The Use of Context in
Large Vocabulary Speech Recognition

Julian James Odell

Queens’ College

(R4
v
E

-
b e

11t

g
.:},

*
-
Z
*
.
103

i

L (4
b
<
S
e e
Ead >

(

4

March 1995

Dissertation submitted to the University of Cambridge

for the degree of Doctor of Philosophy

Summary

In recent years, considerable progress has been made in the field of continuous speech recogni-
tion where the predominant technology is based on hidden Markov models (HMMs). HMMs
represent sequences of time varying speech spectra using probabilistic functions of an underlying
Markov chain.

However, because the probability distribution represented by a HMM is very simple, its
discriminative ability is limited. As a consequence, a careful choice of the units represented by
each model is required in order to accurately model the variation inherent in natural speech.
In practice, much of the variation is due to consistent contextual effects and can be accounted
for by using context dependent models.

In large vocabulary recognition the use of context dependent models introduces two major
problems. Firstly, some method must be devised to determine the set of contexts which require
distinct models. Furthermore, this must be done in a way which takes account of the sparsity
and unevenness of the training data. Secondly, a strategy must be devised which allows efficient
decoding using models incorporating context dependencies both within words and across word
boundaries. This thesis addresses both of these key problems.

Firstly, a method of constructing robust and accurate recognisers using decision tree based
clustering techniques is described. The strength of this approach lies in its ability to accurately
model contexts not appearing in the training data. Linguistic knowledge is used, in conjunction
with the data, to decide which contexts are similar and can share parameters. A key feature of
this approach is that it allows the construction of models which are dependent upon contextual
effects occurring across word boundaries.

The use of cross word context dependent models presents problems for conventional de-
coders. The second part of the thesis therefore presents a new decoder design which is capable
of using these models efficiently. The decoder is suitable for use with very large vocabularies
and long span language models. It is also capable of generating a lattice of word hypotheses
with little computational overhead. These lattices can be used to constrain further decoding,
allowing efficient use of complex acoustic and language models.

The effectiveness of these techniques has been assessed on a variety of large vocabulary
continuous speech recognition tasks and results are presented which analyse performance in
terms of computational complexity and recognition accuracy. The experiments demonstrate
state of the art performance and a recogniser using these techniques was used in the 1994 US
ARPA CSR Evaluations where it returned the lowest error rate of any system tested.

Keywords: speech recognition, hidden Markov models, context, decoding.

IT

Acknowledgments

First I must thank my supervisor, Professor Steve Young. His help and advice (together with
a little prodding) are ultimately responsible for this thesis. He has been a continuous source
of inspiration, and support throughout my PhD. In particular, by providing HTK as a base
from which I could start my experiments, he made my task immeasurably simpler. I must
also thank Phil Woodland, not just for his work on HTK, but also for his help in running
experiments. A great deal of the large vocabulary work was performed as part of a team and
Phil’s perseverance and hard work are responsible for the excellent recognition results obtained.
To the other members of the CU-HTK team, Valtcho Valtchev (language models), Mark Gales
(noise) and Chris Leggetter (adaptation), must go, not just thanks for their efforts, but also
apologies for having to alpha test my code.

I must also acknowledge the Engineering and Physical Sciences Research Council for funding
my research. Together with Queens’ College, the Engineering Department and the NSA they
also funded my attendance at workshops in America during which | was able to visit Austin,
New York, Boston, Washington and Princeton.

Special thanks go to the ECR lab support team who managed to keep the computer system
running despite my efforts to overwhelm it. In no particular order these include Richard Prager,
Tony Robinson, Andy Gee, Carl Seymour and Patrick Gosling (and no doubt many others and
I apologise for not mentioning them). Paul Mossip (help@CAIP) deserves mention as well for
his support efforts and for reconfiguring the compute server at Rutgers more times than I care
to remember.

My housemates at 71 Maids Causeway (Costi, Roy, Simon, Sis, Darin, Henk and Kevin) are
also deserving of my thanks. They managed to keep me fed, busy and relatively sane over the
years, not to mention alive despite the by now infamous barbecue incident.

Finally T would like to thank the various members of the Cambridge University Engineering
Department Speech Vision and Robotics group for providing a pleasant environment to work,
lively social activities and helpful advice. In these ways Mark, Chris, Kate, Dan, Gareth, Matt,
Carl, Tina, Steve, Simon, Valtcho and many others have all contributed a great deal to this
thesis.

111

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome of
work done in collaboration, except where stated. It has not been submitted in whole or part

for a degree at any other university.
The length of this thesis including footnotes and appendices is approximately 46,000 words.

v

Contents

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6

Speech Recognition e
Development of Speech Recognisers
Stochastic Process Models
Modelling Context e
Decoding Issues oL
Thesis Structure L e e e

2 Hidden Markov Models

2.0.1 HTK: A Hidden Markov Model Toolkit
2.1 Basics e e e e e e e
2.2 Using Hidden Markov models for Speech Recognition
2.2.1 Phone Modelling
2.2.2 Hidden Markov Model Assumptions
2.3 Output Probability Distributions o0 oL
2.4 State Sequence Estimation L L L
2.4.1 Probabilistic state sequence estimation L. L.
2.4.2 Deterministic state sequence estimation
2.5 Pruning e e
2.6 Parameter Estimation Lo
2.7 Recognition
2.8 SUmMmMaryo e e e e e e
3 Context Dependency in Speech
3.1 Contextual Variation o
3.2 Session Effects
3.3 Local Effects e
3.3.1 Context Dependent Phonetic Models
3.3.2 Word Boundarieso e
3.4 Trainability oL
3.5 Bottom-up Approaches
3.5.1 Generalised Triphones
3.5.2 State Clustering e

10
11
12
13
15
15
16
17
18
19
20

3.5.3 Top Down Approaches
3.6 Decision Trees. o e e e e
3.7 Decision Tree Construction
3.7.1 Likelihood Based Decision Criteria
3.8 Implementation L
3.8.1 State Assignment
3.8.2 Tree Construction e e
3.8.3 Gender Differences L
3.8.4 TFeature selection L
3.9 Summary ... e
Decoding
4.1 Requirements e e e e e e
4.2 Time-Synchronous Decoding oL
4.2.1 Token Passing
4.2.2 Pruning
4.2.3 N-Best decoding
4.2.4 Limitations L e
4.2.5 Back-Off Implementation
4.3 Best First Decoding
4.3.1 A* Decoding
4.3.2 The Stack Decoder for Speech Recognition
4.4 A Hybrid Approach e
4.5 Summary e e e e e
A One-Pass Dynamic Tree Structured Network Decoder
5.1 Philosophy
5.2 Network Architecture
5.2.1 Context dependency
5.2.2 Network Structure L
5.2.3 Token Passing and Network Growth
5.2.4 Path Merging e
5.3 Pruning
5.3.1 Maximum Model Pruning oL
5.3.2 Word End Pruning L
5.4 Algorithm
5.5 Lattices o e e e e e
5.5.1 Lattice Generation
5.5.2 Lattice Accuracy Lo e e
5.5.3 Lattice Pruning
5.5.4 N-Best Generation L
5.6 Rescoring e
5.6.1 Acoustic Rescoring

33

5.7

5.6.2 Language Model Reapplication

Summary

Experimental Results

6.1 Recognition System Architecture . .

6.2 Resource Management Experiments

6.3 Decoding Complexity

6.4 Wall Street Journal Experiments . .
6.4.1 Pruning
6.4.2 November 1993 Evaluation .
6.4.3 November 1994 Evaluation .

6.5 Summary

Conclusions

7.1

7.2

7.3

Review of the Work
Suggestions for Further Work o oo

Conclusions v v v o e s

Tasks and Databases

Al
A2

A3

Parameterisation e e e e e e

Resource Managemento
A.2.1 Test Data and Conditions
Wall Street Journal e
A.3.1 Test Data and Conditions

Dictionaries and Phonetic Questions

B.1
B.2

Dictionaries e e e e e e e e e e e e e

Phonetic Questions e e e e

VII

86
86
90
92
94
95
100
104
108

110
110
111
113

114
114
115
115
116
119

List of Figures

1.1 The speech production/recognition process. 2
2.1 An example hidden Markov model. o 0oL 9
2.2 The duration distribution of a typical state. 13
3.1 A gender dependent system using parallel recognisers. 24
3.2 A speaker adaptation scheme. oL o oL oo 25
3.3 Context variability of the phonew. oo oL 26
3.4 Up-mixing: Increasing system complexity. 33
3.5 A decision tree for ih. oL 34
3.6 Algorithm for constructing decision trees. 42
4.1 A composite model for word recognition. L oo 47
4.2 A bigram network. L 49
4.3 Part of a network using cross word triphone context dependent models. 52
4.4 Part of a network using a trigram language model. oL 53
4.5 A bigram network with tree structured back-off component. 54
4.6 Dataflow in a Stack Decoder.o o oo 58
4.7 Structure of the network in the hybrid decoder. 60
4.8 Continuation of the hybrid network. 61
5.1 A linear network. 66
5.2 A tree structured network. oL Lo 67
5.3 Cross word triphones in a tree structured network. 68
5.4 An example of the structure of a tree structured network. 72
5.5 Path merging using path domination. 73
5.6 Path merging using token recombination. 74
5.7 Number of models active during decoding. 76
5.8 Variation in the probability of bigrams including the word THE. 77
5.9 Anexample lattice.o 80
5.10 A lattice without acoustic context. o oL 83
5.11 A lattice incorporating a trigram language model. 84
6.1 System building procedure.o Lo 87
6.2 Model topology. e 89

6.3
6.4
6.5
6.6
6.7
6.8

Variation i
Variation i
Variation i
Variation i
Variation i
Variation i

run time with number of active models: Light pruning. 93

run time with number of active models: Heavy pruning. 94
active models and word error rate with overall beam width. 96
active models and word error rate with maximum model limit. . . . 97
active models and word error rate with word end beam width. . . . 98
active models and word error rate with combined pruning. 99

IX

List of Tables

2.1

3.1

4.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

Al
A2
A3
A4
A5

B.1
B.2
B.3
B.4
B.5

Variation in computational complexity with pruning. 17
Variation in phone and context occurrences 29
Variation of model activity over the network in beam pruned search. 50
Word error rates for agglomeratively and decision tree tied state systems. 91
Word error rates for state and model based decision tree systems. 91
Word error rates for optimised word internal and cross word triphone systems. . 92
Word error rates for 5k systems (H2) used in the Nov’93 evaluation. 100
Speaker by speaker results for H1-P0 system used in the Nov’93 evaluation. . . . 102
Word error rates for 20k systems (H1) used for the Nov’93 evaluation. 103
Speaker by speaker results for H1-C1°93 system. 103
Test set perplexities and OOV rates for various Nov’94 language models. 104
Comparison at 20k of the Nov’93 evaluation system and the Nov’94 systems. . . 104
Lattice quality with a 20k vocabulary 105
Lattice quality with a 65k vocabulary 106
Word error rates for H1-C1°94 systems. 107
Word error rates for HI-P0’94 systems. 108
Speaker by speaker results for the H1-P0’94 system. 109
Summary of the Resource Management database. 116
Source of texts for North American Business News corpus. 119
Language models for North American Business News. 120
Summary of the Wall Street Journal database test sets. 120
Summary of the Nov’93 and Nov’94 evaluation test conditions. 121
The LIMSI dictionary phoneset., 123
Equivalences between different phonesets 124
General questions. L L e e 125
Vowel questions. e 126
Consonant questions. L L e e 128

Chapter 1

Introduction

For most people their first glimpse of automatic speech recognition technology will probably be
in a science fiction movie where the robots and computers interact with the characters using
natural spoken language. However their first use of a speech recogniser will probably be a
simple telephone enquiry system only capable of making the most rudimentary distinctions.
These different abilities represent the extremes of speech recognition research. However, the
‘intelligent’ machines from the movies also embody a separate ability. The ability to understand
speech and hold a meaningful dialogue is a separate field which relies on speech recognition
technology for its front-end processing. The recognition system is responsible for converting
the acoustic signal into a sequence of symbols, often words, which represent the spoken message.
Current research is focussed on increasing the range of speech that can be accurately recognised.

1.1 Speech Recognition

The telephone enquiry systems with which people first come into contact tend to rely on simple
yes/no decisions or selections from a fixed menu of options. This means that they appear
to be slow, clumsy and often confusing. Expanding the capabilities of such systems (thus
expanding the range of tasks for which automatic speech recognisers are useful) requires that
the number of distinctions such systems can make to be extended. This is accomplished by
increasing the number of different words that can be recognised (the vocabulary) and allowing
those words to be combined in more ways (by using a more complex grammar). However, as
the number of permitted variations increases, the perplexity and confusability of the task rises.
Maintaining high levels of accuracy needs improvements to both the acoustic models, which
provide information about which words best match the speech signal, and the language model,
which provides prior knowledge of likely word sequences.

Figure 1.1 shows the process of recognition broken into distinct stages. First the person
thinks of what they wish to say and articulates it. The resulting acoustic signal is processed
into a form suitable for recognition and then a model of language in conjunction with the
acoustic models of speech are used to determine what the person said. Even without the need
to understand the spoken message, the recognition process involves many different disciplines.

e Physiology.

Sy some
speech

Signal 5 . Sy some
N/‘/\/IV\/\\J\A Processing Recogniser speech
Language
Model

Figure 1.1: The speech production/recognition process.

D

Each person speaks in a slightly different way. Normally this does not cause other peo-
ple any significant difficulty in recognising their speech. Substantially different acoustic
realisations of the same underlying utterance are usually perceived by others as being
the same. A successful recogniser must be able to duplicate this behaviour and treat as

similar sounds which are perceived alike.

Signal Processing.

In order to exhibit this robust behaviour the acoustic signal must be converted into
a representation orientated to recognition. This requires careful signal processing to
remove extraneous acoustic information but not the distinctions that are important for

recognition.

Pattern Recognition.

Once the signal has been transformed into a more perceptually oriented form it must be
recognised, or decoded, and transformed into the underlying sequence of symbols. This
decoding process requires patterns or models against which unknown utterances can be
compared to deduce the most likely sequence of symbols represented.

Information Theory.

The models against which unknown utterances are compared must be representative of
speech in general. They must be robust enough to capture the variation which naturally
occurs in human speech. Often this will require the model parameters to be estimated
(even if only by the system designer) in a robust manner. Information theory allows the
designer to ensure that the chosen parameters are in some way optimal.

Computer Science.

Nowadays the whole process of recognition is performed using digital computers. Before
the advent of fast and cheap digital signal processing, discrete electronics would be used
to carry out any necessary signal processing in the analogue domain. However the relative
cost of these methods has changed dramatically and most current research is based solely

in the digital domain. The astronomical rate of increase in the speed and capabilities of
computers has allowed similar increases in the complexity of recognition tasks attempted.
However as the tasks attempted become more complex, the efficiency of the algorithms

used in recognition becomes increasingly important.

The work described in this thesis has focused on increasing the accuracy of the pattern
matching stage for large vocabulary recognition. As this is intimately related to the compu-
tationally expensive decoding process, the computer science aspects of the problem are also
important. Tasks considered ‘large vocabulary’ only a few years ago (such as the 1000 word
Resource Management task) have been supplanted and the goal posts moved. For example, the
most complex system developed using the techniques described later uses a vocabulary of over
65,000 words to recognise speech from an unlimited vocabulary.

1.2 Development of Speech Recognisers

Research into automatic speech recognition began in the 1950’s and has been an active area of
study since then. The initial attempts at automatic speech recognition were based on template
matching. Template based approaches compare templates (which are usually actual examples
of speech) with unknown words. The symbol associated with the best matching template
is hypothesised for the unknown speech. This approach is simple to implement but lacks
generality.

Simple pattern matching techniques are not suited to recognition of fluent (or continuous)
speech because segment boundaries are difficult to detect. In normal speech, word boundaries
are not associated with any particular acoustic event. To allow the utterance to be segmented
into words a short period of silence was therefore required between words. Kach word could
then be compared with the templates to produce an isolated word recogniser.

Since a fixed set of example templates are used for recognition, this approach tends to be
best suited to small vocabulary speaker dependent recognition. The need for an example of
each word restricts vocabulary size and as only a single template is matched at a time the
system tends not to be robust to changes in speaker.

Attempts to solve these problems by adding supplementary expert knowledge (from lin-
guists, spectrogram readers and other speech specialists) met with only limited success. The
expert knowledge tended to be encapsulated in the form of rules which decided when partic-
ular features were present. Often these decisions were based on identifying the resonances (or
formants present in the signal. However formants are only easily detected in vowels and to-
gether with the natural variability of speech, meant that it was difficult to make these yes/no

distinctions reliably. Once errors were made they were difficult to correct.

1.3 Stochastic Process Models

Word template based approaches are limited by the need for examples of each word and by
their inability to allow for the natural variability of speech. Knowledge based approaches are

limited by the difficulty in defining rules that can make subtle distinctions and spot trends
against a background of significant natural variability.

These limitations can be overcome by using stochastic process models of sub-word units.
One type of stochastic process model, the hidden Markov model [76], is the basis of the majority
of current speech recognition systems and the work in this thesis. Stochastic approaches use a
database of examples to estimate the parameters of a probabilistic model. When the available
data contains sufficient examples of each model, it is possible to produce a representation of
speech which is robust to the variations present in natural speech. The form of this representa-
tion can vary from simple probability distributions estimated directly from the data to complex
classifiers such as artificial neural networks [77].

Because the signal is represented as a process, it is possible to concatenate a series of models
to produce a composite model of a complete continuous speech utterance. This feature makes
it possible to use lower level representations for the underlying speech. Rather than using
a distinct model for each word a smaller set of sub-word models together with a dictionary
are used to construct a composite model for the word. This decreases the amount of training
data required to cover a particular vocabulary by using supplementary knowledge from the
dictionary.

For English (and American English) the phoneme seems to be the best choice of sub-word
unit representing a compromise between invariance and data availability. The relatively small
number of phonemes allows a small set of phone models to cover the whole of the English
language and ensures that several examples of each will occur in a database of reasonable size.

1.4 Modelling Context

The pattern matching techniques used for recognition rely on the invariance of the data repre-
sented by a particular model. In normal fluent speech every instance of a particular sound can
be different. Some of this variation is random but a great deal of it can be accounted for by
consistent contextual effects.

To improve recognition accuracy it is necessary to take account of these consistent variations
whilst still allowing for the random variations always present in speech. One of the most
important causes of consistent variation is co-articulation, in which the realisation of a particular
phone is effected by its neighbours. Each instance is influenced not just by the position of the
vocal articulators during its production but also by their movements before and after. When all
phonetic contexts are enumerated the number of distinct models required increases by several
orders of magnitude. This re-introduces one of the drawbacks of whole word modelling; the
need for sufficient examples of each basic unit. With a small set of sub-word phone models a
reasonably sized corpus will provide examples of all phones. However, the uneven distribution
of phones and contexts in general speech means that even in very large databases many contexts
will occur only a few times, if at all. Increasing the robustness of large recognition systems
without giving up the ability to account for consistent contextual variation requires some form
of parameter sharing or smoothing to ensure that the available training data is used as efficiently
as possible.

This dissertation addresses the problem of modelling contexts accurately and robustly pay-
ing special attention to constructing models for contexts in the absence of data. The ability to
construct models for these unseen contexts is needed to produce accurate and robust recogni-
tion systems for unlimited vocabularies. A top down clustering approach has been developed
which allows linguistic knowledge to be used to supplement the data. In the absence of exam-
ples of a particular context its model will share parameters with contexts which are considered

linguistically similar and for which there is data.

1.5 Decoding Issues

Accurate recognition requires accurate acoustic and language modelling techniques used with
accurate decoders. Accurate acoustic and language models require that contextual features
which lead to consistent variations (such as those described above) are taken into account.
During decoding the use of such models can lead to dependencies spanning several words.
Conventional decoding techniques are not suited to this type of modelling and do not scale well
to very large vocabularies. To take advantage of the enhanced acoustic modelling techniques

developed an improved decoder was needed.

1.6 Thesis Structure

The recognition systems developed in this dissertation are based on hidden Markov models.
Chapter 2 describes the structure of these models and outlines the algorithms needed to train
and test recognisers using them. It also introduces the terminology used in the remainder of
the thesis.

This work has tackled the problems raised by modelling context in particular addressing the
issues of unseen contexts and model trainability by the sharing of parameters. The choice of
models to share parameters is based upon both the data and prior linguistic knowledge. This
linguistic knowledge is used to ensure that reasonable models are produced for contexts which
do not appear in the data. Appendix B lists the set of phonetic features which are used to
encapsulate this linguistic knowledge as well as describing the phone sets and dictionaries used
in this work. This decision tree based approach to model building is presented in chapter 3
following a review of the use of context dependent acoustic modelling.

One of the major drawbacks with systems making use of context dependent models (in
particular if the context of surrounding words is considered) is the computational expense of
recognition using conventional decoding techniques. Chapter 4 reviews these techniques and
shows why these are unsuited to recognition using extended context systems.

A novel decoder architecture is described in chapter 5. This architecture allows efficient
recognition using context dependent models and very large vocabularies. It also supports the
generation of multiple hypotheses (in the form of a lattice) with little or no computational
overhead.

Results produced by this decoder using decision tree clustered models are presented in

chapter 6 for a variety of large vocabulary speaker independent continuous speech recognition

tasks. These tasks are described in appendix A. These results show that the decision tree based
acoustic modelling techniques are capable of state of the art performance whilst the decoder
architecture provides an efficient means for using them.

Finally a summary of the work is given in chapter 7 which also suggests future areas of
research.

Chapter 2

Hidden Markov Models

This chapter outlines the theoretical framework for hidden Markov models (HMMs). 1t begins
by explaining what a hidden Markov model is and how it operates. Then it explains how they
may be used for speech recognition and outlines the algorithms needed to estimate the model
parameters and recognise speech. This chapter also introduces the terminology which will be

used throughout this thesis.

2.0.1 HTK: A Hidden Markov Model Toolkit

This work has made extensive use of HTK, a toolkit for the manipulation and use of hidden
Markov models. This was written by S. J. Young and P. C. Woodland [94] to enable research
into speech recognition using hidden Markov models to progress without needing to re-invent
(or at least re-implement) the wheel. T must (again) acknowledge both HTK and its authors for
making my life immeasurably easier since the majority of the computer programs written and
experiments performed used parts of the toolkit. Full details of the toolkit and the facilities it
provides can be found in [97].
The toolkit consists of two parts;

e Libraries.

The libraries provide functions that enable the manipulation of models and data as well

as providing a consistent user interface to the tools.

Of particular relevance to my work were

— HModel. Load, save and access the models.
— HSplIO. Load and save speech data files.
— HLabel. Load and save label files.

HMath. Basic mathematical functions.

e Tools.

There are a variety of tools that build on the libraries to provide commonly needed

facilities for the manipulation of models, data and labels.

