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Abstract

Training HMMs on the same conditions as in recognition makes models learn not only the
features of the speech, but also those of the environment. Training in the same conditions
allows the recognition system to obtain better recognition performance, but trying to have
models for all possible environments is impractical. Therefore, one way to solve this problem is
to compensate models trained on clean speech to give “artificially” adapted models. The goal
of these noise adaptation techniques is to reach the same recognition performance as would be
obtained by training in the noisy conditions. Parallel Model Combination (PMC) [5] is one
adaptation technique which has been successful in adapting a clean speech model to noise by
automatically generating “noisy speech models”.

However, even training in noise can only achieve limited recognition performance because
the high variance at low SNR makes the features begin to overlap making the discrimination
problem more difficult. The problem is even worse when the vocabulary grows; for example,
some experiments have shown that recognition performance is below 80% for 0 dB, see [7], even
when training and testing were in the same environment. Therefore, in very noisy environments,
or when the vocabulary grows, even training in noise is not enough to obtain good recognition
performance. In order to improve recognition performance in very noisy environments, some
sort of enhancement technique may be useful. An enhancement scheme could improve the SNR,
or minimise the variance, or emphasise the main features of the interesting signal. However, all
of these improvements are usually at the expense of signal distortion. Minimising both signal
distortion and noise, a signal with better features and lower variability is obtained. However, if
we want to exploit the good features of the noise adaptation techniques and the good features
of the enhancement techniques, then we need to compensate the speech models to the distorted
signal. In other words, we need to adapt the models to the enhanced signal.

In this work, we study how to adapt clean speech models for a signal enhanced by Spec-
tral Subtraction(SS). This scheme improves the SNR but at the expense of signal distortion.
Nevertheless, this scheme has been successful for signal enhancement [4] [3], and for speech
recognition [10] for noisy environment. Here, the distorted signal is compensated to make SS
able to deal with very noisy environments. It will be shown that the signal distortion can be
represented in the linear domain by a correction term, A. PMC transforms the noise and speech
model parameters from the cepstral domain to the linear domain, adds these parameters, and
then creates an adapted model by returning to the cepstral domain. Therefore, PMC can be
modified to compensate an SS distorted signal in the linear domain by including the correction
term, A. This modified version of PMC will be called the SS-PMC method.

The results obtained by the SS-PMC technique are very encouraging, showing that it is
very effective to use adaptation techniques to compensate for the signal distortion which is a
side effect of an SS5-based enhancement scheme.
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1 Introduction

The practical application of speech recognition in the real world must deal with the serious
problem of environmental noise. This is why a lot of research effort has been given to this
subject. Many approaches attempt to clean the noisy signal or improve the features of the
speech signal before it reaches the recogniser. SS is a simple scheme, see Fig. 1, which has
been successful for speech enhancement [4] [2] and speech recognition [14] [16] [10] [11]. This
enhancement scheme has been successtul even though it assumes a zero-noise variance. In order
to deal with high noise variance, SS sets a minimum value and subtracts an over-estimation
of the noise. This over-estimation significantly reduces the noise (ie it increases the SNR) and
probably reduces also the variance, but it also distorts the speech signal. Over-estimation can
be seen as a way to make a trade-off between reducing the noise and distorting the speech, and
the optimum is obtained when both the noise and the distortion are minimised. Experimental
results show that an over-estimation factor of about two on the magnitude spectrum is optimum.
Another example of this trade-off is Single Value Decomposition (SVD), [15], the key idea of
this scheme is that a little distortion can be often introduced in exchange for a large reduction
in variance.

In parallel with the above enhancement work, the effects of noise on the performance of a
HMM based recogniser have been studied [7], The conclusion is that by training and testing,
see Fig. 2, in the same conditions, the HMM recogniser achieves the best performance. This
is because the parameters of the HMMs “learn” the features of both the speech and the noise.
However, trying to build a database with models for all conditions is impractical. Therefore,
one way to deal with this practical problem is to automatically adapt the clean speech models
to the noise. The aim of any noise adaptation technique is to reach the recognition performance
obtained when the HMMs are trained in the same environment.

In general, the adaptation technique can be described as follows

= Ta{m} (1)

where

m are the parameters of the clean speech model

m are the model parameters adapted to the noisy conditions, and

T, is the transform from the clean speech model to the noisy speech model.
In past work, this transformation has been implemented in different ways. For example, when
cepstral mean compensation [2] [1] is used, this transformation is the addition in the cepstral
domain of the mean of the clean speech and a compensator value, which could be a function
of the noise and the actual speech. When noise masking [12] is used this transformation is
non-linear, for example, in the scheme by Varga & Ponting [18] the frequency band mean of
the actual speech is replaced by the noise estimator if the noise is higher than the speech
mean. When Parallel Model Combination (PMC) [5] is used, we have a non-linear transform
in the cepstral domain. In this case, the speech and noise parameters are transformed from the
cepstral domain to the linear domain, the parameters are added, and finally they are returned
to the cepstral domain. This adaptation method has been very successful in adapting clean
models to noisy environments and very good results have been achieved, for example 93% word
correct for Lynx Helicopter noise on a digit database at 0 dB, [6], outperforming the results
obtained by training and testing in the same noisy conditions.
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Figure 1: Spectral Subtraction, b = 1 gives magnitude subtraction, b = 2 gives power subtrac-
tion.

