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A new technique for modelling word occurrence correlations within a word-category based language

model is presented. Empirical observations indicate that the conditional probability of a word given

its category, rather than maintaining the constant value normally assumed, exhibits an exponential

decay towards a constant as a function of an appropriately defined measure of separation between

the correlated words. Consequently a functional dependence of the probability upon this separation

is postulated, and methods for determining both the related word pairs as well as the function pa-

rameters are developed. Experiments using the LOB, Switchboard and Wall Street Journal corpora

indicate that this formulation captures the transient nature of the conditional probability effectively,

and leads to reductions in perplexity of between 8 and 22%, where the largest improvements are

delivered by correlations of words with themselves (self-triggers), and the reductions increase with

the size of the training corpus.
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1. INTRODUCTION

Language models based on n-grams of word-categories are intrinsically more compact than their word-based counterparts, and
are truly able to generalise to unseen word sequences [4]. However their inability to model relationships between particular
words limits their performance and prevents them from exploiting large training sets.

The category-based models in question employ variable-length word-category n-grams1 [4], and in this work the categories
correspond to part-of-speech classifications as defined in the LOB corpus [1]. Words may belong to multiple categories, and
consequently the model bases its probability estimates on a set of possible classifications of the word history into category
sequences. Each such classification has an associated probability, and is updated recursively for each successive word in a
sentence during operation of the model. An underlying assumption is that the probability of a word depends only upon the
category to which it belongs, and therefore its occurrence is equally likely at any point in a corpus at which this category
occurs. Factors such as the topic and style of the text cause certain words to occur in groups, however, thereby violating this
assumption. This report presents a technique by means of which this is taken into account by explicit modelling of the transient
nature displayed by the probabilities of correlated words as a function of the separation between them.

2. TERMINOLOGY

Let 3 4�5�6 and 7 4�5�6 denote the
5�8�9

word in the corpus and its category respectively, while 3;: and 7=< denote a particular word
and category from the lexicon2, where >@?BADCEC�C�FHGJILK and MN?BADC�C�C�FHOHIPK , 4 3 :�Q 7=< 6 is a valid word-category pair from
the lexicon, and F G and F O are the number of different words and categories respectively. Let FSR 4 32: 6 and FTR 4 7U< 6 denote the
total number of times 3V: and 7U< respectively occur in the corpus.

Now consider the effect which the occurrence of a trigger word
4 3 8(W�XZY Q 7 8(W�X[Y 6 has on the subsequent probability of occurrence

of a target word
4 3 8�\EW	Y Q 7 8�\EW	Y 6 . Refer to the sequence consisting of all trigger occurrences as well as all words belonging

to the target category as the trigger-target stream, and denote it by ] 4 3 8(W�X[Y Q 7 8�\EW	Y 6 . Let the total number of words in the
stream ] 4 3 8(W�X[Y Q 7 8�\EW	Y 6 be FH^ , and the number of occurrences of the trigger and target words respectively be F_^ 4 3 8(W�XZY 6 andF ^ 4 3 8$\EW	Y 6 . It will be assumed henceforth that the stream has been taken from the training corpus, and under this condition we
note that FH^ 4 3 8(W�X[Y 6a` F R 4 3 8(W�XZY 6 and FS^ 4 3 8�\EW	Y 6a` F R 4 3 8�\EW	Y 6 . Furthermore:

FH^ `cb F R 4 7 8�\EW	Y 6 if 7 8(W�XZY ` 7 8�\EW	YFTR 4 7 8�\EW	Y 6ed FTR 4 3 8�W�XZY 6 otherwise (1)

Now the overall probability of occurrence respectively of the trigger and target within ] 4 3 8�W�XZY Q 7 8�\EW	Y 6 are given by:

f ^ 4 3 8(W�XZY 6a` FH^ 4 3 8(W�XZY 6FH^ (2)

and

f ^ 4 3 8�\�W�Y 6a` FH^ 4 3 8�\EW	Y 6FH^ (3)

but since

f 4 3 8�\�W�Y�g 7 8�\EW	Y 6h` F R 4 3 8�\EW	Y 6F R 4 7 8�\EW	Y 6
we see that the stream and category-conditional word probabilities are related by:

f 4 3 8�\�W�Y�g 7 8�\EW	Y 6.`Pi ^;j f ^ 4 3 8�\�W�Y 6 (4)

with

i ^ ` F ^FTR 4 7 8�\�W�Y 6 (5)

1Referred to as “varigram” models hereafter
2The possible category assignments for each word in the vocabulary.
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Define the distance

�
between a trigger-target pair to be the number of times that a word belonging to category 7 8�\EW	Y is seen

after witnessing the trigger and before the first sighting of the target itself, so that
� ?�� A Q K Q���Q���Q C�C�C Q
	�� is the separating

distance in the trigger-target stream. This definition of distance has been employed as a way of minimising syntactic effects on
word co-occurrences, notably the phenomenon that certain categories very rarely follow certain others. Syntactic effects should
be reduced as much as possible since they are already modelled by the category 
 -gram component of the language model.

