©;_; U U; containing ©;_; and
hence from Corollary 7.4.2, Ay, is nonbranching and Ay, (0;-1) = Ay,o...0Ay,(®) =
0;.

Finally, we have ¢ |= ©;_1 only if 0 € ¥;_;. But for each atomic base sentence
x whose ltp = t;, if 2%mi = { then ©; F Tz, if z°m = f then ©; - T—2z and
if z%mi = 4 then Ux € ©;. Therefore the truth valuations which satisfy ©; are a
subset of those satisfying ©;_; which also satisfy (5.2a)—(5.2¢), and are thus a subset
of ¥;.

To prove item 3 assume o = Ay (®) but 0 # oemi. For any atomic base sentence z exactly
one of the following holds; zZ_; = ¢ in which case Ay(®) F Tz from 2(a) and 2z = t;
xZ . = f in which case Ay(®)F T—=z from 2(b) and 27 = f; or 27 ; = w in which case
Uz € Ay(®) and 2° = u. Since ¢ and o¢yi agree on assignments to all atomic base
sentences they must agree on assignments to all sentences according to Definition 4.3.1—

contradiction. O

Corollary 8.1.3 Let ® be a causal theory with u-defaults U. Then for any formula «a,
a € Ey(®) if and only if o € Th(KTar(®)). That is,

EU =Tho]&'YTAL (8.1)

where Ey is restricted to causal theories.!

Proof. For any formula a, if 0cmi = o then from Theorem 8.1.2, Ay (®) = a and hence
Ay(®)F a. Similarly, if Ay(®)F « then Ay(®) |= a and from Theorem 8.1.2, oemi = a.
Thus oemi E o iff @ € Th(Ay(®)). From Definition 5.4.2, Te € Kyap(®) iff 2 is a
base literal and ocm; = Tx. Therefore, for any formula a, ocmi = @ iff K1ap(®) F a, or
ac Th(I(TAL(@)). a

Note that Krar(®) is simply the set of formulas Tz in Ey(®) where z is a base literal.

!Strictly speaking we should restrict the domain by using the relation Ey N causal(#(TAL)) x #(TAL).

72

Our (syntactic) HDL formalism with the appropriate defaults is therefore sound and
complete with respect to the (semantic) CI formalism described in Chapter 5.

An immediate advantage of chronological augmentation over CI is that the restriction
to causal theories can be relaxed somewhat. Since augmentation is concerned only with
deductions from an object theory (and not the syntactic form of the theory) we require
only that the object theory is tautologically equivalent to a causal theory. We can therefore
build up various alternative sentence constructions. For example, if

o — ﬂl

a — [

are causal sentences then the sentence

a— B AByNA---

can also be used in causal theories. Similarly, if

o — ﬁ

042—>/3

are causal sentences then the sentence
1 V [85) Voeeo — ﬂ

can be used in causal theories. While our subsequent discussion continues to refer to causal
theories in the strict sense it should be remembered that in practice we can substitute any

equivalent theory.

8.2 Finite Causal Theories

If we restrict our attention to a part of the language TAL containing only a finite number
of atomic base sentences then the set of u-defaults is finite and the augmentation Ay can
be effectively computed. This can be achieved by considering only that part of TAL which
consists of sentences constructed from the atomic base sentences appearing in the (finite)
object theory. Since the truth values of all the atomic base sentences which do not appear
in the object theory are unconstrained, these base sentences are all assigned the value u
by the cmi truth valuation for that theory. The following theorem verifies that with this
restriction we only need to consider the u-defaults containing the atomic base sentences

in the object theory.

Theorem 8.2.1 Let ® be a causal theory with u-defaults U. Let U, be the hierarchical
default set obtained from U by removing all defaults Ux such that x does not appear in .
Then for any base sentence z appearing in ®, Tz € Ey(®) (respectively Fz € Ey(®),
Uz € Ey(®)) if and only if Tz € Ey,(®) (respectively Fz € Ey,(®), Uz € Ey,(®)).

73

Proof. The proof is by induction on increasing time (indicated by the subscript ¢) fol-
lowing the notation of Theorem 5.4.1. We show that for any atomic base sentence x
appearing in ® we can deduce Tz, Fz or Uz from Ay, (®) according to whether oy
assigns « the value ¢, f or u respectively. Thus Ay, (®) agrees with Ay (®) on all base
sentences appearing in ® and their tautological consequences.

1. (boundary step) Ay, = ® U Uy is consistent and U,g C Up. Therefore ® U Uy is
consistent and Ag,, = ® U Uyg. Thus for all atomic base sentences x appearing in
® whose ltp < ty, Ay, (®)F Uz. Also from Theorem 5.4.1, x%mi = qy,.

2. (induction step) For i > 1, assume for all atomic base sentences = appearing in ¢

whose ltp < 1;,

Ta xmi =1,
Ay, (®)F < Fa g%mi = f

Uz 2%mi = q.

For any formula a—Tz whose lip = t;, a is of the form
m n
/\ Twr A /\ Py; m,n € N
k=1 j=1

where wy, y; (k,j > 0) are base literals such that

(a) Up(wy) < t; for k=1,...,m, and
(b) Uply;) <t forj=1,...,n.

Therefore a%emi = ¢ if and only if both a7 =1 for k = 1,...,m and y;™ # f
for j = 1,...,n. But by assumption 2™ = ¢ if and only if Ay,(®) F Tuy.
Also yie™ = t (respectively y? = u) if and only if Ay,(®) - Ty; (respectively

Ay, (®)F Uy;) and hence Ay, (®) F Py;. Thus a%mi = {if and only if Ay, (®)F a.

Now for any atomic base sentence z appearing in ® whose ltp = {;:

(a) If 29%mi = ¢ then from Theorem 5.4.1 there exists a—Taz € ® such that lip(a) <
t; and a%mi = ¢. Therefore Ay, (®)F a and Ay, (®) - Taz.

(b) If 2%mi = f then from Theorem 5.4.1 there exists a—Fz € ® such that lip(a) <
t; and ami = . Therefore Ay, (®)F a and Ay, (®) - Fa.

(c¢) If %mi = y then either there is no sentence with consequent Tz or Fz in @, or
there is a sentence a—Tz or a—Fz in ® but a’mi # ¢ and hence Ay, (®) ¥/
a. In either case Ay, (®) I/ Tz and Ay, (®) I/ Fa hence {Uz} U Ay, (@) is
consistent. Since Uz € U], Uz € Ay,(®) and hence Ay, (®)F Uz. 0

Any base sentences not assigned the values ¢ or f by augmentation over U, are assigned
the value u by augmentation over U.

Hierarchical augmentation over U, performs essentially the same function as Algo-
rithm 5.4.3. In the case of Ay,, however, adherence to the constraints imposed by the

74

logical connectives is handled automatically by the deductive machinery rather than done
“by hand” using labelling rules. While this is less efficient, it is more appealing from a
theoretical point of view since it is based on traditional deductive methods and can be
implemented using standard theorem provers. Furthermore, as we show later in this chap-
ter, the HDL formalism is more flexible since it allows us to use different types of defaults
without changing the formalism.

The idea behind Theorem 8.2.1 can be taken a step further. If we are only concerned
with finding the base sentences which are known in the augmented theory then we only
need to include the u-defaults corresponding to the weak assertions in the causal theory.
This can be formalised as follows.

Corollary 8.2.2 Let ® be a causal theory with u-defaults U. Let U, be the hierarchical
default set obtained from U by removing all defaults Uz such that neither Px nor P—z
appears in the antecedent of a sentence in ®. Then for any base sentence z, Tz € Ey(®)
if and only if Tz € Ey,(®).

Proof. Any strong assertion in Ey must be the consequent of a causal sentence whose
antecedent can be deduced from the theory and the u-defaults (see the proof of Theo-
rem 8.1.2). Of the conjuncts in the antecedent, however, only the weak assertions can be
deduced from the u-defaults. Therefore the only u-defaults which are needed for the de-
duction of strong assertions are those which entail the weak assertions in the antecedents
of the causal sentences. a

Again any base sentences not assigned the values ¢ or f by augmentation over U, must
be assigned the value u by augmentation over U.

Theorem 8.2.1 and Corollary 8.2.2 have important practical consequences since they
allow significant reductions in the number of defaults which must be applied in the aug-
mentations. In the sequel we will assume that we are dealing with finite sets of u-defaults,
and therefore the augmentations over the u-defaults are effectively computable.

8.3 Implicit Assumptions in Chronological Ignorance

Causal theories have a number of technically desirable properties. They are always consis-
tent and have a unique cmi truth valuation (or in the case of Shoham’s original formulation,
there is a unique set of known sentences entailed by all cmi models). We now examine
more closely the motivation for causal theories and the knowledge they are intended to
represent.

8.3.1 Causal Rules and the Ostrich Principle

Shoham [Sho88a, Sec 5.1] reasons that causal sentences obey the ostrich principle, or
what-you-don’t-know-won’t-hurt-you. This is illustrated by the following rule.

OTRUE(t,t,loaded) A OTRUE(t,t,fire)
AOTRUE(t, t,air)

AOTRUE(t, t, firingpin)

75

ACOTRUE(t, t,no marshmallow bullets) (8.2)
A ... A <other mundane conditions

—0OTRUE(t 4+ 1,t + 1,noise) forallt
Shoham [Sho88a, p. 302] states that

... we need not say anything about there being air [that is OTRUE(t, t,air)] to
be able to infer that there will be a noise after the firing. .. On the other hand, if
there is no air we had better state that fact explicitly [that is O-TRUE(t,t, air)]
in the initial conditions, otherwise we will erroneously conclude that there will
be a loud noise.

In minimising knowledge, however, we are saying something about air. In fact it could be
argued that we are saying something which contradicts the assumption we really wish to
make. If the causal theory itself entails nothing about air, then the minimal models entail
the sentence

—OTRUE(t,t,air) A -O-TRUE(t, t,air).

Thus we are saying that it is not known that there is air and not known that there is no
air. On the other hand, invoking rule (8.2) makes the implicit assumption that it is known
that there is air, since it allows us to deduce that it is known that there is a noise. Note
that the implicit assumption here is OTRUE(t,t,air) and not TRUE(t,t,air). The latter
assertion is not strong enough to support an inference such as OTRUE(t + 1,t 4+ 1,noise).

The discrepancy between what is actually being stated and what is implied can be
seen more clearly by noting that the implication

OTRUE(t, t,air)—OTRUE(t 4+ 1,t + 1,noise) (8.3)

is equivalent to the conjunction of the following sentences:
OTRUE(t,t,air) — OTRUE(t+ 1,t+ 1,noise) (8.4)
-OTRUE(t,t,air) A -O-TRUE(t,t,air) — OTRUE(t+ 1,t+ 1,noise) (8.5)

In the absence of the information that either OTRUE(t, t, air) is true or O-TRUE(t, t, air)
is true, chronological minimisation forces both OTRUE(t, t,air) and O-TRUE(t,t, air) to
be false and the second sentence is invoked. The second sentence, however, has neutral an-
tecedents and clearly does not represent causality. It makes an implicit assumption that the
causality represented by the first sentence is applicable. We are forcing OTRUE(t,t, air)
to be false and acting as though it is true.

8.3.2 Causal Rules and “Real” Physics

The second explanation provided by Shoham [Sho88a, Sec. 5.2] is that causal rules relate
to rules of lawful change. Shoham [Sho88a, p. 303] states that

76

Rules of lawful change are believed to be universally true, and therefore one
could expect them to hold in every possible world. Correspondingly, the causal
rule under discussion might have been expected to be:

O(TRUE(t, t,loaded) A TRUE(t,t,fire)A
TRUE(t, t,air) A
TRUE(t, t,firingpin) A
TRUE(t, t,no marshmallow bullets) A (8.6)
...other mundane conditions

—TRUE(t + 1,t 4 1,noise)) forall t

This rule does not suit the CI minimisation strategy since it requires conditions such
as OTRUE(t,t,air) to be stated explicitly. Shoham makes no objections to this rule,
however, but rather justifies his own alternative by stating that ‘...the trick is to make
sure that a world which violates true physics is not the “real world.”” This is to be achieved
by introducing the following “soundness conditions”.

Definition 8.3.1 [Sho88a, Def 5.1] The soundness conditions of a causal theory ¥ are
the set of sentences OTRUE(?1,t2,p)—TRUE({1,%2,p) such that OTRUE(%y, 2, p) appears on
the left-hand side of some sentence in W.