— HERest. An embedded Baum-Welch reestimation tool (Section 2.6).

— HVite. A static network Viterbi decoder (Section 4.2).

— HCode. Generates data files by parameterising the acoustic signal. (Section A.1).
— HHEd. A tool for manipulating models.

— HLEd. A tool for manipulating label files.

2.1 Basics

A hidden Markov Model is a stochastic process model in which a discrete time signal is gen-
erated from a series of connected states. Each time step, or frame, the model changes state
in accordance with a set of transition probabilities. The resultant state then generates a single
observation in accordance with the output probability distribution of that state. Kach model has
two distinguished states; an entry state, which is the state of the model before the generative
process begins, and an exit state, which is the final model state reached once the generative
process terminates. Neither of these states generate any observations and so do not have an
associated output probability distribution, all the observations are generated by the remaining
emitling states.

An example of a hidden Markov model generating a series of observations and the corre-
sponding signal is shown in figure 2.1.

The transition probabilities a;; are the conditional probabilities that a model in state ¢
(which may be the entry state, state 1) will change state to state j (which may be the exit
state, state N).

So

a;; = Prob(z(t+1)=7|z(t) =1), (2.1)

where z(t) is the state of the model at time ¢.
The transition probability a;; is assumed to be constant and does not vary over time. For
all initial states + = 1,..., N — 1 these values should satisfy

N
> ay; = 1.0. (2.2)
7=2

The output probability distribution function b;(o;) describes the distribution of observations
produced by state j. It gives the probability (for discrete output symbols) or likelihood (for
continuous output distributions) of state j generating the observation o;. To avoid unnecessary
repetition, the symbol Pr(event) and the term likelihood will henceforth be used to describe
both likelihoods and probabilities depending on whether b;(0;) is a discrete distribution or a

continuous density function.

So
bilo) = Prioda(t) =), (2.3)

is the likelihood of state j generating the observation o;.

Figure 2.1: An example hidden Markov model.

For discrete distributions
> bj(0) = 1.0, (2.4)
and for continuous distributions

/b]-(o) do = 1.0. (2.5)

for all emitting states 7 = 2,..., N — 1

As well as being used in this generative fashion, the model can be used to calculate the
likelihood of a signal, O, consisting of T frames, o(1), ...,0(T), being produced by a particular
sequence of states, X = z(1),...,2(T). This is given by the product of the likelihood of each
observation o; being generated by its associated state, z(f) and the probability of the state
sequence z(t) calculated from the transition probabilities.

For the example given in Figure 2.1,

PT‘(O,)() = a1 bQ(Ol) a99 bQ (02) a93 b3(03) a34 b4(04) g4 b4(05) aaN . (26)

Or more generally,

T
Pr(0, X) = ay5(1)bz(1)(01) (II ax(t—l)x(t)bx(t)(ot)) Uo(T)N- (2.7)
t=2

Normally only the signal and model parameters will be known and the state sequence will
be hidden, hence the name hidden Markov models. In this case the likelihood of the model

generating the observation must be calculated by summing over all possible state sequences,

T
Pr(0) =" a1,(1)bs1y(01) (II ar(t—l)r(t)bx(t)(ot)> An(T)N- (2.8)
X t1=2

Alternatively, it can be approximated as the likelihood of the most probable state sequence,
that is

T
P(O) = m}?X{alz‘(l)br(l)(ol) (H ax(t_l)z(t)br(t)(ot)> ax(T)N} . (29)
1=2

Neither of these quantities is computable directly because of the large number of possible
state sequences but efficient iterative procedures for evaluating both exist and are described in
section 2.4.

2.2 Using Hidden Markov models for Speech Recognition

The strength of hidden Markov models lies not with the accuracy with which they model the
process of speech production but with the existence of computationally efficient algorithms for
estimating the model parameters given example observation sequences of known class, called
training, and for choosing which model best matches an observation sequence of unknown class,
called recognition or decoding.

Ideally this training process should ensure that the model parameters are chosen to max-
imise the accuracy of the resulting recogniser. However the computational cost of such dis-
criminative training schemes [12] is often prohibitive. Consequently a computationally efficient
maximum likelihood training procedure is more commonly used. This is an iterative estimation-
maximisation procedure in which an initial set of models is used to estimate the hidden state
sequence and then new better estimates of the model parameters are chosen to maximise the
likelihood of this sequence. These values are then used to estimate the state sequence again
and obtain still better parameters in an iterative process of parameter refinement.

This re-estimation process requires example observation sequences of known class and an
initial set of models. This training data should adequately represent the variation expected from
unseen test data to ensure that the model parameters can be calculated accurately. The initial
models should be accurate enough to estimate the state sequence with reasonable accuracy.
In practice, the re-estimation procedure is robust enough to ensure that the initial model
parameters are not crucial and that no special precautions, beyond ensuring that there are
enough examples of each class from a selection of speakers, need to be taken to ensure that the
training data is representative.

10

The requirement for sufficient training data governs the choice of the basic modelling unit
for a system. Since the recogniser should eventually produce words, the choice of words as the
basic unit would give the simplest system. However, this would require that the training data
contain many examples of every word in the vocabulary and this is only practicable for very
small vocabularies (a few tens of words). For larger vocabularies, sub-word units must be used
to ensure that there will be enough examples to accurately estimate each model. For English
this tends to mean that phonemes (or phonemes in context) are used as the basic modelling
unit. However, to avoid any confusion arising from the use of the term phoneme in linguistics,
the neutral word phone will be used for this modelling unit. These represent a reasonable
compromise between consistency (since much of the variability is due to consistent contextual
effects) and trainability (since English requires only 40-50 phones, a modest amount of training
data is needed to ensure complete coverage).

2.2.1 Phone Modelling

The training procedure uses a set of training examples which correspond to known models. The
frames of these examples are aligned against the states of the corresponding model and estimates
formed for the model parameters. The training continues by using the new parameters values
to re-align the examples and produce better estimates for the model parameters in an iterative
re-estimation process. This re-estimation process requires data of known class with known
boundaries. Since the training data will normally consist of complete sentences, there are two
ways in which the phone level models can be matched to the sentence level utterances. Either
the utterance can be segmented into individual phones or the phone models concatenated to
produce a model for the complete utterance. It is difficult to accurately segment an utterance at
the phone level and so the second method is preferable. The construction of composite models
which represent a complete utterance is facilitated by the addition of non-emitting entry and
exit states to each phone model. This removes the need to construct a separate transition
matrix for each composite model and allows the phone models to be used within the composite
unchanged.

Constructing the composite model requires a phone level transcription for each utterance.
Normally only a word level orthography will be available and consequently a dictionary is
needed to convert this to phone or model level. Decisions must be taken as to where inter-word
silences occur and, if multiple pronunciations are present in the dictionary, which pronunciation
best matches each word. The resulting sequence is then recorded in a label file which can be
used to construct the composite model for the file during re-estimation.

A choice must also be made of the topology for each phone model. This is not critical but
two features are important.

o Left to right topology.

Speech is an ordered sequence of sounds and individual phones have temporal structure
which should be enforced by the model topology.

e Minimum Duration.

11

Different phones and even different occurrences of a single phone can have widely varying
durations. However each phone (when it is actually present) tends to have a minimum
duration and, for this and a variety of other reasons, best performance is obtained by
ensuring that each speech model has to emit a certain minimum number of observations

between its entry and exit states.

Taking these factors into account, the topology of the example model shown in figure 2.1 is
used for the majority of phone models. However, silence (or other pauses between words) has
little temporal structure and a more complicated topology is needed for these models. (In fact

two separate models are used and silence modelling is explained in detail in chapter 6).

2.2.2 Hidden Markov Model Assumptions

Implicit in the structure of hidden Markov models are a set of assumptions about the structure
of the process that they represent. However these are not necessarily true for speech signals.
The assumptions are that;

e 'I'he observations accurately represent the signal.

Normally the observations take the form of some type of short term (10-50ms) spectra
(either smoothed spectra, linear prediction coefficients or a derivative). These will not
exactly represent the underlying speech. However, the speech will be nearly stationary
over such short periods and the observations a reasonably accurate representation of the

speech.

e The observations are independent of each other.

The likelihood of generating each observation is dependent only upon the state and is
independent of all other observations. This is not typically true of speech since the
spectrum tends to change only slowly compared to the frame rate to ensure that the
parameterised observations are an accurate representation of the original signal. However
the effect of the resulting high degree of correlation between subsequent observations can
be reduced by augmenting the observations with derivative (rate of change with respect
to time) parameters. When these are used the correlation does not seem to have an
adverse effect on the recognition and attempts to model the correlation explicitly, such as
segmental models [61], have met with only limited success.

e The between state transition probabilities are constant.

This implies that, if unconstrained, the number of consecutive frames generated from a
single state would have an exponential distribution. This is not true for speech (for which
a gamma distribution may be more appropriate [48]). However the transition probabilities
and the duration distributions that they represent only make a small contribution to the
total likelihood of an utterance, which is dominated by the likelihoods of the observations.
This means that the observed duration distributions do not take the form of exponential
distributions. Figure 2.2 shows the actual and parametric distributions for the duration
of a typical state. The dominance of the observation likelihoods together with the high

12

04071
0.30
P
r
o]
b
a
b 0207 X Parametric
: e Actual
i
t
Y 010
0.00 PN — 3 —
15

Duration

Figure 2.2: The duration distribution of a typical state.

degree of duration variability in normal speech has meant that the addition of duration
models to HMM based recognisers [26] has met with only limited success.

2.3 Output Probability Distributions

Each emitting state of an HMM has an associated output probability distribution which deter-
mines the likelihood of the observations which are generated by that state. This distribution
must be specific enough to allow discrimination between different sounds as well as being robust
enough to allow for the expected variability inherent in natural speech.

The most commonly used distributions are,

o (Continuous:

A Gaussian or a mixture of Gaussian probability density functions,

bjm(ot) = N(Ofay’jmvzjm)
1 Dyt
_ L 5o,) o py,). (2.10)
(27)"| Zjom|
M
bj(ot) = chmbjm(ot)- (211)
m=1

13

Where n is the dimensionality of the data and ¢jm , p;,, and X, are the weights, means
and covariances of m'" component of the mixture Gaussian distribution from state j .

e Discrete:

The observations are quantised into a number of symbols and each state has a discrete
distribution that gives the probability of each symbol being generated by that state. The
symbols are normally generated by a wvector quantiser which assigns a symbol to each ob-
servation vector by choosing the closest example from a codebook. In order to adequately
capture the variation in the observations it is often necessary to break the observation
vector into several streams, each of which has its own codebook which generates a symbol
for each observation.

B
bj(o) = [pislve(or)]. (2.12)
b=1

Here v, (0;) is the output of the vector quantiser using codebook b for observation o; and

pjp[v] is the probability of state j generating symbol v from the stream associated with b.

o Tied-mizture:

All states share a common set of Gaussian probability density functions but each state
has its own set of weights [10].

bm(ot) = N(0# py, Zim)
_ ;6_%@_%)/2;(0:—%), (2.13)
(27) |35
M
(o) = 3 eimbu(or). (214)
m=1

Where ¢;,,, is the state specific weight of the m** shared Gaussian distribution with mean
and covariance u,, and X,,.

During recognition and training, the calculation of many mixture Gaussian probability
functions is computationally expensive [11]. This is especially true if distributions with full
covariance matrices are used. As a result, many continuous density systems use diagonal co-
variance matrices, since this reduces both computational and storage requirements by a large
factor. This will be a poor approximation unless the individual components of the observation
vector are statistically independent. Performing a discrete cosine transformation on the log
power spectrum ensures that the individual components are nearly independent and mixture
Gaussian distributions can capture the most important inter-dependencies as well as multiple
modes in the data.

The use of discrete or tied mixture distributions greatly reduces this computation and so
much of the early work in speech recognition was based on these. However comparative results
have shown that systems based on continuous density models typically yield higher accuracy
[65]. The work in this thesis is based on systems using continuous density models (using output
probability distributions consisting of mixtures of diagonal covariance Gaussians).

14

2.4 State Sequence Estimation

Both training and recognition procedures require estimation of the ‘best’ state sequence. For
training this is needed to form new estimates of the model parameters and for recognition the
likelihood of the path is used to decide between alternative recognition hypotheses.

The state sequence and its likelihood can be found in one of two ways;

e Probabilistically, using total likelihood.

This calculates the likelihood of an utterance summed over all possible state sequences
and finds the posterior probability of each observation being generated by each state.
The posterior probability that a state was occupied at a particular time (and emitted the
associated observation) is called the occupancy.

e Deterministically, using mazimum likelihood.

This calculates the likelihood of the most likely state sequence and for this sequence finds
which state generated each observation.

2.4.1 Probabilistic state sequence estimation

The probability v;(t) that a particular observation, o;, was generated from state j can be found
using the Forward-Backward algorithm. This is an iterative procedure requiring two passes to
calculate:

e «;(t) = Pr(oq,...,04z(t) = j).

The forward likelihood of generating the observations from time 1 to ¢ and the model
ending in state j at t.

o B;(t) = Pr(os1,...,o7|z(t) = j).
The backward likelihood of generating the observations from time ¢t + 1 to I’ if the model
was in state 7 at time £.

These can be efficiently calculated with the following iterations

a;j(1) = ay;bj(o1),
N-1
614]'(1 <t< T) = Z Oéz'(t — 1)(11']'1)]'(075), (215)
1=2
N-1
OJN(T+) = - OJZ'(T)(ZZ'N,
and
Bi(T) = an,
N-1
Bil<t<T) = 3 aijbi0m1)Bi(t+1), (2.16)
Nt
A7) =) aybi(0n)f;(1).
7=2

The start and end conditions of these iterations enforce the condition that the model starts
from state 1 before the first observation (17) and ends in state N after the final one (74).
Direct calculation of these quantities leads to numerical underflow and so either the logarithms
of the likelihoods are used in the calculations or some form of normalisation must be performed
after each frame.

The addition of non-emitting confluent entry and exit states in composite models compli-
cates these calculations although their basic form is unchanged. Full equations for this case can
be found in [97].

We wish to calculate

v;(t) = Prob(z(t) = jloi,...,or)
_ P?“(Oh...’OT,Z(t) :])
N Pr(oq,...,or) ’ (2.17)
From the definitions above
L= aN(T+) = ﬂl(l_) = PT‘(Ol, "'aOT)a (218)
and
(l/](t)ﬁ](t) = PT‘(OI,...,OT,.’II(t) :]) (2]9)
Hence,
AT) 0 (t
) = ol)Lﬁf() (2.20)

2.4.2 Deterministic state sequence estimation

The single most likely path through the model may also be required. This can be found using
a similar iterative procedure to that above, except rather than summing the likelihoods over
all paths, a decision is made and the most likely path chosen.

¢;(1) = ayjbj(o1),
61 <t<T) = max{gi(t - ay}b;(o), (2.21)

on(T*) = max{oi(T)aiv}.

¢;(t) is the likelihood of the most likely state sequence ending in state j at time ¢ and its
computation is often referred to as the Viterbi algorithm [87].

The state sequence is determined by a second traceback pass which examines the choices
made at each frame to recover the most likely path. This requires that the choice made at every
frame is recorded,

x;(1<t<T) = argﬁllax {di(t — 1)a;;},
=2
Xv(TH) = argmbx {¢i(T)a;} . (2.22)
1=2

16

Pass Beam width | Active States | Relative Time
Forwards None 175.7 1.000
Forwards 500 20.8 0.143
Forwards 250 14.4 0.104
Backwards 20 3.1 0.025
Backwards 10 2.8 0.023

Table 2.1: Variation in computational complexity with pruning.

This allows the most likely state sequence X = z(1),...z(T) to be recovered by stepping
backwards through these records (remembering that z(17) = 1 and z(T*) = N).

(1) = xn(1%),
p1S1<T) = et +1).

(2.23)

2.5 Pruning

The computation required to find the most likely state sequence, which is needed for both train-
ing and recognition, is significant, especially when the state space is large. As a consequence,
a variety of techniques have been developed to reduce the total computation required.

The majority of these techniques focus on reducing (or pruning) the search space [50].

It can be empirically observed that the values of 4 tend to be very small (< 107°) except
for a few of the most likely states. Consequently only these few states have significant effects
on the calculations and by assuming that the effects of the other states are insignificant, the
computation required for the unlikely states avoided. This saving is implemented by beam
pruning whereby only states whose likelihood is within a fixed ratio, called the beam width, of
the most likely one are considered important and the likelihood of all others is assumed to be
zero. This type of pruning is particularly important during recognition when the search space
is larger.

When the most likely state is known (for instance when both «;(t) and §;(¢) have been
found) it is possible to prune the search space very aggressively. However, in the above state
sequence estimation algorithms, it is only possible to determine the most likely state sequence
during the second pass. Once the the forward pass has been completed (to find a;(t)) the search
space for the backward pass can be heavily pruned since the exact probability of occupying each
state can be found from the product a;(¢)3;(t). The beam width chosen needs to be of the order
of the overall accuracy required. Say conservatively around 107'° or as a natural logarithm
around 20.

In order to apply pruning to the first pass it is necessary to ‘guess’ which are the most likely
states. It turns out that it is reasonable to assume that for each frame the most likely states are
those with the highest value of a(t) or ¢(t) (independent of the remaining observations). This
is an approximation and may lead to an inaccurate choice of most likely state. Consequently

17

the beam width used in the first pass must be larger than that used in the second pass, when
both @ and (are known, to ensure that the most likely state is not pruned from the search
during the initial pass. Typically its value, expressed as a natural logarithm, will need to be a
factor of 10 to 100 times larger.

Although this means that the first pass takes an order of magnitude more computation
than the second pass, it can still be an order of magnitude faster than a pass that does not use
any pruning. Table 2.1 gives some example figures for the effect of pruning on both forward
(first) and backward (second) passes. The numbers given are averages computed during training
(when the size of the search space is limited to the number of states present in the sequence of
phone models which represent each sentence). For recognition (when the sequence itself must
be determined and so the search space much larger) the effect of pruning is more dramatic.
Beam widths are expressed as natural logarithms and are chosen to minimise search errors
due to pruning. The relative time gives an indication of the effect of pruning on the total

computational required to estimate the state sequence.

2.6 Parameter Estimation

Once the state sequence has been found better estimates are needed for the model parameters.
These values can then be used to find a more accurate state sequence and iteratively refine the

models. Two sets of parameters need to be estimated;

e The output probability distributions b; (o) for each state j. For continuous mixture Gaus-
sian probability distributions, estimates are needed for ¢;,, p;,, and 3, from equations
2.10 and 2.11.

e The transition probabilities a;; between states.

Maximum likelihood estimates for these parameters take the form of averages of, either the
proportion of times a particular event took place (for probabilities) or the data (for parameters)
[9],[35]-

Maximum likelihood estimates for the output probability distributions are given by

o _ e=lt=1 (224)

ﬂ]m — e=11=1 , (225)

Sim = == : (2.26)

where g, and ﬁ}jm are the mean and covariance of mixture m of state j , of is the t** frame
of example e of the training data and 'yfm(t) is the probability that observation o; of example

e was produced by mixture m of state j given by

¢jmbjm (01)

bj(or)

Here v;(t) is the probability that o, was generated by state j. This would normally be

Yim () = () (2.27)

calculated by the forward-backward algorithm outlined above and the whole parameter re-

estimation process is referred to as Baum- Welch re-estimation.
E o Te
The sum Y > 'yf(t) gives an estimate of the number of observations that are averaged to
e=1t=1

estimate the parameters for state j and is referred to as the state occupancy.
New estimates for the transition probabilities are given by

Te

1 7 (t) (aijbj(oi1)8;(t +1)/Bi(t))

Nl

e=11=

(2.28)

ij = B T.
> ()

e=11t=1

Calculation of these values is complicated by the use of composite models with non-emitting
entry and exit states but the basic form is unchanged. Full equations can be found in [97].
2.7 Recognition

Recognition is accomplished by selecting the model (or composite model) X that best fits an

unknown observation sequence O.

X = a1‘g}1g1ax{Pr(X|O)}. (2.29)

Applying Bayes’ rule gives
Pr(O|X)Pr(X)

Pr(X|O 2.30
/(X[0) o (230
and since the denominator is constant over X combining these equations gives
X = argmax{Pr(O|X)Pr(X)}. (2.31)
X

The evaluation of Pr(O|X) for a known (composite) model was covered in the section
2.4. But one of the main reasons for the success of hidden Markov models in continuous
speech recognition is the existence of computationally tractable methods for evaluating X over
arbitrary model sequences. This procedure, decoding, is vital for viable speech recognition and
some of the techniques used are described in chapter 4.

The set X over which the product is maximised controls what can be recognised and will be
defined by some form of syntax. This can vary from choosing between a few simple sequences of
models to choosing a path through a network first defining words as sequences of phone models

19

and then a sentence as an arbitrary sequence of words. The value of Pr(X) allows us to assign
prior probabilities to the various hypotheses and is usually referred to as the language model.
This can vary from a simple null model in which all strings are equally likely, to huge n-gram

models with millions of parameters.

2.8 Summary

This chapter has outlined the way in which hidden Markov models are used for speech recog-
nition. Further chapters will develop these ideas and the calculations described will form the

basis of the algorithms for both decision tree construction (chapter 3) and recognition (chapters

4 and 5).

20

Chapter 3

Context Dependency in Speech

This chapter begins by describing the types of context dependency that arise in speech and how
these may be exploited toimprove the accuracy of speech recognition systems. It outlines several
implementations of context dependency including the use of decision trees. It then describes a
computationally efficient decision tree based method for producing context dependent systems
using continuous density models.

The work has built on research carried out for an MPhil in Computer Speech and Language
Processing (1992) into the use of decision trees to cluster phonetic contexts [57]. This presented
work on small scale decision tree experiments using the TIMI'T database. These techniques have
been developed to give improved accuracy and increased computational efficiency to allow their
application to larger databases.

The final method developed has enabled the construction of continuous speech recognition
systems for unlimited vocabulary with, as results presented in chapter 6 will show, state of the

art performance.

3.1 Contextual Variation

In order to maximise the accuracy of hidden Markov model based speech recognition systems
it is necessary to carefully tailor their architecture to ensure that they exploit the strengths of
hidden Markov models whilst minimising the effects of their weaknesses.

In practice, this means that the signal parameterisation and model structure are chosen to
allow accurate prediction of the observations using mixture Gaussian state probability distribu-
tions. In order for these to accurately represent and recognise speech, it is necessary to ensure
that their between class variance is higher than the within class variance.

This is accomplished in two ways.

e The signal parameterisation and state probability distributions are chosen to ensure that
sounds that are perceived (or that are intended to be perceived) as similar result in similar

observations (according to the probability distributions used).

e The classes are chosen to ensure that they can be accurately represented by the hidden

Markov models.