In the following a distinction will be drawn between the case where trigger and target are the same word (termed self-triggers)
and the case where they differ (referred to as trigger-target pairs).

Word-pairs have been combined with word n-gram language models both within a maximum-entropy framework [5] and by
linear interpolation [3]. The development here differs by taking explicit account of the distance between word occurrences, and
by taking specific advantage of the category-based model.

3. PROBABILISTIC FRAMEWORK

Let the assumption that the probability of a word 3 4�5�6 depends only upon 7 4�5�6 be referred to as the independence assumption.
Empirical investigation of the category-conditional probability f 4 3;: g 7=< 6 as a function of the distance

�
reveals an exponential

decay towards a constant for words between which a recency relationship exists. Figure 1 illustrates this for the case where the
trigger is the titular noun “president” and the target the proper noun “congress”. 3
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Figure 1: Measured ��������� ���������
This transient behaviour displayed in this graph is typical, and has motivated the following postulated form of the category-
conditional probability:

�� "!$#�%'&�(*) +�#,%'&�(�-/.10�2�3547698:4<;>=@?BA'C D (6)

which is an exponential decay towards a constant probability 3�4 in which 8:4 and E define the strength and rate of decay
respectively. The stream-probability is found by scaling according to equation (4) :�1FG "! #�%>&H( -H.10I2�35J5698K;'=@?LA�C D (7)

with 3I4M2ON F ;@35J and 8:4P2ON F ;Q8 . Assuming that the triggers occur independently in the stream with probability 3�%R2�1FQ "! #S&HTU( 0 , it follows that the probability mass function �5 ".10 for the target occurrence after sighting the trigger is given by :

�1FG ".10I2WVX; Y D�?5Z[ T,\^]<_
`:a 3 % a 3 J a 87;b= ?LA�C Tdc�e ; _ 3 J 6f87;g= ?BA'C D c (8)

3Data is drawn from the WSJ0 corpus (refer to section 5).
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The normalising constant � accounts for the probability mass associated with cases in which a trigger follows another trigger
before sighting the target.

The empirical estimates of figure 1 have been obtained by binning counts over the graphed distance range. However, from a
storage point of view the potentially extremely large number of word-pair relations make this approach infeasible for large-scale
application, and hence it is not possible to obtain the parameters of equation (7) from a direct fit to the data. The estimation of���

and then of � and � is treated in the following two sections.

3.1. Estimating � �
The probability

� �
may be estimated from the tail of the distribution, where the transient effect of the exponential term in

(7) is assumed to be insignificant. Were the trigger and target to occur independently, their separating distance would have a
geometric distribution, and we use its mean � Y as a rough estimate of the actual mean :

� Y ` F ^ I F ^ 4 3 8(W�X[Y 6 I F ^ 4 3 8�\EW	Y 6F ^ 4 3 8(W�X[Y 6!d F ^ 4 3 8�\EW	Y 6
���

is estimated using counts of all trigger-pair occurrences with distances beyond this mean, i.e.:

��� ` FH^ 4 3 8(W�XZY 6 g 	�

���F ^ 4 7 8(W�X[Y 6 g 	�

� � (9)

where the numerator and denominator on the right hand side are the respective number of times the target word 3 8�\EW	Y and the
target category 7 8�\EW	Y have been seen at distances exceeding � Y in the trigger-target stream.

3.2. Estimating � and �
Expressions allowing the determination of � and � from the mean and mean-square distances separating trigger and target have
been derived. Since mean and mean-square calculation requires little storage, this represents a memory-efficient alternative to
a direct fit of the conditional probability function (6) to measured binned data. In order to obtain closed-form expressions for
the mean and mean-square, the exact distribution was approximated by one of the form:

�f 4 � 6h` � j ����� j 4 K�I � � 6 	 j � � d ��� j 4 K I � � 6 	 j � ��� (10)

where

� 4 ��� d ��� 6h` K (11)

The following equations relate the parameters of the exact and approximate distributions, details of their derivation are shown
in appendix A.

� `�� � �!#" �%$�&'�%$�(�)+* !#" �-, �/. ) (12)

� � ` � \ d � �
(13)

��� ` � � j �� \ d �0� (14)

� � ` �0� d �
I ��� j � ���� (15)

� � ` K*I 4 K�I � � 6 j � � .�* 1 23$�(�4 ��56* 7 8 !:9 );� ��<$�(=4 ���%$�(�* 9
�

(16)
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The values of

� \
and

�0�
are known, and in order to solve for

� �
,
��� � and � from the above equations, the measured mean

�
and

mean-square
���

distance of the distribution are employed. However, when estimated from data these quantities have been found
to be particularly sensitive to outliers, in particular trigger and target words separated by large quantities of text and occurring
in unrelated parts of the training corpus. Robustness is significantly improved by measuring the mean and mean-square within
only a predetermined range of distances,

