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ABSTRACT

A language model based on word-category n-grams and am-
biguous category membership with n increased selectively
to trade compactness for performance is presented. The use
of categories leads intrinsically to a compact model with the
ability to generalise to unseen word sequences, and dimin-
ishes the spareseness of the training data, thereby making
larger n feasible. The language model implicitly involves a
statistical tagging operation, which may be used explicitly
to assign category assigments to untagged text. Experi-
ments on the LOB corpus show the optimal model-building
strategy to yield improved results with respect to conven-
tional n-gram methods, and when used as a tagger, the
model is seen to perform well in relation to a standard
benchmark.

1. INTRODUCTION

Word-category based n-grams are a generalisation of their
word-based counterparts, being based on category as op-
posed to word n-tuples. This allows intrinsic generalisation
to unseen word sequences, and the smaller number of pa-
rameters reduces training-set sparseness. Furthermore, the
latter makes larger n feasible both from a statistical as well
as a storage viewpoint, a factor which has been seen to have
a marked impact on language model quality [1], [8].

A language model based on category n-grams and am-
biguous category membership with n increased selectively
to trade compactness for performance has been developed.
A consequence of the stochastic category-membership is
that it allows the model to be employed as a statistical tag-
ger, which is valuable when processing untagged corpora.

2. LANGUAGE MODEL STRUCTURE

Denote a sequence of N temporally consecutive events by
z(0, N—1) = {2(0),2(1),...,2(N—1)}, and let subscripts
identify individual members thereof, so that an alphabet of
size K implies z(1) € {20,21,...,2K-1}. Denote sequences
of words by the symbol w and word categories by v. Now
let the word-category relationship be described by

v; = G (w;) j€{0,1,..., Ny —1} (1)

where Ny is the number of different word categories. Let
each word history w(0, b) be classified into particular equiv-
alence class s; defined to be an n-gram of categories:

si=Sw(0,8) = {v(@ va+1), - vd)} (2

where i € {0,1,-++, Npne — 1}, v (i) € G(w (7)), 0 < a < b,
and Np. is the number of history equivalence classes. Since
a word may belong to several categories, both G and S are
in general one-to-many, and w(a,b) may map to multiple
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history equivalence classes. Assuming P (w(i)) to be wholly
determined by v (1) :

P (w(i)[w(0,i 1)) =) P (w(i)|v)-P (v|w(0i-1)) (3)

VvivE€G(w(i))

Assuming furthermore that the probability of witness-
ing v(z) depends only on the category n-gram context, the
right-hand side of (3) may be decomposed further:

P(olw (0i-1)) =3 P(v]s)-P(sw (0,i = 1))  (4)

Vs:s€S(w(0,i—1))

The subsequent three sections treat the estimation of
each component probability in (3) and (4) individually.

2.1. Estimating P (vj|sn)

For compact storage of category n-grams , we employ a
tree data-structure associating each node with a particular
word category, so that paths originating at the root
correspond to category n-grams. From definition (2)
this implies that each node represents a distinct history
equivalence class’ s,,, and therefore has associated with
it a conditional probability density function P(v|s,,). By
not restricting the length of the individual paths through
the tree, contexts of arbitrary depth are catered for. For
example, in the following figure ss corresponds to the
trigram context v(1—2,1—1) = {v2, vs}.
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Figure 1: Illustration of a language model tree

I The set of all nodes therefore constitutes the set of all pos-
sible equivalence classes.
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The probabilities P(v|s,,) are estimated by application
of Katz’s back-off [5] in conjunction with nonlinear dis-
counting [6]. Model building proceeds via the following
level-by-level tree growing strategy which retains only con-
texts that improve a language model quality criterion, and
thus allows model compactness to be maintained while em-
ploying longer n-grams where they benefit performance [7].

1. Initialisation: L = —1
2. L=L+1
3. Grow : Add level #L to level #(L — 1) by adding

all the (L + 1)-grams occurring in the training set for
which the L-grams already exist in the tree.