21

The use of context is concerned with the second of these methods. The parameterisation
chosen (mel-frequency cepstral coefficients see section A.1) has been used extensively [16] and
has proved to be one of the best choices for large vocabulary continuous speech recognition.
Much of the variability inherent in speech is due to contextual effects and, by taking these
contextual effects into account, the variability can be reduced and the accuracy of the models
increased.

These contextual factors can be, broadly, split into two levels;

e Session effects.

These factors are constant over a single session with the recogniser and can be split into
speaker and environmental effects. Often the environment can be controlled by minimising
the background noise and ensuring that the same microphone is used. This leaves the
differences between speakers as the major source of variation at this level.

o Local effects.

These concern variations within an utterance. The most pronounced effects are due to
co-articulation but other prosodical factors such as stress and emphasis can be important.

3.2 Session Effects

Results have shown that a well trained speaker dependent system is significantly more accurate
than a similar speaker independent system [30]. This is due to the fact that a single person’s
speech is relatively consistent and that much of the acoustic variation in speech occurs across
speakers. Tailoring a recognition system to a particular speaker enables it to capture effects

due to;
e Gender and age.
There are marked differences between the speech of men, women and children due to
consistent differences in the size and development of the vocal organs.

e Dialect

Consistent differences exist between the speech of speakers of the same language who are
from different regions, both within a country and often more markedly between different

countries that (supposedly) share a language.

e Style

Each person tends to have their own speaking style and a speaker dependent system may
be able to capture some of the peculiarities of a particular person.

When a recogniser must operate in a speaker independent fashion and be ready to accept
anybody’s speech the system will not initially be suited to a new speaker. However some of the

benefits of speaker dependent systems can be gained by either

22

e Operating recognisers in parallel.

Rather than using a single recogniser optimised to give the best performance for any
speaker it is possible to use, in parallel, a set of recognisers which have been tuned to

particular types of speaker.

If

— this tuning can improve the performance for the particular speaker type, and

— new speakers can be assigned to use the correct recogniser,

then this procedure will give an overall improvement in accuracy.

These conditions can only be met for the more pronounced differences between speakers

such as gender or dialect.

Each recogniser is then trained on the data specific to its type of speaker or, to improve
robustness, trained on all the available data and then tuned to the more specific data.
The resulting recognisers are initially run in parallel and the speaker type chosen by
determining which system best matches the new data (by finding the hypothesis with the
highest likelihood). This gives both the answer and the speaker type. Once the speaker
type has been confidently (and correctly) estimated only a single system needs to be used.

This may seem impractical as initially the computational load appears to rises linearly
with the number of systems, however, in practice one system tends to dominate quickly
and the computational load is high for only the first few seconds of speech.

Figure 3.1 shows how this would be implemented for a typical gender dependent system
with two recognisers, one optimised for male speech and the other for female speech.

e Adapting the recogniser to match the new speaker.

The initial model set is altered, or adapted, to better match the current speaker. Once
tentative guesses for the first few sentences have been made (and possibly corrected by the
user) these sentences, the adaptation data, can be used to estimate the characteristics of
the speaker and the system’s models adjusted accordingly. If the sentences are corrected
before being used for adaptation this procedure is described as supervised, otherwise it is
unsupervised. Over time, the performance of the system improves as the models become
better matched to the speaker and ultimately a speaker independent system is transformed
into a speaker dependent one. Figure 3.2 shows how this operates.

Adaptation can be accomplished by estimating new parameters for the models directly
from the data [22] but this will only update the parameters of the models for which there
are examples in the adaptation data. T'hese approaches are therefore only applicable when
there is sufficient adaptation data from the new speaker to allow a substantial proportion
of the system to be updated. This may be the case if a speaker enrolment procedure is
used and new speakers provide several minutes of speech from a text specifically chosen
to ensure coverage for most of the system.

23

Select most
likely
hypothesis

Male
Models

Recognition
5 : Recognition

Figure 3.1: A gender dependent system using parallel recognisers.

To adapt large systems with millions of parameters from smaller amounts of data, it
is insufficient to update just the models for which there are explicit examples in the
adaptation data. To obtain the maximum performance increase from the small amount
of data, it is necessary to generalise from the examples that occur and adapt all the
parameters in the system.

Maximum likelihood linear regression [47] estimates a set of linear transformations that
are used to update the means of continuous density output probability distributions.
These transformations are chosen to maximise the likelihood of the adaptation data. The
technique has proved suitable for adapting large systems using small amounts of data and
has been incorporated into some of the recognition systems described in chapter 6.

The way in which a recogniser is used determines which of these techniques will perform best.
Adaptation cannot be used if each new speaker only uses the recogniser for a few sentences as
there is no chance to reliably learn their characteristics. Also care must be taken if the speaker
can change without warning because the system will become adapted to the previous speaker
and may perform poorly for a different one. A single sentence may well be enough to determine
which of a set of parallel systems best matches the new speaker and so the parallel approach
can almost always be used.

Recognition [« M odeIS/

Hypothesis > Adaptation
Possible
Correction

Figure 3.2: A speaker adaptation scheme.

It is also possible to make use of both techniques and initially use parallel systems to choose
the speaker characteristics, then, once enough data is available, adapt the chosen system to
better match the speaker.

3.3 Local Effects

Since speech is produced by physical articulators, which are not suited to drastic and sudden
movement, the acoustic realisation of a particular phone is heavily influenced by the preceding
and following positions of the articulators. This effect is called co-articulation.

The vocal articulators can only move at relatively slow speeds and so do not remain in
constant positions throughout the duration of a phone. They are always in motion, moving
from the position required to articulate the previous phone towards the position required for
the next phone, via the position needed for the current phone. Often, especially during fluent
speech, the articulators may not even reach their target positions and phones will only be
partially articulated.

For human listeners this does not present a problem but for stochastic speech recognisers
relying on the invariance of each phone this is a cause of poor performance.

Co-articulation means that the acoustic realisation of a phone in a particular phonetic
context is more consistent than the same phone occurring in a variety of contexts. Figure

A iw n”u] T T ‘ﬁm
i Ul \| I| ‘ _'I |
m | H' i il

[_ f it e ll!:ru f i H‘!k _.._* | - il 1 {0 M
AIM’I f .1|| , ,“,L 1 M J ' } i WWIM 'lﬂ!

lU

et o

]

| "‘%hiuﬁ' e U ;' o ' i I . 1L1+ im
ji! 'I|[|i (mt J“rq 1 1 "il*b‘l :- W uihr

I‘”HWI W’ ’“r.f:ll'l".. | 'l'l '% |“|”'”"m' 4 4””””1“ m ﬂi'

i AT 1 f""“m

B T e

RS

iR [
I

md SR { .
WE WERE AWAY WITH WILLIAM IN SEA WORLD

Figure 3.3: Context variability of the phone w.

3.3 shows a spectrogram for the phrase “We were away with William in Sea World”. Each
realisation of the w phone varies considerably but the most similar are the two occurrences in
the same triphone context (underlined).

Recognition systems that capture this systematic variability will perform better than those
that do not simply because the models will provide a more consistent and accurate representa-
tion of speech [43].

3.3.1 Context Dependent Phonetic Models

One of the ways in which this systematic variability can be captured is through the use of
context dependent phonetic models. If the position of the articulators can be inferred from the
identity of the phone then the co-articulatory effects could be predicted from the identities of
the surrounding phones.

Hence models specific to both a phone and the phonetic context in which it occurs capture
these effects and give more accurate performance. These context dependent phonetic models
can be labelled using the standard HTK convention so a-b+c is an occurrence of phone b with
a as its immediate predecessor and ¢ immediately following it. Both a- and +c are optional so
b, a-b, b+c and a-b+c are all occurrences of the phone b but with differing amounts of context
specified.

The amount of context can vary. The most commonly considered values are;

e Monophone context.

A single model represents a phone in all contexts. For the LIMSI phone set from appendix
B, this means that a total of 45 models (plus silence) are required and the word STEAK
will be represented by the model string,

26

STEAK = sil s t ey k sil .

Biphone context.

Each model represents a phone with a particular left (or right) context. For the 45 phone
set (plus silence), there are a total of 2071 possible models. For example,

STEAK = sil sil-s s-t t-ey ey-k sil (left biphones) or
STEAK = sil s+t t+ey ey+k k+sil sil (right biphones).

Triphone context.

Each model represents a phone with specific left and right contexts. There are 95221
possible triphones for the 45 phone set.

STEAK = sil sil-s+t s-t+ey t-ey+k ey-k+sil sil

Arbitrary context.

There is no limit to how far this process can be taken. In general the amount of context
can be specified by the number of phones considered. If the preceding and following
N phones are specified this will be referred to as +/ — N context. For example if the
preceding and following two phones are specified (quinphone context) this is labelled as

+/-2.

As the figures above show, the number of models increases rapidly with the amount of

context specified. However these numbers are upper limits and many sequences of phones will

occur rarely if ever in real speech. Beyond triphones it is not feasible to consider all distinct

contexts explicitly, and often triphones are used as a convenient way of labelling contexts rather

than having a distinct model for each triphone context.

3.3.2

Word Boundaries

The presence of word boundaries in the phone sequences complicates the use of context depen-

dent phonetic models and this can be dealt with in one of two ways.

e Word Internal Context Dependency.

Word boundaries represent a distinct context and further expansion of the context across
word boundaries is blocked.

STEAK AND CHIPS = sil s+t s-t+ey t-ey+k ey-k ae+n ae-n+d n-d
ch+ih ch-ih+p ih-p+s p-s sil

e Cross Word Context Dependency.

Expansion of context can occur into surrounding words. The presence of word boundaries
can be either ignored or used as additional contextual information.

27

STEAK AND CHIPS = sil sil-s+t s-t+ey t-ey+k ey-k+ae k-ae+n ae-n+d
n-d+ch d-ch+ih ch-ih+p ih-p+s p-s+sil sil

In continuous speech (as opposed to isolated word speech with each word delimited by
silence) co-articulatory effects occur across word boundaries since these often have little, if any,
acoustic significance.

However there are several reasons why it is easier to implement a system that only uses
contextual information available from within the word.

o Size.

The total number of contexts is much smaller than in the cross word case because many
contexts will never appear in a word. This means that a greater proportion of contexts
will be seen in the training data and the problem of unseen contexts is of less importance.
The total number of contexts depends on the dictionary but, for a twenty-six thousand
word Wall Street Journal dictionary (the Wall Street Journal database is described in
appendix A), a word internal triphone system needs models for 14,300 distinct contexts
whereas a cross word triphone system requires over 54,400 models. Note, however, that
only 22,804 of these appear in the 5728/ training data.

o Complexity.

With a word internal system every realisation of a word is the same and so can be taken
straight from a dictionary. With cross word context dependency this is not true and, in
the case of a triphone based system, the choice of the first and last models of each word
depends upon the preceding and following words. As chapter 4 will explain this greatly
complicates the decoding process.

The effect of these computational problems can be minimised by using suitable techniques
and the use of cross word context dependency can lead to increased system accuracy [29]. These
increases in modelling accuracy become more important as task constraints are relaxed and the
recognition system is required to distinguish between more words. This is especially true when
the speaker’s style is more fluent as the assumption that each word can be modelled separately
becomes increasingly poor. For best performance, large vocabulary continuous speech recog-
nition must accurately account for consistent contextual effects independent of the position of
word boundaries.

3.4 Trainability

To maximise the performance of a hidden Markov model based recogniser it is necessary to strike
a balance between the level of detail of the models (controlled by the number of parameters in
the system) and the ability to accurately estimate those parameters from the data.

Best accuracy would be expected from the most detailed models, but only if they accurately
represent the data. Consequently it is necessary to ensure that all the parameters of the model

are representative of speech in general. Thus it is not feasible to estimate a parameter from

28

Phone | Examples | Distinct Contexts || Phone | Examples | Distinct Contexts
+/ -1 +/ -2 +/ -1 +/ -2
Vowels Plosives
aa 43825 341 8463 b 46105 588 9469
ae 71905 454 16590 d 101054 1034 19980
ah 45146 273 7720 g 19165 478 4087
ao 35290 295 8488 k 97017 861 16453
aw 11648 201 2812 p 68054 750 11647
ax 176455 790 32639 t 191656 1135 36363
axr 64592 953 15976 Fricatives
ay 36338 520 8627 dh 56735 284 10537
eh 78607 414 12530 th 13218 375 2777
er 16436 370 3830 f 49646 732 11515
ey 52824 716 13279 v 46569 557 8710
ih 145302 465 25020 s 145234 1021 26206
ix 19989 43 3707 sh 24290 406 3054
iy 100048 850 23104 7 83458 865 19161
ow 33337 558 8150 zh 1801 34 179
oy 4949 99 915 Affricates
uh 9566 85 2442 ch 11187 422 2722
uw 39125 358 9376 jh 15496 461 3757
Glides Nasals
1 79982 797 15709 m 75612 789 12628
el 22509 564 6315 em 458 37 134
r 118750 597 20504 n 194493 892 32570
39678 429 8080 en 6280 151 1454
y 22485 177 3303 ng 25299 169 6485
hh 28946 412 6485 Total | 2763559 | 22804 | 502981

Table 3.1: Variation in phone and context occurrences

only a few examples and this is especially true of variance parameters. In practice, somewhere
between ten and a thousand examples are required to robustly estimate a single mean and
variance.

Table 3.1 shows the variation in phoneme occurrences for the LIMSI phone set (described
in appendix B) in the S728/ section of the Wall Street Journal Database (appendix A). It also
shows the number of different contexts in which each phone occurs. The +/ — 1 column is
the number of different triphone contexts and the +/ — 2* column is the number of different
contexts when the preceding and following two phones, the position of word boundaries and
the speaker’s gender are considered. This table shows that the distribution of examples in the

29

training data (and speech in general) is not uniform and the number of examples of different
phonemes varies by over two orders of magnitude.

Despite the relatively large size of this database, the average number of examples of each
+/—2* context is only 5.5 and for +/— 1 it is 121.2. It is impractical to train a separate model
from only a few occurrences especially if mixture Gaussian distributions are to be used. Since
there are many triphone contexts which occur only a few times in the training data and many
more that do not occur at all, special efforts must be made to ensure that a triphone system is
trainable and that its parameters can be estimated reliably. This problem becomes even more
acute if larger amounts of context are to be taken into account.

There are several ways in which the trainability of a system can be increased;

e Backing-Off

When there is insufficient data to train a given model it is possible to back-off and use a
less specific model for which there is enough data. For example, a biphone model could
substitute for a triphone which had only a few examples in the training data. If there
were few occurrences of that biphone, a monophone model could be used. This guarantees
that every model used is well trained but it can mean that relatively few models will have
full triphone context especially if the training data is relatively sparse (which is normally
the case when cross word triphones are used).

e Smoothing

In order to maintain a greater degree of context dependency it is possible to smooth
the parameters of the more specific model with those of the less specific model. One
way in which this can be accomplished [45] is to use interpolation between the less and
more specific models (with the interpolation weights chosen using deleted interpolation
[34]). This preserves the context dependency of the unsmoothed models but increases
their robustness by effectively sharing training data from other contexts to produce more

accurate parameters.

e Sharing

Another method for increasing the robustness of the system is to explicitly share models
or parts of models between different contexts [93]. This is sensible since the acoustic
realisations of a phone occurring in different contexts are often very similar. This method
also ensures that all the system parameters are well trained whilst maintaining the model’s
context dependency.

All these techniques require that a choice is made about which parameters are backed-
off to, smoothed with or shared with others. For a simple backing-off strategy a simple and
obvious hierarchy exists; triphones are more specific and less trainable than biphones which
are more specific and less trainable than monophones. However this is also the weakness of
the scheme because these are big jumps in specificity. Similarly, smoothing of parameters must
occur through some form of hierarchy. However more flexibility is possible since different parts

of a model can be smoothed in variable proportions with different models. For instance, the

30

initial state can be smoothed with a left biphone to preserve as much left context dependency

as possible, whilst the final state can be smoothed with the corresponding right biphone.
Finally sharing presents even more possibilities, parameter sharing between models of the

same complexity is possible as well as sharing with models further up the hierarchy. Sharing

schemes can be divided into two approaches.

e Bottom-up Approaches

These initially assume that all contexts are different. Then a merging process is used to

produce more trainable but less specific models.

e Top-down Approaches

These initially assume that all contexts are the same and are grouped. Then a splitting

procedure is used to produce more specific and more accurate models.

3.5 Bottom-up Approaches

Bottom-up approaches to the data insufficiency problem start by assuming that all contexts are
distinct but to ensure that the parameters of each model can be reliably estimated some form
of sharing or smoothing is required. This is accomplished by examining the original models and
determining sets that can share parameters. These sets are chosen to ensure that the resulting
models can be estimated robustly and that members of the sets are sufficiently similar to ensure
that the models will provide accurate representations.

In practice, the first condition is met by ensuring that the number of examples in each set
exceeds a threshold and the second, by ensuring that parameters of the original models were

sufficiently similar.

3.5.1 Generalised Triphones

One way of implementing parameter sharing is to compare models from different triphone
contexts and merge those which are most similar. The merged models will be estimated from
more data and, if the realisations of the phone in the different contexts are similar, this will give
more accurate models (as well as a reduction in the total size of the system). [43] shows, for
discrete distribution models, that the resulting generalised triphones show better performance
than triphones smoothed with less specific models using deleted interpolation.

However sharing at the model level may not be the most appropriate method for models
composed of distinct states.

3.5.2 State Clustering

Sharing distributions at the state level allows finer distinctions to be made between models
by allowing left and right contexts to be modelled separately. Extending the above method
for constructing generalised triphones to cluster discrete distributions at the state rather than
model level resulted in further increases in recognition accuracy [32].

31

Previous work using continuous distribution models [91] has used a method of model building
that shares the output probability distributions amongst states. This sharing is constrained so
that distributions are specific to a particular state position in a particular phone and they are
only shared amongst the same state occurring in different contexts. Hence, for the architecture
with three emitting states, the distribution clustering procedure is performed three times for
each phone in the phone set.

The clustering is performed on single Gaussian diagonal covariance models in two stages;

e First is an iterative merging procedure which merges the most similar pair of distribu-
tions, chosen because they have the minimum distance, d(7,) between them. This stage
terminates when this minimum distance exceeds a predetermined threshold.

e A second merging procedure ensures the trainability of the models by ensuring that the
occupancy v of each tied distribution exceeds some threshold. Each distribution with
an occupancy below this threshold is merged with the nearest distribution (with the
minimum value of d(i,7)).

The distance between distributions (which will initially be for a single context and later for
a cluster of contexts) 7 and j is calculated using

1

n 2
d(i, j S > (Rir = yp)” (3.1)
ni= OOk

Where n is the dimensionality of the data and p,. and o4 are the mean and the variance
of the k" dimension of the Gaussian distribution of state s (either i or 7). The values of v, for
the untied distributions are calculated during training (see 2.6) and then summed to give the
occupancy after merging.

This procedure results in a set of models with Gaussian probability distributions for clusters
of contexts with similar acoustic features and ensures that each distribution has enough training
examples to accurately estimate its parameters. This reduces the total number of distributions
(and thus system size) significantly but results in a much smaller reduction in the number of
distinct models because different models may share two state distributions and only differ in
the final one. This preserves a higher degree of context dependency by allowing for contextual
factors that only effect parts of a phone. For instance, models with the same right context but
different left contexts may have different initial state distributions whilst sharing those for the
final and centre states.

The complexity of the system (and the accuracy of the models) is then increased in a step
by step fashion by increasing, in lock-step, the number of components in each of the tied distri-
butions. This is done by a splitting procedure in which the mixture component with the largest
weight ¢, in each shared distribution s is duplicated. The resulting identical components have
their means perturbed from the original values by 0.2 standard deviations, their weights halved
and their variances left unchanged. The resulting system is then retrained using Baum-Welch
reestimation. This mixture splitting is then repeated as necessary to smoothly increase the
complexity of the system. This procedure is referred to as up-mizing and figure 3.4 shows how
this is implemented.

32

Shared Single
Gaussian Modedls

 —

Y 1)
Split Component

and Perturb 7
A
Y
Reestimate \T
Parameters

Shared Mixture
Gaussian Models

Figure 3.4: Up-mixing: Increasing system complexity.

This procedure is a robust way of increasing the system complexity until performance on
development test data peaks or some predetermined level of system complexity is reached.

3.5.3 Top Down Approaches

The bottom up approaches are limited as they require examples of each context to produce
initial estimates of the model parameters used in the clustering procedure. This makes it im-
possible to use such methods to construct models for contexts that may occur during recognition
but do not appear in the training data. It is also unreliable for contexts that only occur a few
times, since the examples may be unrepresentative and so the parameter estimates used during
clustering will be inaccurate. Instead a simple backing-off procedure must be used and less
specific models substituted for the unseen models.

This problem can be minimised by ensuring that the training data gives adequate coverage
of the models needed for recognition. But this is possible only for small vocabularies and
systems using word internal context dependency. For larger vocabularies and for cross word
context dependent systems, it is virtually impossible to ensure that the training data will include

examples of every possible context.

33

For example, despite the relatively large size of the Wall Street Journal Database, only
22,804 of a possible 95,221 triphones appear in the 5728/ training data and only 14,545 appear
at least ten times.

The accuracy of such a recognition system will be severely compromised unless better esti-
mates can be found for the parameters of the unseen models. When this is not possible, there
may be no benefit in using a system with cross word context dependency because so many of
the models will have been backed-off to use biphone or monophone models.

Using a top down clustering procedure based on decision trees avoids the problem of unseen
models by using linguistic knowledge together with the training data to decide which contexts
(including the unseen ones) are acoustically similar.

A decision tree for each phoneme selects which of a set of models is used in each context.
The model is chosen by traversing the tree, starting from the root node then selecting the
next node depending upon the answer to a simple question about the current context. For
binary decision trees these questions will normally be yes/no questions concerning membership

L eft

Nasal
Yes NGO

of particular sets of phones.

L eft
Fricative
Yes NoO

Figure 3.5: A decision tree for ih.

For example, in the decision tree shown in figure 3.5, the root question is answered by

34

checking to see if the immediately preceding phone (the left context) is a nasal (n, en, m, n, em
or ng). If the actual context was m-ih+t the next question to be asked would concern whether
the following phone was a liquid (1, el, r, w, y or hh). Since t is not a member of this set and
the answer no results in a terminal node, the model labelled C would be used in this context.

This procedure has several advantages over bottom up clustering

e T'he hierarchical structure and the form of the questions means that the tree will find an
equally context dependent model for every context. This removes the need to back-off to

less specific models for contexts that have not occurred in the training data.

e Expert knowledge can be incorporated in the form of the set of questions that are used to
split each node of the tree and this will be used to determine which contexts are similar

to any unseen ones.

e T'he construction procedure can be constrained to ensure that leaf nodes are only gen-
erated for sets of contexts that have sufficient examples in the training data to reliably
train an accurate model. This removes the need to apply this constraint separately and
the clustering does not suffer from the use of badly under-trained parameters.

o A greater degree of context dependency than triphones can be implemented by extending
the type of questions. For example, they could refer to wider contexts or to different
features. Careful construction of the tree will ensure that only contextual effects which

lead to consistent variation will be considered.