� ? � A j�j�j F�� I K � . Expressions for the mean-and mean-square expected for such
truncated measurements under the independence assumption have been derived in appendix B. Since equation (10) is the
superposition of two geometric terms, we may employ the results of this appendix and express the truncated mean

� 4 F�� 6 and
mean-square

� � 4 F � 6 as a linear combination of the corresponding terms for truncated geometric distributions:

� 4 F�� 6a` � j � ��� j � 4 � � Q F	� 6!d ��� j � 4 � � Q F	� 6�
 (17)

and� � 4 F�� 6a` � j � ��� j
� 4 � � Q F	� 6!d ��� j
� 4 � � Q F	� 6�
 (18)

Equations (11), (12), (13), (14), (15), (16), (17) and (18) relate
� \

,
�0�

, � and � to
���

,
���

, � ,
� 4 F	� 6 and

� � 4 F	� 6 , and may be
used to determine � and � given the measured values

� \
,
�0�

,
� 4 F	� 6 and

��� 4 F	� 6 . This is accomplished numerically by means
of nested bisection searches, since it is not possible to find a closed-form solution to this system of equations.

3.3. Typical estimates

Figure 2 repeats the curves of figure 1, and adds the plot of equation (6) using the parameters
� �

, � and � determined from the
results of sections 3.1 and 3.2. The estimated conditional probability reflects the true nature of the data much more closely than
the constant value used under the independence assumption.
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4. DETERMINING TRIGGER-TARGET PAIRS

While the number of possible self-triggers is bounded by the vocabulary size, the number of potential trigger-target pairs equals
the the square of this number, and it is not possible to consider these relations exhaustively except for very small vocabularies.
In order to identify suitable candidates in a feasible manner, an approach employing two passes through the training corpus has
been developed.

4.1. First-pass

This first stage of processing provides each word in the lexicon that is to be considered as a potential target with a tentative-
list and a fixed-list for trigger candidates. The latter holds words for which a reliable correlation with the target has been
established, while the former lists those for which no decision could yet been reached regarding the presence or absence of such
relationship, and includes storage for the cumulative totals required for distance-mean and -variance calculation. At a given
point within the corpus, let the trigger-target pair have been seen F�� times at separations � � � Q � � Q C�C�C Q �����	� � � , each falling
within the chosen truncation interval F � , i.e.� <�
PF	�
� M
? � A Q K Q C�C�C Q F��PI K �
so that the measured truncated mean is given by:

����� \ ^ ` KF�� j
���	� ��
<�� � � <

and the measured variance by:

� ���� \ ^ ` KF��PI K j
� � � ��
<�� � 4 � < I � ��� \ ^ 6 �

Finally, assuming that the trigger and target are not correlated but occur independently, we find from appendix B that the
expected value of the truncated mean is given by:

������� ` 4 K*I � 8�8 6 j � K dL4 K I � 8�8 6 ����� � �Z4 F � I K 6 j 4 K�I � 8(8 6 I F � 
 �� 8�8 j�� K�I 4 K�I � 8(8 6 �����

where
� 8(8 ` � ^ 4 3 8(W�XZY 6ed � ^ 4 3 8�\EW	Y 6 is the probability of occurrence of either trigger or target calculated uniformly over the

stream. Truncated mean- and variance-measurements are once again used to reduce sensitivity to outliers. The statistics for
members of the tentative list are updated on sighting the associated target during the sequential processing of the corpus, and
after each such update two hypothesis tests, termed the fix- and kill-tests respectively, are used to decide upon the strength
of the correlation. Since both the mean and the variance are measured from the data, and since empirical observations of the
samples

� < have shown them to posses approximately normal distributions, the t-test has been employed for this purpose as
follows:

 The kill-test.
When the measured mean ����� \ ^ is found to exceed the expected mean ������� by a specified margin !E< X#"$" and to a
confidence of

4 KHI&% < X#"$" 6 KEA A(' , the kill-test succeeds and the trigger candidate is deleted from the tentative list. In
particular, let:

� < X#"$" ` � ����� j 4 K d ! < X)"$" 6
The critical value � 8 of the mean is

� 8 ` � �*� \ ^DI,+ 4 % < X#"$" Q F � I K 6 j � ��� \ ^- F��
where + 4 %h< X#"$" Q F�� I K 6 is the value obtained from the t-distribution for confidence

4 K I.%2< X)"$")6 K�A=A(' and F�� I K degrees
of freedom. The kill-test succeeds when � 8*/ �e< X)"$" , and the following figure illustrates these conditions.
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Figure 3: Kill test.

 The fix-test
When the expected mean � ����� is found to exceed the measured mean � ��� \ ^ by a specified margin !�� X � and to a
confidence of

4 K*I,% � X � 6 KEA A(' , the fix-test succeeds and the trigger candidate is moved from the tentative- to the fixed-
list.