4. Prune : For every (newly created) leaf in level #L,
apply a quality criterion, and discard the leaf if it
fails.

5. Termination : If there are a nonzero number of
leaves remaining in level #L, goto step 2.

The quality criterion checks for an improvement in the
leaving-one-out [2] cross-validation® training set likelihood
by the addition of each leaf. In particular, the training set
likelihood may be written as a sum of contributions of all
the nodes in the tree:

Np—1

Z LL: (5)

LLeum Qtot

where
N’U v

LLim =Y N., (ve) -log (P (vklsn, 7)) (6)
k=0

and where N, is the number of nodes in the tree, LLcum
the log probability of the training corpus Q°°, LL:z,, the
log probability associated with all events occurring in sy,
N, (vr) the number of times vy was seen in s, in Q% Ny,
the number of different categories, and P(Uk|sn, QkRT) the
probability of vx occurring in s, based on the retained part
of the training set Q7 formed when vy, is the heldout part.
Taking ALL{z,, to denote the change in LLcum caused by
the addition of the leaf, the pruning criterion is:

ALLZm > =X+ LLeum () (7)

This requires the addition of the new node to lead to
a likelihood increase of at least a threshold defined as a
fraction of the total likelihood, so as to make the choice of
the threshold fairly problem independent.

P (vj|sm) may be used to calculate a perplexity indicat-
ing the confidence with which the tree predicts the following
category. This is later used in language model evaluation,
and will be referred to as the category perplexity.

2.2. Estimating P(w;|v;)
Assume each category has a sufficiently large member-
ship to allow application of the relative frequency estimate:

N (wilv;)

P('wih}f) = N(Uj) (8)

2Employed to avoid overfitting of the training data.

Since the language model must hypothesise categories
for out-of-vocabulary (OOV) words, the probability with
which these occur within each category must be estimated.
Accordingly an entry “UW?” is added to each category, and
its count Ny estimated by leaving-one-out [7] :

N1 (vy)

P(UW|v;) = N o

(9)
and

P (UW]v;) - N (vy)

Now (0 = 525 @)

(10)

where ]Vl(Uj) is the number of words seen exactly once in
both v; and the training set, N(v;) the total number in vy,
Nuw (U]‘) is the corresponding estimated count for UW in
v;, and n > 0 a small constant introduced heuristically to
ensure that the denominator of (9) is always less than one.
Its effect is significant only for categories with small N(v;)
(sparsely trained). The effect of  on performance was seen
empirically to be weak, and n & 5...10 yields satisfactory
results for the LOB corpus [7].

2.3. Estimating P (sp,|w (0,7 — 1))

The set of contexts to which a particular word history
w(0,i—1) may belong as well as the probabilities associ-
ated with each may be calculated by means of a recursive
approach. First define:

v;wp (0,b) :
categories (termed a hypothesis hereafter).

$m = Firee (Vv (0,b)) : The history equivalence class corre-
sponding to the deepest match of v(0,b) within the
n-gram tree.

: The number of hypotheses for w(0,b).

A possible classification of w(0,b) into word

Niro,0)

Given expressions for P( hyp(O z)|w(0,z’))7 the desired
probability of the history equivalence class may be found:

P (sm|w(0,0)) =Y P(v]*"(0,i) | w(0,4))  (11)

V5 Firee (v;?“’(o,i)) =Sm

Explicit maintenance of hypotheses (as opposed to his-
tory equivalence classes) is necessary due to the varying
lengths of the n-grams.

Given a set of existing hypotheses {V?W(O7 i—1)}, the
set of new hypotheses is {Vhyp(O i—1), v} for all (j,%) such
that y = {0,1,..., Ng(,i—yy—1}and k = {0,1,..., Ny»—1}
where Ny, 1s the number of different POS categories. Con-
{v;”’p (0,7 —
1), vx}, the prime over the index mdlcatmg that there is in
general no fixed relation between the ordering of the two

sets of hypotheses. Recalling the assumptions for equation
(3) it follows that

P (w(0,i) | vI¥P(0,4)) = HP | 0h¥P (k)
= P(w(i) [0} (1)) - P (w (Oz— ) | V)P (0, z—1)) (12)

and, from the n-gram model structure,

sider now the particular postulate Vhyp(O 1) =



P(v"7(0,1)) = [] P ("7 (B)| Feree (v27 (0, k=1)))

= P(v "yp( ) | Ft( ¥P(0,i—1)))-P (v ’Wp(o i—1)) (13)

where v

Ftree (
P( hyp (0, —1)) = 1. From (12) and (13) it follows using
Bayes rule that

YP (0, —1) is the single initial null hypothesis and

P (o, —1)) the associated unigram context, so that

(0,9)) = P (w (1) |[0)* (1))
. p( hyp( )|Ftree( hyp( 71'_1)))
- P(w(0,i—1),vi?"(0,i—1)) (14)

P (w (0,2),v¥?

