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ABSTRACT

Conversational speech exhibits considerable pronunciation vari-
ability, which has been shown to have a detrimental effect on
the accuracy of automatic speech recognition. There have been
many attempts to model pronunciation variation, including the
use of decision-trees to generate alternate word pronunciations
from phonemic baseforms. Use of such pronunciation models
during recognition is known to improve accuracy. This paper
describes the use of such pronunciation models during acous-
tic model training. Subtle difficulties in the straightforward use
of alternatives to canonical pronunciations are first illustrated:
it is shown that simply improving the accuracy of the phonetic
transcription used for acoustic model training is of little benefit.
Analysis of this paradox leads to a new method of accommodat-
ing nonstandard pronunciations: rather than allowing a phoneme
in the canonical pronunciation to be realized as one of a few
distinct alternate phones predicted by the pronunciation model,
the HMM states of the phoneme’s model are instead allowed to
share Gaussian mixture components with the HMM states of the
model of the alternate realization. Qualitatively, this amounts
to making a soft decision about which surface-form is realized.
Quantitative experiments on the Switchboard corpus show that
this method improves accuracy by 1.7% (absolute).

1. INTRODUCTION

Pronunciations in spontaneous, conversational speech tend to be
much more variable than in careful read speech, where pronunci-
ations of words are more likely to adhere to their citation forms.
Most speech recognition systems, however, rely on pronouncing
dictionaries which contain few alternate pronunciations for most
words. This failure to capture an important source of variabil-
ity is potentially a significant cause for the relatively poor per-
formance of recognition systems on large vocabulary (sponta-
neous) conversational speech recognition tasks. It is well known
that use of a pronunciation model during recognition results in
moderate improvements in word error rate (WER).

A natural extension of this idea is to incorporate the pronunci-
ation model in the initial training of the acoustic-phonetic mod-
els. Most state-of-the-art automatic speech recognition (ASR)
systems estimate these models under the assumption that words
in the training corpus are pronounced in their canonical form. A
word-level transcription of the speech and standard pronouncing
dictionary are used to generate phone-level training transcrip-
tions. Intuition suggests that use of a pronunciation model to
improve the accuracy of this phone-level training transcription
should lead to sharper acoustic models and better recognition.
However, contrary to expectation and to the best of our knowl-
edge, efforts to incorporate pronunciation modeling in acoustic
model training for spontaneous speech have been unfruitful.

In this paper, we investigate this failure and consequently ar-
rive at a novel method of pronunciation modeling. When used
during recognition, our method improves accuracy to the same
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extent as previously used methods, and improves it even further
when used in acoustic model training.

The structure of this paper is as follows. Our earlier pronunci-
ation modeling framework is reviewed briefly in Section 2. Sec-
tions 3 and 4 investigate the straightforward approach of training
acoustic models on phonetic transcriptions refined through the
use of a pronunciation model. This leads to little improvement in
WER. Section 5 considers direct use of hand-labeled transcrip-
tions to further bootstrap the acoustic model training process of
Section 3. In an apparent paradox, the acoustic models resulting
from these procedures degrade WER but the phone-accuracy of
the resulting word-hypotheses is actually better than that of the
baseline system. This leads, in Sections 6 and 7, to a new way
of capturing pronunciation variation, dubbed state-level pronun-
ciation modeling (as opposed to the preceding phone-level pro-
nunciation model).

2. PRONUNCIATION MODELING FRAMEWORK

We begin with a very brief review of our pronunciation modeling
methodology (see [1] for details). The main steps in using a
pronunciation model for ASR are to

1. obtain a canonical (phonemic) transcription of some
training material. A standard pronouncing dictionary (in
our case, PronLex) is used for this purpose.

2. obtain a surface-form (phonetic) transcription of the
same material. A portion of the Switchboard corpus has
been phonetically hand labeled by linguists (see [4]).

3. align the phonemic and phonetic transcriptions. A dy-
namic programming procedure based on phonetic feature
distances is used for this purpose.

4. estimate a decision-tree pronunciation model. A deci-
sion tree is constructed to predict the surface form of each
phoneme by asking questions about its phonemic context.