� � X � ` ������� j 4 K*I,! � X � 6
The critical value � 8 of the mean is

� 8 ` ���*� \ ^ d + 4 % � X � Q F��PI K 6 j � ��� \ ^- F��
where + 4 % � X � Q F��@I K 6 is the value obtained from the t-distribution for confidence

4 KeI.% � X � 6 KEA A(' and F�� I K degrees
of freedom. The kill-test succeeds when � 8 
 � � X � , and the following figure illustrates these conditions.

µmeas µt µfix
µexp

Fix because µ < µ

margin

fixt

Confidence
margin

Fix

µmeas µtµfix
µexp

Fix
margin

>

Confidence
margin

µ µfixtDon’t fix because 

Figure 4: Fix test.

This mechanism allows unpromising candidates to be pruned continually from the tentative list, thereby counteracting the
explosion in the number of considered word-pairs that would otherwise arise. The following figure illustrates this by showing
the growth in the number of tentative triggers when the kill-test is disabled and when it is active.

Once a correlation has been established (and the fix-test succeeds), the trigger is moved from the tentative to the fixed list, and
no further statistics need be gathered during this pass. Separate tentative- and fixed-lists are maintained since the latter can
be made much more compact, not including any storage for mean or variance, and this is extremely important in view of the
generally very large number of trigger-target candidates considered during the first pass.
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Figure 5: The effect of the kill-test on the total number of tentative triggers during processing

Initially all tentative- and fixed-lists are empty. Furthermore, a record of the
�

most recent unique words is maintained during
processing. As each word in the corpus is processed sequentially, each member of this history is hypothesised as a possible
trigger word, and for each of these candidates the following processing steps are performed:

� If this is not the first sighting of the target since the trigger, then END.

� If the trigger is already in the fixed-list, then END.

� If the trigger is not yet in the tentative-list, then:

– Add it to the tentative-list.

– Initialise the cumulative sum-of-distance and sum-of-squared-distance fields with the first measurement.

– END.

� If the trigger is already in the tentative-list, then:

– Update the sum-of-distance and sum-of-squared-distance fields with the new measurement.

– Calculate the distance mean and variance.

– Calculate the expected mean under the independence assumption.

– Perform FIX and KILL t-tests :
� Case A: The measured mean exceeds the independence-mean by a

desired margin and to a desired level of confidence: conclude that there is no correlation.
� KILL: remove the trigger from the tentative list.

� Case B: The measured mean is lower than the independence-mean by a desired margin and to
a desired level of confidence: conclude that there is a correlation.
� FIX: remove the trigger from the tentative list and add it to the fixed-list.

� Case C: neither of the above: conclude that there is as yet insufficient data to reach a
conclusion, do nothing.

– END.

The result of the first-pass is the set of all trigger-target relations in the fixed-lists on completion, those remaining in the
tentative-lists being discarded.
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4.2. Second-pass

Since the fix-test in the first-pass uses means and variances usually gathered only over a small portion of the training set, many
of the detected correlations are local anomalies, and do not generalise to the corpus as a whole. Consequently the second-pass
recalculates the means and variances for all candidates over the entire training set, and applies the fix-test again to each. Those
failing are discarded, and those succeeding are retained and their measured means and mean-squares used to calculate the
parameters

�0�
, � and � of the postulated conditional probability function.

4.3. Regulating memory usage

Selection of the fix-test margin and confidence level allows the rate of transferrals from the tentative- to the fixed-list to be
regulated, and thus gives control over the growth and the final number of fixed-triggers. The kill-test parameters, on the other
hand, affects the rate of deletions from the tentative-list. Finally, the length of the history � determines the rate of addition of
new tentative trigger candidates for the current target.

The size of the tentative-list is of prime practical importance during first-pass processing, since each entry requires significantly
more storage than in the fixed-list. Despite the control over its size afforded by the choice of � and the kill-test parameters, it
may still be difficult to limit the number of trigger-target pairs considered to practical levels. The following two refinements are
employed as additional measures in this regard.

1. Exclusion lists
Semantic correlations may be expected chiefly among content words, and since the grammatical functions of words are
known, it is possible to exclude non-content words from consideration as triggers or targets during processing. Practically
this is achieved by means of an exclusion-list containing all grammatical categories that should be disregarded in this
way.

2. Background culling
Observations during first-pass processing have shown a large number of tentative-list members to be predominantly
idle. These are infrequent trigger-target candidates which, once added to the list, are neither fixed nor killed due to an
insufficient number of measurements and long periods between updates. In order to reduce the number of these cases, a
process termed background culling has been introduced. During processing the distance to the last update is monitored
for members of the tentative list, and the decision boundary for the kill-threshold is moved gradually towards that of the
fix-threshold as this time increases, thereby relaxing the kill-test and ultimately forcing a fix/kill decision. The rate at
which this occurs is normalised with respect to the frequency of the trigger, so that a single global parameter may be
used to set the severeness of pruning.