3.6 Decision Trees

To exploit the advantages of the top-down decision tree based approach, it is necessary to be
able to automatically construct the trees. The construction procedure should aim to ensure
that the resultant set of models provide an accurate and robust estimate of the underlying
speech. [7] developed methods for constructing decision trees for discrete distribution models.

The trees were constructed in locally optimal fashion starting from a single root node rep-
resenting all contexts. As each node is created, an optimal question chosen from a finite set is
selected to maximise the increase in probability of a Poisson model at the resultant terminal
nodes generating the training examples. Then the current set of terminal nodes is searched to
find the one which can be split using its optimum question to provide the largest increase in
the total probability of the training data. Provided that this increase exceeds a threshold and
that the number of training examples associated with the node exceeds a threshold, the node
is divided using the optimal question and two new terminal nodes created. When none of the
terminal nodes can be split the procedure terminates and the tree is finished.

This algorithm would be suitable for constructing decision trees for continuous density
models if suitable criteria for choosing questions could be found for continuous parameters
rather than V(@ symbols.

Initial work [57] attempted to maximise the self similarity of the groups of examples pro-

duced by each question using a dynamic time warping based distance measure [82]. A similar

35

method was used in [19]. This was computationally very expensive to evaluate since it required
the calculation and storage of the distance between every pair of examples in each group (cal-
culated using dynamic time warping). These values were averaged over all pairs of members in
the group to give a measure of the group’s self similarity.

This technique scaled very badly to larger tasks as the calculation and storage of the dis-
tances grew with the square of the number of examples of each phone (since the initial group
contained all examples), as did the evaluation of the self similarity of each group. This technique
was therefore only suited to very small scale experiments.

To improve scalability with increasing amounts of data, a template based approach is needed
to ensure that the computation and storage requirements only grows in a linear fashion with
the number of examples of each phone.

In informal experiments, it was found that the distances calculated using dynamic time
warping could be quite accurately approximated using just a linear time warping. This is
probably due to the short duration of the phone level segments (averaging only 7 frames).
Using linear time warping it is computationally simple to estimate both a fixed length template
and the distance between each example and the template. More importantly, the computational
and storage requirements grow linearly with the size of the database and so larger databases
can be used.

However, both of these techniques required phone aligned data and were not very well
matched to the hidden Markov models used in the recognition system constructed from the
resultant decision trees. This led to relatively poor performance because phone examples that
appeared similar using this procedure could not necessarily be represented accurately by a
single hidden Markov model. Other results [31] had also suggested that sharing at the state
distribution rather than at the model level led to improved performance. This approach also
has the benefit of simplicity since the underlying model topology is used and there is no need
to perform additional alignment (such as linear or dynamic time warping) whilst constructing
the trees.

The next section describes the decision tree clustering procedure used for generating the
recognition systems described in chapter 6. The clustering procedure is closely tied to the struc-
ture of the models and so is simpler, quicker and more accurate than the previous techniques
based on clustering direct from the data.

3.7 Decision Tree Construction

There are a number of aims for the decision tree construction procedure;

e Each leaf must have a minimum number of examples (a minimum occupancy) to ensure
that the parameters of the final models can be estimated accurately.

e A finite set of questions can be used to divide each node. This constrains the way each
node may be divided but allows the incorporation of expert knowledge needed to predict
contextual similarity when little or no data is available to determine which contexts are
acoustically similar.

36

e Hidden Markov models should be able to accurately capture the variability of the termi-
nal nodes. For this work, mixture Gaussian probability distributions should be able to
accurately represent the training examples at each terminal node.

These criteria mean that careful choices must be made for the set of questions that can be
asked at each node of the tree and for the way in which the effects of using each questions is
evaluated.

The questions are chosen on the basis of linguistic knowledge that suggests certain phones
may produce certain types of articulatory effect. Appendix B contains the set of questions
used in this work. They represent a maximal set since it was found that the addition of extra
linguistically motivated questions did not degrade performance whilst restricting the set to just
a few of the major features did. The questions are symmetric because there were no clear
reasons for supposing that preceding contextual factors would be different from following ones.

The first of the aims listed above can be satisfied by restricting the choice of question to
those that ensure that any nodes created have a sufficient number of associated examples in the
training data. This restricted set of questions is searched in an effort to maximise the accuracy
of the resultant hidden Markov models. Ideally this means attempting to minimise the within
class variance whilst maximising the between class variance. As previously mentioned such
discriminative schemes tend to be computationally expensive because the choice of parameters
for each class depends on the choices made for every other class.

A simpler scheme which attempts to maximise the accuracy of the models with respect to
their own class is thus more suitable. This can be accomplished using a maximum likelihood
approach which is attractive since it is well matched to the way the parameters of models
are subsequently estimated. A variance clustering technique using a similar likelihood based
clustering approach is described in [36].

In fact, decision tree based system building can be viewed as the constrained maximum
likelihood optimisation of the architecture of the system followed by a maximum likelihood
optimisation of the parameters in the resulting system.

3.7.1 Likelihood Based Decision Criteria

Performing a full maximum likelihood training pass is computationally very expensive and this
cannot be used to calculate the likelihoods of the numerous possible architectures. However,
an estimate of the log likelihood of the training data for a particular set of state distributions
can be found in a computationally efficient manner if the following assumptions are made;

e The assignments of observations to states (that is to say the values of v;(t)) are not altered
during the clustering procedure. In practice, careful choice of the initial state assignments

ensures that any changes are not significant.

e T'he contribution of the transition probabilities to the total likelihood can be ignored. This
is linked to the previous point, although the transition probabilities will have a significant
effect on the total likelihood, their contribution would only change if changes occurred
in the state assignments. These are assumed fixed throughout the clustering procedure

37

and so the contribution of the transition probabilities is constant and unaffected by the

clustering.

e The total likelihood of the data can be approximated by a simple average of the log

likelihoods weighted by the probability of state occupancy. This is an approximation

unless the values of v are zero or one, as is the case for deterministic state assignments

but is often nearly true for probabilistic assignments

Given these assumptions

T.

E
L = ZZ 111 PT' Otaﬂsvzs))7:(t)v

1t=1s€eS
~ In(Pr(0;9))

[0

(3.2)

(3.3)

is the approximate log likelihood of a set models comprising the set of distributions S generating

the training data O consisting of K examples.

For simple Gaussian distributions

1 1 e ! =1, ¢
In(Pr(0f s) = In [e b0 R B o)
(27

1 1 Isv—1
=]T’l((277)”|28|) - 5(l“”s) z}s (Ot - I"’s)
_ _% (nIn(2m) + In([2]) + (0f — 1,)'S7" (0f - 1))
So
E T.
L = Z Z—— (nln (2m) +In(|Zs]) + (0f — py)' B (of — #s)> 75(t)
e=11t=13s€S

However the parameter reestimation formula 2.26 gives

Z Z 75 () (0f — p,)(0f — py)’

_e=1lti=
X, = 5T
2 2 ()
e=11t=1
So
E Te E T.
DD (0f —)N 0f — p)vs() = md D ()
e=1t=1 e=1t=1
This gives
1 E T
L= YL+ men) + () Y300
SES e=1t=1

(3.7)

Often the value of 3, will not be calculated directly from the data but from the statistics
from each unique context ¢. This reduces both the storage and computational requirements since

the number of different contexts is (often substantially) smaller than the number of examples.

38

In this case

¥, = E[o}]- E[o]
> ve(Be A peep) > Vel > e\
_ ceC(s) B ceC(s) . ceC(s) (38)
X Ve 2 Ve X Ve
ceC(s) ceC(s) ceC(s)

Where C(s) is the set of contexts that are to be represented by the distribution of tied state s.
The parameters for each context are calculated from the data using

E T.
Yo = D> L) (3.9)

e=1t=1

FE Te

Z” lvf(t)ote

= ==l 3.10

K. - (3.10)

E T.

> et (0f — po)()
x, = == (3.11)

Ve

Here v5(t) is the probability, for the context ¢, of state occupation at time ¢ of example e.

Building the decision tree consists of changing the set of distributions S to maximise the
total likelihood of the training data whilst ensuring sufficient data is available to train each
resulting distribution. Because splitting a given distribution is assumed to have no effect on the
remaining distributions only the local improvement in the total likelihood need be calculated.
Splitting a node changes the set of distributions S by replacing the parent p distribution with
a set of descendants D.

The total likelihood in this case is given by

E Te

L= = Y S m+en)Fn(s) S w0
S€S,s#p e=11=1
: E T.
—Z n(1+In(2m))+In(1Z4)) > " vilt) (3.12)
dED e=1t=1

So the change in overall log likelihood, which is the quantity that needs to be maximised,
is just the difference between the likelihood of the parent and its descendants (all other parts
of the system are unaffected).

E Te
0 = —Z—ln |24]) 227
deD e=11t=1
FE Te
—ln (121 D> () (3.13)
e=11{=1

This only requires the calculation of 3y and ~v4 = Ze 1 Zt 1 v5(t) for each of the descen-
dants (as presumably the parent’s values will have already been calculated). The constraint

39

on trainability is implemented by assuming £ = 0 when 7, falls below a threshold. The com-
plexity of these operations depends on the number of examples or classes present in the parent
node and should scale well when large amounts of data are used. This is particularly true if the
examples have already been assigned to a smaller number of contextual classes and equations
3.8 to 3.11 are used to calculate the required values from the class means, occupancies and
covariances.

A similar expression can be used to find the change in likelihood when a set of distributions

D are merged to produce a single distribution m.

1 E Te
= (S 0
E T
IS SETIIDI) LA (314
deD e=11t=1

Similarly if models (consisting of a set of state distributions) are to be clustered (to produce
generalised triphones) the likelihoods are summed over all three states to give §£ and a single
decision tree is generated for each base phone.

3.8 Implementation

3.8.1 State Assignment

An initial assignment of observations to states is needed to calculate the above likelihood from
the values of 7., pu, and X, for each distinct context c¢. For the bottom up state clustering
procedure described in [91] a set of single gaussian triphone models are trained using Baum-
Welch re-estimation to provide statistics about each context.

This is simple to implement and provides the required statistics. However, it does have two
drawbacks.

e The state assignments may not be representative.

Untied triphones with Gaussian distributions are used to state align the data in order
to gather statistics about different contexts. These models can be both severely under-
trained, because few examples occur of a particular context occur in the training data
and inaccurate, because a Gaussian distribution may not be adequate to capture the
variability of the data.

e The number of models required may be very large.

When a greater degree of context dependency than simple triphones is desired the need
for a model for each distinct context may be unrealisable. For instance, in the WSJ S71284
database there are over half a million distinct contexts when the previous and following
two phonemes, the position of word boundaries and the gender of the speaker are taken
into consideration.

40

Consequently a better procedure for obtaining the necessary statistics was designed.

Firstly, a well trained system is used to perform a deterministic state alignment of the
data and this alignment is stored in the form of label files. The system chosen should produce
representative alignments and this can be checked by ensuring that its recognition accuracy is
relatively high. In the early stages of system development, a well trained context independent
system is used and later, when a tied state context dependent system is available this can
be used. The assignment does not have to be deterministic but the storage requirements
for probabilistic assignments can become prohibitive and it is not clear that they would be
significantly more accurate.

These state alignments are used to collect from the training data the statistics which are
necessary for the decision tree construction. Since each tree can be constructed independently
this leads to a dramatic reduction in the number of different contexts for which data is required
at any one time.

State assignment was performed using well trained tied state models and untied single
Gaussian ones. In both cases, systems with similar performance were produced and so it seems
that the clustering procedure is robust with respect to the initial state assignments.

3.8.2 Tree Construction

Each tree is built top-down in an iterative fashion by sequentially splitting the distribution
that results in the largest increase in likelihood. This is found for each node by evaluating the
increase in likelihood for each allowable question. This procedure is only locally optimal but
constructing a globally optimal decision tree is a computationally intractable problem and may
not be the best solution. The constraints that are placed on the tree construction in the form of
the questions used to split each node contain extra information which is important for deciding
what happens to unseen contexts. If attempts are made to produce globally optimal trees
by using more complex questions at each node this could compromise the ability to construct
accurate models for unseen contexts.

In preliminary experiments, attempts to produce more optimal trees by allowing both merg-
ing and splitting to occur during tree building had little effect on the objective function for trees
with more than a few terminal nodes. However, this did greatly complicate the structure of the
trees and so was not pursued any further.

The only exception is the addition of a final iterative merging pass in which the decrease
in likelihood caused by merging pairs of terminal distributions is calculated and whilst the
minimum value falls below a threshold the distributions are merged so that those terminal
nodes share the same distribution.

In informal experiments the addition of this final pass reduced the total number of sys-
tem parameters without effecting the initial recognition accuracy and the parameter reduction
should lead to increased system robustness.

This algorithm is summarised diagrammatically in figure 3.6.

Part of this procedure is determining which of the set of questions results in the largest
increase in log likelihood. Since each node can only be split using a small number of questions,
a blind search in which the change in likelihood is calculated for every possible question is

41

Pool all

contexts

Find node N & question
Q which give max
increase in likelihood
when splitting

Split node N using

quest

ion Q.

Exceeds
threshold ?

Yes

No

Find nodesN; & N,
which give min
decreasein likelihood
when merging

Merge N

1& N, to

share distribution

Beneath
threshold ?

Construct
models

Yes

Figure 3.6: Algorithm for constructing decision trees.

computationally tractable. This can be made more efficient however by observing that many of
the questions divide the data on the basis of the same contextual unit. For instance there will
be many questions concerning the identity of the immediately preceding phone. Since there are
only a fixed number of equivalence classes for each contextual unit (in this case the phone set),
the data can be initially split into these classes and intermediate values computed for v, g and
3. This simplifies the calculations because the evaluation for each question about left context
requires summing values over the classes rather than the greater number of distinct contexts.
This reduces the total computational required from O(N.N,) to O(N.+ N,N,) where N, is
the number of distinct contexts, N, is the number of questions about left context and N, the

number of phones in the phone set. This can be a substantial saving when N, is much greater

than N,.

42

3.8.3 Gender Differences

Preliminary experiments showed that there are marked differences between the acoustic param-
eters of speakers of different gender. When questions concerning the gender of the speaker are
added to those available for tree construction these almost always appear near the root of the
tree. This shows that there are large and consistent differences due to the speaker’s gender.

Experiments were performed using systems that were gender independent, totally gender
dependent (a gender determining question appeared at the root of each tree) and optionally
gender dependent (where the gender determining question was available for use at any point
in the tree). For the systems which were optionally gender dependent the gender determining
question appeared often and the majority of states tended to be gender dependent (the few
which were not tended to have relatively small amounts of training data available). This
indicates that there are large differences between the speech of different genders. Despite these
acoustic differences between genders, gender dependent systems did not, as might be expected,
produce consistently more accurate results than gender independent systems [92],[90]. This
may well be due to the acoustic differences being so large that imposing gender consistency
across a sentence does not increase the accuracy enough to offset the reduced amount of data
available to train the parameters of each system.

Because of this behaviour, the way in which gender dependent systems were produced was
altered.

Gender dependent systems were produced by first cloning a gender independent system to
produce identical male and female models. Then the means and weights of the mixture compo-
nents were re-estimated separately from the gender specific data, whilst holding the component
variances and transition probabilities at the gender independent values. The variances were not
updated because of the reduced quantity of data available. The two systems were then run in
parallel (occasionally together with the original gender independent system) for recognition.

This technique gave more consistent performance improvements but as results in chapter 6
will show gender dependent systems still failed to perform substantially better than comparable
gender independent systems.

It was felt that, for gender independent trees, the large between gender differences in the
acoustic parameters could result in biased choices of the best questions. If a particular set of
contexts had more examples from speakers of a particular gender, the criteria used for choosing
which question to split each node with could be heavily biased towards questions that would
actually split the data on the basis of gender rather than actual phonetic contextual variations.

To prevent this use of ‘virtual’ gender questions, a procedure in which the male and female
data were clustered separately was adopted for gender independent systems. Kach shared
distribution used separate gender dependent means and variances and the trees were built
effectively using two component mixture Gaussian distributions at each node. This also meant
that the data sufficiency requirements could be applied to each gender independently to ensure
that the parameters of a gender dependent system cloned from the gender independent one

could be estimated accurately.

43

3.8.4 Feature selection

Extending the types of questions that are available for use during the construction of the trees
provides a well motivated way of assessing the usefulness of a particular feature.

For instance, results in [6] showed a substantial increase in system accuracy when, rather
than taking into account only immediately preceding and following phones, the phonetic context
was defined by the preceding and following five phones. Results in [44] show that the accuracy
of a recognition system on the Resource Management task was increased by the addition of
function word models. It is also possible that system accuracy may be increased by explicitly
modelling the presence of word boundaries [25] or by specifically modelling dialect differences.

All of these approaches can be evaluated by extending the set of questions beyond those just
examining the adjacent phones. The use of such questions during the construction of decision
trees would give a reasonable indication if consistent differences are due to wider context, word
identity, speaker identity or position of word boundaries.

If these questions are used extensively then a system incorporating these dependencies can
be built and tested but if they are not used the computation this entails can be avoided. This
gives a relatively quick method of deciding which contextual features may be important to a

system.

3.9 Summary

This chapter has outlined a method for constructing decision trees for sharing output proba-
bility distributions amongst states of continuous density models. The decision trees enable the
construction of systems using models incorporating more contextual information (such as long
distance cross word phonetic contextual effects) for improved accuracy.

Experimental results presented in chapter 6 will show that this method provides state of
the art performance for a variety of large vocabulary tasks.

Much of the increase in accuracy results from the ability to construct cross word context
dependent models which without the decision tree clustering would otherwise be severely under-
trained. However efficient use of these models during recognition requires improved decoding

techniques and these will be discussed in the next two chapters.

44

Chapter 4

Decoding

This chapter describes several decoding techniques suitable for recognition of continuous speech
using hidden Markov models. In particular it is concerned with the use of cross word context
dependent acoustic and long span language models which are necessary to achieve maximum
modelling accuracy.

It begins by specifying the requirements of an ideal decoder.

Standard time-synchronous network based decoders are described along with an implemen-
tation strategy based on the concept of token passing. The use of beam pruning and different
architectures to increase the speed of decoding together with extensions for N-best decoding are
outlined. The problems which arise when this architecture is extended to use large vocabularies,
cross word context dependent acoustic and long span language models are also highlighted.

Several best first search techniques are then described, in particular A* searches and the
stack decoder architecture implementation.

Finally a recogniser capable of using cross word context dependent acoustic and long span
language models is described. This decoder is based on the stack decoder architecture but

functions in a predominantly time-synchronous fashion.

4.1 Requirements

The requirements of an ‘ideal’ decoder are very simple, it should find the most likely grammatical
hypothesis for an unknown utterance. The likelihood will be composed of several elements.

o Acoustic Model Likelihood.

The likelihood of the utterance given by the hidden Markov acoustic models that represent
the hypothesis.

e Language Model Likelihood.

A likelihood based upon the probability of a hypothesis given the prior knowledge of likely
sentences.

The grammar used may be complex, and specify a syntax for the whole sentence, or simple,
and allow any word to follow any other word.

45

The total number of hypotheses for each utterance can be virtually infinite and so it is
not possible to enumerate every hypothesis and calculate its likelihood to find the most likely.
To ensure that recognition is computationally tractable it is necessary to share computation
between the common portions of different hypotheses.

Sometimes the above knowledge sources may be augmented with other information such
as duration models, pronunciation probabilities or deterministic language models. Sometimes
these additional knowledge sources can be computationally expensive to apply without signif-
icantly increasing search locality. Consequently they are not incorporated directly into the
search for the most likely hypotheses but are applied later to a subset of the search space. For
instance they can be used to augment the likelihoods of the N most likely hypotheses and when
these have similar acoustic and language model likelihoods the additional knowledge sources
will be used to choose between them. To do this N-best rescoring, the decoder needs to generate
a list of likely hypotheses for each utterance. This list can be generated explicitly or the decoder
can produce a lattice of hypotheses with different word hypotheses spanning various portions
of the utterance.

An ideal decoder would have the following characteristics;

e Efficiency.

The computation required during decoding must be reasonable. What is considered rea-
sonable may vary according to the task that the recogniser performs. For dictation or
similar on-line tasks the decoding process must take place in better than real-time to en-
sure that the system does not lag behind the speaker. For system development, real-time
operation is not required but the computation involved in testing a recognition system
should not be out of proportion with that required for its construction.

e Accuracy.

The ideal decoder would always find the most likely grammatical sequence of words for
each utterance. If this is not the case, the decoder generates search errors in addition to
modelling errors and overall system accuracy is reduced. To ensure that decoding is com-
putationally tractable it may not be possible to guarantee that the most likely sequence
of words is always found. However, a good decoder will ensure that the proportion of
errors due to search is always relatively small.

e Scalability.

Ideally a decoder will scale well as the task it performs and the models it uses become
more complex. The increase in computation required to use more complex systems should
be of the same order as the increase in accuracy that they afford. For instance, increasing
the recognition vocabulary can reduce the error rate if the extra words are recognised
correctly. However the accuracy will not rise linearly with the size of the vocabulary
because the extra words are relatively uncommon. Hopefully the computation required
by the decoder would also increase less than linearly with the size of the vocabulary.

e Versatility.

46

An ideal decoder would allow a variety of constraints and knowledge sources to be incorpo-
rated directly into the search without compromising its efficiency. For accurate continuous
speech recognition this currently means using n-gram language and (cross-word) context

dependent models.

The remainder of this chapter will describe some of the techniques used for decoding and
how well they meet these requirements. T'ime-synchronous decoders, which parse the utterance
one observation at a time, will be discussed first followed by best first decoders which initially
pursue the most likely hypothesis and only later consider less likely alternatives.

4.2 Time-Synchronous Decoding

The method for finding the most likely state sequence through a composite model for a particular
utterance, described in section 2.4.2, can be extended to choosing between words.

A simple isolated word recogniser can be produced by creating a composite model in which
a sequence of models representing each word in the vocabulary are placed in parallel between
utterance initial and final silence models. This structure is shown in black in figure 4.1 for
a recogniser with a four word vocabulary (AND BILL BIT BEN) composed of monophone
models.

The most likely state sequence is used to decide which word most closely matches the

utterance by finding through which of the words the most likely path passed.

Figure 4.1: A composite model for word recognition.

This architecture can be extended to perform continuous speech recognition by adding a
transition back through the composite model from the end to the start of the word models. This

enables sequences of words to be recognised as the most likely path can pass through several

47

words in turn. Figure 4.1 shows this extra extension in grey. It also includes an optional
between word silence model (sil) to allow for any pauses that occur between words.

4.2.1 Token Passing

The most likely state sequence through such a network can be found using the token passing
implementation of the Viterbi algorithm [96].