It is not clear, however, what the utility of these sentences is since the consequents are
never used. The “unique model theorem” [Sho88a, Thm 4.4] and corresponding algorithm
[Sho88a, Thm 4.8] only identify known base sentences (those specified by the relation
K7k). The truth values of other base sentences are, in general, left undefined by chrono-
logical minimisation. In addition, as we mentioned above, the base sentences are not
strong enough to invoke other causal rules. For example, the consequent of the soundness
condition

OTRUE(t, t,air)—=TRUE(t, t,air)

is not sufficient to invoke the causality in sentence (8.4). Note that we cannot make the
assumption explicit by using stronger soundness conditions of the form $a—Oa since
this is equivalent to O-a V O« (thus reintroducing the law of excluded middle at the
“epistemic” level) and chronological minimisation has no means of arbitrating between
these alternatives.

One effect that the soundness conditions do have is to force an extra restriction on
causal theories, namely that $a and $-a do not both appear on the left-hand side of
causal sentences. This also reflects the intuitive notion that we cannot assume that an
atomic sentence is known to be true and known to be false.

8.4 Alternative Approaches

The discrepancy between the unknown antecedents and their known consequents is nec-
essary in CI because knowledge is always minimised. All unconstrained base formulas are

77

forced to take the “unknown” value and therefore implications made by default must be
based on unknown information.

Hierarchical default logic provides a more flexible way of making assumptions and
avoids this bias towards knowledge minimisation. The explicit assumptions in HDL can
be either weak or strong assertions, and can be used to minimise or maximise selective
knowledge. To illustrate this we describe four alternative approaches to causal reasoning
using chronological augmentation.

8.4.1 Method I — Weak Assumptions
The asserted logic form of implication (8.3) is given by the sentence
Pair(t{) — Tnoise(t+ 1) (8.7)
which is equivalent to the conjunction of the sentences:
Tair(t) — Tnoise(t+ 1) (8.8a)
Uair(t) — Tnoise(t+ 1) (8.8b)

In writing (8.7) it seems natural to expect that this sentence, rather than sentence (8.8b),
will be invoked by default. This requires constraining the truth value of air(t¢) to ¢ or
u rather than forcing it to u, and therefore cannot be achieved in CI. While it may be
possible to modify the preference criteria for CI to achieve this, we would also have to
modify the associated algorithms for generating the known sentences.

In HDL, on the other hand, the intended assumption can be made simply by replacing
the default Uair(¢) by the default P air(¢). This default no longer forces a unique cmi
truth valuation since it allows air(¢) to be assigned the values ¢ or u. However it still
leads to a unique augmentation: since P air(?) is consistent with and less constraining
than Uair() it cannot introduce a contradiction.

Along with representing the intended information more accurately, this scheme re-
sponds to new information in the way that we would expect. If in CI we learn that an
assertion Tz is true after applying the assumption Uz, the extension must be recalcu-
lated to take account of the contradiction between Ux and Tx. In the proposed system,
however, Pz and its consequences will still hold when Tz is added to the theory. This
is due to the consistency of {Pz, Tz} and the monotonicity with respect to consistent
information of augmentation over free defaults (see Corollary 7.4.8). While this change
will not alter what is known in the image set, it may have computational advantages in
avoiding backtracking (see Section 7.4.1). In terms of truth valuations, adding T to a
theory containing only Pz excludes half of the applicable truth valuations (those in which
x is assigned the value u), whereas adding Tz to a theory containing Uz forces a change
to a new truth valuation.

For convenience we define the p-defaults of a causal theory as follows.

Definition 8.4.1 Let ® be a causal theory and fy be a time point such that for all
boundary conditions 8 € @, {y < Up(F). A set of p-defaults for ® is a hierarchical free
default set P = ({Fy, P1, Ps,...}, <) where

Py = {Uz | is an atomic base sentence and lip(z) < {o},

78

for all i > 0, ¢ € N,

P; = {Paz|z is a base literal, ltp(z) = to + ¢ and Pz appears in ¢} U
{Uz | z is an atomic base sentence, ltp(z) = to + ¢ and

neither P2 nor P—a appears in ®},

and P; < P if and only if j < k.

If P is a set of p-defaults for ® then we denote by P, the hierarchical default set
obtained by removing from P all defaults Uz such that 2 does not appear in ®. Similarly,
we denote by P, the set obtained by removing from P all defaults Uz such that neither
Pz nor P—x appears in ®. Thus P, contains only atomic sentences Py appearing in ®.

Theorem 8.2.1 and Corollary 8.2.2 can be modified in a straightforward way to show
that the same known information is entailed by Ap, Ap, and Ap,. Clearly this is also
the known information entailed by Ay, Ay, and Ag,.

8.4.2 Method IT — Strong Assumptions

We have shown that defaults can be used to minimise or constrain knowledge. We now
examine their use in maximising selective knowledge. This is achieved simply by replacing
defaults of the form Pz by defaults of the form Txz. The set obtained by making this
substitution, for all defaults corresponding to weak antecedents, is called the {-defaults of
a causal theory.

Definition 8.4.2 Let ® be a causal theory with p-defaults P. A set of t-defaults for ® is
a hierarchical free default set T = ({To,T1,T2,...}, =) obtained from P by replacing each
default of the form Px by the default Tx. The subsets T, and T, are oblained similarly.

Note that in order to ensure that the augmentation over t-defaults is nonbranching, the
third condition of Definition 5.3.2 (that Pz and P—x do not both appear on the left-hand
side of sentences in ®) is necessary. Without this restriction, contradictory assumptions
Tz and T—z might both appear in a default set.

In the following subsections we consider what can be gained by using strong assump-
tions. Before doing this, however, we consider what (if anything) is lost.

The changes in the behaviour of the system due to using t-defaults can be viewed in
terms of the applicability of the defaults and the effects of the defaults. We look first at
the issue of applicability. Since Tz |= Pz, the assumption Pz is applicable wherever Tx
is. The converse is in general not true since, for example, Pz is consistent with P—uz while
Tx is not. This problem will not occur in causal theories, however, because P—x cannot
be entailed by a causal theory and cannot be added by a set of t-defaults. Thus for causal
theories a t-default will be applicable if and only if the corresponding p-default is.

The effect on the image of using t-defaults is, on the other hand, different from the
effect of u-defaults or p-defaults. If ® is a causal theory, then Ag(®) includes all the
known information in Ap(®) (and hence Ay (®)) since each default Tz in T corresponds
to a default Pz in P and Tz |= Pz. However, Ax(®) may contain additional known
information—namely the applicable defaults from T'. The extension Eg(®) will also
contain their additional tautological consequences.

79

The need to avoid this extra known information might therefore provide a justification
for choosing p-defaults over t-defaults. It may be possible to envisage situations where
this information is detrimental. For example, in addition to Sentence (8.7) our theory
might contain a sentence like

Tair(t) — T can breathe(t+ 1).

While it might be safe to assume that there is a noise, it may be far more dangerous to
assume that we can breathe, and in this case the p-defaults must be used. We are not
currently aware of any practical applications where this distinction is warranted, however,
and in general it seems natural to make the assumptions we have applied explicit by using
strong defaults.

8.4.3 Method III — Horn Causal Theories

Consider once again sentence (8.7) and its equivalent replacement by sentences (8.8a)-
(8.8b). The strong assumption T air(t) can be considered to invoke Sentence (8.8a). This
sentence clearly represents the ‘rule of lawful change’ embodied in (8.7) and might be
considered a more intuitive description of the causal relationship than (8.7). This begs
the question as to why we need (8.7) rather than simply using the universal rule given
by (8.8a).

Shoham’s arguments for the form of causal theories, examined in Section 8.3, provide
no reason for us to employ (8.7) over (8.8a). The choice of the former was necessary only
for the CI minimisation technique which we have now escaped.

If we use t-defaults to maximise knowledge selectively, the part of implication (8.7)
embodied by (8.8b) will never be invoked. We can therefore remove that part of the impli-
cation altogether by replacing the causal sentence (8.7) by the ‘rule of lawful change’ (8.8a).

Notice that making this replacement leaves only Horn sentences. We call a causal
theory containing only Horn sentences a Horn causal theory, and define a transformation
Horn from causal theories to Horn causal theories as follows.

Definition 8.4.3 Horn is a function on causal theories such that

Horn({)):{/\Txi/\ /\Ty]'—>Tz | /\Ta:i/\ /\Pyj—>Tz€<I>}.

=1 7=1 =1 7=1

The fact that the “unknown” parts of the causal sentences play no part in the aug-
mentation by t-defaults is formalised by the following lemma.

Lemma 8.4.4 Let ® be a causal theory and T be a set of t-defaults for ®. Then
Horn(Ar(®))= Ar(Horn(®)).
Similarly for the sets T, and T,.

Since the transformation Horn does not change the known information in a causal theory,
it follows that the known information in Ag(Horn(®))is the same as that in Ag(®).

If we use the transformation Horn, then the weak antecedents in the causal theory act
simply as syntactic markers for generating the subset T', of t-defaults. We can therefore

30

bypass this transformation and write our causal theories directly as Horn theories, pro-
viding we also write the set T', directly. Alternatively we can “tag” the defaults in some
other way so that they can be collected automatically. We will do this using the “prime”
symbol; thus the sentence

Tz A Tah—Tz

indicates that Tz9 is to appear as a default. This symbol has no logical meaning, that is
it can be considered to be “invisible” from a logical point of view.

There are several potential advantages to using Horn default theories. For example,
we are able to use the technique described in Chapter 6 for normalising defaults with the
assurance that it will not introduce any new known information (see Theorem 6.4.4). If
we wish to use qualified defaults of the form

:PyATz
Tz

for example, we can normalise these to give free defaults of the form

:PynATz
PyATz '

In using this scheme, however, it will be necessary to ensure that the weak assertions do
not reintroduce branching into the formalism.

In addition it seems likely that we will be able to make use of efficient resolution
procedures for Horn clauses, although we have yet to examine what adjustments must be
made to such procedures to accommodate asserted logic.

8.4.4 Method IV — Classical Causal Theories

In Subsection 8.4.2 we argued that there is generally little advantage in using p-defaults
over t-defaults. In the previous subsection we showed that if we choose to use t-defaults
then the advantage of using causal theories with weak antecedents is purely syntactic; the
weak antecedents indicate what information must be maximised by default. We could
alternatively write Horn causal theories directly, and either specify the defaults directly
or tag the appropriate antecedents.

Since T' and T, differ from T, only in that they contain additional defaults of the
form Uz, the assertions which are known due to augmenting a Horn theory with T, T,
or T'p, are exactly the same. If we are only concerned with known information, therefore,
the set of defaults T', is sufficient. The truth values of sentences constructed from base
literals not appearing in the causal theory will simply be left undefined, in the same way
that they are left undefined in a classical deductive system.

If we adopt this scheme then no weak assertions are used anywhere in the system and
we never make use of the “unknown” truth value. The system can therefore be collapsed
into an equivalent system in classical logic. To illustrate this point, consider any positive
base literal appearing in the object theory. Since z is never assigned the value u, the
value of the sentence —Tz is always the same as that of T—z. Therefore, as we are
dealing with a truth-functional language, we can replace each occurrence of T—z with

31

—~Ta without changing the truth value of any sentence. If this is done for all positive

> will not

base literals in the theory (and defaults) then the strong negation symbol ‘—
appear. All atomic sentences will then be of the form Tz and will take the same truth
value as z. Clearly we can remove the assertion operator altogether and simply deal with
a classical 2-valued system. Therefore, unless we wish to make use of weak antecedents
for the reasons discussed in Subsection 8.4.2, or Horn theories for reasons such as those
suggested in Subsection 8.4.3, there is no need to use an “epistemic” logic at all.

With this in mind we can redefine causal theories using the temporal logic BTK defined
in Section 5.1. We adopt the same conventions that are used with TAL: we take temporal
constant symbols from the integers, use only predicate symbols with arity (m,1) or (m,2),
and always write the latest time point as the last argument in a base sentence. As usual

we only use propositional sentences in causal theories.

Definition 8.4.5 A causal sentence is a BTK sentence of the form
m
Nai — 8, m e N (8.9)
=1

where some of the antecedents may be tagged as defaults and

1. if m = 0 the corresponding (empty) conjunction is identically true, and
2. a;, t=1,...,mand § are literals such that ltp(a;) < ltp(3).