At instant 2, the most likely postulate is that for which
P(vjhyp(O, i) |w (0, z)) is a maximum. Since Np,i) be-
comes extremely large as 1 increases, it is in practice neces-
sary to restrict storage to the N7** most likely candidates.
Letting vIY?(0, 1) refer to the g, most likely hypothesis,

P( (0,1), vI¥?(0,1))

St Pw (0,0) V5 7(0,4))

P(vI'¥7(0,i)|w(0,i)) = (15)

The summation in the denominator over only N
hypotheses effectively proportionally distributes the prob-
ability mass associated with the discarded hypotheses over
those retained, thereby ensuring that

max
NH

> P (v (0,i) [w(0,4)) =1 (16)

¢=0

as demanded by the language model (4). Since the denomi-
nator of (15) is common to all new hypotheses, the choice of
the N7%* best candidates may be made by considering the
joint probabilities given by (14) rather than the conditional
probabilities given by (15).

This procedure maintains a fixed maximum number
of hypotheses, a significant number of which often have
very low associated probabilities. When computational ef-
ficiency is an important issue®, these may be discarded by
means of a beam pruning meachanism [7].

2.4. Statistical tagging

Since the language model maintains a set of
hypotheses for the input text string for which
P(v(0,N—1)|w(0, N—1)) is highest, it implicitly main-
tains a set of the most probable category assignments
for each word in w(0, N—1). When the categories are
part-of-speech (POS) classifications, this allows statistical
tagging of unlabelled text.

3When tagging large quantities of text, for example.

3. EXPERIMENTAL RESULTS

3.1. Building n-gram trees (LOB corpus)

Employing the method of section 2.1, n-gram language
model trees with categories corresponding to POS word
classes were constructed for various pruning thresholds, A,
using 95% of the LOB corpus [4], the remaining 5% form-
ing the test-set. Tree complexities® and category perplex-
ities are shown in figure 2, each point being labelled with
the corresponding threshold value. In addition, perplexi-
ties obtained when pruning by simply thresholding the to-
tal number of occurrences of an event in the training-set are
shown for various choices of this threshold (termed a count
threshold, “CT”). This technique is commonly employed in
making n-gram models more compact.
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Figure 2: Language models for the LOB corpus

Figure 2 shows that, as the model complexity increases,
the test-set perplexity moves through a minimum. The ini-
tial decrease is due to underfitting, and the subsequent in-
crease to overfitting of the data. Overfitting does occur,
since leaving-one-out cross-validation models the test-set
only approximately, but has been reduced significantly in
comparison with the use of the count-thresholds. The opti-
mal model (A = 5¢ — 6) has a significantly lower perplexity
than a tree of comparable size obtained by count-threshold
pruning.

3.2. Word-perplexities (LOB corpus)

Three trees were constructed using A = 5e — 6, and used
in the language model of section 2. The first two are bi-
gram and trigram structures, obtained by stopping growth
beyond levels 1 and 2 respectively. The third, obtained by
allowing the tree-growing algorithm to execute to comple-
tion, is referred to here as a varigram. Table 1 shows word
perplexities obtained for each model for various Nz“*.

The word perplexities decrease monotonically as N **
increases, demonstrating that the history equivalence class

4The total number of parameters in the tree has been taken
as a measure of its complexity.



[ g [0 |2 [ 4 | w0 |

Bigram 671.3 | 610.2 | 604.1 | 603.2

Trigram 634.7 | 555.2 | 545.2 | 544.1

Varigram | 629.3 | 548.9 | 536.7 | 534.1

Table 1: Word perplexities for the LOB corpus

ambiguity has a significant effect on language model per-
formance. The results indicate that Nz7** ~ 5...10 yields
near-optimal results. Furthermore, the longer contexts of
the varigram lead to a drop in perplexity with respect to
the bigram and trigram structures.

A word-based trigram language model for the same cor-
pus achieves a perplexity of 474 but contains 986,892 pa-
rameters. Thus a 11.3% decrease in perplexity is accompa-
nied by an almost 22-fold increase in complexity.