A single movable structure called a token holds the likelihood of each partial path, ¢,
together with the traceback information, y, needed to recover its path through the network.

Equations 2.21 and 2.22 are implemented by moving these tokens between states of the model
instances in the network. Each model instance holds a token in each of its states (including
the non-emitting entry and exit states) which represents the most likely partial path ending in
that state of the network at the current time.

For each observation in the utterance the token in each state of the network is updated
using equations 2.21 and 2.22. The tokens in all states with transitions into the current state
are examined to find the most likely one (given by argmax}y;' {¢i(t — 1)a;;}). The token in the
selected state 7 is updated with the transition probability and the output likelihood, the choice
i recorded (to allow traceback of the token’s path through the network) and the resulting token
is then moved to the destination state before the next frame is processed.

The traceback path does not normally need to be recorded at the state level. When the
most likely sequence of words is required from the recogniser it is sufficient to record only
the decisions about transitions between words. Within words the decisions only effect state
alignment and there is no need to record this information when only the word sequence is
required. To make it easier to determine which transitions occur between words the network is
expanded to explicitly identify the beginning and end of each word. Only tokens propagating
between the end of one word and the beginning of the next have their traceback information
updated.

At the end of the utterance the most likely sequence of words is recovered by traceback
through the decisions made about transitions between words.

By expanding the network to include an explicit arc from the end of each word to the start
of the next, a bigram language model can be incorporated to improve recognition accuracy.
The language model provides a likelihood for each of the between word transitions based on the
conditional probability of one word following another. The language model likelihood is given

by
Pyw = (Prob(W|H))“ + p, (4.1)

where Prob(W|H) is the conditional probability of a word W following a partial hypothesis H,
w is a grammar scale factor used to optimise the relative weight of the acoustic and language
models and p is a word insertion penalty used to control the ratio of insertion and deletion
errors.

Figure 4.2 shows how the structure of the network is modified to allow the use of a bigram
language model and to allow decisions to be recorded at the word rather than the state level by
explicitly marking the beginning and end of words. Note that only the loop is shown, utterance

48

Word Begin Word End

.
Hidden

Language Markov Model Instance Acoustic
Model Models

Figure 4.2: A bigram network.

initial and final silence models have been omitted. These would be included as shown in figure
4.1 with transitions from the utterance initial silence into the start of each word and from the
end of each word into the utterance final silence. The language model can be used to supply a
likelihood for each of the transitions.

Each word instance ends in an explicit optional short pause sp silence model to allow an
optional period of silence to occur between words. It is no longer possible to share a single
between word optional silence model amongst all word instances since the bigram language
model requires an explicit transition from the end of each word to the start of the next. The
figure shows how the model is made optional by adding a transition between its non-emitting
entry and exit states. This makes it possible to traverse the model without consuming any
observations. Such models will be referred to as tee models.

This architecture can be extended to use word internal context dependent models without
expanding the network since a distinct copy of each word already exists in the network. Each
word instance uses the context dependent models rather than the simple monophone models.
For example, the word BEN represented by the sequence of monophone models b eh n in figure
4.2 would use instead the sequence b+eh b-eh+n eh-n of word internal context dependent

triphone models.

49

Model position First | Second Last Last Word

in word but one End
Number active 3539 866 265 91 43

Proportion active 65.4% | 16.0% 4.9% 1.7% 0.8%

Relative computation || 76.0% | 18.6% 5.7% 1.9%

Table 4.1: Variation of model activity over the network in beam pruned search.

4.2.2 Pruning

A search though a complete network is said to be admissible as it is guaranteed to find the
most likely permissible state (and word) sequence. In such a case, no search errors will be made
and the accuracy of the recogniser will be dependent only on the accuracy of the acoustic and
language models.

However this search will waste a significant proportion of the total computation performing
state alignment and calculating the likelihood of paths that are relatively unlikely. The beam
pruning technique described in section 2.5 can significantly reduce the total computational
requirements by reducing the size of the search space being actively considered [99].

Every frame, the most likely partial path, or token, in the network is found and its likelihood
sets the top of a beam of fixed width (measured in log likelihood). Every active token in the
network is examined and if its likelihood falls outside the beam the token is discarded and its
likelihood is effectively set to zero. With conservative values for the beam width, few search
errors will be made despite the search being inadmissible and no longer guaranteed to find the
most likely sequence of words.

Search errors occur when a relatively unlikely partial path has a possible continuation sig-
nificantly more likely than any of the more likely partial paths. If the beam width is too narrow
and this partial path is pruned out of the search space, a search error is made and the most
likely sequence of words will not be found.

Often paths will merge at the end of words. From this point, all partial paths will have
the same continuation and only the relative likelihood difference up to the end of the current
word will lead to search errors. When simple fully-connected word loops are used the beam
width can be relatively narrow. However, when more complex grammars such as finite state
ones spanning the whole utterance are used, the beam width needs to be higher. In this case,
different partial paths can have extensions which are different for more of the utterance. This
will lead to much larger relative differences in likelihood because the paths do not merge until
later in the utterance.

A beam pruned search leads to a highly asymmetrical pattern of activity in the network
[53]. Because of the high branching factor at word ends (which are often connected to many if
not all of the word beginnings), there is significantly more uncertainty at the start of words. If
a single word end is relatively likely, many word initial phone models will be active because of
the high number of transitions from the word end to the start of words.

50

Table 4.1 shows the pattern of model activity during decoding for a five thousand word
Wall Street Journal task. The recognition was performed using a back-off bigram language
model and a set of word internal triphones. The number of active models in the first two and
last two phones of each word is given (note that in the case of short words these overlap) as is
the proportion of the models in that position within each word. Finally the proportion of the
total computation required by the models in this position is shown. Pruning thresholds were
chosen to ensure that only a small fraction of the overall word error rate was due to search
errors. There is a steady decline in the proportion (and number) of active models throughout
each word and evaluating the first two phones in each word is responsible for almost 95% of
the computation.

This asymmetry means that the simple network structure (which is optimal for an unpruned
search) may not be optimal for a beam pruned search. The different network architectures
described in section 4.2.5 and chapter 5 are tailored to exploit the asymmetry to reduce the
average number of active models in a beam pruned search by increasing the total size of the

network and allowing sharing.

4.2.3 N-Best decoding

The token passing implementation of the Viterbi algorithm can be extended to perform N-best
recognition by storing more than one token in each state.

Using N tokens in each state, with each token representing a different hypothesis, allows
the decoder to find the N most likely hypotheses. Unfortunately the computation required
scales almost linearly with the total number of hypotheses required. However, in practice it
is not necessary to consider each of the N hypotheses individually since many will differ by
only a couple words over the whole sentence. The computation for the similar portion of
each hypothesis can be shared with only the differences between hypotheses needing multiple
calculations.

By assuming that the end time of each word is independent of all previous ones, M tokens
in each state can be used to store M hypotheses for the previous word. This assumption is
called the word pair approximation [84]. Partial paths with the same final word are linked
and share a single token with a single likelihood given by the most likely of the partial paths.
However, the token holds traceback information for each of the merged partial paths. When
the whole utterance has been processed traceback produces a network of word hypotheses with
the branching factor controlled by the number of tokens stored in each state. The computation
required again scales almost linearly with M but is much less than the exact sentence dependent
method because smaller values of M can be used to produce a reasonable number of alternative
hypotheses (N). Also the number of sentence hypotheses scales with the length of the sentence

and this is a desirable characteristic since longer sentences will, on average, contain more errors.

4.2.4 Limitations

The network architecture described above is only suited to medium vocabulary systems using

bigram language models and word internal context dependent models.

51

The size of the network and the computation involved in the search grows linearly with the
size of the vocabulary. Consequently this type of search becomes impractical if the vocabulary

exceeds a few thousand words.

pANDAND ®
Tty AP

\ T

m @
T D
T

V" =) @ri+sDSD-EILD

DD
GILD-(D bin D+ ——BILY

GILD-Cbri) D@D
GILD-CbriD)

Figure 4.3: Part of a network using cross word triphone context dependent models.

Extending this architecture to use cross word triphones results in a huge increase in the total
number of model instances in the network [72]. The initial and final phone of each word must be
expanded to use different triphone models dependent on phones in adjacent words. Figure 4.3
shows part of the network from figure 4.2 expanded with cross word triphone models. It shows
how the number of model instances required to represent each word grows with the number of
word initial and final phones appearing in the vocabulary. For even small vocabularies (of a
few hundred words) this can increase the size of the network by an order of magnitude. Even
when many contexts share models, the network can easily become much too large for practical
decoding. This is especially true because the initial phone of each word is expanded and, as
section 4.2.2 described, a high proportion of the total computation is already involved in the
word initial models.

Extending the network to allow the use of a trigram or longer span language model requires
that the network includes multiple copies of each word to ensure that every transition between

52

NDBILL

Figure 4.4: Part of a network using a trigram language model.

words has a unique two word history. Iigure 4.4 shows a portion of the network from figure 4.2
expanded to allow the use of trigram language model likelihoods. When trigram probabilities
exist for every word triple this means that a duplicate instance of every word is needed for each
word in the vocabulary. This will increase the total number of model instances in the network
by a factor that is the number of words in the vocabulary. Even for small vocabularies and

relatively sparse language models this is impractical.

4.2.5 Back-Off Implementation

When back-off bigram language models are used, many of the language model probabilities are
calculated using the unigram probabilities together with the back-off weights. Whenever these
back-off values are used it is not necessary to know the identity of the previous word and the
current word simultaneously to calculate the transition probability. The two components that
make up the value can be applied independently and doing this allows the network structure
to be simplified.

Each back-off transition is divided in two and a back-off node introduced between the new
transitions. The likelihood of the transition into the back-off node is calculated using the
back-off weight of the previous word and the likelihood of transition from the back-off node is
calculated using the unigram probability of the following word [37].

53

Bigram
Component

Backoff
Component (M o

Figure 4.5: A bigram network with tree structured back-off component.

By itself this simplification does not simplify the network. However, merging the back-off
nodes and sharing a single node with transitions into all word beginnings reduces the total
number of transitions [3]. This introduces a back-off transition for all word pairs including
those with an explicit bigram probability. In these cases, the most likely path will be taken
when strictly only the bigram transition should exist. Normally the bigram transition is more
likely but this is not always the case. However, in practice this approximation has little effect
on overall accuracy [73].

The number of active between word transitions is reduced since only the transitions into
and out of the single back-off node and explicit bigram transitions are needed for each active
word end. Previously each active word end had a transition to the start of every word. This

reduction saves a certain amount of computation because, for most words, bigram transitions

54

exist for only a small proportion of the vocabulary. However more significant computational
savings can be found by further restructuring of the network.

As mentioned in section 4.2.2, the majority of active models occur in the first few phones of
each word [53]. Since explicit bigram transitions are only a small proportion of the between word
connections the majority of word initial models will be active because of a back-off connection
to an active word end. Separating the back-off section from the remainder of the network and
effectively duplicating each word in the network doubles the size of the network. However,
because the proportion of explicit bigram transitions is small this will only slightly increase the
total number of active models.

The only transitions into the back-off section of the network are from the single back-off
node and by delaying the application of the unigram until the end of the words the network can
be simplified still further. The initial stages of the back-off network are identical for words which
share initial model sequences. Consequently, multiple instances of these models are no longer
required and the network can be tree structured so that words share initial model instances.

The network architecture is shown in Figure 4.5. The majority of active models in a beam
pruned search are the word initial phones in the back-off section of the network and the use of
tree structuring greatly reduces this number.

Delaying the application of the unigram language model until the end of words alters the
likelihood of tokens in the back-off part of the network relative to the bigram part and this may
lead to additional (or at least different) search errors. However, it is not necessary to delay
the application as the likelihoods can be factored into transitions within the tree structured
network. The likelihood of the most likely of the words sharing each model can be assigned
to that instance and these likelihoods factored into the transitions into each model instance.
This ensures that the likelihood of the tokens in any shared instance is the same as those in
the most likely of the merged original instances. The likelihood of the top of the beam is then
unaffected by the re-structuring and no extra pruning will occur (potentially causing additional
search errors). In fact, fewer search errors may result since unlikely words could be saved from
pruning if they initially share model instances with more likely words.

4.3 Best First Decoding

Time-synchronous searches are essentially simple breadth first searches. All hypotheses are
advanced together every frame, independent of their relative likelihood (apart from the effects
of pruning). This step by step approach is well suited to the frame by frame processing inherent
in hidden Markov models and simple beam pruning schemes are effective in reducing the search
space. However a great deal of computation is wasted on relatively unlikely paths which do not
form part of the most likely path merely because their relative likelihood can change significantly
later in the utterance.

Best first searches start by extending the most likely partial path and only later extend
less likely hypotheses if extensions to the best path become unpromising. This asynchronous
approach involves comparing hypotheses covering different portions of an utterance to find
which is most likely. Time-synchronous approaches only need to compare hypotheses that

55

cover the same number of frames. The likelihood of each frame will tend to be similar and so
the likelihood of a partial path generally varies in a linear fashion as more frames are processed.
In order to accurately compare hypotheses covering different numbers of frames an estimate
is required for the likelihood of the portion of the utterance which is not covered by both
hypotheses.

This lookahead gives best first decoders their main advantage. Because paths tend to merge
at word boundaries, and identical continuations have the same likelihood, lookahead to the next
word boundary will allow the total likelihood of each hypothesis to be compared. As explained
in section 2.5, the beam used during a time-synchronous search must be wide enough to allow
for variations in the relative likelihood of the continuations of different partial paths. Since the
best first decoder uses an approximation to the whole utterance likelihood to compare paths
and determine which to extend, the effective beam width can be much lower and far fewer paths
need to be extended.

In the limit, the exact complete hypothesis likelihood is used to compare partial paths. This
is the ideal case since only partial paths which form part of the globally optimal hypothesis
will be extended and no computation is wasted on other paths. However, the computational
burden has effectively just shifted to the lookahead calculations which need to be as complex
as the original decoding problem if exact lookahead values are required [38].

When accurate lookahead values are available, perhaps from an initial time-synchronous
pass, best first searches are the ideal choice since they will minimise the computational and
storage requirements of the decoder [52].

4.3.1 A* Decoding

A best first search can be implemented with the A* algorithm [55].

This is an admissible search guaranteed to find the most likely hypothesis and uses an
estimate of the likelihood of the whole utterance (the total likelihood) to decide on which
partial paths should be extended. Once the partial path with the highest total likelihood spans
the whole utterance it forms the most likely utterance hypothesis and decoding is complete.

The estimate of the total likelihood, h*(p,(t)), of the partial path, p,() is composed of two
portions.

o f(pq(t)).

The exact log likelihood of the partial path p,(¢) from the beginning of the utterance to
time ¢ calculated using the appropriate sequence of models in the same way as ¢(t) is

found in a time-synchronous decoder.

* g7 (py(t))-
This is an estimate of the log likelihood of the most likely completion to path p,(t) from

time ¢ to the end of the utterance.

By ensuring that ¢*(p,(t)) is an upper bound on the exact likelihood of the remainder of the
utterance, g(p,(t)), the decoding process is admissible. The exact likelihood of the whole path
h(pg(t)) = f(py(t)) + g(pe(t)) will always be less than the estimate since g*(py(t)) > g(py(%))

56

until the path spans the whole utterance and ¢*(p,(7)) = 0 and h*(p,(T)) = h(py(T)). The
search is admissible and finds the hypothesis with the highest likelihood because no partial path
that could be extended to have a higher likelihood over the whole utterance will exist. If such
a partial path did exist it would already have been extended because its estimated likelihood
h*(pq(t)) would be greater than its exact value and thus higher than the completed hypothesis.

The search is initialised with a single null partial path with f(p,(0)) = 0 and g¢*(p,(0))
an estimated likelihood for the whole sentence. This null path will then be expanded with all
possible one word extensions. The exact likelihood of each of these words will be calculated and
combined with the approximate likelihood of the rest of the sentence and then used to select
which partial path will be expanded next.

The search can proceed without using any lookahead information by using a constant upper
bound for g*(p,(t)). However this will force the search to behave in a time-synchronous fashion
extending the shortest partial path at each opportunity.

When only the most likely hypothesis is required computation can be saved by merging
equivalent paths. When a set of partial paths will be extended in the same way and the
equivalent extensions will be equally likely, the relative likelihood of the paths will remain
constant throughout the remainder of the utterance. Only the most likely of the set can form
part of the globally optimal path and only this path needs to be extended [70].

Only a single entry is required for a set of equivalent paths. When a partial path is produced
that is equivalent to but less likely than one already present it may be discarded since it does
not form part of the optimal hypothesis. When the new partial path is more likely, it replaces
the one already present.

An A* search is capable of generating an ordered list of all likely hypotheses as well as the
most likely one. This is accomplished by not stopping with the first partial path that spans
the whole utterance but continuing to extend paths until the required number of completed
paths have been found. However, the above condition can no longer be used to allow path
merging since the less likely of a set of equivalent paths can form part of one of the N most
likely hypotheses although not the most likely one.

The major computational load in such a search (in addition to the calculation of path and
lookahead likelihoods) is the manipulation of the set of partial paths. The operations that need
to be performed on this set are;

e Expansion. Find the most likely partial path and evaluate its extensions.
e Insertion. Insert a new partial path created during path extension.

e Relaxation. Replacing a partial path with an equivalent but more likely one.

These operations can be very efficiently implemented if the set of partial paths is stored
as a Fibonacci heap rather than a stack or ordered list ([15]). When stored in this way the
computation required by all of the above operations rises less than linearly with the total
number of partial paths considered (in fact expansion and relaxation scale with logarithm of
the number and insertion is independent). For a stack or list, the insertion and relaxation
operations require computation that scales linearly with the total number of partial paths. For
very large searches this can become a significant computational overhead.

57

A* searches are particularly well suited to searches through networks and lattices. They are
often used as second (or subsequent) passes during decoding once an initial time-synchronous
pass has calculated values for ¢*(p,(t)) and reduced the search space to a lattice of word

hypotheses.

4.3.2 The Stack Decoder for Speech Recognition

Best first searches can be implemented with a stack decoder. Partial paths are stored on a stack
which is sorted in likelihood order. The decoder operates by removing the most likely partial
hypothesis from the stack, extending it by one word and inserting the resultant hypotheses back
into the stack [67]. Normally fast but approximate matches are used to reduce the number of
extensions which need to be considered by the detailed match.

Sentence
Start

Stack Detailed

Contoller e A\ COUSEIC
Likely | Match
Extensions
Likely
Partial Paths
Reasonable
Extensions

Permissible Fast

L anguage | Extensions :
ﬂ
Matcl AI\(/lloustIC

Hypothesis

Figure 4.6: Dataflow in a Stack Decoder.

Figure 4.6 shows how this process operates. The stack is initialised with an empty beginning

58

of sentence hypothesis. The most likely partial path is removed from the top of the stack and
the language model queried to find the likelihood of all the permissible one word extensions.
An approximate (fast) acoustic match is performed to determine which of the extensions are
likely and these are rescored with detailed acoustic models. Likely extended paths are then
placed into the stack for later extension.

This structure allows a great deal of control over the complexity of the search.

e Easy to incorporate lookahead information.

The order that items are considered can be influenced by lookahead for the remainder of
the sentence. The order of partial hypotheses in the stack can be based upon an estimate
of the likelihood of the whole utterance. Rather than always extending the most likely
path which may only have unlikely extensions the estimated whole utterance likelihood
can be used to extend a path that is currently less likely but has more likely extensions.

e Easy control over search complexity.

The partial paths are considered in a best first manner and so the number of paths that
need to be extended (and the number of extensions considered) can be controlled. This
can be used to place an upper limit on the computational complexity (and thus worst
case performance) which is difficult with likelihood based beam pruning.

However this architecture does have a number of drawbacks. Partial paths are extended a
word at a time. This is well matched to the language model but is a poor fit with the acoustic
models which calculate likelihoods frame by frame. For continuous speech the position of word
boundaries is not known and so each partial path takes the form of a word level history and a
set of likelihoods for different end times. This becomes even more complicated when cross word
context dependent acoustic models are used since the acoustic likelihood of a word is dependent
upon following words. In practice this means that paths must be rescored and new likelihoods
calculated once the appropriate contexts are known. This can effect the admissibility of the
search as well as lead to duplicated computation for evaluating a single path.

The biggest advantage of this scheme is the ability to use the approximate match to limit
the number of extensions considered by the detailed models. However fast matches tend to be
more approximate and lead to search errors when only a few extensions are considered whilst
more accurate matches which need consideration of fewer extensions require more computation
themselves. Efficient but accurate fast matches are essential to avoid repeated (and therefore
wasted) computation [8].

Finally the stack itself can become a drawback. When the number of likely hypotheses is
high the stack can grow very large. With a fixed size static network the number of hypotheses
that exist at one time is limited to one per state in the network as hypotheses are advanced
one frame at a time. The stack can contain hypotheses from many times and its size is not well
bounded. For N-Best decoding simple path merging is not possible and a single stack becomes
unwieldy and inefficient. A secondary stack is used to store alternative hypotheses which only
need be accessed once the most likely answer has been found [86].

However the stack decoder provides an easy way to incorporate detailed acoustic and long
span language models in a efficient rescoring pass when hypotheses are extended. So the first

59

attempt to build a decoder capable of using cross word triphones and long span language
models was based on a stack decoder which operated in a frame synchronous fashion linked to

the acoustic models.

4.4 A Hybrid Approach

An initial attempt to build an efficient decoder capable of handling large vocabularies, cross
word context dependent models and long span language models was based on a stack decoder.

This architecture has been used successfully with discrete density cross word context de-
pendent hidden Markov models. Complex fast match schemes are used to reduce the number
of word extensions considered when each partial path was extended. None of these methods
was suitable for use with continuous density models and so a beam pruned search of a tree
structured network of monophone models was used to perform an initial approximate but com-
putationally simple match. The words which are relatively likely with these models are then
rescored with the cross word triphone models.

The decoder functions in a semi time-synchronous fashion using frame by frame token pass-
ing to evaluate both the fast and subsequent detailed matches. The stack stores the likelihood
of each partial path at word boundaries. When paths are extended they are rescored with the
detailed models and likelihoods from the stack are fed into a newly created context dependent
network of triphone models. This triphone network is advanced asynchronously until it catches
up with the main network. Once it has reached the same point in the utterance, tokens within
it can advance time-synchronously with the other models and it rejoins the main network.

Initially context dependent cross word triphones were only used for the initial stages of
the network when the context is fully specified. The final phone before the tree structured
fast match network and the whole of the tree structured network used context independent

monophone models.

Figure 4.7: Structure of the network in the hybrid decoder.

However the monophone models used for the initial approximate match are a relatively poor
approximation for the detailed triphone models used later on. This meant that the beam used

60

for pruning the fast match needed to be relatively wide to ensure that few search errors were
made and decoding proceeded slowly because many paths needed to be re-evaluated with the
triphone models.