Eventually these noise adaptation techniques must reach a limit since recognition perfor-
mance in very noisy environments is not completely solved by training in noise. Eventually,
the variance becomes so large that feature overlapping begins to affect discrimination, and the
problem becomes worse when the vocabulary grows. For example, it has been shown, [7] that
the recognition performance can drop to 80% at 0 dB even when training and testing was on
the same noisy conditions. Therefore, in very noisy environments, or when the vocabulary
grows, even training in noise is not enough to obtain good recognition performance. In order
to improve recognition performance in very noisy environments, enhancement techniques are
needed. These may attempt to improve the SNR, minimise the variance, or emphasis the main
features of the interesting signal. However, all of these improvements are usually at the expense
of signal distortion. If both signal distortion and noise are minimised, then a signal with better
features and lower variability is obtained. However, if the good features of these enhancement
techniques are to be exploited, then the speech models need to be compensated to the distorted
signal.

Adapting the models to the enhanced signal should raise the achievable limit of recognition
performance. In order to determine this limit, a test similar to training and testing on the
same condition can be made. Training and testing on the enhanced speech signal is shown
in Fig. 3. In this case, the enhancement algorithm affects both the training and testing
database. Although, trying to create a model database for all environments is impractical this
configuration gives an indication of the maximum performance which can be achieved with
an enhancement scheme. As shown in section 5, this maximum appears to be considerably
higher than existing compensation schemes thus providing the motivation for seeking automatic
methods to adapt clean speech models to the enhanced speech signal.

If Y is the noisy signal and Y is processed by an enhancer, e(Y'), a distorted signal, Sp, is
obtained that is

Sp = e(Y) (2)

In this work a HMM based recogniser with Gaussian state distributions is used. The Gaussian
probabilistic density function, pdf, is completely modelled by the mean and the variance. Hence,
in order to adapt the HMM, the mean and variance of each state have to be adapted. Therefore,
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eq. 1 can be rewritten for HMMs as follows
o= Tu{p} (3)
Y =Tp{¥} (4)

where

T:{.} is the transformation from the mean of the clean speech model to the enhanced speech
model, and

Ts{.} is the transformation from the variance of the clean speech model to the enhanced
speech model.

In this work, we study the integration of Spectral Subtraction as enhancement technique,
and PMC as adaptation technique. Because PMC only adapts the HMMs to the noise, it has
to be extended to include the effects of the distortion. It is shown in Sec. 2, that the enhanced
speech spectrum can be represented in the linear domain by the spectrum of the noisy speech
plus a correction term, A. Therefore, this extension turns out to be relatively straightforward.

The remainder of this paper is organised as follows. Section 2 shows that the distorted
speech (output) can be modelled as the addition in the linear domain of the noisy speech
(input) plus a correction value. Section 3 shows how to modify the PMC algorithm to adapt
the models to the enhanced speech. Section 4 presents experiments and results on the Noisex-92
database. Finally, Section 5 gives some comments and conclusions.



2 Analysis of Spectral Subtraction Distortion

In this section, Spectral Subtraction(SS) is described and the effect on the expected value and
variance of a signal processed by this scheme. SS is attractive because in practice it has been
shown to be successful for both signal enhancement is calculated [4] [3] and speech recognition
in noise [14] [16] [10] [11]. Since it assumes zero-variance noise and real noise is highly variable,
especially for low SNR, SS sets a minimum positive value on the enhanced signal and subtracts
an over-estimation of the noise. By using SS, we obtain a signal with better features and lower
variability. However, over-estimation and flooring makes the compensator non-linear and hence
the noise level is reduced at the expense of introducing distortion into the speech signal. Over-
estimation can be seen as a way to make a trade-off between reducing the noise and distorting
the speech, the optimum over-estimation value is when both the noise and the distortion is
minimum. Experimental results show that the optimum over-estimation factor is about two for
the magnitude spectrum.