A causal sentence is called a boundary condition if m = 0, and a causal rule otherwise.

Definition 8.4.6 A causal theory ® is a set of causal sentences such that

1. there is a time point ¢y such that for all boundary conditions ¢ € ®, 1o < lp(¢),

2. there do not exist sentences oy —/f and ag——3 in ® such that {ay, a3} is consistent,
and

3. if defaults are tagged then there is no atomic sentence a such that a and -« are

both tagged.

If the defaults are specified directly then we require that there is no atomic sentence «
such that a and —a both appear in the hierarchical default set.

Examples of chronological augmentation over classical causal theories are given in
the following chapter. Note that, as we discussed in Section 8.1, any theory which is

tautologically equivalent to a causal theory can also be used as an object theory.

8.5 The Qualification Problem

One of the principle motivations for the development of chronological ignorance was to
overcome the qualification and extended prediction problems associated with temporal
reasoning. In this section we discuss the extent to which CI succeeds in the first aim, and
look at what the nonmonotonicity actually provides with regard to causal theories.

The qualification problem is described by Shoham and McDermott [SM88, pp. 58-59]
(see also [Sho88b]) as follows:

32

Any rules of change (or physics) must support inferences of the form “if this
is true at this time then that is true at that time.” ...the first problem
[qualification] is that the “if” part might get too large for practical use. For
example, if we wish to be careful about our predictions, in order to infer that
a ball rolling in a certain direction will continue doing so we must verify that
there are no strong winds, that no-one is about to pick up the ball, that the
ball does not consist of condensed explosives. ..and so on.

The alternative is to be less conservative and base the predictions on only very
partial information, hoping that those factors which have been ignored will not
get in the way. This means that from time to time we must be prepared to
make mistakes in our predictions...and be able to recover from them when we

do.

The introduction of nonmonotonicity is an attempt to follow the second alternative—
to base predictions on partial evidence and make the predictions defeasible so that they
can be withdrawn in the light of new information. The problem is that, as we have shown
in the previous sections, CI does not allow us to ignore any relevant factors. Not only
must they be explicitly included in the preconditions of causal rules, they must also be
assigned (explicitly or implicitly) a default value. To illustrate this, consider once again
Shoham’s causal rule [Sho88a, Sec 5.1]

OTRUE(t,t,loaded) A OTRUE(t,t,fire)
AOTRUE(t, t,air)
AOTRUE(t, t, firingpin)
AOTRUE(t, t,no marshmallow bullets) (8.10)
A ... A Oother mundane conditions

—OTRUE(t 4+ 1,t + 1,noise) for all t.
The line
A ... A <other mundane conditions

which appears in one form or another in each practical example of a causal (or inertial)
theory provided in [Sho86, Sho88a, Sho88b], distracts from the fact that each one of these
conditions must be explicitly stated. If one is to consider mundane conditions (such as
marshmallow bullets) the preconditions, or “if” part of the rule, will indeed be too large
for practical use. If a practical number of preconditions are included then those which
are omitted are ignored in the same way that they are ignored in classical logic—the
predictions are not defeasible with respect to these conditions. The formalism therefore
clearly fails to solve the qualification problem as stated above.

What the nonmonotonicity (chronological minimisation or defaults) does allow us to
ignore when we construct an object theory, is what value these preconditions will actually
take. That is, we don’t need to ascertain in advance whether the preconditions are true or
false and add facts to the theory accordingly. Instead the facts are added automatically
by the nonmonotonic inference system according to the defaults we have provided. The

33

inference system also adjusts these values automatically for each new or revised object
theory.

While nonmonotonic reasoning does not solve the qualification problem, it can provide
some help in dealing with the frame problem. Defaults can be used to reduce the amount
of work done by the frame axioms since only information which is not in its default state

must be propagated forward. This is demonstrated by examples in the following chapter.

34

Chapter 9

Examples of Declarative

Modelling

In this chapter we provide two examples which illustrate the use of chronological augmen-
tation for declarative modelling. The examples themselves are not intended to produce
any particular results but rather to give a practical feel for some of the theoretical results

which have been discussed.

9.1 Implementation

The structure of our declarative model, which was first shown in Figure 1.3, is illustrated
once more in Figure 9.1. An experimental system following this structure is briefly de-
scribed in this section. The system has been implemented in Prolog.

As the inference engine for the system we use chronological augmentation according to
Method IV with the hierarchical default set D stated explicitly. The underlying language
is therefore (propositional) BTK, and consistency checks are made with a classical proposi-
tional theorem prover. The theorem prover used is Fitting’s propositional tableau [Fit88].
The object theory @ consists of the union of the input €2 and the knowledge base A. Both
Q and A must be logically equivalent to causal theories described by Definition 8.4.6.

Implementation of the inference engine is straightforward. The recursive augmentation
Ap is calculated according to the construction in Corollary 7.4.3. This involves reducing
the hierarchical default set to singletons, by arbitrarily ordering defaults with the same
ltp. Corollary 7.4.5, along with the fact that chronological augmentation is nonbranching,
ensures that the order chosen does not affect the result. The defaults are then sequentially
added to the object theory or discarded, depending upon the result of a consistency test.

In the examples which follow we specify the knowledge base and the defaults using
schemata. Each schema can be regarded as a template for the actual sentences, which are
generated automatically by replacing the variables (written in italics) with appropriate

individuals from the domain. For example a schema

—connected(p, p2)

85

| |
| |
! :
! knowledge defaults !
I base !
I A :
|
| A P | predicted
excitations ® : behaviour
|
U A t
Q N D Y= A_(Q U A
|
! :
| |
! :

declarative model

Figure 9.1: The structure of a logic-based declarative model.

where p; and p, represent assembly components, would be instantiated by searching a
knowledge base containing sentences such as

component(cl), component(c2), component(c3),.. ..
This would generate sentences of the form

—connected(cl, c2), 7connected(cl,c3),....

9.2 Assembly of a Ball-Point Pen

A simple example commonly used to illustrate the generation of mechanical assembly
sequences is the assembly of a ball-point pen [HdMS91]. The pen consists of a cap, head,
body, tube, ink and button as shown in Figure 9.2. The problem is to assemble the parts
according to the connection graph shown in Figure 9.3. Tt is assumed in [HAMS91] that
the parts can be assembled in any order subject to the following physical constraints:

1. the head cannot be connected to the body once the cap and the body are assembled,

2. the head cannot be connected to the tube once the head, the body and the button
are assembled, and

3. the ink cannot be inserted in the tube unless the head and tube are assembled and
the head, body and button are not assembled.

The task of our model is to describe the outcome of any particular group of operations or
assembly plan. The knowledge in the system is described below.

9.2.1 Excitations

The input in this example is the assembly plan. This consists of a set of sentences of the
form

join(pl, p2,1)

36

 — < | i

Cap Head Body

l 1 o= 0

Tube Ink Button

Figure 9.2: Parts of a ball-point pen.

Button

Body Head Tube Ink

Cap

Figure 9.3: Connection graph for the ball-point pen.

instructing the workcell to assemble components p; and ps at time (or state) {. Examples
of assembly plans are given later in this section.

9.2.2 Defaults

The state of the assembly at any particular time is described by a set of facts (or negated
facts) of the form

conn(pl, p2,1).

This sentence indicates that part p; is connected to part py at time £.

By default we assume that no two parts are connected at any time unless there is
information to the contrary. Our defaults therefore consist of all instantiations of the
schema

: ~conn(py, p2,t)
ﬁconn(plvp% t)

sorted into a hierarchical default set according to lip. All other facts are assumed to be
undefined.

The hierarchical default set, starting at time 0 and expressed as free defaults, is there-
fore a sequence of the form

D = {{-conn(cap, head,0), 7conn(body, head,0),...}, {-conn(cap,head, 1),...},...}.

87

Table 9.1: Sentences describing the effects of assembly instructions.

Preconditions Instructions Postconditions
join(body,button,f) — conn(body,button,?+ 1)
join(body, cap,t)

—conn(body, cap, t) A join(body, head,?) — conn(body, head, t+ 1)

—[conn(body,head,) A conn(body, button,t)]

A join(head, tube,t) — conn(head, tube,?+ 1)

—[conn(body,head,?) A conn(body,button,?)]

A conn(head, tube, t) A join(ink, tube,?) — conn(ink, tube,{+ 1)

|

conn(body, cap,t+ 1)

9.2.3 The Knowledge Base

The knowledge base would normally consist of initial conditions and causal rules. No
initial conditions are necessary in this case, however, since initially no parts are connected
and this is handled automatically by the defaults.

The causal rules can be divided into two categories—those stating what does change
from state to state (the effects of instructions) and the frame axioms stating what does

not change from state to state.

Frame Axioms

Since there are no operations in this example for disassembling components, the frame
axioms are straightforward. They simply say that any components which are connected
in a particular state remain connected in the following state. This is expressed by instan-

tiations of the schema

conn(py, p2,t)—conn(pq, pa,t+ 1).

The Effects of Instructions

The effect of a join instruction, providing the instruction does not contravene any of the
physical constraints listed earlier, is that the parts are connected in the subsequent state.
These effects are modelled by sentences of the general form

/\ preconditions A instruction — postconditions.

The schemata for all valid instructions are given in Table 9.1. The last three sentences in
the table have preconditions corresponding to the physical constraints. For example, the
third sentence states that if an instruction is issued to assemble the head and body, and
the cap and body are not currently assembled, then the head and body will be connected
in the subsequent state. Note that the fourth and fifth sentences are not shown in causal
form according to Definition 8.4.5. However each is logically equivalent to a conjunction

of two causal sentences.

38

Table 9.2: Sentences characterising the modified assembly.

Preconditions Instructions Postconditions
join(body,button,t) conn(body, button,t+ 1)
conn(body, cap,t+ 1)
conn(body, head,t+ 1)
conn(head, tube,t+ 1)

join(body, cap,t)
—conn(body, cap,) A join(body, head,t)
—conn(body,head,t) A join(head, tube,t)
—conn(body, head, t)
A conn(head, tube,t) A join(ink,tube,?)

Ll

|

conn(ink, tube,t+ 1)

9.2.4 Examples of Assembly Plans

We now have a complete model which can be used to test various assembly plans. We
simply add the instruction set € to the knowledge base A and calculate the output Ap(QU
A). We can then test whether any assertion « is entailed by the output description using
a standard proof procedure.

As an example, consider the following two plans:

3 = {join(head, tube,0), join(body,button, 0),
join(ink,tube, 1), join(body,head,2),
join(body, cap, 3)}

2y = {join(body,head,0), join(body, cap, 1),
join(head, tube, 2), join(ink, tube, 3),
join(body,button,4)}

If we wish to know whether the plans result in a complete assembly at time 5 we set

a = conn(body,cap,5)A conn(body,head,5) A conn(head, tube, 5)
Aconn(ink,tube,5) A conn(body,button, 5)

and obtain Ap(Qy UA)F o and Ap(Q; UA)F a. That is, both plans are successful.
Note that the first plan €4 contains an example of actions performed simultaneously
and results in a complete assembly at time 4.

9.2.5 Changes to the Process

One of the advantages of being able to model dynamic processes is that it allows us to assess
the effects of exceptions in the process, such as mechanical failures or loss of components.
Similarly, if some intentional change is made to the process, we can assess whether the
routines used previously are still appropriate or whether they must be replanned.

To illustrate this idea, assume the ball-point pen company adopts a new model in
which it is no longer possible to assemble the head and tube or the tube and ink once
the head is connected to the body. This requires a modification to the last two sentences
shown in Table 9.1. The schemata for the new set of rules are shown in Table 9.2. We

89

conveyor

vision

A
G @
) "

2 bin
robot r 1 robot r 2
workspace workspace

Figure 9.4: Configuration of the LAAS multirobot workcell [Fre91].

call the resulting knowledge base A’. If we now input the instruction sets €y and 5 once
more, we find that Ap(; UA’)F a and Ap(Q2 UA’) I/ a. That is, the first instruction
set is still successful whereas the second set can no longer be used.

9.3 A Multirobot Workcell

As a more involved example of declarative modelling we consider a multirobot work-
cell described by Freedman [Fre91]. The example is originally adapted from work at
LAAS, France, on a workeell testbed consisting of two six-degree-of-freedom robots, a fast
monochrome vision system for component inspection, a revolving work table, a conveyor
with infrared sensors for detecting components and associated jigs and feeders.