Within words, between the first and last phones, sufficient context is always available to
choose a triphone model. The fast match can become more accurate by making use of triphone
models wherever possible within the fast match network. This does not greatly increase the
total computational load because the increased accuracy and specificity of the triphone models
offsets the increased computational complexity due to the increased network size.

As before, when the network is extended at word boundaries the path is re-evaluated and
context dependent triphone models used for all but the last phone before the tree structured fast
match network. The tree structured fast match network uses a mixture of context dependent
and context independent models. The initial and final phones of each word are represented with
monophone models but within words context dependent models are used. Figure 4.7 shows this
structure.

The use of monophone models for the first phone ensures that the initial stages of the
tree structured network are still very compact. Since many of these models will be active this
ensures that the computation required by the fast match remains relatively small. Using context
dependent models for the rest of each word increases the accuracy of the approximate match
allowing relatively narrow beam widths to be used without introducing search errors.

R P

BILLAND ANDBEN

Figure 4.8: Continuation of the hybrid network.

Figure 4.8 shows how the network from figure 4.7 would be extended from the word BEN.
The network up to the final phone of the word BEN has been rebuilt with context dependent
triphone models. The tokens fed into the word AND from the word end BILL are taken from
the stack. These are only stored for the period during which the word end of BILL was both
active and relatively likely, to minimise storage requirements.

Unfortunately tuning this system to minimise the total number of errors (including both
search and modelling errors) was time consuming and difficult. To maximise speed without
introducing search errors required the use of different beam widths to determining which paths
to extend, which tokens to propagate during the initial match and which tokens to propagate
during the rescoring with the context dependent models. Choosing these beam widths required
multiple experiments which needed to be repeated when substantial changes were made to
either the detailed or fast match systems. However this architecture has been shown to work
well when there is no need to perform a separate fast match [28].

These drawbacks resulted in a desire for a simple one-pass decoder which only used the

61

detailed set of models removing the need for careful system integration during decoding with
the speed/accuracy trade-off controlled by a few easily chosen parameters.

4.5 Summary

This chapter has outlined the basic methods for word based continuous speech recognition and
has described the token passing method for implementing the Viterbi algorithm. It has then
explained the problems encountered when expanding this scheme to use cross word context
dependent acoustic models, large vocabularies and long span language models. A method for
implementing a particular type of recognition system using tree structuring was explained to
show the way in which sharing computation can be used to speed up decoder operation. Best
first approaches to decoding were outlined including an explanation of A* searches and the stack
decoder. Finally a hybrid stack/Viterbi decoder was described and the problems associated with
this hybrid approach were explained.

The preliminary work in designing a decoder indicated that decoder simplicity is a very
desirable characteristic especially for system development work when accuracy is of prime im-
portance. This desire for simplicity led to the goal of producing a decoder capable of functioning
in a single pass, utilising the best acoustic and language models throughout the search to enable
the use of tight pruning to speed up the search without introducing excessive numbers of search
errors.

The next chapter describes a decoder capable of utilising cross word context dependent
acoustic and long span language models in conjunction with very large vocabularies in a single
pass producing a lattice of likely word hypotheses as well as the single most likely hypothesis.

62

Chapter 5

A One-Pass Dynamic Tree
Structured Network Decoder

This chapter begins by outlining the philosophy behind the development of a one-pass decoder.

It explains a one-pass method for time-synchronous decoding of continuous speech suitable
for large vocabularies using the cross word context dependent acoustic and long span language
models required for greatest accuracy. This decoder uses a dynamically constructed tree struc-
tured network to allow efficient operation using reasonable amounts of storage.

The decoder can be extended to generate a lattice of likely word hypotheses without sig-
nificantly increasing the computation required. Methods for generating, pruning and assessing
the accuracy of such lattices are described. Finally the way in which these lattices can be used

to reduce the computational requirements during system development is discussed.

5.1 Philosophy

It is desirable for any recogniser to perform efficiently and to decode each utterance as quickly
as possible. However fast decoding can result in search errors if the decoder fails to find the
most likely hypothesis. This is undesirable as it makes it difficult to accurately estimate the
performance of the underlying speech recognition system.

Normally a balance must be struck between speed and search accuracy. In practical systems
real-time performance is often a design requirement. However, evaluation of different acoustic
and language modelling techniques requires accurate comparison of systems, and so the number
of search errors should be relatively small.

Maximising the speed of a recogniser requires minimising the total number of calculations

during decoding. The number of calculations can be reduced in two ways.
e Simplifying the evaluation of each partial path.
e Reducing the number of partial paths that are evaluated.
The use of less complex models simplifies the evaluation of each partial path but tends to

increase the number of modelling errors. Similarly, just reducing the number of partial paths

63

considered (for instance by reducing beam widths) will tend to increase the number of search
errors.

To maintain high accuracy as well as efficient decoding a combination of these techniques
is needed. The last chapter described how fast but approximate matches using simple models
can be used to reduce the number of partial paths that are evaluated with computationally
expensive detailed models. Similar approaches are used in stack decoders and other multi-
pass schemes [11]. However fast matches do have some disadvantages (especially for system

development).

e lkast matches are approximate.

A mismatch exists between the simple models used in the fast match and the detailed
models used in the final system. The number of hypotheses that the detailed match must
consider in order to avoid search errors increases as the fast match becomes simpler. This
offsets the reduction in computation due to the simpler fast match models.

e Multiple systems are needed.

It is necessary to generate and optimise not only the system that is being tested but also
a fast match system to perform the lookahead. Generating the fast match system can be

time consuming and computationally expensive.

However, the major problem is the need to closely integrate the two systems and ensure
that relatively few search errors are made whilst maintaining decoding efficiency. This can be
a complex process requiring the optimisation of many parameters. When implementing real
systems this is not a problem because it only needs to be performed once. However the need to
perform detailed comparisons between systems during system development on a one off basis
makes a simple one-pass decoder, needing only one model set with few parameters to optimise,
seem very attractive.

As discussed in the previous chapter, simple time-synchronous one-pass decoding techniques
are not suited to the use of cross word context dependent models, long span language models
and very large vocabularies. There are two main problems;

e Size.

The size of the standard linear network becomes prohibitively large when tasks and the
models used become more complex.

e Computation.

A high proportion of the model instances in the network are active every frame and the
computation needed for decoding using these methods becomes prohibitive.

However, such one-pass decoders simplify both training and testing. Using the most accurate
models from the outset allows the size of the search space to be minimised without introducing
search errors. The simplicity of one-pass time-synchronous approaches makes them attractive
if they can be performed in a computationally tractable way.

The decoding strategy described in this chapter overcomes the above problems in the fol-
lowing ways.

64

e Dynamic network construction.

Since the majority of the network tends to be inactive during a beam pruned search allo-
cating space for the active portion of the network dynamically will minimise the memory

requirements.

e Early application of knowledge.

Knowledge sources are applied as early as possible to allow the size of the search space
to be reduced without introducing search errors.

e Sharing of computation.

The asymmetry in a beam pruned search together with the similarity of many words in
a large vocabulary can be exploited to reduce the computation needed. Tree structured
recognition networks have been shown to be particularly effective in reducing the total
number of active models.

5.2 Network Architecture

The proportion of words actively considered during a beam pruned search decreases through the
word, with a high proportion of word initial model instances active and only a small proportion
of word final ones. Left to right tree structuring of the network, allowing words with common
initial phone sequences to share model instances, greatly reduces the total number of word
initial models. Because of the asymmetry in activity, word initial model instances represent a
high proportion of the total computation and thus tree structuring substantially decreases the
total number of active models [53].

However this simple tree structuring is only possible when a language model with unigram
dependencies is used (such as the backoff portion of a backoff bigram language model, as
described in section 4.2.5). In order to calculate bigram language model probabilities it is
necessary to know the identity of both the current and previous words. This is possible in a
linear network with a single instance of each word (as shown in figure 4.2) because a distinct
transition exists between each pair of words.

With a tree structured network, many words initially share model instances and so distinct
transitions do not exist for each word pair because the identity of the following word is not
well defined. In fact, because of the presence of words which are homophones, the identity of
every word cannot be uniquely determined until its end. This makes it impossible to apply a
language model on the transition into a word, it must wait until the end of the word, when the
identity of the word can be uniquely determined.

A bigram language model requires the identity of both words in the bigram pair. If the
language model application must wait until the end of the second word, it is necessary to have
a distinct network for each possible initial word to ensure the bigram transition is specified
uniquely. This requires a copy of the tree structured network for every word in the vocabulary
and the size of the network is multiplied by the size of the vocabulary. When longer span

language models are used more tree copies are needed since a unique copy is required for

65

every word history that the language model considers distinct. For a trigram the language
model probabilities are conditioned on the previous two words (rather than one in the case of
a bigram) and so tree copies are required for each distinct two word history.

Word End

Word Begin Word End

Figure 5.1: A linear network.

Although this restructuring increases the network size dramatically, the computational load
is dependent upon the number of models that are actively considered rather than the total size
of the search space. Because of the asymmetric pattern of model activity in a beam pruned
search, tree structuring reduces the average number of active models despite the increase in
total network size. This is due to the relatively small number of active word end models, and
hence the number of tree copies being actively considered, compared to the number of word
initial models active in a linear network. Table 4.1 showed that only a few tens of word ends are
active (and this can be further reduced by word end pruning as described in section 5.3.2). Tree
structuring the network can reduce the number of word initial model instances by more than an
order of magnitude and hence reduce the total number of active models. It also means that the
total computational load is relatively independent of vocabulary size. For large vocabularies,
the size of the initial portion of the tree structured network is almost independent of the total
number of words. The number of active word ends (and hence the number of tree copies)
tends to be a function of the confusability inherent in the task which is only a weak function
of vocabulary size. This also means that the increase in network size needed by longer span
language models may not increase the number of active models as the rising size of the network
will often be offset by the gain in search locality resulting from the improved accuracy of the
language model.

However the total size of the search space has increased dramatically and so efficient pruning
and memory allocation are relatively much more important.

This restructuring can be viewed as taking a linear network following a particular word
end (as shown in figure 5.1) and delaying the application of the language model until the end
of each word. This allows common initial model sequences to be shared between words (as
shown in figure 5.2). This delay is undesirable because it reduces the locality of the search and

66

leads to increased numbers of search errors at a particular beam width, and furthermore it is

unnecessary [2].

Figure 5.2: A tree structured network.

Section 4.2.5 described how the probabilities may be factored into the transitions within a
tree structured network. The likelihood of the most likely word sharing each model instance is
associated with the instance and is used to calculate the transition probabilities in the network.

This is implemented by storing a language model likelihood with each instance and com-
bining this with the token likelihoods for pruning purposes. This removes the need to calculate
and store a likelihood with each transition and allows a uniform network structure in which the
language model likelihoods are eventually added to the tokens at the end of words. Figure 5.2
shows the network structure and the language model likelihoods associated with each model
instance (in grey).

This early, but approximate, application of the language model allows relatively narrow
beam widths to be used without increasing the number of search errors. The progressive
addition of language model likelihoods for relatively unlikely words can reduce the number of
search errors because the large step changes in token likelihood (which occur if the likelihoods
are added during a single transition) are avoided.

5.2.1 Context dependency

Word internal context dependent models can be incorporated into a conventional linear network
without increasing its size or the computation required during decoding. When such models
are used with tree structured networks, the number of different word initial model sequences
increases and the amount of sharing possible decreases. This increases the size of the network
and the computation required for recognition.

However, the tree structured network is better suited to the use of cross word context
dependent models than the linear network because of a side effect of the need to make tree
copies. Incorporating cross word triphones into a linear network results in an order of magnitude

67

increase in the size of the network. The word initial portion of the network (which dominates
the computational load) is expanded to be dependent on the last phone of the previous word
and the computation required during decoding rises by a similar amount.

ae-n+d

ANDBIT

ED@D e @
@ @i+ @D
@D+ @D

ANDBILL

Figure 5.3: Cross word triphones in a tree structured network.

Using cross word context dependent models in the tree structured network increases the
computation required during decoding by only a small amount compared to a network using
models dependent upon word internal context. A distinct tree copy is generated for each
preceding word and when each word has only a single phonetic pronunciation, the phonetic
context of each tree will be unique. Adding cross word context dependency will only expand
the final part of each word since the initial part has effectively already been expanded when
the tree copies are made. Since only a small proportion of word end models tend to be active
in a beam pruned search, the total computation required does not increase substantially. Of
course, when multiple pronunciations exist for a word they may require additional tree copies
to preserve the unique previous phonetic context of each tree. However, only a few words will
normally have more than one pronunciation.

The increase in model accuracy will also increase search locality, so although the potential
size of the network increases with the use of cross word context dependent models, the compu-
tation needed for decoding may actually decrease compared to using word internal models.

Often the recogniser needs to allow an optional silence between words and this is accom-

68

plished by adding an optional silence model at the end of the pronunciation for each word.
This effectively doubles the number of pronunciations in a given dictionary because the pho-
netic context will depend upon whether the silence is present. In this case, the computation will
increase significantly since both ‘pronunciations’ will be almost equally likely and the number
of tree copies could potentially double.

Figure 5.3 shows the network from figure 5.2 expanded to incorporate cross word context
dependent models. It shows how the initial part of each tree is expanded due to the following
(word internal) context but that the cross word context dependencies only expand the final
phone of each word. This substantially increases the total size of the network but since only a
few of the word final models will be active, it does not significantly increase the computation
beyond that required for a system that only uses word internal context dependent models. Note
also that the optional silence, sil, model at the end of each word results in two tree copies for

the different phonetic contexts.

5.2.2 Network Structure

Apart from the left to right tree structuring, which ensures that each node in the network
has only one predecessor although it may have many successors, the network is otherwise very
similar in structure to the standard linear network described in section 4.2.1. Consequently,
the same token passing paradigm is used for both networks to calculate the likelihood of partial
paths.

Two types of node appear in the tree structured network.

e Model Instances.

These represent a particular phone in context and are associated with a specific model.
Each instance holds one token for each state of the associated model, including the non-
emitting entry and exit states. This token represents the most likely path ending at the
state at the current time. The likelihood of each token is updated after every observation
in the same way as in the conventional static network. Traceback information is not
updated within the word unless state or phone alignments are needed. The instance also
stores a language model likelihood. This is the likelihood of the most likely of the words
sharing the instance and is added to that of the most likely token in the instance to
provide an instance likelihood used for pruning.

Unless a transition exists between the non-emitting entry and exit states tokens will be

updated with at least one observation likelihood whilst passing through model instances.

e Word End Instances.

Word end nodes are associated with a particular word (or more accurately with a partic-
ular pronunciation of a particular word). They represent the point in the network where
the word identity becomes unique. At this point, the language model likelihood of the
word is added to the token likelihood and the token’s traceback information is updated
to allow later recovery of the word sequence. The likelihood of the token after addition
of the language model likelihood is used to determine if the node should be pruned.

69

Tokens pass through a word end instance without processing any observations.

It is not feasible to pre-compile the tree structured network due to its potentially huge size.
The network must be built dynamically, similar to the way in which partial paths are extended
on demand in a stack decoder [58]. This also makes it easy to use any type of finite state word
network as a grammar (including one generated in a lookahead pass) without incurring any
additional computational or storage overheads.

5.2.3 Token Passing and Network Growth

The most likely path through the tree structured network is calculated using the same token
passing paradigm described in section 4.2.1 for a linear network. However, since the network
must be constructed dynamically during decoding to minimise storage requirements, token
propagation also controls the growth of the network. When active tokens (which fall within
the beam) propagate from a node in the network which has not yet been expanded it may be
necessary to add nodes to the following part of the network.

The list of different pronunciations sharing the node is processed to determine the set of
model instances and word end nodes which should follow. Word end instances are created and
linked into the network if the end of the pronunciation has been reached. Within words, the
context is used to determine which model should be used to represent the next phone and an
instance of this model is created and linked into the network.

At the ends of words, the permissible extensions to the current partial path are needed.
When cross word context dependent models are used, these extensions may also be necessary
to determine the following context for the last few phones in each word. In this case, each pro-
nunciation will be split dependent upon following context and several models used to represent
the final phone or phones of a single pronunciation. The list of permissible extensions together
with their likelihoods are obtained from the combined language model and grammar. When
large vocabularies are used with fully connected grammars, it is not feasible to perform the
network expansion individually for each word and instead pre-compiled prototypes are used to
guide the process. With smaller vocabularies or heavily constrained finite state syntaxes, this
pre-compilation is not needed and the actual list of words (and associated pronunciations) is
used directly.

If the exact procedure above was followed, the network would always be extended in complete
layers (which consists of all possible followers for a given node). However there will be significant
variation in the likelihood within the set of following nodes due to their differing language model
likelihoods. Sometimes some of the newly created nodes will not fall within the current beam
and would be destroyed during pruning only to be recreated the following frame. To avoid this,
the combined likelihood of the node to be created (as used for pruning) is checked to ensure
it falls within the current beam. If it does not, the node is not created immediately and the
network layer is not fully expanded. The network growth is complicated a little but since the
final layer of the network represents a significant proportion of the active instances substantial
computational and memory savings result.

The presence in the network of nodes which can be traversed without processing any ob-
servations, such as word ends and tee models, means that every frame the active models must

70

be processed in the correct order to ensure correct operation of the recogniser. Before a token
can propagate from the exit state of an instance into the entry state of its followers it must be
updated for the current frame. Essentially this means that the whole of the network should be
processed from left to right and each instance processed before any of its followers.

Fortunately this is the sequence in which the network was created. Keeping the list of active
instances in the order in which they were created and always processing the models in this order
ensures that token propagation occurs correctly for all models.

The network is initialised by creating a single beginning-of-sentence word end instance
holding a single token with a log likelihood of zero and a null path. This token immediately
propagates from the word end instance and begins to generate the recognition network starting
with the distinct beginning of utterance word, /SENT_START, which will normally consist of
a single silence model. The network continues to grow in the manner described above once a
token has passed through the JSENT_START instance and the likely portions of the recognition
network will be generated.

Once the final frame of the utterance has been processed, the network is searched to find all
occurrences of the unique utterance final word JSENT_END. The most likely token in any of the
corresponding word end instances is found and the recognition hypothesis found by traceback
from this token.

When multiple systems need to be run in parallel, for instance when separate gender de-
pendent models are being used, several networks are needed. Each network is associated with
a particular system and is composed only of models from that system. Recognition begins by
initialising several networks although at the end of the utterance only the single most likely
hypothesis is found (together with the identity of the system that generated it). Frequently the
network for less likely systems will be completely destroyed by pruning and the total computa-
tion required for decoding with several systems in parallel will be only slightly higher than for
a single system.

5.2.4 Path Merging

The number of reasonable hypotheses for an utterance increases exponentially with its duration.
To prevent the computation involved in decoding the utterance increasing exponentially as well,
it is necessary to share the computation of similar portions of different hypotheses.

In the standard network this is accomplished by tokens recombining (so that only one
survives) at the beginning of words. When many partial paths to the beginning of a certain
word exist, it is only necessary to extend the most likely. The most likely path through the
remainder of the sentence from that point in the network is independent of the previous path and
so the relative likelihoods of the different partial paths will remain fixed. In best first decoders
path merging occurs explicitly by checking for equivalent partial paths and only extending the
most likely one.

Path merging must also be performed in the dynamic net decoder to ensure that the com-
putation does not rise throughout an utterance.

Three requirements need to be met for a set of partial paths to be considered equivalent;

e Identical network structure.

71

The allowable extensions to each partial path must be identical.

e Identical acoustic likelihood.

Identical extensions to each partial path should be composed of identical acoustic models
to ensure that the relative likelihood of the extended paths remains unchanged.

e Identical language model likelihood.

The partial paths should appear identical to the language model so that identical exten-

sions will have equal language model likelihoods.

With the static network these conditions are encoded within the topology of the network by
defining the points at which tokens recombine. When the network is constructed dynamically
it is necessary to determine equivalent paths dynamically in a similar manner to that used in
a best first decoder.

The language model likelihoods are only known at word ends and so the final requirement
can only be met easily at transitions from word end instances. Consequently path merging
occurs at word ends and when word end instances are created they are linked with equivalents

to form a partial path equivalence chain.

; ®
G ANDAND @
Op—+@E&X _ @
@ ANDBEN G p
@ ® BENBIT

% SI LAND \(b) @

(a) (b) \ @<—50

pANDBIT

(i
@9

r—CL
ANDBILL @
GILD (i

pBITBILL

Figure 5.4: An example of the structure of a tree structured network.

Figure 5.4 shows an example network. The network is based on monophone models and

72

does not include any optional inter-word silence models. The heavy links between word end
instances are the equivalence chains and represent the points at which partial paths merge.
There are two ways in which the paths can be merged to prevent the unnecessary extension

of equivalent partial paths.

e Path domination.
Extension of the network is explicitly blocked for the less likely partial paths. This is the
way in which equivalent partial paths merge in stack decoders.

e Token recombination.

Identical partial paths share a single successor network. Tokens recombine before propa-
gating into the successor network and only the most likely one survives. This is the way

in which paths merge in a conventional static linear network decoder.

Figure 5.5: Path merging using path domination.

The first technique, domination, can produce several successor networks to one set of equiv-
alent partial paths if their relative likelihood changes. Figure 5.5 shows this. Initial AND BEN
is more likely than either BIT BEN or BEN BEN and this path is extended whilst the others
are blocked. Later, when BKN BEN becomes more likely its block is removed and the network
shown in grey is created. BI'T" BN remains blocked.

Token recombination explicitly creates a single network and results in smaller networks
requiring less computation. Figure 5.6 shows how the partial paths from figure 5.5 are merged
by sharing a single successor network.

Despite potentially producing larger and less efficient networks, path domination ensures
that the left to right tree structure of the network is maintained. Each network node has only
a single predecessor and this ensures that correct token propagation is simple because several
tokens never propagate into a single model.

This has two benefits.

73

Figure 5.6: Path merging using token recombination.

e It is easy to maintain the network in the order required for correct token propagation.
When paths recombine the order in which the network is processed may need to be
changed because a word end instance is created and linked to followers that were created
before it.

e The traceback information needed to recover the most likely sequence of words can be
stored at the network (model) level rather than explicitly with every token. This can
reduce the total memory required for the network by between 5% and 20%.

These benefits must be offset against the wasted computation when multiple networks are
generated from a single set of equivalent partial paths. In practice this occurs rarely and
typically results in the number of active instances in the network increasing by around 5% to
20%. This increase in network size may not lead to a similar increase in total computation
because the smaller size of each instance can lead to better cache performance and increased
CPU efficiency.

However, the memory overhead of the token recombination method is relatively small (the
network rarely represents more than half the total process size) and its use makes it easier
to implement efficient N-best lattice recognition (see section 5.5.1). Consequently most of the
experimental work has used the token recombination method of merging equivalent paths.

5.3 Pruning

Pruning accomplishes two tasks during decoding.
e Avoids (wasted) computation for paths that are relatively unlikely.
e Reclaims (unused) storage to minimise total memory requirements.