5. perform recognition with this pronunciation model. The
pronunciation model is used to transform each phoneme in
a dictionary-based phoneme-level recognition network to
yield a network of surface-forms. Recognition is performed
on this phone-level network. The phoneme-level network
may either be derived from a word-level language model or
from a word-lattice generated by an initial recognition pass.

It is shown in [3] that if only a small amount of phonetically
labeled data is available in Step 2, the pronunciation model in
Step 4 and the corresponding WER in Step 5 are worse (1.4%
absolute) than using canonical pronunciations. One way to au-
tomatically generate more data for Step 2 is

6. full training set retranscription. Starting with the canon-
ical transcription of the entire acoustic training set (instead
of just the hand-labeled portion in Steps 1-2), the pro-
nunciation model of Step 4 is used to create pronuncia-
tion networks representing possible phonetic realizations
of each training utterance. The most likely phone-sequence
through each network is chosen via Viterbi alignment using
a set of existing acoustic models, giving a “refined” tran-
scription of the entire training set.



It is shown in [3] that replacing the small corpus of Step 2 with
the larger corpus of Step 6, and then repeating Steps 3-5 leads to
a small but statistically significant ( � 0.5% absolute) improve-
ment in WER on the Switchboard corpus.

3. IMPROVING THE PHONETIC TRANSCRIPTIONS
USED IN ACOUSTIC TRAINING

The “refined” transcriptions resulting from Step 6, it may be
reasoned
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, are better suited for acoustic model training than the
canonical baseforms. This leads to a notion of

7. acoustic model reestimation. New acoustic models are
reestimated based on the phone transcriptions of Step 6.

The retranscription of Step 6 is then repeated with these new
acoustic models replacing the existing acoustic models used ear-
lier. The resulting phonetic transcription
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is then used in Steps
3-5 for pronunciation model estimation and recognition.

It is possible to gauge the quality of the phonetic transcription
of Step 6 by comparing with hand labels which are available for a
portion of our Switchboard training corpus. Table 1 presents this
comparison for 1800 sentences (40,000 phones). It is clear from

Transcriptions Phone Error Rate
Dictionary Baseforms 28.3%
Automatic (Step 6) 26.1%

Table 1. Training Transcriptions as compared to Hand-Labels

Table 1 that the models in Step 7 are trained on more accurate
phonetic transcriptions. However, they result in exactly the same
recognition performance (38.9% WER) as the acoustic models
trained on canonical baseforms!

The first hypothesis we investigate is that although the tran-
scriptions resulting from Step 6 are closer to the hand-labels,
they still contain many inappropriate phones due to poor phone
recognition performance in Step 6.

Method We attempt to improve the quality of phone recog-
nition by standard speaker adaptation techniques. Vocal Tract
Length Normalization (VTLN) and Maximum Likelihood Lin-
ear Regression (MLLR) are used to adjust the acoustic models
before performing the retranscription in Step 6.

Adaptation Method Phone Error Rate
ML-VTLN 26.0%
MLLR 26.0%

Table 2. Failed Attempts to Improve Training Transcriptions

Results The use of adaptation techniques leads to little change
in transcription accuracy relative to the hand-labeled transcrip-
tions (Table 2). It also results in little change in transcription
content as evidenced by the comparison of the three automatic
transcription techniques in Table 3. The new transcriptions re-
main fairly close to the original baseform transcriptions both be-
fore and after adaptation.

Discussion The results suggest the original hypothesis – that
the Step 6 transcription was poor due to low phone-recognition
accuracy – is incorrect; we conclude instead that the highly-
parameterized set of acoustic models used here is so well-tuned
to the PronLex baseforms on which it is trained that little change
in the transcriptions can be obtained when using these models
for the retranscription stage. Adaptation based on the training
transcriptions simply exacerbates the problem. This conclusion
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The “refined” phonetic transcriptions agree better with the hand-
labels than the canonical baseforms, and are therefore more “accurate”
for training acoustic phonetic models.
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Redoing steps 6, 3-5 after Step 7 ensures that the final pronunciation
model in Step 4 is matched to the new acoustic models used in recogni-
tion in Step 5.