The configuration considered is shown in Figure 9.4. The robots r1 and r2 are to
prepare the assembly abc (c-on-b-on-a) at site s1. r2 is responsible for parts a and ¢
which arrive together at the dual part feeder £1. r1 is responsible for part b which is fed
from £2. The complete assembly is then moved by ril to site s2 for inspection. If the
assembly passes the inspection then it is moved by ril to site 83 on the conveyor, which
removes it from the workcell, otherwise it is placed in the scrap bin.

Our conceptualisation of the system is described below. Once again our model takes
the form of Figure 9.1 using Method IV and stating defaults explicitly.

90

Table 9.3: Actions performed by workcell elements.

Workcell element — Task Description Duration
robot ri mate b to a at s1 mate(rl, b, a, si,?) 2
move abc from s1 to s2 move(ri,abc,sl,s2,t) 3
move abe from s2 to s3 move(ri,abc,s2,s3,¢) 3
move abc from s2 to bin move(ri, abc, s2,bin,) 2
robot r2 place a at s1 place(r2, a, si,t) 2
mate ¢ to ab at s1 mate(r2,c,ab,sl,t) 3
vision system inspect assembly inspect(vis, abc, s2,1) 4
conveyor exit abc from workcell exit(con, s3,1) 3
feeder for a and ¢ dispense parts dispense(£f1,?) 1
feeder for b dispense part dispense(£2,1) 1

9.3.1 Excitations

The excitations to the model are commands which invoke a particular action from some
element in the workcell. Table 9.3 shows the possible actions and their durations for each

workcell element. The commands may consist of a single action such as
move(ri,abc,s1,s2,5)

which instructs robot r1 to move assembly abc from worksite s1 to s2 at time 5. However

we also allow conditional instructions. For example, the excitation
—pass(vis, abc,15)—move(r1, abc, s2,bin, 16)

invokes the instruction to move the assembly to the bin if the assembly does not pass the
visual inspection.

We assume that an input is also available from the vision system. The system returns
an excitation pass(abc,t) or —pass(abc,t) four time units after the inspect command is

issued, according to whether or not the assembly passes inspection.

9.3.2 Defaults

The assertions which are used to describe the state of the system at any particular time
are shown in Table 9.4 along with their default values. The defaults are chosen to reflect
the state of the system in the absence of any excitations, and assemblies are assumed to
pass visual inspection.

We also require defaults for the actions listed in Table 9.3 since they are required by
the frame axioms. The defaults reflect the fact that any particular action is usually not
being performed at any particular time. For each assertion « listed in Table 9.3 the default

is the negated assertion —a.

91

Table 9.4: Conditions describing the workcell state and their default values.

Condition

Description

Default

part a ready at feeder
part ¢ ready at feeder

worksite s1 free

part a at worksite s1

part b ready at feeder
assembly ab at worksite s1
assembly abc at worksite s1

worksite s2 free

assembly abc at worksite s2
assembly abc pass inspection

worksite s3 free

assembly abc at worksite s3

ready(a, f1,1)
ready(c, f1,1)
free(si,?)
at(a,si,?)
ready(b, £2,1)
at(ab, s1,1)
at(abc,s1,t)
free(s2,1)
at(abc, s2,t)
pass(abc,t)
free(s3,?)
at(abc, s3,1)

—ready(a, f1,1)
—ready(c, f1,1)
free(si,t)
-at(a, s1,t)
—ready(b, £2,1)
—at(ab, s1,1)
-at(abc, s1,1)
free(s2,1)
-at(abe, 52,)
pass(abe,t)
free(s3,?)
-at(abe, 53,)

9.3.3 The Knowledge Base

Once again the knowledge base does not require any initial conditions since the initial state
is determined by the defaults. The knowledge base therefore consists of frame axioms and
sentences describing the effects of the various actions.

Frame Axloms

The frame axioms are more complicated than in the previous example because the truth
values of conditions describing the process may alternate many times, particularly if the
workecell is to carry out repetitive operations. Because all the conditions have default
values, however, the frame axioms only have to preserve the value of facts which are not
in their default state. Those in their default state are preserved automatically.

As an example, the fact ready(a,f1,t;) is normally false but becomes true following
the action dispense(f1,f3). It should then remain true until component a is moved by
the action place(r2,a,s1,t3). This is achieved by the frame axiom

ready(a,f1,t) A -place(r2,a,si,l)—ready(a,f1,t+ 1).

Similar frame axioms for all the conditions listed in Table 9.4 are provided in Table 9.5.
Note that the only actions required in the frame axioms are those which terminate non-
default conditions. All other actions can be ignored.

Effects of Actions
As in the previous example the sentences describing the effects of actions take the form
/\precondz'tions A action — postconditions.

The schemata for the sentences characterising the operation of the workcell are shown
in Table 9.6. Schemata are given for all of the actions listed in Table 9.3 except for

92

Table 9.5: Frame axioms for the workcell.

Conditions Terminating Actions Conditions
ready(a,f1,f) A -—place(r2,a,sl,t) — ready(a,f1,t+ 1)
ready(c,f1,/) A —mate(r2,c,ab,s1,t) — ready(c,f1,t+ 1)
ready(b,f2,f) A —mate(rl,b,a,sl) — ready(b,f2,t+ 1)

—free(s1,) A —move(rl, abc,sl,s2;t) — —free(sijt+1)

at(a,s1,t) A -mate(rl,b,a, sl) — at(a,sit+1)

at(ab,s1,{) A -—mate(r2,c,ab,sit) — at(ab,s1,t+ 1)

at(abc,s1,t) A —move(ri,abc,s1,s2;l) — at(abc,sit+ 1)
—free(s2,{) A —move(rl, abc,s2,s3,)
A —move(rl, abc,s2,bint) — —free(s2,;t+1)
at(abc,s2,t) A —move(ri, abc,s2,s3,)
A —move(rl, abc,s2,bint) — at(abc,s2,f+ 1)
—pass(abe,t) A —move(ril, abc,s2,s3t)
A —move(rl, abc,s2,bint) — —pass(abeli+ 1)
at(abc,s3,t) A —exit(con,s3,t) — at(abc,s3,t+ 1)
—free(s3,t) A —exit(con,s3,t) — —free(s3,t+1)

the actions inspect(vis,abc,s2,t), exit(con,s3,t) and move(rl,abc,s2,bin,t). These
actions are omitted because they do not require postconditions. The first instruction
invokes the vision system and the postcondition is effectively the result pass(abc,t + 4)
or —pass(abc,t + 4) returned after the inspection. The effect of the second action is to
remove the assembly abc from the workcell. The knowledge that the assembly has gone,
and worksite s3 is free, is handled by the last two frame axioms in Table 9.5 and the last
two defaults in Table 9.4. The exit assertion cancels the frame axioms and the defaults
take over. Since we are not concerned with where the assembly goes there are no other
postconditions. The same is true of the third action, move(r1,abc, s2,bin,t), which moves
a faulty assembly to the bin.

Note that some of the sentences in Table 9.6 have multiple postconditions. Sentences
of this form are permitted since they are logically equivalent to a conjunction of causal

sentences with single consequents.

9.3.4 Example of an Assembly Sequence

As in the previous example we can generate the response of the workcell to a set of
excitations 2 by adding them to the knowledge base A and calculating the output Ap(QU
A).
An example of an assembly sequence is
3 = {dispense(f1,0), dispense(£2,0), place(r2,a,s1,1),
mate(rl,b,a,s1,3),mate(r2,c,ab,s1,5),move(rl, abc,si,s2,8),
inspect(vis, abc,s2,11),

pass(vis, abc, 15)—move(r1, abc, s2,s3,16),

93

Table 9.6: Sentences describing the effects of actions in the workceell.

Preconditions Actions Postconditions
—ready(a, f1,t) A —ready(c,f1,t) A dispense(f1,t) — ready(a,f1,t+ 1)
A ready(c,f1,t+ 1)
—ready(b,£2,f) A dispense(£2,t) — ready(b,£2,t+ 1)

ready(a, f1,t) A free(sit) A place(r2,a, si,t) — at(a,sit+2)
A —free(si,t+ 2)
ready(b,£2,t) A at(a,s1,t) A mate(rl,b,a,si,) — at(ab,s1,f+2)
ready(c,f1,t) A at(ab,s1,t) A mate(r2,c,ab,slt) — at(abc,sli+3)
at(abc,s1,t) A free(s2,f) A move(rl,abc,s1,s2;t) — at(abc,s2+ 3)
A —free(s2,t + 3)
at(abc,s2,t) A free(s3,f) A move(rl,abc,s2,s3,t) — at(abc,s3,+ 3)
A —free(s3,t+ 3)

—pass(vis, abc, 15)—move(rl, abc, s2,bin, 16),

at(abc,s3,19)—exit(con, s3,20)}.
The success of the sequence can be ascertained by testing whether
Ap(£1 U A) - move(rl,abc,s2,bin, 16)V exit(con, s3,20).

If the workeell is to be used for repetitive assembly then efficiency can be improved by
performing operations in parallel. For example, the next dispense operation from £2 can
take place at time 4 as soon as the component from the first operation has been moved to
si. Similarly, r2 can place a new component a at site s1 at time 9 as soon as the previous
assembly has been moved. This can be verified by adding appropriate instructions to the
excitations. Thus we would have a new input

Q9 = @y U {dispense(f2,4),dispense(£f1,6),place(r2,a,s1,9),...}.

Note that this model is incomplete, however, since it does not include conditions describing
which robots are busy at what times. The model will therefore allow simultaneous tasks
to be assigned to a single robot. In order to overcome this problem we could include
additional conditions busy(ri,?) and busy(r2,¢) which are toggled at the appropriate
times.

94

Chapter 10

Conclusions and Further Work

This chapter summarises the contributions of the thesis. We then discuss some of the
problems which still remain and suggest where the solutions might be sought. Finally we

outline some broader topics for further research.

10.1 Summary of Results

The central result of this work is the development of a nonmonotonic inference system for

modelling dynamic processes which:

¢ is guaranteed to be deterministic; that is, for every consistent input description it
will produce a single consistent output description. The relationship between the

input and output is precisely described by a declarative transfer function.

e can be implemented in a clear and straightforward way using a classical theorem

prover.

The main disadvantage of this approach is that it inherits the computational complexity
of classical (propositional) logic.

In the process of developing this system we have produced a number of intermediate
results which represent significant contributions to the nonmonotonic reasoning literature.
These include:

1. A suggested framework for comparing the characteristics of different nonmonotonic

inference systems.

2. A simplified semantics for chronological ignorance in which Shoham’s modal logic of
“knowledge” is replaced by a new logic called asserted logic. Asserted logic is truth

functional and can be mapped onto classical logic.

3. Proposed solutions to two of the pervading problems associated with default logic,
namely incoherence and the multiple extension problem. The former makes use of
asserted logic to normalise defaults. The latter uses the logic HDL which incorporates
a hierarchical default structure. In order to calculate the extensions for HDL we
redefine default logic in such a way that deductive closure is “factored” out. This

95

leads to a proof procedure for default logic which is effective for nonnormal as well
as normal defaults, and extends to the hierarchical framework.

4. A proof theory for causal chronological ignorance. The proof theory is based on
HDL, using asserted logic as the underlying language.

5. Improvements to the proof-theoretic CI formalism and, in particular, an alternative
framework which does not require an epistemic logic. In the latter case the proof
procedure for HDL makes use of a theorem prover for classical propositional logic.

10.2 Improvements to the System

There are many areas where further enhancements to the system might be made, particu-
larly with regard to the knowledge which can be represented. In this section we highlight

a number of these areas and suggest some ideas for further research.

10.2.1 Non-causal Theories

It is worth noting that while we have used causal theories to guarantee determinism,
the use of causal theories is not built in to our system. Rather we have demonstrated
one particular use of HDL. We have already shown that using a proof-theoretic formalism
relaxes the restriction on object theories from causal theories to theories which are logically
equivalent to causal theories. Experience with the system on practical examples indicates
that other types of non-causal sentences would be useful in the object theories.

