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ABSTRACT

Hidden Markov Models (HMMs) have been successful for mod-
elling the dynamics of carefully dictated speech, but their per-
formance degrades severely when used to model conversational
speech. This paper presents a preliminary feasibility study of an
alternative class of models: loosely coupled HMMs. Since speech
is produced by a system of loosely coupled articulators, stochastic
models explicitly representing this parallelism may have advan-
tages for automatic speech recognition (ASR), particularly when
trying to model the phonological effects inherent in casual sponta-
neous speech. The paper evaluates one coupled model on a simple
ASR task, using both exact and approximate estimation schemes.
We conclude such models merit further investigation.

1. INTRODUCTION

Hidden Markov Models (HMMs) have been successful for mod-
elling the dynamics of carefully dictated speech. However, their
performance degrades severely when they are used to model con-
versational speech, and it has been widely hypothesized that more
sophisticated models will be required to achieve acceptable tran-
scription performance on this type of data. This paper describes
our preliminary investigations into an alternative class of models,
which we describe informally as loosely coupled HMMs. Since
speech is produced by a system of loosely coupled articulators,
stochastic models which explicitly represent this parallelism may
have advantages for automatic speech recognition (ASR), partic-
ularly when trying to model the phonological effects inherent in
casual spontaneous speech.

Today’s large-vocabulary recognizers are constructed using the
notion of phonemic segments, corresponding (roughly) to par-
ticular configurations of the articulators. We build one or more
statistical models for each element of the resulting inventory of
speech segments (the phone set) and model words as a simple
concatenation of segments. However, both speech scientists and
linguists agree that the notion of a phoneme or speech segment is
not a realistic one. Whilst the phoneme concept may be adequate
for carefully read speech, in which articulatory gestures corre-
spond sufficiently closely to some abstract ideal, there is evidence
from speech production studies showing that changes in speaking
rate, manner and style can all lead to variation in the amplitude of
and phase relations between articulatory gestures. These changes,
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whilst simple to explain in an articulatory or phonological do-
main, can have extreme effects on the resulting acoustic signal:
there may be colouring or even merging of the underlying ‘seg-
ments’ due to interaction between the articulatory gestures both
within and across segment boundaries. We hypothesize that these
effects contribute to the poor performance of current systems on
conversational speech.

One approach to modelling this variability is to extend a conven-
tional HMM-based recognition framework with a more sophisti-
cated state- or model-sharing scheme (eg. [5]). In contrast, we
attempt to model the underlying process more directly through
a two-stage approach to ASR, in which (i) the acoustic signal is
mapped into an intermediate representation comprising a num-
ber of potentially asynchronous feature streams, such as cepstra
derived from sub-frequency bands, phonologically-motivated dis-
tinctive features or articulatory parameters, and then (ii) the inter-
mediate representation is modelled statistically using a technique
appropriate for loosely coupled time series. The family of paral-
lel, loosely coupled HMMs provides one source of possibilities.
In principle, this type of model offers the ability to model words
not as a sequence of phonemes, but as a sequence of loosely co-
ordinated articulatory or phonological feature changes, with syn-
chronization required only at the level of words or even utter-
ances. This paper presents a preliminary study of coupled models
for ASR. Section 2 introduces coupled models, and then describes
one specific coupled model and exact and approximate estimation
schemes in more detail1. Section 3 evaluates this model and as-
sociated algorithms on an isolated letter classification task. Sec-
tion 4 draws conclusions and outlines future research.