Background culling is an approximation necessitated by practical considerations, and will generally introduce errors by
eliminating valid but infrequent trigger-target relations. However it allows the size of the tentative list to be regulated to
practical levels for large corpora and vocabularies, as illustrated in the following figure.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
7

0

1

2

3

4

5

6

7
x 10

6

Words in training corpus

N
um

be
r o

f t
en

ta
tiv

e−
tri

gg
er

s

Severe culling

Mild culling  

No culling    

Figure 6: The effect of background culling on the total number of tentative triggers when processing WSJ0
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4.4. Example pairs

The following table lists some examples of typical targets and their triggers as found by the described technique when applied
to the LOB corpus. The bracketed designations are the grammatical categories of the words in question4. It is appealing to find
such intuitive relationships in meaning between word pairs gathered according to purely statistical criteria.

Target Triggers

discharged (JJ) prison (NN), period (NN), supervision (NN), need (NN), prisoner (NN), volun-
tary (JJ), assistance (NN)

advocate (NN) truth (NN), box (NN), defence (NN), honest (JJ), face (VB), case (NN), witness
(NN), evidence (NN)

Cambridge (NP) university (NN), educational (JJ), affected (VBN), Oxbridge (NP), tomorrow
(NR), universities (NNS)

worked (VBN) demand (NN), changes (NNS), cost (NN), strength (NN)

dry (JJ) currants (NNS), suet (NN), teasp. (NNU), wines (NNS), raisins (NNS)

judicial (JJ) legal (JJ), binding (JJ), rules (NNS)

semiindustrialised (JJ) world (NN), substantial (JJ), fall (NN), trade (NN), demand (NN), supply (NN)

cinema (NN) directors (NNS), viewing (NN), film (NN), festival (NN), tastes (NNS)

current (NN) inductance (NN), constant (NN), capacitor (NN), voltage (NN),

drowning (NN) respiration (NN), failure (NN), inhaled (VBN), body (NN), spasm (NN), sea
(NN), salt (JJ), minutes (NNS), lethal (JJ), water (NN), resuscitation (NN), re-
covery (NN), asphyxia (NN), survival (NN)

rotor (NN) r.p.m. (NNU), values (NNS), blade (NN), pitching (NN), speed (NN), flapping
(NN), wind (NN), tunnel (NN), helicopter (NN), body (NN), rotors (NNS)

syntax (NN) language (NN), categories (NNS), formal (JJ), syntactic (JJ), grammatical (JJ),
morphology (NN)

transfusion (NN) bleeding (NN), blood (NN), cells (NNS), ml (NNU), reaction (NN), haematoma
(NN), transfusions (NNS), patient (NN), group (NN), treated (VBN)

increases (NNS) salary (NN), agreement (NN), salaries (NNS)

raisins (NNS) list (NN), lemon (NN), milk (NN), salt (NN), teasp. (NNU), brandy (NN),
mixed (JJ), currants (NNS), suet (NN), sugar (NN), nutmeg (NN), oz (NNU),
sultanas (NNS), eggs (NNS), peel (NN), apples (NNS)

Orpheus (NP) Heurodis (NP), Orfeo (NP), tale (NN), fairy (NN), Eurydice (NP)

Verwoerd (NP) policy (NN), Africa (NP), South (NP)

Table 1: Triggers and targets collected from the LOB corpus

4JJ = adjective, NN = common noun, NNS = plural common noun, NNU = unit of measurement, NP = proper noun,
NR = singular adverbial noun, VB = verb base form, VBN = past participle.
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5. PERPLEXITY RESULTS

The benefit of characterising trigger pairs as described in the previous sections was gauged by comparing the performance
of a category-based language model employing the independence assumption with another using equation (6) but identical in
all other respects. Experiments were carried out on the LOB, Switchbaord (SWBD) and Wall-street Journal (WSJ0) corpora,
category-based language models having been constructed for each using a pruning threshold of 5e-6 during construction of the
variable-length category n-grams [4]. The following table gives a brief description of each corpus, where F 8(W�� and F 8 ^ 8 refer
to the number of words in the training- and test-sets respectively.

Corpus Source F 8(W�� F 8 ^ 8
LOB Various topics (e.g. news, fiction, science etc.) 1,003,839 55,933

SWBD Spontaneous telephone conversations 1,860,178 10,179

WSJ0 Reportage from 1987-9 (inclusive) issues of the Wall Street Journal 37,346,080 92,024

Table 2: Summary of the LOB, Switchboard and WSJ0 corpora

The details of the language models constructed for each of these corpora are summarised in table 3. Information for a standard
trigram language model using the Katz backoff and Good-Turing discounting [2] is given in order to establish a baseline. The
symbols F O , F G � Y and FTR � Y refer to the number of words in the vocabulary, the number of n-grams in the trigram, and the
number of n-grams in the category language model respectively, while F_^ 8 F 8(8 are the number of self-triggers and trigger-target
pairs for which parameters were estimated.