Acoustic Models Phone Error Rate Relative to
Used in Step 6 Prev Automatic Baseforms

Transcriptions
Baseline (unadapted) 0.0% 4.1%
ML-VTLN adapted 0.7% 4.2%
MLLR adapted 1.5% 4.0%

Table 3. Automatic Transcriptions Before/After Adaptation

Acoustic Model Used in Step 6 Phone Error Rate
8-Gaussian triphone models 25.7%
1-Gaussian triphone models 25.5%

Table 4. Simpler Acoustic Models Improve Transcription

is supported by a small increase in phone transcription accuracy
with respect to the hand-labeled data when retranscription uses
acoustic models of lesser complexity (Table 4).

4. JACK-KNIFING TO FURTHER IMPROVE THE
ACOUSTIC TRAINING TRANSCRIPTIONS

Since transcription accuracy is improved when retranscription
uses smaller models trained on the same data set, a natural pro-
gression is to retranscribe the training set using models trained
on different data.

Method The 60-hour Switchboard training set is partitioned
into two speaker disjoint gender-balanced 30 hour subsets and
model sets trained on one half phonetically transcribe the acous-
tics for the unseen half of the data (as in Step 6). The resulting
transcriptions are then used to train a set of acoustic models (as
in Step 7). Steps 6, 3, 4 and 5 are then carried out to estimate
and test a pronunciation model.

Results The phone recognition accuracy relative to the hand-
labeled transcriptions is essentially unchanged by the cross-
transcription method (25.3%). This is not to say that the result-
ing transcriptions are the same as those described in the preced-
ing section. Indeed these transcriptions deviate even more from
the baseforms than the transcriptions of Table 3. Despite this,
the “refined” transcriptions do not lead to any significant change
in recognition performance (38.9% WER).

Discussion We conclude that it is quite difficult to obtain ac-
curate automatic phonetic transcriptions using acoustic models
which are trained on canonical baseforms.

5. USING ACOUSTIC MODELS TRAINED ON
HAND-LABELED DATA

One way to obtain more accurate phonetic transcriptions of the
entire acoustic training corpus (Step 6) is to use acoustic models
which are trained directly on only the hand-labeled portion of
the training corpus. We investigate this avenue as well.

Method Only a small portion (3.5 hours) of the acoustic train-
ing data has been transcribed at the phone level by human la-
belers. Due to this limitation, we estimate a set of context-
independent phone models (called ICSI-models) using the hand-
labeled portion of the training set.

Step 6 is performed next, replacing the existing acoustic mod-
els with the ICSI-models. This results in considerably more ac-
curate phonetic training transcription (see results below). Step 7,
training acoustic models on the entire training set, is performed
next. The resulting models are named ICSI-bootstrap models.
This is followed by the usual procedure (Steps 6, 3, 4, and 5)
of estimating and testing a new pronunciation model appropriate
for these acoustic models.



Results First we present results showing that phone transcrip-
tion accuracy is improved by models trained on hand labels.
Since these models are bootstrapped from the phonetically la-
beled training utterances on which the results of Tables 1-4 are
reported, it is inappropriate to compare transcription accuracy
on that set. We therefore use a 451-utterance subset of our test
set, which also has phonetic labels, to compare the transcription
accuracy of the ICSI-models with models trained on canonical
pronunciations. The task is the same as Step 6: choose the best
phone-sequence given the word transcription and a pronuncia-
tion model. The results of Table 5 for the ICSI-models indi-

Transcription Type Models Phone Error Rate
Dictionary Baseforms — 33.6%
Automatic (Step 6) Standard 31.4%
Automatic (Step 6) ICSI-models 26.6%
Automatic (Step 6) ICSI-bootstrap 26.6%

Table 5. Using Hand Labeled Data to Train Acoustic Models for
Improved Phone Transcription given the Word Transcription

cate that the transcriptions on which the ICSI-bootstrap models
are trained are likely to be much more accurate than the base-
forms or the transcriptions used in preceding sections. The ICSI-
bootstrap models also appear to be considerably better phonetic-
models than standard models trained on canonical baseforms.