2. THEORY

Suppose we wish to model � loosely coupled time series, where
the observations in each time series (or stream) � , denoted��� 	�
����
�
�������
����� , are produced on the same time-scale and may
be scalars or vectors. We might model such data by combining
the � observations at each time � into a single observation vec-
tor ������� � 	� 
�������
������� and building a standard HMM. However,
the resulting model would not be a parsimonious representation
of the data. Alternatively, we might model each stream � inde-
pendently by using a single HMM per stream. The individual
likelihood scores from the independent HMMs can be then com-
bined in some fashion to obtain an overall score, as in the multi-

1A different coupled model and exact estimation scheme is evaluated
for ASR in [6]; another model addressing asynchrony is presented in [7].
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Figure 1: Metastate Space From Combined Ergodic HMMs A, B

band framework (eg. [8]). However, this scheme fails to represent
any coupling between the different time series2. An intermediate
approach is to combine the � independent HMMs into a joint
model which can capture something of the correlations between
different streams. We can form a combined HMM in which (i)
the hidden state space is the Cartesian product of the state spaces
of the individual HMMs (see Figure 1), and (ii) the observations� � are formed by concatenating the individual stream observa-
tions at time � , ie. � � � � � 	� 
���� ��
�� �� � . We refer to the Cartesian
product hidden state space as the metastate space, to distinguish it
from the state spaces of the original independent HMMs for each
stream.

If we assume that each independent HMM has
�

states, then for
moderate � and

�
, estimation of output densities and a transi-

tion matrix for the combined HMM will be intractable both com-
putationally and in terms of robust parameter estimation. Several
recent schemes handle these difficulties through additional condi-
tional independence assumptions and approximations which ex-
ploit the internal, combinatorial structure of the metastates and
observations both to reduce the number of parameters and as the
basis for efficient, approximate training and decoding algorithms
(eg. [10], [3]). The form of model simplification most appropriate
for speech is an open research question. In this paper, we simply
adopt the scheme proposed in [10] in order to gain insight into the
issues involved. This Mixed-Memory Approximation for reducing
the number of parameters is described in Section 2.1; some (more
generally applicable) decoding and estimation schemes of differ-
ing computational complexity are discussed in Section 2.4.

2.1. The Mixed-Memory Approximation

For notational convenience, we assume that each of the �
time series comprises � -dimensional observations and is ini-
tially modelled by a single

�
-state HMM. These HMMs are

combined as described above to produce a model in which hid-
den metastates comprise � hidden variables and each observa-
tion vector has � sub-vectors. � -tuples � � ��� 	 
�� ��� 
 � � � and� � ��� 	 
 ������
 � � � denote metastates. Combined observations
are denoted � � � � � 	� 
�������
�� �� � . 	 denotes probability mass
functions, 
 denotes densities.

Saul and Jordan [10] propose the following simplifications:

� assume conditional independence of state components given
previous state:

	 � �
� � � � ��
��� 	 	 ��� � � � � (1)

� approximate these conditional probabilities with a convex

2At least between points at which streams are forced to synchronize.

combination of cross-transition matrices:

	 ��� � � � � � �� �
� 	�� � ��� ��� �

�
��� � � �

�
� (2)

� conditional independence of observation components given
current state:


 � � � � � � � ��
��� 	 
 � � �� � � � (3)

� approximate these conditional probabilities with a convex
combination of cross-emission distributions:


 � � �� � � � � �� �
� 	�� � ��� ��� �

�
� � �� � �

�
� (4)

The parameters � �
�
��� � � �

�
� are � 


elementary
�����

cross-
transition matrices, a total of � 
 � 


transition parameters. The� �
�
� � �� � �

�
� are � 
 �

cross-emission output densities; for � -
dimensional observations and full covariance gaussians, a total
of � 
 � � � �"!#� � observation-related parameters. Parameters� � ��� � , � � ��� � are mixture weights. They are fixed for a single
model, and give a measure of the dependency between different
streams, using a total of $ � 


parameters. This model thus has% � � 
 � � 
 ! � � 
 ��� free parameters vs.
% � � � � � � ! � 
 � 
 ���

for the combined, full metastate space model.