There are different spectral subtraction schemes, here the following scheme[9] is used, see

Fig. 1,
DY)=Y —aN

DY) DY Y
Yo(Y) :{ ﬁ}(/ ) 0t§ze£w>is€ (5)

where

Yp(Y) is the higher SNR noisy signal or the distorted estimation of the clean speech S

Y is either the power or the magnitude spectrum of the noisy speech

N is an estimate of either the power or magnitude noise spectrum

« is an over-estimation factor, and

B is the spectral flooring parameter.

When Y is the magnitude spectrum, we will call it a Magnitude Spectral Subtraction (MSS)
scheme, and when Y is the power spectrum we will call it a Power Spectral Subtraction (PSS)
scheme. The distinction is important because the random variable transformation will lead to
a different pdf, P(Y), for this two cases.

At the SS output an enhanced signal is obtained but it is distorted. To determine the impact
of this distortion, its effect on the mean and variance of the signal need to be calculated. For
simplicity it is assumed that each frequency channel is statistically independent, hence it is
only necessary to develop the theory for the one-dimensional case. The expected value of the
enhanced speech, Yp is

E[Yp] = / O:o Yo (Y)P(Y)dY

by using the SS scheme defined in eq. 5, we obtain

a(a,8,N)

E[Yp] = /(°° S al)P(Y)aY + | BY P(Y)dY (6)
a(a,B,N —00
where a(a,ﬁ,N) = % If this equation is to be expressed as the linear combination of the

noisy speech and the effect of the distortion, then the first integral on the right part of the last
equation is completed as follows



E[Yp] = /_ Y = aN)P(Y)Y + / Y v Pryay /_ I R Py

E[YD]z/OO YP(Y)dY—aN/_O:OP( dY+/ o mfp )dY—/_a(a’ﬁ’N)(Y—aN)P(Y)dY

[e.e]

then, the first integral is the expected value of the random variable Y, E[Y], and the value of
the second integral is unity since P(Y') is a pdf. Hence, we obtain

E[Yp] = E[Y] - aN + / Y oy poriay / N R Py
. a(@,8,N) ,8,N)
E[Yp] = E[Y] — alN + (8 — 1)/_ YP(Y)dY + aN/ P(Y)dY. (7)
Let us define
N a(oz,,@,N)
Ale, 8,8, P(Y)) = [ Py (8)
~ a(a,ﬁ,N)
Bla, BN, P(Y) = [ Y P(Y)ay (9)

A(e, 8, N, P(Y)) is a cumulative distribution of the pdf P(Y). B(e, 8,N,P(Y)) is not a cu-
mulative distribution, but when a goes to infinity this correspond to the expected value of Y.
By substituting eq. 8 and 9 in eq. 7, we obtain

E[YD] = E[Y] - Q’N‘l‘ (6 - 1)B(a767N7P(Y)) + QNA(OZ,IB,N,P(Y)).
Now, defining

Ay(e, B, N, P(Y))= —aN + (8 — 1)B(a,3,N, P(Y)) + aNA(a, 3, N, P(Y)) (10)

we obtain

E[Yp) = E[Y] + Ao, . N, P(Y)) (11)

From this equation, it can be observed that the effect on the distorted signal can be expressed
as the addition of the noisy speech and a correction A, in the SS domain, and this function
depends on the spectral subtraction parameters, a and 3, the noise estimator N and the pdf
P(Y).

By comparing eq. 11 with eq. 3, we see that in this case T:{i} is the addition in the
SS domain of the expected value of the noisy signal, E[Y], plus a correction constant, A,.
This is an interesting result, because it shows that, in the SS domain, we have the freedom to
use any noisy adaptation algorithm and the correction A, can be compensated independently.
For example, the PMC [5] adaptation technique assumes that the addition of the expected
value of S, E[S], plus the expected value of N, E[N], is equal to the expected value of E[Y].
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Figure 4: Mean compensation in the signal processing and variance compensation in the adap-
tation algorithm.

Y

This is an approximation which can be used in eq. 11, but we are not restricted to using this
approximation. If more accurate methods of estimating E[Y] are developed, then they can be
used instead.

In theory there are two ways in which mean compensation might be applied. In Fig. 4, it
is applied as a correction in the signal processing stage. At first sight, this is attractive in that
the correction only needs to be applied once to the signal and all of the models means remain
unchanged. However, in practice, it is not directly implementable since A, depends on the
spectrum of the underlying clean speech signal which is not known. The alternative scheme is
to include the mean compensation within the model adaptation as shown in Fig. 5. In this
case, the model means themselves provide the required estimates of the clean speech spectrum.

Moreover, assuming

E[Y] = E[5]+ E[N],
as PMC does, we obtain

E[Yp] = E[S] + E[N] 4+ Ay(a, 8, N, P(Y))

From this equation it can be seen how the enhanced speech is distorted, and that this distortion
can be compensated by simply adding E[N] and A, to the clean speech model means.