When decoding using a standard static network the second of these operations is of minor
importance. The structure of the network is left intact and instances which fall out of the beam
are made inactive to prevent token passing occurring within them. For the dynamically created

network, the second operation is at least as important as the first. The potential size of a fully

74

expanded tree structured network is huge and so space is only allocated for instances which are
active. Consequently, both computation and storage requirements are controlled by pruning of
the network.

Standard beam pruning is used in which tokens which are relatively unlikely are assumed
to have zero probability. All pruning is performed at the model level rather than the state
level since the network is allocated at model level. State based pruning would not reduce total
storage requirements and would have minimal impact on the overall computational complexity.

The combined likelihood, which is the sum of the likelihood of the most likely token in
each instance together with the language model likelihood of the instance, is used for pruning.
The instance with the highest combined likelihood is used to set the top of the beam and any
instances more than a fixed beam width less likely are pruned from the search.

Since the network is created dynamically it is not always sensible to remove instances when
they are pruned because it can be difficult to reconnect them to the rest of the network if they
need to be recreated. Consequently three different operations are performed during pruning

depending on where the instance occurs in the network.

e Erased.

A node with no predecessors will never receive active tokens and can be completely re-
moved from the network and the storage reclaimed. If the model instance labelled (a) in
figure 5.4 is pruned it will be erased.

o Deleted.

A node with no followers can be removed from the network in a manner that allows it to
be recreated later should it become relatively more likely. The instances labelled (c) in
figure 5.4 would be deleted.

e Halted.

A network node with both predecessors and followers cannot easily be recreated and
reconnected to the network. If such an instance is pruned it is not removed from the
network but token passing within it is halted until it is reactivated or it can be erased.
This saves computation but not memory. If the model instances labelled (b) in figure 5.4
were relatively unlikely they would be halted.

Pruning is performed every frame and the instances are processed in the same order as used
for token propagation. When an instance is relatively unlikely and falls out of the beam it is
pruned as described above. Processing the instances in this order ensures that a sequence of
models can be erased in one pass.

5.3.1 Maximum Model Pruning

Due to the potentially very large size of the network, there are periods for which the number
of active models can be very high, often between ten to a hundred times the average. This has
little effect on the total computation since these periods occur rarely and represent only a small

75

<oSocoo-=mT

g

1 5 10 15 25 40 50 80 843
Thousands of Models Active

Figure 5.7: Number of models active during decoding.

proportion of the speech. However, the memory required to store this many active instances
may be unacceptable.

Figure 5.7 shows a histogram of the number of active model instances during a typical 5k
WSJ test. The peak number of active models is over ninety times greater than the average
number.

During the periods when many models are active the uncertainty about word identity is
relatively high and many partial paths will have similar likelihoods. Because so many hypotheses
are being actively considered, the beam width used (in terms of likelihood) can be lowered
without introducing a significant number of search errors.

During periods of greatest uncertainty rather than using a beam width defined by likeli-
hood differences one based on the number of active models is used instead. Thus, an upper
limit is placed on both computational and memory requirements. This has little effect on the
total computation required but allows a limit to be placed on the size of the network and the
storage requirements of the decoder. Limiting the process size in this way allows efficient use of
the computational resources (by avoiding excessive thrashing of the virtual memory when the
process becomes larger than physical memory).

It was found that this maxzimum model pruning could be incorporated into the recogniser
without significantly increasing error rates (because of additional search errors caused by the

increased pruning) whilst dramatically reducing the peak memory requirements.

76

5.3.2 Word End Pruning

When using the recogniser with fully connected grammars and backoff language models, a third
type of pruning was implemented.
0.175
0.150
F 0.125
© 0.100
€ 0.075
C
y 0.050

0.025

0.000

-25 -15 -10
Log Probability

Figure 5.8: Variation in the probability of bigrams including the word THE.

Studies of the language model revealed that variations in the probability of a specific word
were much lower than the variations over all words. Figure 5.8 shows how the variation in
log probability for the word THFE over the official 5k bigram language model compares with
the variation of the probabilities of words following THE. The variation in the probability of a
particular word over different histories is much lower than the general variation independent of
word identity. For this language model, the average over all words of the standard deviation
in the natural logarithm of the probability of the word is 1.32 whereas the average standard
deviation of the probabilities independent of the word identity is 5.28.

This reduced variability together with the fact that the uncertainty in the identity of the
current word is lower at the end of words than at the start [41] suggest that a separate tighter
beam could be used to control extension of paths at word boundaries. This type of pruning
can also be used with linear networks and in this case also substantially reduces the number
of tokens which need to be propagated between words [71]. The major source of variation in
the likelihood of a particular word is due to the language model and this variation tends to
be relatively small compared to the beam widths employed during recognition. Consequently
when several word ends are active, it is only necessary to propagate tokens from the relatively

likely ones.

77

This word end pruning was implemented by using a separate beam to control propagation
of tokens from word end instances. Extension of the network from word end instances that
are more than a fixed likelihood less likely than the most likely word end instance is blocked.
Word end pruning can significantly reduce the number of active word end instances without
increasing the number of search errors.

5.4 Algorithm
The overall algorithm can be summarised as;

e l.oad parameterised speech file.
e Initialise a network for each system. (For example a male one and a female one).
e For each observation in utterance;

— Determine current beam width.

This will either be a fixed likelihood or chosen to limit the number of active models
to a predetermined maximum.

— Prune network according to current beam.
Each node in the network has a combined log likelihood which is used to determine
which instances should be pruned. The combined log likelihood is the sum of the
log likelihood of the most likely token in the instance with its language model log
likelihood. When the combined log likelihood of an instance is more than the beam
width less likely than the most likely instance it is pruned.

— Perform token propagation within model instances.

The tokens in each state of each model instance are updated after processing the
next observation. The model with the highest combined likelihood is found and this
likelihood sets the top of the beam for the next frame.

— Perform token propagation between instances.

The token in the exit state of each instance is updated and propagated into following
models which may need to be reactivated or created. At word ends, the language
model likelihood is added to the token and the traceback information updated to
reflect the end of the current word. When necessary the network is extended and
new model instances and word ends are created although this process can be blocked
at word ends because of word end pruning or path merging through domination.

e Find most likely utterance final word end instance.
e Perform traceback and recover most likely hypothesis.

e l'ree network and other storage.

78

5.5 Lattices

Despite the relatively high efficiency of the decoder the recognition process is still computa-
tionally expensive. During development it is necessary to first optimise and then measure the
accuracy of systems with a set of development test data to allow the performance of different
modelling techniques to be accurately estimated. This means that the decoder will be run
several times over the same set of development data with only relatively small changes made
to the system each time. It is possible to speed up system development by initially producing
a lattice of likely hypotheses for each utterance rather than just finding the single most likely
hypothesis. This lattice can then be used to constrain (and therefore speed up) the decoder
when it next processes that utterance. This scheme can also be used to decode sentences with
computationally expensive models. An initial pass using (for instance) triphone acoustic and
bigram language models can generate a lattice of hypotheses that can then be rescored using
a larger language model and more detailed acoustic models which may be too computationally
expensive to use in a single pass.

The decoder is well suited to generating lattices of hypotheses that are both deep and
accurate with little modification and virtually no computational overhead compared to finding
only the most likely hypothesis.

5.5.1 Lattice Generation

Only a few simple modifications are needed to modify the decoder to generate a lattice of
hypotheses.

Rather than discarding all but the most likely partial path when these merge at word ends it
is possible to retain information about them all to allow lattice traceback [27]. This procedure
is easiest to implement when the decoder merges paths using token recombination.

When only the most likely hypothesis is required the language model likelihoods are added
to the tokens in word end instances and the traceback information updated. The tokens from
equivalent partial paths recombine and only the most likely survives to propagate into the
following network. When a lattice of hypotheses are needed the less likely tokens are not
discarded but are linked to the most likely one and the combined structure propagates into the
following network. The calculations in the remainder of the network are only performed on the
most likely token but when traceback occurs at the end of the sentence all of the tokens are
used to construct a lattice of hypotheses

Since calculations are only performed on the most likely token, it is used to decide the most
likely state sequence through the following words and the other tokens are assumed to follow
the same path. This is equivalent to assuming that the position of the word boundary is the
same for paths from each of the word end instances. For a bigram network only instances of
the same word will be linked into an equivalence chain and so the assumption is the same as
the word pair assumption described in Section 4.2.3.

At the end of each utterance traceback proceeds separately through each of the linked tokens
and a lattice of alternative hypotheses is constructed.

A separate node is produced for each combined set of tokens and each of the tokens creates a

79

ELABORATE

SIL

I I I I I I I /l/ I /l/_|

0.00 0.50 1.00 1.50 2.25 2.85

Time (s)

Figure 5.9: An example lattice.

link into that node. Each node has an associated time which is the time at which the combined
token propagated into the following network and is the end time of the various word instances
that were linked together. FEach arc has an associated word (and pronunciation) identity,
acoustic likelihood and language model likelihood and forms a link between two nodes which
define the start and end time of the word hypothesis. This ensures that the different acoustic
and language model contexts are incorporated in the topology of the network.

Because of the different contexts in which a word can occur, there can be many arcs repre-
senting similar hypotheses for the same word covering a similar portion of the utterance. These
will have differing acoustic scores (because of different phonetic contexts represented with dif-
ferent model sequences) and/or different language model likelihoods. This replication can be
avoided by using acoustic models which are only dependent on the word internal context and
short span language models. However this would result in lower recognition accuracy (in terms
of both the one-best and lattice-best word error rates) and must be offset against the reduced
lattice size.

An example lattice generated with cross word triphones and a bigram language model is
shown in Figure 5.9. Note the multiple instances of the word 10O due to different right phonetic
contexts, ih for /7" and IN, ax for AN and A and b for BUT, each with different acoustic

likelihoods and word boundary times.

5.5.2 Lattice Accuracy

The quality of the lattices (and the model set that generated them) can be measured by de-
termining the error rate of the lattices with respect to the actual sentence spoken in a similar
way to that in which the accuracy of a single hypotheses is assessed. The most accurate path
through the lattice is found using a best first dynamic programming search that minimises the
total number of word errors. When the correct sentence exists in the lattice, it will be found

80

otherwise the total number of insertion, deletion and substitution errors will be calculated. The
number of word errors and number of sentence errors can both be used as performance figures.

The presence of out-of-vocabulary (OOV) words makes it difficult to perform comparisons
across test sets as these will often be the dominant cause of errors in the lattice.

To enable comparisons between test sets, bounds on word and sentence error rates can
be used instead. Both upper and lower bounds are found by first performing the dynamic
programming search to find the path which minimises the number of word errors. The lower
bound is found by only counting differences between the reference and the lattice path as errors
when the reference word occurs in the recognition vocabulary. This assumes that OOV words
would be recognised correctly if they were added to the recognition vocabulary and this provides
a best case estimate of the error rate of an unlimited vocabulary system. The upper bound
is found by counting all differences as errors and this is the actual error rate in the lattice.
However, the upper bound can be heavily influenced by the number of out-of-vocabulary words
in the test set and so the lower bound tends to be a more accurate indication of the relative
difficulty of test sets.

These figures will be used when lattice error rates are quoted. When only a single figure
is quoted, this is the upper bound which makes no allowance for out-of-vocabulary words.
Otherwise, a range will be quoted with the lower bound taking out-of-vocabulary words into

account and the upper bound making no allowance.

5.5.3 Lattice Pruning

The lattices generated by the decoder are potentially very large but a significant proportion of
each one will be relatively unlikely. These portions will rarely form part of the spoken sentence
or be part of the most likely path when the lattice is rescored. Consequently the lattice can
often be significantly reduced in size without reducing the lattice accuracy or altering the results
obtained if they are rescored.

Since the lattice contains likelihoods over the whole of the utterance the likelihood of com-
plete paths can be used to accurately determine which parts of the lattice are most likely. The
log likelihood of the most likely path through a particular arc in the lattice can be found with

an efficient three pass scheme.

e The forward log likelihood of each node is found. This is the likelihood of the most likely
path from the start of the lattice to the node.

e T'he backward log likelihood of each node is found. This is the likelihood of the most
likely path from the end of the lattice to the node.

e Finally the log likelihood of the most likely path through each arc is found. This is the
sum of the arc acoustic and language model log likelihoods together with the forward log
likelihood of its start node and the backward log likelihood of its end node.

The initial two passes use best first searches to minimise the computation required. This is
similar to the final phase in some decoding schemes (which use time-synchronous searches to
provide the lookahead information available from the lattice) [1]. The resulting log likelihood

81

of each arc is compared with the log likelihood of the most likely sentence hypothesis. Any arcs
which are more than a predetermined beam width less likely are removed from the lattice as
are any nodes which become disconnected as a result.

Since pruning is based on the likelihood over the whole utterance it can be relatively tight
without substantially reducing the accuracy of the lattices. The following chapter gives some
results which show the effect of pruning on the accuracy, generality and size of lattices.

5.5.4 N-Best Generation

Some recognition techniques require a hypothesis for the whole of an utterance in order to
calculate its likelihood. For example it may not be possible to calculate this likelihood word by
word because of long span effects such as average speaking rate. These techniques are commonly
implemented by augmenting the acoustic and language model likelihoods for the N most likely
hypotheses with the new likelihoods and then reordering the hypotheses to find the overall most
likely. The lattices generated by the decoder can be used to generate very deep N-best lists for
such schemes.

An A* search through the lattice which does not merge paths will generate N-best lists many
thousands deep using relatively small amounts of computation and storage. Often, only different
word sequences are required and, since the lattice contains arcs for different pronunciations,
hypotheses with the same word sequence but different pronunciations need to be merged.

5.6 Rescoring

Often these lattices will be of sufficient quality to allow lattice rescoring to be used for evaluation
of new acoustic and language models without needing to perform a complete utterance decode.
The lattice is used to constrain the number of paths that are considered and can substantially
reduce the amount of computation required. The use of lattices in this way is similar to the
final rescoring phase of some progressive multi-pass decoding techniques [4].

This allows rapid system development as acoustic rescoring of a lattice is more than an order
of magnitude faster than full decoding and language model rescoring is almost three orders of
magnitude faster.

However care must be taken to ensure that the system used to rescore the lattices is not too
different from the one used to generate them and that the lattices provide adequate variety to

ensure that the results obtained will be representative of those that would be obtained during

a full decode.

5.6.1 Acoustic Rescoring

Although acoustic rescoring could be performed (probably more efficiently) with an A* style
search using the lattice to provide lookahead information, instead, for simplicity, the standard

decoder is used. The lattice is used to provide a constraining grammar and optionally language

model likelihoods.

82

@
ELABORATE SIL

Figure 5.10: A lattice without acoustic context.

The lattice is rebuilt to remove unnecessary acoustic contextual dependencies in a recur-
sive merging scheme in which equivalent arcs representing the same word that have different
pronunciations or phonetic contexts are merged. This preserves the language model likelihoods
because these are dependent only on the word sequence and allows the acoustic rescoring to use
language model likelihoods taken from the lattice. However both new language and acoustic
models can be used in a single pass with the lattice just providing a constraining grammar.
Figure 5.10 shows the lattice from figure 5.9 with acoustic context dependencies removed. Note
the multiple instances of SIL and 7O which had different end times and right contexts have
been replaced with single arcs. Such lattices no longer contain meaningful acoustic likelihoods
or word boundary times.

The lattice is used to provide the decoder with a list of possible word extensions to each
partial path as well as indicating the points at which differing partial paths may merge (when
they end at the same lattice node). The reduction in the number of hypotheses that need to
be considered dramatically reduces the computation required to evaluate new acoustic models,
normally by more than an order of magnitude. When the acoustic models are well matched
and relatively accurate, the difference in overall word error rate between lattice rescoring and
unconstrained decoding will be only a small fraction of a percent and normally can be considered
insignificant.

5.6.2 Language Model Reapplication

The lattices can also be used to evaluate new language models in a similar way. The rescoring
could just involve variation in the weighting between the acoustic and language model likeli-
hoods, adding a word insertion penalty or using a completely different language model, such as
a trigram in place of a bigram.

Language model rescoring can be accomplished by an A* search in which the acoustic
scores are used to provide the lookahead whilst the new language model generates the language
model likelihoods that are combined with the acoustic likelihoods from the lattice as paths are
expanded. To ensure that this is efficient for large lattices, the language model can also provide

83

information about which paths it considers to be equivalent (although this is only possible for
some types of language model). This allows path merging to occur and reduces the number of
distinct paths that must be considered. However path merging makes it impossible to generate
N-best hypotheses at the same time as applying a new language model.

Instead of performing an A* search to find the best hypothesis, it is often more useful to be
able to rebuild the lattice to incorporate likelihoods from a new language model with acoustic
likelihoods from the original lattice. This resultant lattice can then be used to generate N-best

lists or for acoustic rescoring using new language model likelihoods from the rebuilt lattice.

IT
IT
, DI
T/IT ‘
" ELABORATE

0.00 0.50 1.00 1.50 2.25 2.85
Time (s)

Figure 5.11: A lattice incorporating a trigram language model.

Rebuilding can be accomplished by a simple recursive procedure similar to that used to
convert a lattice into the finite state syntax needed for acoustic rescoring. Normally the lattice
will expand as it needs to incorporate the dependencies present in the new language model as
well as those already present in the lattice. For instance, expanding a lattice generated with a
bigram using a trigram language model will duplicate arcs in order to ensure that each node
will have the unique two word history needed to calculate trigram likelihoods.

The lattice from figure 5.9 is shown after expansion with a trigram in figure 5.11. Note the
single node where all the instances of I'l' combined in figure 5.9 has been duplicated five times
for the trigram contexts SIL I'T, TO IT, IN IT, AN IT and A IT. This allows the different
language model probabilities for DIDN’T (which are dependent on the previous two words) to
be placed on distinct arcs in the lattice. Each of these arcs will have the same acoustic score and
time span since they were created by duplicating the single arc representing DIDN I following
['Tin the bigram lattice.

84

5.7 Summary

This chapter has described a decoding architecture suitable for large vocabulary continuous
speech recognition. The decoder can use cross word context dependent acoustic and long span
language models in a single pass generating a lattice of likely hypotheses for each utterance.

A variety of pruning techniques in addition to standard beam pruning were developed to
improve decoder efficiency.

Several lattice manipulation tools have been produced to allow the pruning, accuracy mea-
surement and rescoring of lattices. These have reduced the time required for system devel-
opment by an order of magnitude allowing a wide variety of acoustic and language modelling
techniques to be evaluated.

Results in the next chapter will show that the decoder used in conjunction with the acoustic
modelling techniques described in chapter 3 can produce recognition systems with state of the

art accuracy.

85

Chapter 6

Experimental Results

This chapter contains details of recognition experiments performed with the dynamic network
decoder using models constructed by decision tree based clustering. Both the decoder and the
tree based models have been used for a variety of continuous speech recognition tasks ranging
from small vocabulary speaker dependent systems through to very large vocabulary speaker
independent ones. The use of decision trees enabled the construction of models for unseen
contexts allowing recognition of arbitrary words and the use of cross word context dependent
modelling techniques giving state of the art performance. The novel decoder design has allowed
the efficient use of these models and the lattice based decoding approach has enabled rapid
evaluation of the accuracy of different modelling techniques.

This chapter contains results for two of the tasks attempted. Initially the medium vocabu-
lary DARPA Naval Resource Management task was used for developing the acoustic modelling
techniques. These techniques were then applied to the large vocabulary North American Busi-
ness News domain based on the Wall Street Journal Database. Details of these tasks can be

found in appendix A.

6.1 Recognition System Architecture

All recognition systems were based on hidden Markov models using continuous density diagonal
covariance mixture Gaussian output probability distributions and fixed state transition proba-
bilities. The output probability distributions could be shared at the state level but there was no
sharing of mixture components. (The models were continuous density rather than tied-mixture
or semi-continuous).

Model parameters were estimated using embedded Baum-Welch re-estimation in which a
composite model for each complete sentence was used to probabilistically assign observations
to states and then update the model parameters (see section 2.6).

The complexity of the models was increased in an incremental fashion using the mixture
splitting technique described in section 3.5.2. Experiments suggested there was little benefit in
varying the number of components in different distributions and so the number of components in
the mixture Gaussian distributions does not vary across speech models. (Although, as described
below, the number of components of the non-speech distributions can be different).

86

Word
Orthography

Initial
Models
Choose
Pronunciations
Align
Y

Collect Single
Gaussian Statistics Slil;bvéord
for all Contexts S

!

Choose clusters
Tie parameters

Re-estimate Split
Parameters Components

Gl
Models

Clone Modsdls.
Re-estimate GD
Means and Weights

GD
Models

Figure 6.1: System building procedure.

87

All systems were constructed in approximately the same manner. An initial set of models
was used to compute statistics for the different contexts occurring in the training data. These
statistics were then used in a clustering procedure which decided how state distributions would
be shared and then produced an initial set of tied state models. The complexity of these models
was increased in a step by step fashion until performance plateaus or a fixed level of complexity
has been reached. This results in a set of gender independent (GI) models which can be used
to produce gender dependent (GD) ones by cloning the system and then re-estimating the
component means and weights of each system using data from only one gender. The whole of
this training procedure is shown in figure 6.1.

Most models employ a simple architecture with three emitting states. Each emitting state
has a self transition and a transition to the following state. This enforces a minimum duration
of three frames since at least one observation must be generated by each state.

The only speech models with a different topology are the optionally released stops in the
Resource Management dictionary (dd, kd, pd and td). For these models an extra transition from
the second emitting state to the exit state is added. This transition allows the final emitting
state (notionally representing the release) to be skipped and reduces the minimum duration of
a path through the model to two frames. Figure 6.2 shows the different topologies employed
(including those of the the silence models discussed next).

Models are also required to represent the periods of an utterance without speech. These
periods, such as the beginning and end of the utterance and pauses between words, are often
described as silence as there is often little airflow or acoustic energy. However, a variety of
phenomena must be represented in addition to real silence. These include breath noise, tongue
clicks and general background noise. Initially (in a similar fashion to [91]) two models were
used. A sil model represented silence at the beginning and end of an utterance and used
the three state left-to-right architecture used for most speech models. A sp model represented
optional pauses between words and used a single state model which could be entirely skipped
(by using a tee transition). However this simple silence modelling, in which the silence models
were treated much like any other phone, was found to be inadequate when the word internal
context dependent systems were modified to use cross word context dependent models.

Silence models needed to be treated differently from speech models for several reasons.

e Always context independent.
There is no reason for supposing that acoustic characteristics of the periods of non-speech
are significantly influenced by the surrounding phonetic context. (Although these periods
may effect the production of the surrounding phones).

e No temporal structure.

The periods of silence are of arbitrary duration with no obvious progression between
periods of silence, breath noise or other phenomena. The left to right topology employed

for speech models is unsuitable as less structure is needed.

o Greater detail.