In the robotic workcell problem described in Section 9.3 we used conditional instruc-

tions such as
—pass(vis, abc, 15)—move(rl, abc, s2,bin, 16). (10.1)

In fact this is a poor representation of the conditional instruction. Unlike the causal rules
in the knowledge base, the delay (of one time unit) in the expression does not correspond
to any physical delay. It is put there simply to conform with the restrictions on causal
rules. The preferred instruction would have been

—pass(vis, abc,15)—move(r1, abc,s2,bin, 15). (10.2)

Unfortunately, however, causal theories do not allow sentences in which the cause and
effect occur simultaneously.

Shoham [Sho88a, Sec 9.2] discusses simultaneous cause-effect relationships and suggests
incorporating them, without losing the ‘unique model property’ by imposing a partial or-
der on propositions. The same approach, extended to include defaults, could be used
to prevent branching in our formalism. To allow sentence (10.2), for example, we would
place —pass(vis, abc, 15) before move(r1, abc, s2,bin, 15)in the partial order. This would
prevent any implication (or chain of implications) in which move(r1, abc,s2,bin, 15) ap-
peared on the left and —pass(vis, abc, 15) appeared on the right. In addition the default
for move(ri, abc,s2,bin, 15) would appear after the default for pass(vis,abc,15) in the
ordered default set. While this approach has not been formalised it does not appear to

96

pose any prohibitive problems. Similar orderings on theories in the context of default logic
and the incoherence problem are discussed by Etherington [Eth87].

Another type of information which we would like to be able to express in our knowledge
base is nontemporal assertions. Recall that in the generation of sentences from schemata
(Section 9.1) we made use of an external knowledge base with assertions like

component(cl), component(c2),...

expressing the fact that c1, c2 and so on are assembly components. We might also like
to use sentences like

tube(c1)—component(cl).

An advantage of our proof-theoretic approach is that non-temporal sentences such as
these can be added directly to causal theories. They will simply be treated in the same
way that they would be treated in a classical deductive system. In order to make full use of
the non-temporal information, however, we would like to be able to include nontemporal
assertions in the antecedents of causal rules. For example, we might like to use a frame
axiom such as

component(cl) A component(c2) A conn(ci, c2,{)—conn(cl, c2,t+ 1).

Again these sentences can be used providing we do not permit non-temporal assertions in
defaults and that we adhere to the appropriate conditions on causal theories. If nontem-
poral assertions are required in the consequents of causal sentences or in the default set,
however, then some new means of ensuring determinisin must be sought.

The HDL formalism will support other variations on object theories and defaults. More
work needs to be done on modelling practical systems to discover what types of knowledge
representation are most appropriate.

10.2.2 A First-Order System

Until now we have restricted our attention to propositional causal sentences and defaults,
which are generated from schemata. In the pen assembly problem of Section 9.2, for
example, frame axioms are generated from the schema

conn(py, p2,t)—conn(py, pa,t+ 1) (10.3)
and defaults are generated from the schema

: mconn(py, p2, 1)
—conn(p1, p2, t)

(10.4)

Clearly this approach can lead to large theories and default sets. If there are m applicable
components and n time points then (without additional restrictions) schema (10.3) will
generate m X m X n propositional sentences. This information could be expressed far more
concisely if we allowed quantification over non-temporal and temporal terms.

Extending our formalism to allow quantification over non-temporal terms in causal
sentences is straightforward. The results (other than decidability) for the proof theory of

97

HDL in Chapters 6 and 7 were given for knowledge bases consisting of first-order sentences.
If we do not allow function symbols into nontemporal terms (that is we add only quantifiers
and nontemporal variables to our propositional language) then the undecidability of first-
order logic does not cause problems. The resulting causal theories are what Etherington
[Eth87] calls finite theories—that is, they have only a finite number of predicate symbols,
constants and variables making the Herbrand Universe finite.

All that we need to do to extend our system, therefore, is replace the propositional
theorem prover with a first-order theorem prover. The propositional sentences represented

by schema (10.3) could then be replaced by a first-order schema
VP1,P2 (conn(P1,P2,{)—conn(P1,P2,{+ 1)). (10.5)

Quantification of this sort was allowed in Green’s question-answering system QA3 [Gre69a]
described in Section 2.2.

For temporal terms in causal sentences the problem is more difficult because we require
an arithmetic addition function. Technically (if we assume a finite set of time points) we
could define a function plus by including all instantiations of the schema

plus(tl,tQ) = tl + tg (106)
and replace schema (10.5) with the sentence
VP1,P2,T (conn(P1,P2,T)—conn(P1,P2, plus(T,1))).

This approach merely shifts the problem to schema (10.6), however, and may still lead to
a large number of instantiations. It also requires a change to first-order BTK [BTK®9],
and introduces undecidability problems. What we would like to be able to do is evaluate
arithmetic functions either within or alongside the proof procedure. This is part of a more
general problem which is discussed below.

As far as the defaults are concerned there appears to be little to gain from switching
to a first-order system. The reason is that we do not require first-order defaults such as

: VP1,P2,T —conn(P1,P2,T)
: YP1,P2,T —conn(P1,P2,T)

(which is only applicable if all components are not connected at all times) but rather open
defaults such as
: ~conn(P1,P2, T)
: =conn(P1,P2,T)’

(10.7)

However, an open default is simply treated as a schema for the set of closed defaults which
are its substitution instances [Rei80, Sec 7].
10.2.3 Quantitative Information

The need to incorporate arithmetic terms in temporal statements is part of a more general
problem of incorporating quantitative information within a logic-based reasoning frame-
work. Many reasoning problems, particularly in process modelling and control, have a

98

quantitative aspect to them. Examples range from component inventories in produc-
tion scheduling to descriptions of the positions and motion of robotic agents. We would
therefore like to be able to perform arithmetical (and possibly algebraic) operations and
comparisons on both temporal and nontemporal terms.

One approach to this problem may be to investigate the possibility of incorporating in
the temporal logic a restricted form of arithmetic (such as Presburger arithmetic) which
can be described within a decidable first-order logic system (see for example [Coo072]).
An alternative approach would be to represent and manipulate quantitative information
alongside (rather than within) logical formulas using a system such as labelled deduction
[Gab90]. The idea here is to free the deductive mechanism from performing mathematical
operations which may be done more easily within another framework.

10.2.4 Representation of Time

The representation of time that we have adopted is appropriate for constructing causal
theories and hierarchical default sets which ensure determinism. Also, unlike systems
based on the situation calculus in which states are the result of action sequences (see
Chapter 2), time is absolute. This has the advantage that actions can overlap or occur in
parallel.

The representation is inadequate, however, for representing a variety of concepts. Ex-
amples include continuous time, homogeneous assertions and strong negation, which are
required for the collision avoidance problem described in Section 2.6. These concepts fall
within the scope of the interval representation problem discussed by Trudel [Tru91].

Trudel proposes a continuous-time framework in which the information which is true
over an interval is completely determined by what is true at each point in the interval.
Statements about intervals are made by “integrating” over their internal points. For
example, the sentence

integral(0,10,moving(conveyor),6.5)

indicates that a conveyor is operating for 6.5 time units between time 0 and time 10.
These ideas are formalised in a temporal logic GCH, together with a sound (although not
complete) axiomatisation. An interesting area for further research would be to examine
whether a more expressive temporal representation such as that found in GCH could be
employed in our system.

10.3 Adaptive Planning

The attention given to Al systems in control engineering is in part due to their promise in
handling exceptions and unpredictable behaviour. One approach to dealing with excep-
tions is adaptive planning. Rather than completely reschedule a process when an exception
is detected, the aim of adaptive planning is to make minor modifications to the current
plan in order to keep the system running as close to the original schedule as possible. The
ability to modify production plans efficiently in automated manufacturing systems, for
example, can lead to significant reductions in manufacturing costs [NG91].

99

desired

behaviour difference plan plan " behaviour
—={ comparison : mo
r A generation 0 w

Figure 10.1: The structure of a declarative feedback control system.

A related use of adaptive planning is for plan generation and optimisation. In a complex
system it is often not possible to generate production plans by search methods due to the
large search space. A more promising approach may be to take a suboptimal plan which
is known to work and use some knowledge of the system to improve it progressively.

In Chapter 1 we introduced, by analogy with quantitative control, a paradigm for
closed-loop declarative control. The general structure of the system, updated to show the
flow of declarative information, is illustrated in Figure 10.1. The declarative model that
we have developed in this thesis generates a flow of information from input to output
which suits this paradigm, and we have shown how the relationship between the input
and output can be described accurately by a declarative transfer function.

Our longer term aim is to use the declarative model, in the feedback configuration
shown, as a tool for adaptive planning. The operation of the envisioned system is similar
for both exception handling and plan optimisation. Under normal conditions, with a
successful plan, the output of the model and the desired behaviour coincide, resulting in
a stable system. In the case of an exception, the model is revised to reflect the change
in the system and the predicted behaviour is then regenerated. For plan optimisation,
the desired behaviour is adjusted to demand more efficient operation. In either case the
disturbance may result in a discrepancy between the desired and predicted behaviour. The
controller uses this information, together with knowledge of the system or predetermined
strategies, to make an incremental modification to the plan or schedule. The modified
plan is fed back into the model and the predicted behaviour is regenerated and compared
once more with the desired behaviour. This process continues until (ideally) the predicted
and desired behaviours converge, resulting in a stable system.

As an example of plan modification consider the collision avoidance problem described
in Section 2.6. The default plan, illustrated in the first scenario in Table 2.1, is for the
agents to travel to their destinations by the most direct route. However, if the timing
is less fortuitous, as in the second or third scenarios, the predicted behaviour shows a
potential collision. This contradicts the desired behaviour and the controller must adjust
the plans to avoid a collision. In this case the plans can be adjusted by inserting delays
or using alternative routes. The strategy for modifying the plans may also attempt to
optimise the travel times.

The problem of modifying plans based on the information in logical descriptions may
require meta-level reasoning. One approach to the problem would be to attempt to im-
plement, in a meta-level reasoning system, the means-ends analysis technique developed

100

for the General Problem Solver (GPS) [EN69]. Means-ends analysis uses look-up tables to
find operators which reduce the “differences” between the current and desired states. The
technique is analysed in detail in [Ern69] and forms the basis of the state-space searching
strategy used in sTRIPs [FN71]. However, neither GPS nor STRIPS represent operators in
a logical framework.

More generally the problem of finding assertions which produce a desired change in the
output description appears to be one of abduction. An approach advocated by Gabbay
[Gab91] for incorporating abduction in labelled deductive systems fits in well with our
earlier proposal for using labelled deduction to represent temporal and other quantitative
information. Further research in this direction appears to be promising.

10.4 Relationships with Non-AI Approaches

We have focused our attention in this thesis on techniques for knowledge representation
and reasoning from the field of artificial intelligence. A valuable area for further research
would be to investigate integrating our approach with other mathematical frameworks for
modelling and analysing discrete-event dynamic systems.

Homem de Mello and Sanderson [HAMS91], for example, compare five alternative rep-
resentations for assembly sequences: directed graphs, AND/OR graphs, the set of establish-
ment conditions and two types of sets of precedence relationships. They discuss automatic
generation of assembly sequences, mappings from one representation to another and cor-
rectness and completeness of the representations.

Freedman [Fre91], from which the robotic workcell problem in Chapter 9 was adapted,
discusses the use of Petri nets for modelling and evaluating flexible manufacturing systems.
Freedman looks in particular at temporal extensions to Petri net theory and their use in
calculating cycle times for manufacturing processes.

It would be of interest to formalise the relationships between these systems and the
logic-based approach. We expect, for example, that it would be possible to transform state
descriptions and assembly plans from Homem de Mello and Sanderson’s representations
into logical descriptions, thus providing a declarative representation which is suitable for
mechanised reasoning.

101

Appendix A

Mathematical Prerequisites

This appendix is intended to clarify the mathematical conventions adopted in the thesis.
Texts providing a thorough introduction to discrete mathematics are widely available.
Examples include [CB84, SM77]. A number of texts on mathematical logic are cited in
Section 1.2.

A.1 Relations and Functions

The cartesian product of a finite sequence of sets Ay to A,, denoted by
A X Ay X ... X Ay,

is the set of n-tuples (a1, aq,...,a,) such that a; € Ay,a9 € Ag,...,a, € A,. f A; = A
fori=1,...,n then Ay X ...X A, is denoted by A™.

An n-ary relation R on Ay to A, is a subset of A1 x Ay x ... X A,. If n =2 then R is
called a binary relation from Ay to As, and the domain of R and range of R are defined
respectively by

D(R) = {a1 | (a1,a2) € R}
and
R(R) = {as | (ar, a5) € R}.