The recognition performance however turns out quite the con-
trary. While the standard acoustic models (together with a pro-
nunciation model) have a WER of 38.9%, the WER of the ICSI-
bootstrap models is 41.3%! In order to better understand the
cause of this degradation, the performance of the model on the
451 phonetically labeled utterances in the test data is analyzed.
In addition to the WER performance the phone error rate is mea-
sured against the hand transcriptions. It turns out (Table 6) that

Pronunciation Acoustic Model
Model Used Standard ICSI-bootstrap

in Step 5 (Test) PER WER PER WER
None (Dictionary) 49.1% 49.1% 49.5% 58.9%
Tree Pron. Model 47.7% 48.7% 43.2% 50.1%

Table 6. Comparison of Word and Phone Error Rates for Differ-
ent Acoustic and Pronunciation Models

the ICSI-bootstrap models improve phone accuracy by 4.5% on
this subset of the test set, although the WER is worse by 1.4%.

Discussion It is clear from these experiments that there indeed
is considerable deviation from canonical pronunciations in spon-
taneous speech and that the ICSI-bootstrap models are indeed
better at capturing the actual realized pronunciations than mod-
els trained on standard pronunciations. We conclude that the
inability to translate this (implicit) lower phone error rate into
lower WER is due to lexical confusion: since our decision-tree
pronunciation model allows words to have a large number of pro-
nunciations, many of which overlap with pronunciations of other
words, “recovering” the right word strings from the more accu-
rate phone recognition is difficult. Yet, the model for the acoustic
realization of a phoneme must allow for the inherent variability.
This leads to a new way of modeling pronunciations.

6. MODELING PRONUNCIATION VARIABILITY AT
THE LEVEL OF HMM STATES

In this section we present a new way to model alternate pronun-
ciations and show that it performs as well as the decision tree
pronunciation model described in [3]. This new model accom-
modates alternate surface-form realizations of a phoneme by al-
lowing the HMM state of the model of the phoneme to share
output densities with models of the alternate realizations. We
call this a state level pronunciation model (SLPM) for reasons
described below.

To understand the SLPM, first consider the effect of a more
traditional pronunciation model which allows the baseform
/abc/ to be alternately realized as the surface form /asc/.
The sketch at the top of Figure 1 illustrates how a context-
independent HMM system will permit this alternative in the
recognition network, and the sketch in the middle illustrates the
same for a context-dependent (triphone) HMM system. The
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Figure 1. The Effect of Allowing a Phoneme /b/ to be Realized
as a Phone /s/, Viewed at the Level of HMM States

SLPM deviates from these methods as illustrated by the sketch
at the bottom of Figure 1. Rather than letting a phoneme /b/
be realized as an alternate phone /s/, the HMM states of the
acoustic model of the phoneme /b/ are instead allowed to uti-
lize the output density of the HMM states of the acoustic model
of the alternate realization /s/. Thus the acoustic model of a
phoneme /b/ has the canonical and alternate realizations (/b/
and /s/) represented by different sets of mixture components in
one set of HMM states.

Method To construct an HMM system in which states share
output densities based on a pronunciation model we

1. Obtain a state to state alignment between the baseform and
surface form representations (similar to Step 3, Section 2).

2. Estimate the probability of a HMM state being realized as
an alternate state, using this alignment, Prob

��������� �	�
���
.

3. Filter out unreliable estimates.
4. Modify the output distribution of the baseform state to in-

clude the mixture components of the alternate states.
5. Further train the resulting “tied-mixture”-like acoustic

models.

The state output densities in our system are mixtures of Gaus-
sians:  ����� �	�
����� �
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where . ���	�
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denotes the set of mixture components' ����(�) � * + � � for state

�"�
�
and !

� denotes their mixture weights.
In the example of Figure 1, Step 4 in the SLPM construction re-
places . with .0/ and ! with ! / where

. / ���"�����1� . ���"�
���32 . ���������
! /�$# ����� �

Prob
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This formalism extends easily to the more general case of a
phoneme that may be realized as one of several alternate phones.