Most of the algorithms for speech recognition in noise prefer not to compensate the variance,
and it is common to use fixed variances. Fixed variance techniques replace the state variances
with a single global variance which is obtained from all the words in the training database.
Although, this is not a very elegant way to tackle the problem some good results have been
obtained using this approach [13]. Parallel Model Combination(PMC), see Sec. 3, combines in
the linear domain the speech and noise parameters, and transforms them back to the cepstral
domain to obtain both mean and variance compensated models. In [6], Gales & Young show
that this technique is more successful than the fixed variance technique. Therefore, we can either
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replace the state variance of the clean speech by a the fixed variance or use the combination of
the clean speech and noise variances generated by PMC.

In the latter case, we can also extend the equations to compensate for the effect of the
distortion on the variances. The effect of SS on the variance can be calculated as follows

VIYp] = E[Yp] — {E[YD]}* (12)
E[Yp] is given by eq. 11, for E[YA] we have

E[YE] = /GZM)(Y— ali)? dY+/ BY2P(Y)dY

where a = % Proceeding as before,

50 a(a,ﬁ,N) R
EYE = [ (v — aNPP(Y)aY + / FYEPY)aY — [T - Py )ay
2 2 t 2 ol 2 a(a7ﬁ7N) 2 a(a ‘BN
EIVE] = BV —20NEY]+a*R* - [ YZP(Y)dY + 2aN/ YP(Y)dY

5 oo a(a,ﬁ,N) ) a(oz,ﬁ,N) )
—a?N? [ Py + 4 [ Y2P(Y)dY

[e.e]

by using the definitions of A(«, 3, N, P(Y)) and B(a, j3, N, P(Y)), eq. 8 and 9, and by defining

a(o ﬁ,N)

C(a, B, N, P(Y)) = / T yip(y)dy
we obtain
E[YZ] = E[Y?Y—2aNE[Y]+o®N?+2aNB(a, 8,N,P(Y)) — a*N2A(a, 3, N, P(Y))

+(#* = 1)C(a, B, N, P(Y)). (13)

oo



When a goes to infinity, C(a, P(Y)) is the second moment of the random variable Y with pdf
P(Y'). By replacing eq. 13 in eq. 12, we obtain

V[Yp] = E[Y?} —2aNE[Y]+ o?N? +2aNB(a,3,N,P(Y)) —a*N*A(a, 3, N, P(Y))
+(/62 - 1)0(&, ﬁ:Nv P(Y>> - {E[YD]}2

From this, it seems that an estimator for the second moment of the noisy speech is needed,
E[Y?]. However, since

VY] = B[] = {E[Y]}*.

then

V[Yp] = V[Y]+{E[Y]}? —2aNE[Y] + o?N? + 2aNB(a, 3, N, P(Y))
—a?N?A(a, B, N, P(Y)) 4+ (8> = 1)C(a, B,N, P(Y)) — {E[Yp]}2.

Hence, defining

As(a, B,N,P(Y)) = {E[Y]}?—2aNE[Y]+ o?N? + 2aNB(a, 3,N, P(Y))
—a*N?A(a, B, N, P(Y)) + (8* = 1)C(a, P(Y)) = {E[Yp]}* (14)

we can re-express the variance equation as the linear combination of the noisy variance and Ay
to obtain

V[Yp] = VY] + Ag(e, 8,N, P(Y)). (15)

It can be observed that Ay depends on the parameters of SS, a and 3, the noise estimator N
and the pdf P(Y).

By comparing eq. 15 with eq. 4, it can be seen that the transform Tx{ V[Yp]} is the addition
of the variance of the noisy signal, V[Y], plus a correction in the SS domain, Ag(e, 3, N, P(Y)).
As before, the practical way to compensate the variance is by modifying the adaptation algo-
rithm as shown in Fig. 5.

A potential problem of this scheme is the solution of the integrals A(«, 3, N, P(Y)),
B(a, 8,N, P(Y)) and C(a, g, N, P(Y)) since the transformation could yield an intractable pdf
P(Y). However, for this work it is assumed that the distributions are log normal in the linear
domain and solutions exist for this case.

Assume that Y has a log normal pdf, defined as follows

L )¢y
V)= ———— ¢ 20
¥) = /et

P(Y) is completely defined by ¢ and 4, hence the general notation A(a, P(Y)) may be written
as A(a, &) where

a(a,8,N) 1 (V)2
A(a7£7¢) :/_Oo m@ 2¢2(l (Y) 5) dY

9



this integral can be solved by the variable substitution z = In(Y) to give

) In(a(e,8,N)) — 1o (2—€)?
Ale, B, N, €,¢) = /_oo me 29 dz.