Approximation (2) has limitations for speech modelling, since
speech HMMs are typically constrained a priori to have a left-to-
right transition structure. This is achievable under (2) only when� is the identity matrix � (ie. transitions in stream � depend only
on the previous state in stream � ). This study also investigates
the case �'&�#� , introducing coupling through transition probabil-
ities. When we do so, we use � �

�
matrices which are individually

left-to-right. This limits backwards transitions in the metastate
space, but is not as strong as the standard left-to-right constraint.

2.2. Special Cases

The experimental section will discuss various special cases of the
loosely coupled model presented above. The standard HMM is
obtained by setting � �(� , � 	 � � � � � 	 � � � �)� . If we general-
ize the loosely coupled model to the case where observations have� subvectors but metastates comprise * hidden variables, and al-
low * &� � , we can obtain the HTK [12] synchronous multiple
stream model by setting * �+� , � =number of output streams,� 	 � � � �,� and � � � � � �-� for all � . The asynchronous multiband
model (eg. [8]) is obtained by setting � � � � � �,� , � � � � � �-� , and� � ��� � �/. , � � ��� � �0. for � &� � . We further distinguish three
forms of loosely coupled model: an observation-only coupled
model sets � to the � � � identity matrix; a transition-only cou-
pled model sets � to the � � � identity matrix; a fully-coupled
model refers to the general case of unrestricted � 
 � .

2.3. Maximum Likelihood Estimation

Maximum-likelihood estimation of the model above may be
achieved using the EM algorithm [2]. Latent variables 1 �� , 2 ��
are introduced to encode the missing data (namely, the cross-
transition and cross-emission mixture components used in stream



� at each time � , respectively). The following update equa-
tions, for the case where each � �

�
� � �� � �

�
� is modelled by a full-

covariance Gaussian density � ��� �
�
� 
�� �

�
� � , are derived in [9]:

�� � ��� � �
� � 	 ��1 �� � � � � ��	��
 � 	 ��1 �� �
� � � � (5)

�� � ��� � �
� � 	 ��2 �� � � � � �� ��
 � 	 ��2 �� �
� � � � (6)

�� �
�
��� � � �

�
� �

� � 
 ��1 �� � � 
�� �� � � � 
��
�
��� 	 � �

� � � �� � 
 ��1 �� �#� 
��
�
��� 	 ���

� � � � (7)

�� �
�
� �

� � 
 ��2 �� � � 
��
�
� � �

� � � � � ��� � 
 ��2 �� � � 
��
�
� � �

� � � � (8)

�� �
�
� �

� � 
 ��2 �� � � 
��
�
� � �

� � � � � � ���� �� �
�
� � � � ���� �� �

�
� ���� � 
 ��2 �� � � 
��

�
� � �

� � � � (9)

where � � � 	 
�������
 � � denotes the current utterance and � � �� � 	� 
���� ��
�� �� � denotes the metastate at time � . Summations over �
run from � to � ; summations over � run from � to � .

��
denotes

an updated parameter
�
. The posterior probabilities necessary for

these updates can be calculated using a (notationally complicated)
generalization of the Forward-Backward Algorithm, also in [9].

2.4. Approximations for Decoding/Training

EM estimation requires forward and backward probabilities in the
metastate-space of size

� � , which becomes intractable as � or�
increase. Phonological or articulatory feature sets typically in-

volve ����� ; allowing stream asynchrony within words or larger
modelling units increases the required

�
. Thus more efficient,

perhaps approximate, decoding and estimation schemes are es-
sential. We will evaluate two alternative schemes3.

Viterbi State Sequences The most-likely metastate sequence
given the data, � � , can be obtained through standard Viterbi de-
coding in the metastate space. � � may also be used in estima-
tion, akin to Viterbi training of HMMs. The associated parame-
ter update equations are obtained by conditioning posterior prob-
abilities in equations (5)-(9) on � � as well as observations � .
However, obtaining Viterbi sequences in the

� � metastate space
might again be intractable.