If R C A™ then R is called an n-ary relation on A.
If Ry is a relation from A to B and Rs is a relation from B to C then the composition

of Ry and Rg, denoted Rs o Ry, is the relation from A to C defined by
Ry 0 Ry = {{a,c)| {(a,b) € Ry and (b,c) € Ry for some b € B}.

We assume associativity to the right, thus R3 o Ry o Ry is equivalent to Rzo (Rz 0 Ry).

A function (mapping or transformation) f from A to B, denoted f : A— B, is a binary
relation from A to B in which {(a,b;) € R and (a,b2) € R implies by = by. If fis a function
and (a,b) € f then we write f(a) = b and call b the image of @ under f.

A function f: A—B is called a total function if D(f) = A.

An n-ary operation fon Ais afunction from A™ to A. For brevity we write f(a1,...,ay)
for f({a1,...,an)). A O-ary operation on A is simply a member of A.

102

A.2 First-order Logic

This section defines the classical first-order language I which is used in this thesis. The
development roughly follows [BM77], which should be consulted for a more detailed treat-

ment.

A.2.1 Syntax of LL

The symbols of L are as follows:
¢ An infinite sequence of (individual) variables.
e For each natural number n, a set of n-ary function symbols.

e For each positive natural number n, a set of n-ary predicate symbols, at least one

of which is nonempty.
e The connectives - (negation) and — (implication).
e The universal quantifier V.
1

e The punctuation marks , () []

The 0-ary function symbols (if any) are called individual constants. The variables, con-
nectives, universal quantifier and equality predicate (if present) are called logical symbols.
The function symbols and predicate symbols (other than equality) are called eztralogical
symbols.?

The terms of L are as follows:
1. A single variable is a term.
2. If fis an n-ary function symbol and 1, ...,1, are terms, then f(¢1,...,%,)is a term.

Note that the 0-ary function symbols are terms.

The well-formed formulas® (wffs) of L are as follows:
1. If p is an n-ary predicate symbol and t¢1,...,1t, are terms then p(t1,...,¢,)is a wif.
2. If ais a wif then —a is a wiT.
3. If @ and are wifs then a—f is a wif.

4. If o is a wif and z is a variable then Vz o is a wif.

'The punctuation marks are not strictly necessary [BM77, Chap. 1] however we include them for clarity.

2More accurately L defines a class of first-order languages since we allow the extralogical symbols to be

arbitrarily chosen.

3By “formula” we mean “well-formed formula” unless otherwise indicated.

103

Formulas formed according to (1), (2), (3) and (4) are called atomic, negation, implication
and universal formulas respectively.

The connectives A (conjunction), V (disjunction), < (equivalence) and the existential
quantifier 3 are defined (as metalinguistic substitutions) in terms of =, — and V as follows:

I. aAf =g ~(a——p)

2. aVp =qe (ma)—p

3. a = f = (a—=f)A(f—a)
4. do a =g Vo -

where a and 3 are wifs and z is a variable.

We will often omit parentheses with the convention that <, —, vV, A and — should
be taken in that order of priority and connectives of equal priority should be read with
association to the right. The scope of the quantifiers V and 3 are understood to be as
short as possible, and we allow abbreviations such as VXY in place of VXV Y.

A theory (or knowledge base (KB)) is a set of well-formed formulas. For brevity we
use the name of the language, L, to denote the set of well-formed formulas of L. Thus a
theory is a set ® such that ® C L or equivalently ® € ©(L).

A variable which is not bound by a quantifier is called a free variable. A wif with no
free variables is called a closed wif or a sentence. A wif with no variables is often called a
ground sentence.

A.2.2 Propositional Semantics of L

Definition A.2.1 A truth valuation on L is a mapping o assigning to each wif a a value
a’ from the set {t, f}, such that for all wffs g and 5

1. (=p) =t iff 7=
2. (f—=y) =t iff p7=for 47 =1

If o is fixed arbitrarily for all universal and atomic formulas of L, then conditions (1)
and (2) define 37 for all wifs . Thus, a mapping of the universal and atomic formulas into
{t, f} can be extended in a unique way by conditions (1) and (2) into a truth valuation.

A truth valuation ¢ on L satisfies a set ® of wifs (written o |= ®) iff ¢7 =t for every
formula ¢ € ®. If ® consists of just one formula ¢ we write o |= ¢ for o = {¢}.

We say ¢ is a tautology if o |= ¢ for every truth valuation o. It is always possible to
check whether a formula ¢ is a tautology in a finite number of steps by constructing a
truth table for ¢ in terms of its universal and atomic components.

A formula « is a tautological consequence of a set ® of formulas (written ® = a) if
o |= a for every truth valuation o such that o |= ®. If ® is empty we write |= a. The
empty set of formulas is satisfied by any truth valuation, hence |= a iff a is a tautology.
Two formulas a and 3 are tautologically equivalent iff {a} |= and {3} | «.

104

A.2.3 First-Order Semantics of L

Definition A.2.2 A first-order interpretation is a structure I consisting of a non-empty
universe of discourse U, a mapping from each n-ary function symbol f to an n-ary opera-
tion f! on U, and a mapping from each n-ary predicate symbol p to an n-ary relation p’

on U.

A wvaluation o is an interpretation I together with an assignment of a value 7 € U to
each variable z. We call T the underlying structure of ¢ and define f° and p° to be the
operation fI and relation p! respectively. Also o(x/u) is a valuation which agrees with o
everywhere except on z, and 27(#/%) = y,

A valuation induces mappings from the terms of L to the individuals of U and from the
formulas of L to the set {t, f}. These mappings are called the Basic Semantic Definition
(BSD).

Definition A.2.3 (Basic Semantic Definition)
(T1) If z is a variable, then 27 is already defined.

is an n-ary function symbol and ¢y,...,%, are terms, then
T2) If fi functi bol and ¢ t t th
[f(t,.. . t)]7 = fO49,...,t2).
(F1) If p is an n-ary extralogical predicate symbol and t1,...,t, are terms, then

toif (19, 10) € p°,
[otherwise.

p(t1,...,t,)]7 = {

(F17) If s and ¢ are terms and L is a language with equality then

(s= 1P = {t if s =1°,

[otherwise.

(F2) For every formula j3,
37—
(<8)7 { Lol =,

[otherwise.

(F3) For all formulas § and 7,
- t if 59 = forv° =t,
(B=7) { !

[otherwise.

(F4) For every formula 3 and variable z,
{ tif g/ = ¢ for every u € U,

[otherwise,

(Vz3)°

where U is the universe of o.

Clauses (F2) and (F3) ensure that every valuation induces a truth valuation (see
Definition A.2.1). We can therefore define satisfaction and logical consequence in terms
of the induced truth valuation in the normal way. A valuation ¢ on L satisfies a set ®
of wifs (¢ = ®)* if ¢° = ¢ for every formula ¢ € ®. A wif is valid (or logically true) if

*We use the same symbol for propositional and first-order satisfaction. The meaning will be clear from

the context.

105

it is satisfied by every valuation. A formula « is a logical consequence of a set ® of wifs
(written @ |=) if a” =t for every valuation o such that o = ®.

Note that while every valuation induces a truth valuation, the converse does not hold.
In other words, every tautology of L is valid, whereas not every valid formula of L is a
tautology. For example, Vo (a—a) is valid in L but not a tautology.

A.2.4 Subclasses of First-order Logic

For convenience we distinguish two subclasses of the first-order language L. The first
consists of the sentences (or closed formulas) of L. We call this a sentential language and
denote it Lg. The second consists of the sentences of Lg which can be formed using only
individual constants, extralogical predicate symbols and the logical connectives. Thus we
do not allow variables, quantifiers, equality, or function symbols with arity greater than
zero. We call this a propositional language and denote it Lp.

In practice our knowledge bases do not contain free variables and therefore use lan-
guages based on Lg or Lp. When the first-order consequence (|=) or deduction () relations
are used in the context of one of these languages it is assumed that both the theory (on the
left-hand side) and the formula (on the right-hand side) must come from that language.

An advantage of dealing with Lp is that, unlike L or Lg, every truth valuation is induced
by some valuation. Any set of truth values can be assigned to the atomic formulas of Lp
by choosing an interpretation which maps the predicate symbols to appropriate relations.
This assignment can then be extended to a truth assignment to all formulas according
to the rules governing logical connectives which are common to both valuations (rules
(F2) and (F3) in Definition A.2.3) and truth valuations (Definition A.2.1). Thus the valid
formulas of Lp are exactly the tautologies of Lp, and the provable formulas of Lp are
exactly the propositionally provable formulas of Lp. We can therefore use propositional
proof procedures to determine the validity of Lp formulas.

106

Appendix B

First-order Semantics for
Asserted Logic

In this appendix we propose a first-order semantics for asserted logic. This would be
needed, for example, in order to extend our arguments regarding causal CI theories to the
first-order theories recently proposed by Bell [Bel91]. The discussion uses the syntax for
AL defined Section 4.3.

B.1 Semantics

A first-order interpretation normally maps each predicate symbol to a single relation. This
leads naturally to a 2-valued semantics since inclusion in the relation is a boolean function.
Thus an atomic formula can be assigned a value ¢ if and only if the n-tuple of individuals
corresponding to its arguments is included in the relation.

Clearly this is not sufficient for a 3-valued semantics. We overcome this by instead

mapping each predicate symbol to a pair of mutually exclusive relations.

Definition B.1.1 An interpretation in AL is a structure I consisting of a non-empty
universe of discourse U, a mapping from each n-ary function symbol f to an n-ary op-
eration fI on U, and a mapping from each n-ary predicate symbol p to an ordered pair
pl = <p{,p§> of n-ary relations on U such that p! N pfc = 0.

A waluation o is an interpretation I together with an assignment of a value z% € U to
each variable z. We call I the underlying structure of ¢ and define f% and p° to be the
operation f! and pair of relations p’ respectively.

The Basic Semantic Definition for AL can now be defined as follows.

Definition B.1.2 (Basic Semantic Definition for AL)
(T1) If z is a variable, then 27 is already defined.
(T2) If fis an n-ary function symbol and t,...,t, are terms, then

[f(t,..)7 = fO9,...,t0).

107

(B1) If pis an n-ary extralogical predicate symbol and t1,...,1, are terms, then

toif (t,...,t9) € p?,
p(t1,...,tn)]° = foif (ti’,...,tf)Ep‘},
% otherwise

where p? = (p,p).

(B17) If s and ¢ are terms and AL includes the equality predicate then

(s=1) = {t if 5% =17,

[otherwise.

(B2) If z is a base formula then

t ifz?=f,
(_‘T)U = f if 27 = tv

u otherwise.

(F1) For every base formula z,

(T2 = {t if 27 =1,

[otherwise.

(F2) For every formula j3,

{t if g7 = f,

[otherwise.

(=8)°

(F3) For all formulas 8 and 7,
{ t ifB°=forvy? =t,

[otherwise.

(B—=7)°
(F4) For every formula 3 and variable z,

tif 87 = ¢ for every u € U,

[otherwise,

where U is the universe of o.

Clauses (B2) and (F1)-(F3) ensure that truth values are assigned to wffs according
to the conditions for a truth valuation (see Definition 4.3.1). Satisfaction and logical
consequence can therefore be defined in terms of the truth valuation in the normal way.

108

Appendix C

Details of the Logic LCT

This appendix provides the syntax and semantics of the logic LCT used in the multiple
agent collision avoidance example described in Chapter 2. LCT is adapted from the logic
TK which is described in [Sho88a, Sho88b]. We also provide an algorithm for generating
the known facts in the cmi models of projection theories.

C.1 Syntax of LCT

Let P be a set of primitive propositions, V' be a set of (temporal) variables, and R the
real numbers. We define an arithmetic term as follows:

1. If a € V U R then a is an arithmetic term.

2. If @y and ay are arithmetic terms then ay+a9 and ay—ay are arithmetic terms.
The well-formed formulas (wifs) of LCT can now be defined as follows:

1. If a1 and a9 are arithmetic terms then a; = a2 and a1 < a9 are wils.

2. If a; and ay are arithmetic terms and p € P then TRUE(aq, az,p) and TRUE(aq, az, —p)
are wifs.

3. If ¢ and @9 are wifs then so are ¢1—9, -7 and Oep.
4. If pis a wif and v € V, then Vvyp is a wif.

The connectives A, V and < and the existential quantifier 3 are defined in terms of
-, — and V in the usual way, and parentheses are used for clarity. < is defined by Gy =
—0-¢. For convenience we abbreviate TRUE(a, a,p) to TRUE(q, p) and TRUE(a,a, —p) to
TRUE(a,—p). We also abbreviate OTRUE(a1,az,p) to O(ay,as,p) with similar abbrevia-
tions for ~OTRUE(a, p), CTRUE(ay,as,p) and so on. We write TRUE(ay,az,[—]p) to mean
either a formula TRUE(ay, a3, p) or TRUE(ay,az, —p).