The integrand is a Normal distribution and hence given the Normal cumulative density function

1 1

e~ 27 @1 gy

C(b, u,0%) = /_boo

2o

A(a,&,1) can be expressed as

Ale, B, N, €,9) = CIn(a(a, B,N)), €,97)

Similarly, see the appendix, B(a, ¢, ) and C(a, &, ) for log normal pdf, P(Y), can be reduced
to

B(a, B,N,&,0) = E[Y]C(In(a(a, B,N)), & + 2, ¢%)

Cla, B,N,&,9) = E[Y*|C(In(a(a, B, N)), € + 2¢7,4?)
where
E[Y] = et+¥/2
E[Y?] = 2449

To reduce calculation, we can define the normalized Normal cumulative function

G (b_“) = C(b, p, 0?)

g

Hence, A(«, ﬂ,N,f,¢), B(a, B.N,E, ¥) and C(a, 3,N,E, 1) can be re-expressed as follows

Ao, B, N,6,9) = G (Z”(“(“’%N N=¢ ) (16)
B(a, 3,N,¢,4) = E[Y]G (Z”(“(“’ i ’N;) — (4 1”2)) (17)
O, 8.1, €,4) = E[Y?G (l"(“(“’ﬂ ’NZZ —4 2‘”2)) (18)

The cumulative function G(z) does not have an exact solution but for small values, it can
be approximated by a table look-up and for large values, it can can be approximated by
G(z) = %e‘x’z or by G(z) = (L + w%)e_xz). Moreover, N(0,1) is a symmetric function, hence
the size of the table look-up can be reduced by half using the following equation [§]

G(z) =1—-G(—=x).

10



The above expressions for A(a,,v), B(a,&,¢) and C(a, £, ) allow the required correction
factors A, and Ay to be calculated in terms of the expected values of Y and Y? and the
parameters ¢ and e of the log normal distirbution P(Y). As shown in the appendix,

E[Y] = /2 (19)

and

E[YQ] = 2+
from which it is straighforward to show that
Y* = In(V[Y]+ {E[Y]}?) - 2in({E[Y]}) (20)

and
¢ =In(B[Y]) — 4?2 (21)
replacing eq. 20 in eq. 21 we obtain

¢ = =0.5m(V[Y]+{EY]}) + 2m({E[Y]}?) (22)

11



3 SS-PMC

In the previous section, it has been shown that assuming the spectral distributions in the
linear domain are log normal then it is possible to calculate correction values A, and Ay
for the SS distortion. The assumptions of log normality in the linear domain cover the main
representations used for speech recognition. The SS may be applied to the magnitude spectrum
(MSS) or to the power spectrum (PSS) and the same equations apply. Recognition may use
either the log filter bank parameters or a cepstral representation. However, these are linked by
a linear transformation and both may be assumed to be log normal.

The calculation of A, and Ay, require both an estimate of the noise NV and an estimate of
the clean speech S to enable the expectations E[Y] and Var[Y] to be calculated.

As noted earlier, the PMC technique developed by Gales & Young [5] allows the latter
expectations to be calculated by assuming that the HMM Gaussian output distributions char-
acterise N and S in the log domain. These parameters are then mapped into the linear domain
where additivity is assumed to hold, thereby allowing E[Y] and Var[Y] to be calculated. Given
the theory developed in section 2, it is straightforward to extend this PMC approach to the SS
case. As shown in Fig. 6, the basic PMC framework is unaltered save for the inclusion of the
A factors in the linear domain. Thus, the overall steps in the SS-PMC scheme are

1. Transform the cepstral (or log) means and variances back into the linear domain as in

standard PMC.
2. Calculate E[Y] and E[Y?] assuming additivity of the speech and noise.
3. Calculate A, and Ay and adjust the means and variances.

4. Transform the compensated means and variances back to the cepstral (or log) domain as

in standard PMC.

Fig. 7 shows the block-diagram representation for the A, and Ay calculation. In order to
make the explanation of the algorithm clear, the problem is divided into three general steps.
Each step is completed with intermediate steps. Fig. 7 shows the general steps separated by
thicker lines. The calculations are based on the equations developed in Sec. 2, specifically, on
eqs. 16, 17, 18, 10, 14, 21 and 20.

The realization of this block diagram in a sequential computer can be done has follows,
given the mean and variance of the noisy speech, puy and Yy, and the parameters of the SS, «
and 3, as input parameters, the general steps to solve are:

e Obtain a, £ and .
o Calculate A(a,§,%), B(a,&,1) and C(a,§, 1))

o Calculate A, and Ay,
The detailed intermediate steps should be clear from Fig. 7.

Once the correction factors have been applied we return to the standard PMC algorithm
and transform from the linear domain back to the cepstral (or log) domain.