Chain Viterbi State Sequences Saul and Jordan [10] also pro-
pose a more efficient scheme for approximating � � when the �
time series are assumed weakly coupled. The algorithm iterates
through each stream � in turn, finding the optimal sequence of
hidden states through stream � given fixed values for the hidden
states of the other streams4. The state space is thus reduced to
size

�
when doing the optimizations for stream � . The algorithm

can be initialized by (for example) computing a Viterbi state se-
quence for each chain individually or by assuming a uniform seg-
mentation of the observations for each stream. Iteration through
all � streams continues until convergence, which is not necessar-
ily to � � (see [9] for a counter-example). Assuming the resulting
sequence is similar to the Viterbi sequence � � leads to an approx-
imate, Viterbi-like estimation scheme.

3We are also investigating mean-field and more structured variational
methods from the graphical models community as the basis of efficient
algorithms.

4We note that softer versions of this algorithm in which subsets of
streams are fixed whilst others are decoded are also possible.

3. APPLICATION TO MODELLING OF
FREQUENCY SUB-BAND CEPSTRA

Several authors advocate the use of cepstra derived from fre-
quency subbands for ASR (eg. [8], [11]). We use this representa-
tion for our experiments, rather than a more speculative articula-
tory or phonological representation.

3.1. Experimental Setup

The OGI ISOLET database consists of wideband recordings of
single letters of the alphabet. We use Isolet1-4 (6240 utterances)
to train and speaker-disjoint Isolet5 (1560 utterances) to test. The
performance of our baseline HMMs using a 39-d observation vec-
tor of full-band cepstra (including 0th) with delta and acceleration
coefficients is between ��� � $! (3 state HMM) and ��� � �" (10 state
HMM) for this task, comparable to results reported previously
(eg. [1]). Subband cepstra extraction proceeds as follows. 25ms
windows of speech are Fourier-transformed and filtered through
a bank of $ . overlapping, equally mel-spaced, filters. Filtering
produces a vector of log spectral energies # �%$ & 	 
�������
 & 
('*) . A
choice of + frequency subbands subdivides # into + subvectors#-, . A DCT �., is applied to each #-, to yield a vector of cepstra/ , � �.,�#-, for subband 0 . Decreasing �1, row dimensional-
ity effects cepstral truncation, reducing the dimensionality of

/ ,
from that of #-, : a + -tuple �32 	 
 ������
 214 � denotes the truncation
scheme, where 2 , indicates retention of cepstra . 
 ����� 
 2 , � �
in subband 0 . Finally, observations for the 0 -th subband stream
( � ,� in our earlier notation) are formed by appending the appro-
priate delta and acceleration coefficients to

/ , . All Gaussians are
full covariance, initialized using the global mean and covariance
of the training set. Model sets using cross-emission or cross-
transition dependencies are initialized in stages: first, indepen-
dent HMMs are trained for each stream as in a multiband sys-
tem; then, cross-stream dependencies are introduced gradually,
with two training iterations between the addition of one cross-
dependency per stream. Training continues until likelihood gains
fall below a pre-specified threshold.

3.2. Experimental Results

The first set of experiments compares model structures. Observa-
tions comprise cepstra from two subbands 0-2 and 2-8kHz, with
cepstral truncation (7,6), yielding a 39-d combined observation
vector � � . Table 1 gives baseline percentage correct (%C) per-
formance of standard HMMs. Table 2 examines coupling through
the transition matrices, using single Gaussian output distribu-
tions. The models in each block of the table are ordered in terms
of the allowable asynchrony between streams: the synchronous
HTK stream model is followed by the transition-only (trans-)
coupled model and then the completely asynchronous multiband
model. Table 3 examines the observation-only (obs-) and fully-
coupled model structures, again ordering models via increasing
asynchrony. Each state in HTK stream and multiband models uses
a two Gaussian mixture to model the data from a single stream.
The number of observation-related parameters in these systems is
thus comparable with the fully- and obs-coupled models, which
use a single Gaussian to model each � �

�
� � �� � �

�
� distribution. The

tables show that the performance of loosely coupled models is
comparable to that of other conventional models on this task; fur-
ther experiments comparing three-stream model structures using
three cepstral subbands show similar behaviour (see [9]).