3.3. Tagging accuracies

The varigram language model trained on the LOB
training-set was used to tag the test-set. Since the tag-
ging accuracy for OOV words is significantly lower than
for words within the vocabulary, the effect of augmenting
the lexicon with words from additional sources was inves-
tigated. These sources consisted of (1) the Oxford Ad-
vanced Learner’s Dictionary (available electronically), (2)
5000 frequent names and surnames, and (3) OOV genitive
forms of words whose baseforms were already in the vocab-
ulary. In effect, the existing category n-grams were called
on to generalise to the new words. This is not possible with
word-based n-grams, for which new statistics must be gath-
ered for each new entry. Table 2 shows tagging accuracies
(TA) for the varigram (VG) model with augmented (A) and
unaugmented (UA) lexica. Corresponding figures (i.e. em-
ploying the same training- and test-set) for the ACQUILEX
(AQLX) tagger [3] are provided as a benchmark.

The performance of both taggers is similar, but the vari-
gram exhibits an overall improvement as well as a consider-
able reduction in tagging errors for OOV words. These dif-
ferences are attributed to both the longer n-gram contexts,
as well as the method used to calculate unknown word prob-
abilities. Lexicon augmentation more than halves the OOV
rate, and improves the overall tagging accuracy.

AQLX | VG (UA) | VG (A)
% OOV words 2.51 2.51 1.05
TA (overall) 94.03 95.13 95.82
TA (non-OOV) 95.77 96.31 96.26
TA (OOV words) | 31.17 49.30 54.55

Table 2: LOB corpus % tagging accuracies

3.4. Word-perplexities (Switchboard corpus)

The Switchboard corpus consists of 1,860,178 words of
recorded telephone speech, and has been the focus of some
recent research into conversational speech recognition. A
varigram language model was constructed for this corpus
using a pruning threshold of 5e-6 and a 22,643 word vocab-
ulary closed with respect to the test-set. Since the corpus

is not annotated with part-of-speech information, it was
tagged using the varigram built on the LOB corpus with
the augmented lexicon as described in the previous section.
Table 3 shows the performance of the resulting varigram
as well as baseline word-based bigram and trigram mod-
els for the Switchboard dev-test set (10,179 words and 1192
sentences). When compared with the trigram, the varigram
achieves a 49% higher perplexity but contains 4.5% as many
parameters. The lower perplexities and larger difference in
performance between the word and category models when
compared with section 3.2 may be ascribed to the greater
homogeneity (in style and topic) of the Switchboard corpus,
as well a the larger amount of training data.

Word bigram | Word trigram | Varigram
Parameters 305,605 1,201,176 54,547
Perplexity 108.57 92.94 138.53

Table 3: Word perplexities for the Switchboard corpus

4. CONCLUSION

A category-based language model capable of doubling as a
statistical tagger and employing n-grams of varying lengths
has been described. A model-building procedure optimis-
ing compactness with respect to performance has been pre-
sented, and experiments using the LOB corpus show lan-
guage models constructed in this way to outperform con-
ventional n-gram approaches. The model is most effective
when dealing with corpora that are sparse due to small size
or heterogeneous composition, since then the intrinsic abil-
ity to generalise to unseen word sequences is of maximum
benefit.

5. REFERENCES

[1] Bahl, L; Brown, P; de Souza, P; Mercer, R. A tree-
based statistical language model for natural language
speech recognition, IEEE Trans. ASSP, vol. 37, no. 7,
July 1989.

[2] Duda, R., Hart, P. ; Pattern classification and scene
analysis; Wiley, New York, 1973.

[3] Elworthy, D. Tagger suite user’s manual, May 1993.

[4] Johansson, S; Atwell, R; Garside, R; Leech, G. The
tagged LOB corpus user’s manual; Norwegian Com-
puting Centre for the Humanities, Bergen, 1986.

[5] Katz, S. Estimation of probabilities from sparse data
for the language model component of a speech recog-
niser; IEEE Trans. ASSP, vol. 35, no. 3, March 1987,
pp. 400 - 401.

[6] Ney, H; Essen, U; Kneser, R; On structuring proba-
bilistic dependencies in stochastic language modelling,
Computer Speech and Language, vol. 8, pp. 1-38, 1994.

[7] Niesler, T.R; Woodland, P.C. Variable-length category-
based n-grams for language modelling, Tech. report
CUED/F-INFENG/TR.215, Dept. Engineering, Uni-
versity of Cambridge, U.K., April 1995.

[8] Shannon, C.E. Communication theory : exposition of
fundamentals, IRE Trans. Inf. Th., no. 1, Feb. 1950.