12
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4 Experiments and Results

The SS-PMC technique described in the previous sections has been evaluated using the Noisex-
92 database. This database was created by artificially adding noise to clean speech, therefore,
it does not exhibit the Lombard effect. This database contains digits, 100 training utterances
recorded in silence and 100 testing utterances with different noises, e.g. car and helicopter, at
levels in the range +18 dB to -6 dB. Lynx helicopter, car and F16 were the noises used for our
experiments. These noises were chosen because the scheme assumes stationary noise, and these
are more or less stationary. 0 dB and -6 dB were the levels used to test very noisy conditions.
This database has a male speaker and a female speaker, using their native language, English.
The male speaker was used for our experiments.

The baseline recogniser used 10 state word-based HMMs, with 8 emitting states and single
Gaussian diagonal covariance matrix output probability distributions. The speech was pre-
processed using a 25 ms Hamming window, and then parameterised into the first 14 cepstral
coefficients obtained from either magnitude spectrum (MMFCC) or power spectrum (PMFCC).
The clean speech model variances for the baseline recogniser were replaced by a fixed-variance.
This fixed-variance was obtained from all the training data.

For the SS-PMC scheme, a HMM for each digit was trained using the clean speech data only.
The noise model used a single emitting state model and it was trained on all the available noise
data. This noise model uses 1 emitting state and single gaussian diagonal covariance output
probability distribution. The topology for all models was left-right with no skips and diagonal
covariances were assumed throughout. For each frame, a set of 15 MFCC (either MMFCC or
PMFCC) coefficients were computed. The zeroth cepstral coefficient is computed and stored
since it is needed in the SS-PMC mapping procedure. However, it is subsesquently dropped in
the actual recognition process. SS-PMC compensates for the means as discussed in Sec. 3. In
order to obtain wider variances, the term Ay, was set to zero. Another way to keep the variance
wider is using fixed-variance, but no experiments were tried using fixed-variance.

Recognition used a standard connected word Viterbi decoder. All the training and testing
used version 1.4 of the portable HTK HMM toolkit [19], with suitable extensions to perform
SS-PMC.

Noisex-92 database is a continuous digit database, but an ideal word detector is assumed
since this work is only concerned with determining how well the models have been adapted to
the signal enhancement scheme.

The spectral subtraction scheme discribed in section 2 is used for the signal enhancement.
The parameter o was varied from 0 to 2.4, and [ was fixed at 0.1. Some experiments varying
3 were performed, and it was found that # = 0.1 has a good behaviour and values around this
have similar recognition performance. The noise estimator is obtained from the average of the
twenty spectral samples before the words starts. No attempt was made to apply time-frequency
smoothing.

As was discussed in Sec. 1, an upper limit on recognition performance can be estimated
by applying the enhancement technique to the training noise data, see Fig. 7?7, such that the
models “learn” the features of the enhanced signal. Fig. 8, shows the results on the Lynx noise
when MSS-MFMCC and PSS-MFPSS schemes are applied for different values of a. Fig. 8
also shows the result when the spectral subtractor is applied before the filterbank, we will refer

these latter schemes as the bMSS-MMFCC and bPSS-PMFCC. The theory developed in Sec.



2 assumes that the spectral subtraction is applied after filterbank processing, but assuming
that the filterbank is some kind of frequency smoother and that the smoother does not have a
significant effect on the subtracted signal, hence the theory of Sec. 2 can also be applied to the
bMSS-MMFCC and bPSS-PMFCC cases.
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Figure 8: Best recognition performance for Lynx at 0 and -6 dB SNR using four different
enhancement techniques

Fig. 8 indicates the best performance of each of the schemes for Lynx noise at 0 and
—6 dB SNR. For all cases, the introduction of the speech enhancer improves the recognition
performance. The best recognition performance, when training and testing in the same noise
environment without any enhancement corresponds to o = 0. For example, Fig. 8 shows that
when training and testing in the noise conditions for the Lynx noise at -6 dB, 42% recogni-
tion performance is obtained for MSS-MMFCC. This represents the best performance that we
can expect to obtain with an ideal model adaptation algorithm. However, when the enhace-
ment scheme is included, the best recognition performance goes up to 78% (« = 1.6). Hence,
by adding the enhancement scheme, the upper limit of recognition performance is increased.
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Figure 9: Best recognition performance for Lynx, Car and F16 for PSS-PMFCC and bPSS-

PMFCC
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Therefore, compensating for the distortion of the SS scheme, in the best case it should be
possible to reach this improved recognition performance. It can be observed that a similar
improvement is obtained by the other schemes. Finally, Fig. 8 shows that for magnitude spec-
trum schemes a sharp curve is observed around the optimal value of @ = 1.4. The curve for
the power spectrum schemes is smoother suggesting that they are more robust to the precise
setting of a.