109

Kl,w = a1 =ay[VA] iff MR(a1) = MR(ay).
KIbw |= a1 <as[VA] iff MR(a;) < MR(ay).
KI,w = TRUE(ay,aqz,p)VA] iff
a; = azy[VA] and (w, MR(ay)) € M3(p)
or aq < az[VA] and for all ¢ st MR(a1) <t < MR(a3), {(w,t) € Ms(p)
or ag < ai[VA] and for all ¢ st MR(az) <t < MR(a1), (w,t) € Ma(p).
KI,w = TRUE(ay,az,—p)[VA] iff
a; = az[VA] and (w, MR(ay)) ¢ Ma(p)
or a1 < az[VA] and for all ¢ st MR(a1) <t < MR(ay), (w,t) ¢ Ms(p)
or ag < ai[VA] and for all ¢ st MR(az) <t < MR(a1), (w,t) & My(p).
KI,w = Op[VA] iff KI,w' |z ¢[VA] for all w’ € W.
KI,bw E (p1—=p)[VAl iff KI,w|= @y VA] or KI,w [£= @[VA].
Kl,w = (-@)[VA]iff KI,wlE @[VA].
KI,bw = (Yoo)VA] iff KI,w = ¢[VA'] for all VA’ that agree

with VA everywhere except possibly on v.

Figure C.1: Conditions under which LCT formulas are satisfied.

C.2 Semantics of LCT

Let 7" be an infinite linear series of time points which is dense and continuous (see [MF90c]).
A Kripke interpretation is a pair (W, M) where W is a (nonempty) universe of possible
worlds, and M = (My, M3) is a meaning function M; : ® — 1 and Mz : p — oW xT |

A variable assignment is a function VA : V. — R. If a is an arithmetic expression,
we define R(a)[VA] to be the result of substituting the variables in @ according to VA
and evaluating the expression according to standard arithmetic rules. We also define
MR(a) = My o R(a)[VA].

Figure C.1 lists the conditions under which a Kripke interpretation K1 and a world
w € W satisfy a wif ¢ under a variable assignment VA (written KT, w |= ¢ VA]).

Models are defined as for the logic TK. A Kripke interpretation K1 and a world w are
a model for a wif ¢ (written KI,w |= ¢) if KI,w [= ¢[VA] for all variable assignments
VA. If ¢ is a sentence and KI,w = @[VA] for some VA, then KI,w |= ¢. ¢, is a logical
consequence of ¢, (written ¢; = ¢,) if and only if ¢, is satisfied by all models of ;. A
Kripke interpretation K'I and a world w are a model for a theory V¥ if for each sentence
eV, Kl,wkE .

Note that, unlike TK, temporal assertions are homogeneous in the sense that
TRUE(l1,t4,p) = TRUE(lg,l3,p) for any t1,t2,13,t4 € R such that t; < 1; < #3 <
ty. Also our semantics allow both strong negation TRUE(Z1,%3,—p) and weak negation
“TRUE(?1, 12, p).

110

C.3 An Inference Algorithm for Projection Theories

The following algorithm generates the known facts in the cmi models of a projection theory.
The algorithm takes as arguments a list ' of known facts and S of projection rules and
the times {p and ., at which model generation will start and stop respectively. Note that
for any initial condition O(#',¢"”,[—]p) in F we require ty < t’'. x refers to a proposition p

or negated proposition —p, and —(—p) = p. The algorithm has been implemented in Lisp.
Algorithm C.3.1

procedure generate(F, 5, g,);
begin
Fo:=F; 7:=0;t_1:=t—1;
while ¢; # ¢, do
begin
if t; #1,_1 then ;41 := 1, else ;41 :=1};
thiy 1= 1loo; §' = 5; L := empty list of lists;
while S5’ is not empty do
begin
Remove the first sentence ¥ O II from S’, make a list A of the conjuncts
in the antecedent Y and a list C' of the conjuncts in the consequent II;
while A is not empty do
begin
Remove the first conjunct a from A;
if a is of the form O({—dy,t-ds,z) then
begin
if F; contains a fact O(¢', ", x) such that ¢’ <t; —dy < t; —dy < t” then
tiy1 = min(t]'+1,tj + dg,t” + dg); b:= true
else if F; contains a fact O(¢',¢”,) such that
< t;—dy <t; —dy = t" and t; # t;—1 then
tjt1 = t;; b:= true
else if F; contains a fact O(#',¢”, z) such that
diy —dy <t —t and t; —dy < t' then
tiy1 := min(tj41,t; + do, t' + dy); b := false
else 1,41 := min(t;41,t; + d3); b := false;
end;
if @ is of the form O(t-dy,1-d2,) then
begin
if F; contains a fact O(#',t", —z) such that ¢ < ¢; — dy and
tj—dy <t ort—d; =t—d; =1 then
tiyr = min(tj41,t; + d2, 1" + dy); b:= false
else if F; contains a fact O(¢, ", —2) such that
t; —dy =t and t; = t;_1 then
tjp1 = min(t]‘+1,t]‘ + dg,t” + dl); b := false
else if F; contains a fact O(¢',¢”, —x) such that ¢; — dy < ¢’ then

111

tig1 i= min(tj41,t; + da, t' + da); b = true
else t;41 := min(t;41,4; + d2); b := true;
end;
end;
if b = true then add C to L;
end;
while L is not empty do
begin
Remove the first list of conjuncts C from L;
while C is not empty do
begin
Remove the first conjunct O({+eq,t+e2,2) from C;
Append O(t;4e1, min(t;41+e2,t00),2) to Fj;
thyy = min(t’,), tj+er);
if F; contains O(4y,19,2) and O(l3, L4, @) such that ¢; <13 <ty
then remove these and replace with O(#1,15,2) where {5 = max(z,14);
if F; contains O(1y,%9,) and O(13,t4, —2) such that {1 <15 < 1y
then report “error: no model for F,5” and stop;
end;
end;
i = min(tipn, t44); Fipa = Fj; ji=J+ 15
end;
Report F}; contains the known facts in the cmi models;

end;

112

Bibliography

[AGMS85] Alchourron, C., Gardenfors, P. and Mackinson, D. Partial Meet Contraction

[All84]

[Bel91]

[BJSO]

[BM77]

[Bob8&4]

[BQQ83]

[Bre89]

[Bro83]

[Bro87]

[BTKS9]

[Bun83]

and Revision Functions. J. Symbolic Logic, 50 pp. 510-530, 1985.

Allen, J. F. Towards a General Theory of Action and Time. Artificial Intelli-
gence, 23 pp. 123-154, 1984.

Bell, J. Extended Causal Theories. Artificial Intelligence, 48 pp. 211-224,
1991.

Boolos, G. S. and Jeffrey, R. C. Computability and Logic. Cambridge University
Press, Cambridge, UK, second edition, 1980.

Bell, J. and Machover, M. A Course in Mathematical Logic. North Holland,
Amsterdam, The Netherlands, 1977.

Bobrow, D., editor. Qualitative Reasoning about Physical Systems. North Hol-
land, Amsterdam, The Netherlands, 1984. Also Artificial Intelligence: Special
Volume on Qualitative Reasoning about Physical Systems, 24, 1984.

Besnard, P., Quiniou, R. and Quinton, P. A Theorem Prover for a Decidable
Subset of Default Logic. In Proc. AAAI-83, pp. 27-30, Washington, USA, 1983.

Brewka, G. Preferred Subtheories: An Extended Logical Framework for Default
Reasoning. In Proc. IJCAI-89, pp. 1043-1048, Detroit, USA, 1989.

Brooks, R. Solving the Find-path Problem by Good Representation of Free
Space. IEEFE Transactions on Systems, Man, and Cybernetics, SMC-13
pp. 190-197, 1983.

Brown, F. M., editor. The Frame Problem in Artificial Intelligence: Proceedings
of the 1987 Workshop. Morgan Kaufmann, Los Altos, USA, 1987.

Bacchus, F., Tenenberg, J. and Koomen, J. A. A Non-Reified Temporal Logic.
In KR’89: Proc. 1st International Conference on Principles of Knowledge Rep-
resentation and Reasoning, pp. 2-10, Toronto, Canada, 1989. Morgan Kauf-
mann, San Mateo, USA.

Bundy, A. The Computer Modelling of Mathematical Reasoning. Academic
Press, London, UK, 1983.

113

[Cam89]

[CB84]

[CLT3]

[CM84]

[CooT2]

[Dor86]

[Doy79]

[EN69]

[Ern69]

[Eth87]

[FGI0]

[Fit88]

[FNT1]

[Fre9l]

[FS89]

Cameron, S. Efficient Intersection Tests for Objects Defined Constructively.
International Journal of Robotics Research, 8 pp. 3-25, 1989.

Cooke, D. and Bez, H. Computer Mathematics. Cambridge University Press,
Cambridge, UK, 1984.

Chang, C. L. and Lee, R. C. T. Symbolic Logic and Mechanical Theorem
Proving. Academic Press, New York, USA, 1973.

Clocksin, W. F. and Mellish, C. S. Programming in Prolog. Springer-Verlag,
Berlin, Germany, second edition, 1984.

Cooper, D. Theorem Proving in Arithmetic without Multiplication. In Meltzer,
B. and Michie, D., editors, Machine Intelligence 7, pp. 91-99. Edinburgh Uni-
versity Press, Edinburgh, UK, 1972.

Dorf, R. C. Modern Control Systems. Addison-Wesley, London, UK, fourth
edition, 1986.

Doyle, J. A Truth Maintenance System. Artificial Intelligence, 12 pp. 231-272,
1979.

Ernst, G. W. and Newell, A. GPS: A Case Study in Generality and Problem
Solving. Academic Press, London, UK, 1969.

Ernst, G. W. Sufficient Conditions for the Success of GPS. J. ACM, 16
pp- 517-533, 1969.

Etherington, D. W. Formalizing Nonmonotonic Reasoning Systems. Artificial
Intelligence, 31 pp. 41-85, 1987. FErrata: Artificial Intelligence, 34 p. 395,
1988.

Froidevaus, C. and Grossetéte, C. Graded Default Theories for Uncertainty.
In ECAI90: Proc. 9th European Conference on Artificial Intelligence, pp. 283—
288, Stockholm, Sweden, 1990. Pitman, London, UK.

Fitting, M. First Order Modal Tableaux. J. Automated Reasoning, 4 pp. 191-
213, 1988.

Fikes, R. and Nilsson, N. STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving. Artificial Intelligence, 2 pp. 189208,
1971.

Freedman, P. Time, Petri Nets, and Robotics. IEEF Transactions on Robotics
and Automation, 7 pp. 417-433, 1991.

Fujimura, K. and Samet, H. A Hierarchical Strategy for Path Planning Among
Moving Obstacles. IEEFE Transactions on Robotics and Automation, 5 pp. 61—
69, 1989.

114

[Gab90]

[Gab91]

[Gal9la]

[Gal91b]

[GJT9]

[GNST]

[Gre69a]

[Gre69b]

[HaaT78]

[HC68]

[HAMS91]

[Hey66]

[Hin62]

[HMS86]

[Kon88a]

Gabbay, D. Labelled Deductive Systems, Part I. Technical Report CIS-
Bericht-90-22, Centrum fir Informations- und Sprachverarbeitung, Universitat
Miinchen, Munich, Germany, 1990.

Gabbay, D. Abduction in Labelled Deductive Systems — A Conceptual Ab-
stract. In Kruse, R. and Siegel, P., editors, Symbolic and Quantitative Ap-

proaches to Uncertainty, pp. 3—11. Springer-Verlag, Berlin, Germany, 1991.
LNCS-548.

Galton, A. A Critique of Yoav Shoham’s Theory of Causal Reasoning. In Proc.
AAAI-91, Anaheim, USA, 1991.