Corpus F O F G � Y FTR � Y F ^ 8 F 8(8
LOB 41,097 1,142,457 44,380 14,295 4,427

SWBD 22,643 1,183,880 54,547 8,615 4,262

WSJ0 65,000 13,047,678 174,261 56,928 133,608

Table 3: Language models for the LOB, Switchboard and WSJ0 corpora.

Table 4 shows the trigram (TG) and varigram model perplexities, where the abbreviations “VG”,“VG+ST”, “VG+TT” and
“VG+ST+TT” refer to the varigram by itself, with self-triggers, with trigger-target pairs and with both self-triggers and trigger-
target pairs respectively.

Corpus TG VG
VG+ST VG+TT VG+ST+TT

pp % pp % pp %

LOB 413.14 458.34 412.23 10.1 458.09 0.1 412.17 10.1

SWBD 96.57 145.28 134.09 7.7 143.70 1.1 133.41 8.2

WSJ0 132.21 469.40 381.01 18.80 441.40 6.0 366.57 21.9

Table 4: Perplexities for the LOB, Switchboard and WSJ0 corpora

6. DISCUSSION

The largest perplexity improvement is obtained for the WSJ0 corpus, which also has the largest number of self-trigger and
trigger-target pairs. This stems from the much greater corpus size and consequent lower sparseness. For LOB and SWBD, on
the other hand, many words occur too infrequently to make estimation of the conditional probability parameters possible, thus
leading to a reduced number of trigger pairs.

For all three corpora, the addition of self-triggers has a more significant impact on the perplexity than does the introduction
of trigger-target pairs. Self-triggers seem more reliable since the target, being its own trigger, is actually seen before being
predicted to occur again. Trigger-target pairs, on the other hand, predict words that have either not yet been seen at all or have
occurred in the distant past. Since such correlations are heavily dependent upon the topic of the passage, the effectiveness of a
trigger-target association depends on how much the topics associated with a trigger coincide between the training- and test-set.
For the LOB corpus, which is very diverse in the material it contains, there is a significant mismatch in this regard, leading to
the observed very small impact of self-triggers on performance, while for the WSJ corpus the mismatch is smaller, leading to
greater success.

The addition of the self-triggers increases the number of parameters in the model by � j F ^ 8 (storage of � and � ). This increase
is mild, and offers a favourable size versus performance tradeoff. For instance, the varigram with self-triggers for LOB uses
58,675 parameters and achieves a lower perplexity than the trigram with 1.1 million parameters. Furthermore, the effectiveness
of both types of word-pair modelling improves with corpus size, and since the parameter determination and final implementation
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of the model has low memory requirements, the technique is suitable for use with large training sets. This complements the
category-based model, whose performance does not improve in the same way.

Finally, inspection of the values of � assigned to trigger-target pairs, as well as cases in which a trigger successfully predicts
a target show that correlations well beyond the range of conventional n-gram models are captured, and therefore the proposed
technique is indeed able to model long-range dependencies.

7. CONCLUSION

A new technique for modelling the empirically observed transient character of the occurrence probability between related words
in a body of text has been introduced. Procedures both for the identification of such word pairs as well as for the estimation of
the three parameters required by the parametric model have been developed. Experiments demonstrate that meaningful relations
are indeed identified, and that the transient behaviour (which often spans many words) is successfully captured by the proposed
model. Perplexity reductions of between 8 and 22% were achieved, where the greatest improvement seen was for the largest
and least-sparse corpus, and the most significant impact on performance was displayed by word correlations with themselves
(self-triggers). The modelling technique is able to reduce the performance limit displayed by category-based models for large
corpora, thereby improving their good performance versus size tradeoff.
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9. APPENDIX A

By virtue of the category-conditional probability function chosen to model occurrence correlations between trigger and target
words, the distribution function is found to be :

f 4 � 6-` � j � 	 � �� X � � � K�I � \ I � � I � j � ����� X ��� j � � � d � j � ���	� 	 � (19)

where

 �
is the distance separating trigger and target.

 � \
is the probability of occurrence of the trigger.

 �0�
, � and � are the parameters describing the transient occurrence probability of the target with respect to a

trigger sighting.

 � is a normalising constant.