In general, for Lynx noise at 0 and -6 dB SNR, for any value of «, the schemes with SS
before the filterbank obtain better results. Although this results suggest the use of SS before
the filterbank preprocessing, it is useful to see how well each of the enhancement schemes work
with our compensation algorithm.

It can be observed that these schemes reach maximum recognition performance for some
values of o (e.g. maximum recognition performance for bMSS-MFCC is at o = 1.4 for Lynx
noise at -6 dB). These values of « represent the values at which maximum noise reduction and
maximum discrimination is reached. It is expected that these values will be dependent on the
SNR, the variance and the vocabulary size.

Fig. 9 shows the best performance for the Lynx noise, Car noise and F16 noise for 0 dB
and -6 dB for PSS-PMFCC and bPSS-PMFCC, and Fig. 10 shows the best performance for
the Lynx noise, Car noise and F16 noise for 0 dB and -6 dB for MSS-MMFCC andb bMSS-
MMFCC. Again, for Car noise and F16 noise the best performance results using any of the
signal enhancement techniques outperform the recognition performance without using them.
This means that these signal enhancement techniques also deal well with Car noise and F16
noise. In fact, Figs. 9 and 10 show that SS deals very well with car noise, and the best
recognition performance for an ideal model adaptation technique goes over 94% using any of
the signal enhancers tested in this work. These figures also show that the best expected results
for F16 noise were less successful with the best recognition performance around 80% for —6dB.

To test our adaption scheme, the models were trained with clean speech and compensated
by using the SS-PMC decribed in Sec. 2. For pre-processing either MSS or PSS were used,
before and after the filter bank, and as discussed above, in order to keep the variance wider,
we only compensated for the means. In order to compensate for all the assumptions and
approximations, A, is weighted by 7. The experiments show that values of v between 0.8 and
0.7 are good for 0 dB SNR, and 0.7 and 0.5 for -6 dB SNR.

Fig. 11 shows the results for Lynx noise, Car noise and F16 noise at 0 and -6 dB SNR,
when PSS-PMFCC is used as the signal enhancer. This graph shows the best performance
using an ideal adaptation technique (i.e. the models were trained on the enhanced signal), and
the results when the A correction were applied for two values of 4. From the point of view
of recognition performance the results are very good for any value of «, and from the point of
view of how close the results are to best, these are not very satisfactory for a < 1, but they
improve when a > 1, and they reach comparable and some times better results than the best
expected results. The maximum performance is reached for 1.5 < a < 2.0.

Fig. 12 shows the experimental results when bPSS-PMFCC is used as enhancer. In this
case, most of the time for 0 dB when o < 1 the results are comparable to the best expected
results and for o > 1 the results most of the time outperform the best expected results. In this
case, the recognition performance is not very sensitive to small changes in «, hence a smoother
graph is obtained. Again, the best performance is obtained for 1.5 < « < 2.0.

Fig. 13 shows the results for MSS-MMFCC, the results for this scheme are very poor,
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and much of the time, the recognition performance without SS (o = 0.0) is better than when
compensating the distortion of the enhanced speech. The best performance is obtained for
l4<a<18.

Fig. 14 shows the results for bMSS-MMFCC, the results of this scheme are better than
MSS-MMFCC, and we can see that compensating the distortion of the enhanced speech is
effective. Here, again the best performance is obtained for 1.0 < o < 1.4. Even though good
results are obtained with this magnitude scheme, the schemes which use the power spectrum
outperform it.

Table 1 sumarises the results for a standard fixed variance HMM based recognition system,
MSS, bMSS, PSS and bPSS. These results were obtained for 0.0 < o < 3.0 and g = 0.1. As
noted earlier, the value of 3 was fixed at 0.1 from the outset. This may not therefore represent
an optimum setting. Table 2 sumarises the performance obtained using the various S5-PMC
schemes. From this table, it appears that bPSS-PMFCC is the best scheme for 0 dB and PSS-
PMFCC is the best for -6 dB, the difference is not great however and looking at Fig. 12 and 13
it can be observed that bPSS-PMFCC sometimes presents a smoother curve and is therefore
less sensitive to small variations of a.
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SNR(dB) | Lynx (%) | Car (%) | F16 (%)
Std. HMM 0 32 42 42
-6 20 16 12
PSS-PMFCC 0 70 81 60
-6 46 56 43
bPSS-PMFCC 0 78 83 64
-6 30 33 46
MSS-MMFCC 0 77 84 69
-6 Yt 61 47
bMSS-MMFCC 0 84 83 69
-6 36 29 46

Table 1: Correct words baseline results (0 < o < 3.0 and g = 0.1).