Galton, A. Reified Temporal Theories and How To Unreify Them. In Proc.
LJCAI-91, Sydney, Australia, 1991.

Garey, M. and Johnson, D. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, New York, USA, 1979.

Genesereth, M. R. and Nilsson, N. J. Logical Foundations of Artificial Intelli-
gence. Morgan Kaufmann, Los Altos, CA, 1987.

Green, C. Application of Theorem Proving to Problem Solving. In Proc.
IJCAI-69, pp. 219-239, Washington, USA, 1969. (Also in Webber, B. L. and
Nilsson, N. J., editors, Readings in Artificial Intelligence, pp. 202-222. Tioga,
Palo Alto, USA, 1981.).

Green, C. Theorem-Proving by Resolution as a Basis for Question-Answering
Systems. In Meltzer, B. and Michie, D., editors, Machine Intelligence 4, pp.
183-205. Edinburgh University Press, Edinburgh, UK, 1969.

Haack, S. Philosophy of Logics. Cambridge University Press, Cambridge, UK,
1978.

Hughes, G. and Cresswell, M. An Introduction to Modal Logic. Methuen,
London, UK, 1968.

Homem de Mello, L. S. and Sanderson, A. C. Representations of Mechani-
cal Assembly Sequences. IFFEE Transactions on Robotics and Automation, 7
pp. 211227, 1991.

Heyting, A. Intuitionism. Springer-Verlag, Berlin, Germany, 1966.

Hintikka, J. Knowledge and Belief: An Introduction to the Logic of the Two
Notions. Cornell Universty Press, Ithaca, USA, 1962.

Hanks, S. and McDermott, D. Default Reasoning, Nonmonotonic Logics, and
the Frame Problem. In Proc. AAAI-86, pp. 328-333, Philadelphia, USA, 1986.

Konolige, K. Hierarchic Autoepistemic Theories for Nonmonotonic Reasoning.
In Proc. AAAI-88, pp. 439443, Saint Paul, USA, 1988.

115

[Kon88b]

[KowT79]

[Kri63]

[Lei87al

[Lei87D]

[Lif85]

[Lin87]

[LP83]

[Mac91a]

[Mac91b]

[McC63]

[McC80]

[McC86]

[McD82]

[MDS0]

Konolige, K. On the Relation Between Default Theories and Autoepistemic
Logic. Artificial Intelligence, 35 pp. 343-382, 1988. Errata: Artificial Intelli-
gence, 41 p. 115, 1989.

Kowalski, R. Logic for Problem Solving. Flsevier North Holland, New York,
USA, 1979.

Kripke, S. Semantical Considerations on Modal Logic. Acta Philosophica Fen-
nica, 16, 1963.

Leitch, R. R. editor. IFE Proceedings-D: Control Theory and Applications.
Special Issue on Artificial Intelligence, 134 pp. 217-300, 1987.

Leitch, R. R. Modelling of Complex Dynamic Systems. IFE Proceedings-D:
Control Theory and Applications, 134 pp. 245-250, 1987.

Lifschitz, V. Computing Circumscription. In Proc. IJCAI-85, pp. 121-127, Los
Angeles, USA, 1985.

Lin, F. Reasoning in the Presence of Inconsistency. In Proc. AAAI-87, pp.
139-143, Seattle, USA, 1987.

Lozano-Perez, T. Spatial Planning: A Configuration Space Approach. IFEE
Transactions on Computers, C-32 pp. 108-120, 1983.

MacNish, C. Hierarchical Default Logic. In Kruse, R. and Siegel, P., editors,
Symbolic and Quantitative Approaches to Uncertainty, pp. 246-253. Springer-
Verlag, Berlin, Germany, 1991. LNCS-548.

MacNish, C. Well-behaved Reasoning with Seminormal Defaults. In Proc. 4th
International Symposium on Al pp. 201-207, Cancin, Mexico, 1991.

McCarthy, J. Situations, Actions and Causal Laws. Memo 2, Artificial Intelli-
gence Project, Stanford University, Stanford, USA, 1963. (Reprinted in Minsky,
M., editor. Semantic Information Processing, pp. 410-418. MIT Press, Cam-
bridge, USA, 1968).

McCarthy, J. Circumscription—A Form of Non-Monotonic Reasoning. Artifi-
cial Intelligence, 13 pp. 27-39, 1980.

McCarthy, J. Applications of Circumscription to Formalising Common-Sense
Knowledge. Artificial Intelligence, 28 pp. 89-116, 1986.

McDermott, D. Non-Monotonic Logic II: Non-Monotonic Modal Theories. J.
ACM, 29 pp. 33-57, 1982.

McDermott, D. and Doyle, J. Non-Monotonic Logic 1. Artificial Intelligence,
13 pp. 41-72, 1980.

116

[MF90a]

[MF90b]

[MF90c]

[MH69]

[Min75]

[Moo85a]

[Moo85b]

[NG91]

[Nil82]

[NS72]

[Poo85]

[Qui76]

[Ray89]

MacNish, C. and Fallside, F. Asserted 3-valued Logic for Default Reasoning.
In AI’90: Proc. fth Australian Joint Conference on Artificial Intelligence, pp.
65-80, Perth, Australia, 1990. World Scientific Publishing, Singapore.

MacNish, C. and Fallside, F. Asserted 3-valued Logic for Default Reasoning
(Extended Version). Technical Report CUED/F-INFENG/TR.40, Cambridge
University Engineering Department, Cambridge, UK, 1990.

MacNish, C. and Fallside, F. Temporal Reasoning: A Solution for Multi-
ple Agent Collision Avoidance. In Proc. 1990 [EEE International Conference
on Robotics and Automation, pp. 494-499, Cincinnati, USA, 1990. (See also
Technical Report CUED/F-INFENG/TR.37, Cambridge University Engineer-
ing Department, Cambridge, UK, 1989.).

McCarthy, J. and Hayes, P. Some Philosophical Problems from the Standpoint
of Artificial Intelligence. In Meltzer, B. and Michie, D., editors, Machine Intelli-
gence 4, pp. 463-502. Edinburgh University Press, Edinburgh, UK, 1969. (Also
in Webber, B. L. and Nilsson, N. J., editors, Readings in Artificial Intelligence,
pp. 431-450. Tioga, Palo Alto, USA, 1981).

Minsky, M. A Framework for Representing Knowledge. In Winston, P. H.,
editor, The Psychology of Computer Vision, pp. 211-277. McGraw-Hill, New
York, USA, 1975.

Moore, R. C. A Formal Theory of Knowledge and Action. In Hobbs, J. and
Moore, R., editors, Formal Theories of the Commonsense World, pp. 319-358.
Ablex, Norwood, USA, 1985.

Moore, R. C. Semantical Considerations on Nonmonotonic Logic. Artificial
Intelligence, 25 pp. 75-94, 1985.

Nof, S. Y. and Grant, F. H. Adaptive/Predictive Scheduling: Review and a
General Framework. International Journal of Production Planning and Con-
trol, 2 pp. 298-312, 1991.

Nilsson, N. J. Principles of Artificial Intelligence. Springer-Verlag, Berlin,
Germany, 1982.

Newell, A. and Simon, H. A. Human Problem Solving. Prentice-Hall, Engle-
wood Cliffs, USA, 1972.

Poole, D. L. On the Comparison of Theories: Preferring the Most Specific
Explanation. In Proc. IJCAI-85, pp. 144-147, Los Angeles, USA, 1985.

Quine, W. V. Three Grades of Modal Involvement. In The Ways of Paradoz,
pp. 158-176. Harvard University Press, USA, 1976.

Rayner, M. Did Newton Solve the ‘Extended Prediction Problem’? In KR’89:
Proc. 1st International Conference on Principles of Knowledge Representation

117

[RBST]

[RCS1]

[Rei78]

[Rei80]

[Res69]

[Ric79]

[Rob65]

[RSBS5]

[RWST]

[SanT72]

[She84]

[Sho86]

[Sho88a]

[Sho88b]

and Reasoning, pp. 381-385, Toronto, Canada, 1989. Morgan Kaufmann, San
Mateo, USA.

Roach, J. W. and Boaz, M. N. Coordinating the Motions of Robot Arms
in a Common Workspace. IEFE Journal of Robotics and Automation, RA-3
pp- 437-444, 1987.

Reiter, R. and Criscuolo, G. On Interacting Defaults. In Proc. IJCAI-81, pp.
270276, 1981.

Reiter, R. On Closed World Data Bases. In Gallaire, H. and Minker, J., editors,
Logic and Data Bases, pp. 55—76. Plenum Press, New York, USA, 1978.

Reiter, R. A Logic for Default Reasoning. Artificial Intelligence, 13 pp. 81-132,
1980.

Rescher, N. Many-Valued Logic. McGraw-Hill, New York, USA, 1969.

Richards, R. J. An Introduction to Dynamics and Control. Longman, London,

UK, 1979.

Robinson, J. A. A Machine-Oriented Logic Based on the Resolution Principle.
J. ACM, 12 pp. 23-41, 1965.

Rhodes, D., Stenson, E. H. and Blanchfield, P. Collision Avoidance Between
Robots Operating in the Same Cell. In Billingsley, J., editor, Robots and Au-
tomated Manufacture, pp. 99-110. Peter Peregrinus, 1985.

Rueb, K. D. and Wong, A. K. C. Structuring Free Space as a Hypergraph for
Roving Robot Path Planning and Navigation. IEEE Transactions on Paltern
Analysis and Machine Intelligence, PAMI-9 pp. 263-273, 1987.

Sandewall, E. An Approach to the Frame Problem and its Implementation.
In Meltzer, B. and Michie, D., editors, Machine Intelligence 7, pp. 195-204.
Edinburgh University Press, Edinburgh, UK, 1972.

Shepherdson, J. C. Negation as Failure: A Comparison of Clark’s Completed
Data Base and Reiter’s Closed World Assumption. J. Logic Programming, 1
pp- 51-79, 1984.

Shoham, Y. Chronological Ignorance: Time, Nonmonotonicity, Necessity and
Causal Theories. In Proc. AAAI-86, pp. 389-393, 1986.

Shoham, Y. Chronological Ignorance: Experiments in Nonmonotonic Temporal
Reasoning. Artificial Intelligence, 36 pp. 279-331, 1988.

Shoham, Y. Reasoning About Change: Time and Causation from the Stand-
point of Artificial Intelligence. MIT Press, London, UK, 1988.

118

[Sim73]

[SM77]

[SMSS]

[THTS7]

[Tru91]

[Tur84]

[Wal77]

[Wal90]

[WE90]

[Zad75]

Simmons, R. F. Semantic Networks: Their Computation and Use for Under-
standing English Sentences. In Schank, R. and Colby, K., editors, Computer
Models of Thought and Language, pp. 63-113. Freeman, San Francisco, USA,
1973.

Stanat, D. F. and McAllister, D. F. Discrete Mathematics in Computer Science.
Prentice-Hall, Englewood Cliffs, USA, 1977.

Shoham, Y. and McDermott, D. Problems in Formal Temporal Reasoning.
Artificial Intelligence, 36 pp. 49-61, 1988.

Touretzky, D. S., Horty, J. F. and Thomason, R. H. A Clash of Intuitions:
The Current State of Nonmonotonic Multiple Inheritance Systems. In Proc.
LJCAIL-87, pp. 476-482, Milan, Italy, 1987.

Trudel, A. The Interval Representation Problem. International Journal of
Intelligent Systems, 6 pp. 509-547, 1991.

Turner, R. Logics for Artificial Intelligence. Ellis Horwood, Chichester, UK,
1984.

Waldinger, R. Achieving Several Goals Simultaneously. In Elcock, E. W. and
Michie, D., editors, Machine Intelligence 8, pp. 94-136. Edinburgh University
Press, Edinburgh, UK, 1977.

Wallen, L. A. Automated Proof Search in Non-classical Logics: Efficient Matriz
Proof Methods for Modal and Intuitionistic Logics. MIT Press, Boston, USA,
1990.

Williams, M. A. and Foo, N. Y. Default Theory Extensions as Justified Belief
Sets. In AI’90: Proc. jth Australian Joint Conference on Artificial Intelligence,
pp- 94-102, Perth, Australia, 1990. World Scientific Publishing, Singapore.

Zadeh, L. A. Fuzzy Logic and Approximate Reasoning. Synthese, 30 pp. 407-
428, 1975.

119