Model (states) # Parameters %C

HMM (3) 4686 96.3
HMM (6) 9327 96.1
HMM (8) 12496 96.4
HMM (10) 15620 96.7

Table 1: HMM Baseline

Model (states per stream) # Parameters %C

HTK stream (3) 2418 94.2
trans-coupled (3) 2440 94.1
multiband (3) 2424 93.9

HTK stream (6) 4836 94.9
trans-coupled (6) 4876 95.0
multiband (6) 4848 94.8

HTK stream (8) 6448 95.4
trans-coupled (8) 6500 95.3
multiband (8) 6464 95.8

HTK stream (10) 8060 96.4
trans-coupled (10) 8124 95.6
multiband (10) 8080 95.9

Table 2: Results: Transition-Coupled Models

The second set of experiments compares decoding and estimation
schemes using two sub-band data as above with two-stream mod-
els. The first three columns of Table 4 compare three decoding
schemes using EM-trained, fully-coupled models: full likelihood
(FL), Viterbi (Vit) and Chain Viterbi (CVit) algorithms. The Mc-
Nemar test [4] finds no significant differences between the FL and
Vit schemes; only the ‘*’-ed CVit result differs significantly from
FL (at significance level . � ."� , but not at . � . � ). The first and final
two columns of the table compare three matched training and de-
coding schemes: EM-training and FL classification, Viterbi (Vit)
training and decoding, and Chain Viterbi (CVit) training and de-
coding. The McNemar test finds no significant differences be-
tween the Vit or CVit schemes and EM/FL Scheme (at significance
level . � ."� ). Similar results are obtained when the decoding (or
training and decoding) schemes are applied to transition-only or
observation-only coupled models.

4. CONCLUSIONS AND FUTURE WORK

Coupled models are theoretically appropriate for learning asyn-
chronous behaviour from data. This paper has shown empirically
that coupled models can perform as well as more conventional
models on a simple task, and has identified approximate estima-
tion schemes which make more extensive experimental evaluation
tractable. Further analysis suggests that the models do capture in-
formation about asynchrony between streams. Although ISOLET
is clearly a limited task, we conclude that loosely coupled models
merit further investigation. Future work will develop alternative
coupled models. These will circumvent the difficulties that equa-
tions (2) and arguably (4) present when modelling speech, whilst
retaining the attractive properties of the model: the tractable num-
bers of free parameters, efficient decoding/estimation algorithms
and the possibility of incorporating exponent stream weights5.

5Such weights appeal for modelling phonological or articulatory fea-
tures, where only subsets of critical articulators may be necessary to dis-
tinguish certain sounds.

Model (states per stream) # Parameters %C

HTK stream (3) 4842 94.6
fully-coupled (3) 4856 94.7
obs-coupled (3) 4840 94.9
multiband (3) 4848 94.0

HTK stream (6) 9684 96.2
fully-coupled (6) 9704 95.8
obs-coupled (6) 9676 95.7
multiband (6) 9696 95.3

HTK stream (8) 12912 96.2
fully-coupled (8) 12936 96.0
obs-coupled (8) 12900 95.8
multiband (8) 12928 96.3

Table 3: Results: Observation- and Fully-Coupled Models

states Tr=EM Tr=EM Tr=EM Tr=Vit Tr=CVit
per D=FL D=Vit D=CVit D=Vit D=CVit
stream %C %C %C %C %C

3 94.7 94.7 *94.0 94.6 94.1
6 95.8 95.8 95.6 95.9 95.8
8 96.0 95.9 95.9 95.8 96.4

Table 4: Results: Training (Tr) and Decoding (D) Schemes
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