Method SNR (dB Lynx (%) Car (%) F16 (%)
PSS-PMFCC 0 97(a = 2.0) 99 (¢ = 1.6;a0 =2.0) | 99 (o = 1450 = 1.6)
6 82(cr = 1.4) 92 (a = 1.8) 85(cr = 1.4)
bPSS-PMFCC 0 10016<a<l8) | 100(1i<a<l18) | 99(1.8<a<2.0)
6 | 81(14<a<L6) 92 (a = 1.8) 81 (1.8 < a < 2.0)
MSS-MMFCC 0 67(a = 1.4) 92(a = 1.8;a = 2.0) 9(a = 1.6)
6 37(a = 0.0) 63(1.0 < o < 1.4) 62(a = 1.4)
bMSS-MMFCC | 0 83(a = 1.6) 97(a = 1.8) 100(a = 1.6)
6 47(a = 1.6) 86(1.0 < a < 1.8) 79(a = 1.8)

Table 2: Best results for our adaptive schemes.
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5 Comments and Conclusions

By enhancing noisy speech using spectral subtraction, a signal with better features and less
variability is obtained, at the expense of signal distortion. In this work, we have proposed the
use of adaptation techniques to compensate clean speech models to match the distorted speech
produced by a signal enhancer.

First, an ideal signal enhanced adaptation algorithm was simulated by training and testing
directly the enhanced speech. The experimental results showed that adapting the models to
the enhanced signal can significantly improves recognition on the NOISEX-92 database.

Furthermore, these results suggests that better results should be possible than can be ob-
tained with a noise adaptation scheme alone (such as PMC).

The MSS-MMFCC scheme was defined for when the magnitude spectrum is used for Spectral
Subtraction and coding uses the Magnitude spectrum. Similarly, the PSS-PMFCC scheme is
when the power spectrum is used for Spectral Subtraction and coding uses the power spectrum.
The prefix b was used to indicate that SS was performed before the filterbank.

The necessary compensation for the basic MSS-MFCC scheme was developed and it was
tested on the NOISEX-92 database. It was shown that the same expressions are valid for
both the variants defined above. First, it was shown that the effect of SS on noisy speech can
be separated into the effect of the noise on the speech and the distortion caused by the SS.
Therefore, compensating the distortion is easily achieved in the linear domain, and the PMC
adaptation technique was modified to compensate for the enhanced signal. We refered to this
modified approach as the SS-PMC scheme.

The theory behind this adaptation algorithm is based on several assumptions and approx-
imations. In order to compensate for these approximations, the correction term, A, was
weighted by a v factor, and the best performance was obtained when this factor was larger
than 0.7 and smaller than 0.9 for 0 dB SNR, and larger than 0.5 and smaller than 0.8 for -6
dB SNR. The experimental results for the MSS-MMFCC and bMSS-MMFCC schemes were
not very satisfactory, but the results for the PSS-PMFCC and bPSS-PMFCC schemes were
comparable or better than the results of an ideal adaptation algorithm.

The results obtained for the SS-PMC scheme open the possibility of building a practical
recogniser for very noisy environments.

The computational time required for the SS-PMC is practically the same as for the compu-
tational time of the spectral subtractor, because, PMC computational time is minimal and the
compensation A for the distorted speech does not represent a significant computational load.

As already noticed, the Noisex-2 database artificially adds real noise to clean speech, hence
there is no Lombard effect. It SS-PMC is applied to real noisy speech, then it may be necessary
to compensate for this effect also.
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A Appendix.

By definition,

1
Y/2m)

this integral can be solved by the variable substitution z = In(Y) to give

In(Y)—¢)? dY

e 2w2 (

N a(a,ﬁ,N)
Bla(a, 8,8).6.0) = [

In(a(e,8, N)) e?

Blo(o, . N),60) = [ 7 o s

which can be re-expressed as follows

In(a) )
B(a(a, B, N ),E,0) = / \/_1/}6—2,4,2(2 —24E) 4z

completing the square gives

C L CICHNCR)) (e
Bla(a, 3, N), £,0) = £+ /2/ L ey,

—oo V2mip

hence

B(a §¢)—e€+¢2/2a( n(a(o, ﬁNi)—(€+¢2))

and if In(a(e, 8,N)) = co we obtain
BY] = /2

Similarly,

\ (8. I ()=
C(a7 67N7€7 ¢) :/ Y2 e 2¢2 (l (Y) 5)2dY

again using the variable substitution z = In(Y’) gives

na(@BN) €2 1 e
e (=P

Clovs Kgw) = [T st

and by completing the square we obtain

Cla, 3,1, ¢,4) = €A (ln(a(a, B,N)) — (£ + w))

If ln(a(a,ﬂ,N)) = oo we obtain
BV?] = (Her)

By using eq. 23, F[Y?] can also be expressed as follows
E[Y?] = E[Y]e¥
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