This appendix describes the swo-stage algebraic approximation of (19) by a distribution of the form

�f 4 � 6 ` � j ����� j 4 K�I � � 6 	 j � � d � � j 4 K*I � � 6 	 j � ���

9.1. First approximation

The objective here is to eliminate the product operator from equation (19), since its presence makes algebraic manipulation
difficult. Consider the first term on the right-hand side of (19) :

	 � �� X � � � K*I � \ I �0� I � j � ����� X � ` 4 K*I � \ I �0� 6 	 j � 	 � �� X � � � K I�
 j � ����� X ��� (20)

where


 ` �K*I � \ I �0� (21)

Take the logarithm and apply the first-order Taylor approximation 
��	� 4 K d��e6����
to find:


��	� � 	 � �� X � � � K*I � \ I �0� I � j � ����� X ��� � � j 
��	� 4 K*I � \ I �0� 6 I
	 � �� X � � 
 j � ���	� X` � j 
��	� 4 K*I � \ I �0� 6 I 
 � K I � ���	� 	 �

K*I � ���
Now, taking the inverse logarithm and resubstitute (21) into the above we obtain

	 � �� X � � � K*I � \ I � � I � j � ����� X � � 4 K*I � \ I � � 6 	 j�� � � ��* 4 " �-, �/.�* � 6!:" �%$�& �%$�(�);* !:" �-, �/. )�� (22)

For clarity now define:

� `�� � �!:" �%$�& �%$�(�);* !:" �-, �/. ) (23)



��� ����� �	��

��������� ���	� ����� �����	�	� ��� ��� ����� �����! ���#"����$��%���� &��('	���(�)�*� ����%�+���%��-,.������� ��/ 0 ��%��h1=�
and it follows from (19), (22) and (23) that

f 4 � 6����f 4 � 6h` � j � ��� d � j � ���	� 	 � j 4 K�I � \ I �0� 6 	 j � � � � �/.�* � (24)

This approximation is good when
�� ��� \ ��� ( � K , which is true when

� \ � K , �0� � K and � � K , as may be expected for
content words.

9.2. Second approximation

Since we would ultimately like to find closed-form expressions for the approximate mean and mean-square of the probability
distribution (19), and this is not yet possible using (24), we will further approximate the latter by:

�f 4 � 6h` � j ����� j 4 K�I � � 6 	 j � � d ��� j 4 K I � � 6 	 j � ��� (25)

where

� 4 � � d � � 6h` K (26)

The functional form of (25) has the following motivations:

 As the superposition of two geometric terms, it retains the overall geometric character exhibited empirically by
the distribution. The faster geometric component should model the initially more rapid decay of the observed distribution (which
is in turn due to the higher conditional probability at small

�
). The slower geometric component should model the tail of the observed distribution. Closed form expressions for the mean and mean-square exist.

Note firstly that

��
	 � �

�f 4 � 6e` K
and that for A�� � � � K and A	� � � � K :

A
� �f 4 � 6 � K � � ? 4 A Q K Q���Q C�CEC Q
	 6
so that it represents a valid probability mass function. In order to solve for the parameters of (25) in terms of the parameters of
(24), we impose the following three constraints :

1. Equality in the limit as
�	� 	 : From (24) we find that

��
��	�� �
�f 4 � 6.` � j ��� j 4 K*I � \ I �0� 6 	 j �

and from (25), assuming
� � 
 � �

��
��	�� � �f 4 � 6h` ��� j 4 K*I � � 6 	 j � �
and so by requiring

��
��	�� �
�f 4 � 6.` ��
��	�� � �f 4 � 6

we may choose

� � ` � \ d � �
(27)

and

� � ` �0� j �� \ d � � (28)
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2. Equality at

� ` A : From (24) we find that

�f 4 A 6 ` � j 4 � � d � 6
and from (25)

�f 4 A 6 ` � � � � j � � d � � j � � 

so that, for

�f 4 A 62` �f 4 A 6 we find

� � ` �0� d �
I ��� j � �� � (29)

3. Equality of the first derivative at
� ` A : From (24) we find that

�

� � �f 4 � 6e` � � I ��� � ��� 	 d ��� 4 K�I � \ I �0� 6 � �0� d � � ��� 	 � d ��� 4 � 6 � � ��� 	 j�� �0� d � � ��� 	 � � j 4 K�I � \ I �0� 6 	 j � � � � �/. �
from which, taking

� ` A , we obtain

�

� � �f 4 � 6 g 	 � � ` � j � I � j � dP4 �0� d � 6 j ��� 4 K*I � \ I �0� 6ed � j 4 �0� d � 6 j ��� 4 � 6�
 (30)

Similarly, from (25)

�

� � �f 4 � 6e` � j �#� � ��� 4 K I � � 6 j 4 K I � � 6 	 j � � d � � ��� 4 K*I � � 6 j 4 K*I � � 6 	 j � � �
from which, taking

� ` A , we obtain

�

� � �f 4 � 6 g 	 � � ` � j � � � j ��� 4 K*I � � 6 j � � d � � j ��� 4 K*I � � 6 j � � 
 (31)

Using (27) and (28) we may write

��� j ��� 4 K*I � � 6 j � � ` � � j �� \ d �0� j ��� 4 K*I � � 6 j 4 � \ d �0� 6` ��� j � j ��� 4 K*I � � 6
(32)

Now, by requiring

�

� � �f 4 � 6 g 	 � � ` �

� � �f 4 � 6 g 	 � �
we find from (30), (31) and (32) that:

� � j ��� 4 K*I � � 6 j � � ` ��� 4 K*I � � 6 j � �0� d �
I �0� j � 
#d � j �[4 �0� d � 6 j ��� 4 � 6 I � 


� 4 �0� d �
I �0� j � 6 j ��� 4 K*I � � 6 ` ��� 4 K*I � � 6 j � �0� d �
I ��� j � 
�d � j �Z4 �0� d � 6 j ��� 4 � 6 I � 


� ��� 4 K*I � � 6e` ��� 4 K*I � � 6 j � �0� d � I �0� j � 
�d � j �Z4 �0� d � 6 j ��� 4 � 6 I � 
� � d �
I � � j �` ��� 4 K*I � � 6ed � j �[4 �0� d � 6 j ��� 4 � 6�
��� d � I �0� j �
so that, finally, we obtain

� � ` K*I 4 K�I � � 6 j � � .�* 1 2 $�(=4/� 5 * 7 8 ! 9 )+� � <$�( 4 ���%$�( * 9
�

(33)
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10. APPENDIX B

Consider an experiment consisting of Bernoulli trials with probability of success
� � . The number of repetitions before witness-

ing the first positive result is described by the binomial distribution:

��� X �.4 � 6-` 4 K*I � � 6 	 j � � (34)

Now select the subset of trials for which
� 
 F , where F is an integer greater than zero. The probability distribution over this

interval
� 4 � 6

may be determined by applying the normalisation requirement

� � ��
	 � �

� 4 � 6.` K
to equation (34) and obtaining

� 4 � 6e` � � X � 4 � 6
� � � �	 � � � � X � 4 � 6

` 4 K�I � � 6 	 j � �K�I 4 K�I � � 6 � with
� ? � A Q K Q CEC�C Q FBI K � (35)

In this appendix we find expressions for the mean and mean-square of this truncated binomial distribution, and begin by
calculating the moment generating function:

� 	�4 + 6.`
� � ��
	 � �

� 8 � 	 j � 4 � 6
` � �K�I 4 K�I � � 6 � j

� � ��
	 � �

4 K*I � � 6 	 j � 8 � 	
` � � j 4 K�I 4 � 8 j 4 K�I � � 6	6 � 64 K�I 4 K�I � � 6 � 6 j 4 K�I � 8 j 4 K�I � � 6	6`�� j K�I 4 � 8 j 4 K�I � � 6	6 �4 K�I � 8 j 4 K�I � � 6	6 (36)

where

� ` � �
� K�I 4 K�I � � 6 � � (37)

Taking the derivative of (36) with respect to + we find:

�

� + � 	 4 + 6.`�� j �
8 4 K I � � 6 j ��K*I � � 8 4 K*I � � 6 �	� IJF j � � 8 j 4 K*I � � 6 � j ��K I � 8 j 4 K I � � 6 �4 K I � 8 j 4 K�I � � 6�6 �`�� j � 8 4 K I � � 6 I F j � � 8 4 K*I � � 6 � dL4 F I K 6 j � 2 ��� � 5 8 j 4 K*I � � 6 ��� �4 K*I � 8 j 4 K*I � � 6	6 � (38)

and to obtain the mean � 4 � � Q F 6
we set + ` A :

� 4 � ��Q F 6 ` �

� + � 	�4 + 6 g 8 � �
`�� j 4 K*I � � 6 j � K dL4 K*I � � 6 � � � �Z4 F I K 6 j 4 K*I � � 6 I F 
 �� �� (39)
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Taking the second derivative of (36) with respect to + we find:

� �

� + � � 	�4 + 6e`�� j � K�I �
8 4 K�I � � 6 � � j � � 8 4 K�I � � 6 I_F � � � 8 4 K�I � � 6 � dL4 FBI K 6e4 F d K 6/� 2 � � � 5 8 4 K�I � � 6 � � � �4 K�I � 8 4 K�I � � 6�6 �d � j � j � � 8 4 K�I � � 6 I F j � � 8 4 K�I � � 6 � dL4 FBI K 6 j � 2 � � � 5 8 j 4 K�I � � 6 � � � � j � K�I � 8 4 K�I � � 6 � j � 8 4 K�I � � 64 K�I � 8 4 K�I � � 6	6 � (40)

and obtain the mean-square � 4 � ��Q F 6
of the distribution by again setting + ` A

� 4 � � Q F 6 ` � �

� � + � 	�4 + 6 g 8 � �
`�� j � �� j � 4 K I � � 6 j � K�I F � 4 K I � � 6 � � � dP4 F I K 6 4 F d K 6!4 K*I � � 6 ��� �� ��d � j � j � 4 K*I � � 6 j � K*I F 4 K*I � � 6 � � � dL4 FcI K 6!4 K I � � 6 ��� � j � � j 4 K*I � � 6� �� (41)