Results The SLPM developed above is used in a recognition
experiment on the Switchboard corpus � . Table 7 shows that just
as the decision tree pronunciation model, the SLPM results in a
small but significant reduction in WER.

Pronunciation Model WER
None (PronLex Dictionary) 39.4%
Decision Tree Pronunciation Model 38.9%
State Level Pronunciation Model 38.8%

Table 7. Recognition Performance of the SLPM

Discussion It may be noted that the Gaussian densities are not
duplicated before reestimation, but are shared among states. The
only additional parameters introduced are the mixture weights.
This increases the number of free parameters in the acoustic
models by less than 0.5%.

The SLPM mimics the behavior of our decision tree pronun-
ciation model with some additional advantages.

� Canonical (phonemic) transcriptions can be used to train
HMMs resulting from the SLPM construction. Since out-
put densities of the alternate realizations are present in the
HMM state of the canonical pronunciation, acoustic real-
izations which match the alternate phones better will be
used by the Baum-Welch reestimation to update those den-
sities instead of the canonical ones.

� The dictionary need not be expanded to include alternate
pronunciations, an important consideration for recognition
speed.

7. INTRODUCING MORE ACCURATE DENSITIES TO
MODEL THE SURFACE-FORM REALIZATIONS

The essential idea of the SLPM in the previous section is to
augment the HMM state of a phoneme so as to model alter-
nate surface-form realizations. The origin of the densities which
model the alternate realizations merits further discussion. In Fig-
ure 1, when HMM states of /b/ needs to account for a realiza-
tion /s/, densities of an HMM for /s/ trained on canonical
transcriptions is used. An alternative is to instead augment the
HMM states of /b/ with densities from HMM for [s] trained
on the more accurate transcriptions of Section 5.

Method The only modification to the SLPM recipe of Section
6 is that in Step 4, the output densities are augmented by shar-
ing mixture components not only with existing HMMs, but also�

with densities from the corresponding HMM states of Section
5. This is illustrated in Figure 2. Further training of the models
(cf. Step 5 in Section 6) is achieved by first training the mix-
ture weights and transition probabilities followed by training the
whole model.

Results The results in Table 8 indicate that this modified
HMM set performs significantly better than HMMs trained on
canonical pronunciations, giving a gain of 1.7% (absolute) in
WER. When two sets of acoustic models are “merged” in this
fashion, the number of parameters is nearly doubled. One way
to make a fair comparison is to compare the “merged” SLPM
system with a system that has 24 Gaussians per state. However,
data sparseness causes the 24 Gaussians-per-state system to be
over trained and its WER on the test set is 39.7% which is even
worse than the 12 Gaussians per state baseline.

� The baseline acoustic models are state-clustered cross-word tri-
phone HMMs [5] having about 6700 states each with 12 Gaussian den-
sities per state. The language model is a trigram trained on about 2.2
million words, and the front-end uses MF-PLP derived coefficients. The
test set has 19 conversations, amounting to about 2 hours of speech with
about 18000 words.�

Note that this does substantially increase the number of parameters
in the system.

merged : /b/_1.2

SLPM : /b/_1.2

PronLex Based AMs

/b/_1.4

/s/_1.3 /b/_1.2 [s]_1.1

ICSI Based AMs

/b/_1/s/_1 [s]_1

Figure 2. Merging Gaussian Mixtures

Pronunciation Model Acoustic Model WER
PronLex (baseline) PronLex based 39.4%
Phone Level PM PronLex based 38.9%
State Level PM merged, no training 38.2%
State Level PM merged, further training 37.7%

Table 8. Performance of acoustic model merging

Discussion In another effort to make a fair comparison by
keeping the number of parameters in the SLPM comparable to
the baseline models, two sets of acoustic models with a smaller
number of mixture components (6 per state) are merged. The
resulting retrained system has a WER of 38.3%, which is still
substantially better than the decision tree pronunciation model.
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