88

+-0-8-G 048

a) Most
Speech b) dd, kd, pd & td

P Lo

o) sl d) sp

Figure 6.2: Model topology.

Because silence models are context independent, represent a large proportion of the data
and need to model a variety of phenomena it is desirable to use distributions with more
components than the speech models. Typically twice as many components are used in
each non-speech state distribution as in the speech models. Further increases in the

number of components did not lead to further improvements in accuracy.
This led to the use of two silence models which represent different periods of non-speech.

e sil
sil represents longer periods of non-speech including the start and end of an utterance
(where it always occurs) and long pauses between words (which are optional). sil is con-
sidered as a separate phonetic context since the articulators will have a chance to return to
rest positions during long pauses between words and will start and finish in rest positions
at utterance boundaries. sil is a three state model but allows transitions between all
emitting states as there is no temporal structure to the periods it represents. However the
only transition from the entry state is to the first emitting state and the only transition
to the exit state if from the last emitting state thus enforcing a minimum duration of
two frames. A longer minimum duration may be better, however, it is convenient in the

decoder to limit the number of states in all models.

® sp

sp represents brief pauses between words. It consists of a single state which may be
skipped and is ignored when expanding context since during the short pauses which it
represent the articulators will not be able to move significantly. This means that the

89

phone sequence sil ih z sp dh ax sil would be expanded to the triphone sequence
sil sil-ih-z ih-z+dh sp z-dh+ax dh-ax+sil sil. This architecture allows sp to be
present at all word boundaries (except those where sil occurs) and thus simplifies the

decoding network architecture.

It was found that these changes reduced the number of spurious insertion errors in which
words were recognised if brief noises occurred during long periods of silence. This significantly

improved recognition accuracy.

6.2 Resource Management Experiments

Experiments on decision tree clustered models using the tree structured dynamic network de-
coder were performed on the DARPA Resource Management task. Appendix A describes both
the task and the associated corpus in detail.

All systems were trained on the ST109 section of the database and tested on the four official
test sets using the standard word pair grammar (with a perplexity of around 60).

Top down decision tree based clustering restricts the sharing of parameters because of
the finite set of questions that can be used to split each node. Previous work has indicated
that using knowledge based approaches to group contexts in a restricted fashion can lead to
poorer modelling accuracy than bottom-up approaches that do not restrict the way in which
parameters can be shared [32]. The principal advantage of the decision tree approach is the
ability to construct models for unseen contexts. This is vital when producing cross word context
dependent systems as the majority of contexts appear very few, if any, times. Bottom-up
approaches are not suited to this task. Consequently the effect of the decision tree constraints
on the accuracy of the acoustic modelling was assessed using a system based on word-internal
triphone models. The training portion of the database was designed to ensure coverage of the
different words and so all word internal contexts occurred in the training data.

A recognition system for the Resource Management database was described in [92] which
used tied-state fully continuous mixture Gaussian word internal triphone models. The system
was constructed using the bottom-up agglomerative clustering technique described in section
3.5.2. This approach requires the same set of statistics as that needed by the decision tree
based clustering approach described in section 3.7. Consequently it is possible to produce both
decision tree clustered and agglomeratively clustered state tied systems from the same set of
untied triphone models. Results from [92] on the various Resource Management evaluation
test sets are reproduced in table 6.1 labelled “agglomerative”. This system used a set of 7111
triphone models constructed from 1655 tied states each composed of a 6 component mixture
Gaussian probability distribution.

A decision tree based system was also constructed from the same triphone statistics. The
architecture of this system was not optimised separately but was as similar as possible to the
original system. The same minimum occupancy was used for the state distributions and the
threshold used to decide when to stop splitting nodes was chosen to ensure the systems were
of comparable size. The decision tree based system used 1581 tied state distributions each also
consisting of a 6 component mixture Gaussian and so both systems had approximately 750,000

90

acoustic parameters. Neither system used cepstral means subtraction (the parameterisation of
the data is described further in section A.1).

System Feb’89 | Oct’89 | Feb’91 | Sep’92
Agglomerative | 4.10% | 4.84% | 3.78% | 8.05%
Decision Tree | 3.87% | 4.99% | 3.74% | 7.31%

Table 6.1: Word error rates for agglomeratively and decision tree tied state systems.

As table 6.1 shows the performance of both systems is similar. The constrained clustering
procedure using decision trees does not adversely effect performance and would, if required,
allow the construction of models for unseen contexts.

The ability to produce models for unseen contexts makes it easy to produce systems incor-
porating cross word triphone models. Since these explicitly model co-articulation effects across
word boundaries they should provide a more consistent and accurate representation of speech
and thus produce more accurate results.

Much of the previous work using decision trees ([6], [29]) had performed the clustering at
the model rather than the state level. However experience with word internal systems indicated
that clustering at the state level allows greater flexibility and leads to more accurate models.
To evaluate the effects of clustering at the state rather than the model level two cross word
triphone systems were constructed. Both had similar complexity with approximately 2400 state
distributions each a 4 component mixture Gaussian for a total of around 800,000 parameters.
The model tied system had 800 generalised triphone models whereas the state tied system had
over 11,300 distinct triphone models. Again neither system used cepstral means subtraction for
data normalisation.

Clustering was performed gender independently (so each cluster was evaluated for a single
Gaussian per state) with the same initial set of statistics for each context in the training data.
The model based system was made by tying the trees for each of the three states together and
evaluating each question by the increase in likelihood summed over all three states. The state
based system used the optimal question for each state and produced three decision trees for
each phone.

System Feb’89 | Oct’89 | Feb’91 | Sep’92
Model tied | 3.71% | 4.58% | 4.19% | 7.03%
State tied | 3.12% | 3.76% | 3.38% | 6.25%

Table 6.2: Word error rates for state and model based decision tree systems.

The results of both systems are shown in table 6.2. Allowing tying at the state level (and
so producing more distinct models which can more accurately capture consistent contextual
variation) improves the accuracy by about 15%. Similar results occur with the larger Wall

91

Street Journal Task [60]. The state tied system used more distinct models and so less merging
could be accomplished by tree structuring the network and recognition was computationally
more expensive. However the increased accuracy of the models results in better search locality
and partially offsets the increase in network size. Consequently the difference in decoding
complexity between the model and state tied systems is relatively small (approximately 25%).

The architecture of the cross word triphone system was further improved. A system with
1778 tied states each with a 6 component mixture Gaussian distribution was constructed. This
system did use cepstral means subtraction during both training and recognition. The word
error rate for this system on the four evaluation tests are shown in table 6.3 together with the
word internal triphone system from [92] and the context independent monophone system from
[91]. The addition of cross word context dependency resulted in a 32% drop in word error rate
compared to the system with word internal context dependency and over 50% compared to
the monophone system. (Note that these figures and all other comparisons between error rates
refer to relative improvements unless otherwise stated).

If this cross word context dependent system were used with a conventional static network
decoder, recognition would be much more computationally expensive than one based on word
internal triphones. However, the tree structured network means that even for this task, which
does not benefit greatly from sharing as each word has on average only 60 possible followers,
the number of active models required (shown in the final column of table 6.3) only rises by
about a factor of two. (Although the number of models active is approximately doubled the
actual computation only rises by 50% due to improved efficiency of the dynamic decoder).
Recognition requires around twenty seconds per utterance on a HP735/125 with beam widths

chosen to avoid any search errors.

System Feb’89 | Oct’89 | Feb’91 | Sep’92 (Models)
Monophone 5.7% 7.3% 6.0% 9.7%
Word Internal Triphones | 4.10% | 4.84% | 3.78% | 8.05% (760)
Cross Word Triphones | 3.05% | 2.91% | 2.46% | 5.78% (1600)

Table 6.3: Word error rates for optimised word internal and cross word triphone systems.

6.3 Decoding Complexity

In order to compare the computational complexity of different tasks, a normalised measure of
the computation required to decode speech is needed. When only a single type of computer
is used the ratio of actual processing time to the duration of the speech would allow accurate
comparisons. However, since many types of computer were used, a different quantity is needed
to give an indication of the relative computational load of the different experiments.

The number of models which were active during each frame gives an indication of the relative
computation. The complexity of most of the tasks involved in decoding (token propagation,
pruning and network construction) varies linearly with this number. However, the evaluation

92

Token
Propagation

0 10 20 30
Thousands of Models Active

Figure 6.3: Variation in run time with number of active models: Light pruning.

of the output likelihoods does not scale linearly because of the tied-state architecture of the
models. The output likelihood calculations can be shared and need only be calculated the
first time a distribution is used each frame. This value is recorded and any states sharing
the distribution also share the computation. The calculation of output likelihoods typically
represents a significant (although normally not dominant) proportion of the total computation
(typically between 30% and 60%). Consequently the number of models active each frame
only gives an approximate indication of the total computation. The evaluation of the output
likelihoods will depend upon the degree of tying present in the system. The computation this
requires must be estimated from the system size and task complexity. For large systems with
complex distributions and few models active the output likelihood calculations will represent
about 60% of the total computation. For fewer, simpler distributions or a large number of active
models the corresponding figure is nearer 30%. In practice the evaluation of output likelihoods
may not be a significant computational overhead as they are amenable to a variety of speed-up
techniques (including both vector processing and vector quantisation [11]).

Figures 6.3 and 6.4 show how the actual run time of a 5k WSJ experiment (see next section)
varied with the number of active models. These experiments were performed on a SUN20 ca-
pable of SPEC-FP 106.0 and SPEC-INT 93.0. (Note the model set used had relatively complex
probability distributions with 12 components in each of 6,400 shared distributions. Resource

93

management systems tend to have fewer, simpler distributions and the output likelihood cal-
culations are correspondingly less significant at a particular number of active models. For
example the most accurate Resource Management system described above was almost twice as
fast as the 6,400 state system for the same number of active models (1600). This is due to the
smaller number of states (1778) which used simpler 6 component distributions requiring less
computation for output likelihood calculations.). As these figures show, the computation does
not vary in direct proportion to the number of active model as the computation of output like-
lihoods becomes more significant when the number of active models decreases. However in the
regime in which experiments are typically performed (chosen to avoid search errors) the contri-
bution of output likelihood calculations is reasonably static at between 30% and 40%. Similar
experiments on an HP735/125 capable of SPEC-FP 201.0 and SPEC-INT 103.0 ran approxi-
mately two to three times as fast. On this machine (excluding output likelihood calculations)

approximately 500 active models can be processed each frame (10ms) in real-time.

30| Token
Propagation

0.5 1 15 2 25 3 35 4
Thousands of Models Active

Figure 6.4: Variation in run time with number of active models: Heavy pruning.

6.4 Wall Street Journal Experiments

The resource management task used a relatively small vocabulary and heavily constrained
grammar. Realistic tasks must process a larger vocabulary with a less constrained grammar.

94

The ARPA Wall Street Journal task was the successor to Resource Management and used a
larger vocabulary as well as a fully connected grammar. Appendix A describes the task as well
as the associated database.

For larger tasks, computational complexity becomes increasingly important and additional

pruning is required to maintain efficiency.

6.4.1 Pruning

The computation required for decoding is controlled by pruning of the search space. Simple
beam pruning, which discards tokens that are more than a fixed beam width less likely than
the most likely token for the frame, is the primary method of controlling the complexity of
the search. However two additional forms of pruning were introduced to further reduce the
computational load.

Maximum model pruning (section 5.3.1) specifically limits the complexity of the search (in
both size and computation required) by placing an upper limit on the number of active models.
This was required to ensure that the decoding process would fit in the physical memory of
the computer used. Since a great many alternatives are being actively considered reducing the
effective likelihood beam (because of the limit on models) should not introduce search errors.

Word end pruning (section 5.3.2) introduces a separate beam for word end tokens. This
word end beam can be tighter than the general beam for two reasons. Firstly there is a greater
degree of certainty about word identity at word ends rather than word starts. Secondly the
range in language model likelihoods for a particular word over different histories is much lower
than the general beam width.

Each of these three forms of pruning was investigated to determine how many search errors
are produced under different pruning conditions. These experiments (described below) all used
the same set of cross word triphone models with 6,400 tied states. These were produced for the
November 94 Evaluation and described in detail in 6.4.3 as 94’'HMM-1. The figures described
in section 6.3 were produced using these models and so these graphs can be used to directly
determine the run time of the experiments described below. The remainder of the experiments
in this chapter investigate modelling accuracy rather than search performance and use very
conservative values for pruning. Main beam widths (chosen to minimise the number of search
errors at a reasonable computational load) were typically between 275 and 350. The word end
beam width (150) and maximum model limit (100k for five thousand word recognition or 200k

for larger tasks) were set to levels shown not to effect accuracy.

Beam Pruning

The choice of beam width is the major factor controlling the computational load and number
of search errors made during decoding.

Wide beam widths lead to many paths being considered and a high computational load.
Many of these paths will be both locally and globally unlikely and so beam pruning the locally
unlikely paths can reduce the amount of computation required during decoding. However some
of the paths which are locally unlikely may form part of the globally most likely path and

95

35.0%

0 30.0% 125

25.0%

20.0%

- O ~==m

15.0%

150
10.0%

® ~ QD 0

175 X X X X
200 250 300 350

0.1 1.0 10.0 100.0
Thousands of Models Active

5.0%

Figure 6.5: Variation in active models and word error rate with overall beam width.

pruning them will result in search errors. The choice of beam width depends on the relative
importance of decoding speed and accuracy. For system evaluation accurate estimation of the
word error rate of a system is required and beam widths are chosen to minimise the number of
search errors (whilst maintaining reasonable decoding times).

Figure 6.5 shows how the number of active models per frame (and thus the computation
required for decoding) and the percentage word error rate vary for particular beam widths.
(Both maximum model and word end pruning were used for these experiments, but at thresholds
which did not lead to search errors.)

As this shows, for beam widths greater than 250 the performance of the system is not affected
by the choice of beam width and this indicates that there are no search errors being made. At
a threshold of 250, search errors account for only 2% of the total error rate. Experiments were
typically performed with a beam pruning threshold of between 275 and 350 in order to minimise
the search error rate. Using a beam width of 250 compared to 300 halves the number of active
models, almost doubling decoding speeds, and using 200 results in a factor of seven reduction
in the number of models and only increases the error rate by 7%. Reducing the beam width
still further dramatically increases the error rate and although it is possible to reach real-time
performance (excluding output likelihood calculations) by just decreasing the beam-width the

error rate of over 30% is dominated by search errors.

96

Maximum Model Pruning

Although the total running time of an experiment is proportional to the average number of
models active each frame, the size of the process is dependent upon the peak number. Figure
5.7 showed how the number of active models varied widely with the maximum almost two
orders of magnitude higher than the average. If no attempt is made to constrain the maximum
number of models, the size of the decoding process can easily exceed the amount of physical
memory present and as a result the speed of decoding falls dramatically.

In order to constrain the process size, additional pruning was introduced to limit the number
of active models. This is used to ensure that the decoder will always operate from physical
memory (to ensure consistent performance) and speeds up decoding during periods of greatest
uncertainty (as there is an upper bound on the computation required for each frame).

10.0%
w
(0]
. 9.0%
d x
5K

E 80% |
r
r X x x %
T 7.0% 10K 25K 50K 100K
R
a 60%
t
e

5.0%

00 50 100 150 200 250 300

Thousands of Models Active

Figure 6.6: Variation in active models and word error rate with maximum model limit.

Figure 6.6 shows the variation in the average number of models active and the word error
rate with the threshold chosen for “maximum model pruning”. Beam pruning (with a threshold
of 300) and word end pruning (with a threshold of 150) were also used although the thresholds
were chosen to ensure they did not introduce search errors.

At relatively high maximum model limits (more than a few times the average number of
active models) only a small number of frames are effected and the error rate is unaltered. As
the maximum model beam is reduced further more frames are subject to this form of pruning
and the average number of active models reduces substantially. Even so this has little effect
on the error rate and reducing the maximum number of active models by a factor of four to

97

25k only introduces 2% relative (0.15% absolute) search errors. However further reductions in
the limit on the number of models active do increase the error rate and better results (at a

particular computational load) are produced by lowering the main beam width.

Word End Pruning

As described in section 5.3.2 the range of language model likelihoods is much smaller over
different histories than over different words. This, coupled with the greater degree of certainty
of word identity at words end, leads to the use of a different beam width for word end tokens.

10.0%
W
0
r 9.0%
d X

50

E 8.0%
' x
o 75« X X X
r 0% 100 125 150 None
R
a 6.0%
t
e

5.0%

0.0 5.0 10.0 15.0 20.0 25.0 30.0

Thousands of Models Active

Figure 6.7: Variation in active models and word error rate with word end beam width.

Figure 6.7 shows how the word error rate and average number of active models is affected by
a separate word end beam width. Maximum model pruning (with a limit of 100k models) and
beam pruning (with a width of 300) were enabled at levels which did not cause search errors.

Word end pruning had less effect on the overall computational load than either beam or
maximum model pruning but it was able to reduce the number of active models by up to 30%
without introducing any additional search errors. Search errors only occurred when the word
end beam was reduced to 1/3 of the width (in log likelihood) of the main beam. The actual
beam width, in this case 75, is equivalent to between three and four standard deviations of the
probability of a word over all distinct histories (i.e. the standard deviation given in section

5.3.2, 1.32, multiplied by the language model scaling factor, 16.0)

98

Combined Pruning

The best results (in terms of fewest search errors for a fixed amount of computation or least
computation for a particular accuracy) come from combining all three forms of pruning.

10.0% 1
w
0 175
r 9.0% X
d
E 8.0% >(200
r .
’ A . ><250 x300

B

v oTow |
R
a 6.0%
t
e

5.0%

0.0 5.0 10.0 15.0 20.0 25.0 30.0

Thousands of Models Active

Figure 6.8: Variation in active models and word error rate with combined pruning.

Figure 6.8 shows how all three forms of pruning can be combined to provide better perfor-
mance than just varying the main beam width. The points labelled A and B have beam pruning
enabled at 200 (for A), 220 (for B), word end pruning at 100 and maximum model pruning at
10k. The remaining points are a subset of those in figure 6.5 showing how accuracy and com-
plexity vary with the main beam. In the first case (with around 3000 active models per frame)
only 1% of the 7.34% error rate is due to search errors and in the second case (with around
2200 active models per frame) the error rate only rises to 7.71% (5% relative search errors).
Since there are relatively few models active each frame and the output likelihood distributions
are complex (6400 distributions each with 12 components) the proportion of the computation
consumed by the output likelihood calculations rises to 60%.

These figures show that this simple unoptimised decoder cannot reach real-time performance
for an unconstrained large vocabulary task. However it comes close enough to suggest that with
optimised code, accelerated output likelihood calculations and a small amount of lookahead real-
time performance should be possible on a 100-200 M-FLOPS machine. A demonstration system
using an unmodified decoder with simplified acoustic models requires a few times real-time for
5k recognition and between five and ten times real-time for 20k on an HP735/125 capable of
around 100 M-FLOPS.

99

Training Type | LM | Eval’92 | Dev’93.s6 | Dev’93.0dd | Eval’93 (Models)
S184 wint/gi | bg | 8.11% 10.39% 12.40% 12.53% (9.6K)
S18/ xwrd/gi | bg | 6.86% 9.52% 10.48% 8.51% (21.7K)
S184 | xwrd/gd | bg | 6.58% | 9.13% 9.67% 8.67%% (21.9K)
S1284 | xwrd/gd | bg | 5.14% 6.63% 7.58% 6.77% (23.4K)
S1284 | xwrd/gd | tg | 3.19% | 5.27% 6.00% | 4.90%! (19.8K)

Table 6.4: Word error rates for 5k systems (H2) used in the Nov’93 evaluation.

6.4.2 November 1993 Evaluation

Systems using these techniques were submitted to the ARPA Continuous Speech Recognition
Evaluation in November 1993. The evaluation took the form of a once-through test in which
results had to be generated on the unseen test data in one run. The systems could not be
optimised for the new data. The various tests and conditions are further explained in section

A.3.1.

e H1. Open vocabulary (64K quality filtered) recognition.

— H1-C1. Recognition with 20k vocabulary and trigram language model with SI37 or
S1284 training.

— H1-C2. Recognition with 20k vocabulary and bigram language model with S137 or
S128/ training.

e H2. 5k closed vocabulary recognition.

— H2-P0. Recognition with any language model and any training

— H2-C1. Recognition with bigram language model and S7712 or S184 training

Three sets of acoustic models were produced for the November 1993 evaluation, two with
gender dependent variants. All were produced using gender independent clustering with only
one Gaussian per cluster.

The simplest, a set of word-internal context dependent triphones, was produced only in
gender independent form. The models were trained on the S/84 section of the training data
and consisted of 8453 distinct triphone models. These were constructed from 3701 tied state
distributions, each an eight component mixture Gaussian giving a total of around 2.3 mil-
lion parameters. The techniques used to construct and use this system were broadly similar
to the HTK system submitted in the Sept’92 RM evaluation ([91]) and provided a baseline
against which further improvements could be measured. However this system was restricted
to recognition with a vocabulary of 5k and a bigram language model because of limitations
in the conventional static network decoder. The differing test and training vocabularies (and
as a result word-internal triphones occurring in the test dictionary which did not appear in
the training data) meant that it was not possible to use the same bottom-up agglomerative

100

clustering procedure. Instead the decision tree based method described in chapter 3 was used
for its ability to construct models for unseen contexts.

A system of cross-word context dependent triphones trained on the S784 section of the
database was also produced for the H2-C1 test. Both gender-dependent and gender-independent
versions were produced (by cloning the gender independent system and re-estimating gender
dependent mixture component means and weights but using the gender independent variances).
The gender independent system contained 3820 tied state eight component mixture Gaussians
distributions (for a total of 2.4 million parameters) chosen using the decision tree clustering
method. The gender dependent version had around 3.6 million parameters. The tree structured
dynamic network decoder was used for recognition and so both bigram and trigram language
models could be used.

Finally a cross-word system trained on the S728/ database was produced for the H2-PO,
H1-C1 and H1-C2 tests. Again this was produced in both gender independent and dependent
versions with the gender independent version constructed from 7558 ten component mixture
Gaussian distributions giving a total of 6.0 million parameters. The dynamic net decoder
allowed recognition to be performed with both 5k and 20k vocabularies using bigram or trigram
language models in a single pass.

Table 6.4 shows the error rates of these systems for 5k (actually 4986) word recognition. The
accuracy of the word internal system is substantially lower than for the Resource Management
task, an average word error rate of 10.9% compared to 3.55%. This is due to the larger
vocabulary and greater connectivity of the grammar giving more confusability between words
and a higher task perplexity (106 rather than 60).

Using models which are cross word context dependent reduced the word error rate by an
average of 13% on the 5k development data and by over 30% on the evaluation test data. This
contrast may be due to the greater fluency and faster speaking rate of the evaluation data.
After the evaluation NIS'T highlighted the effect of speaking rate on the error rate and how the
presence of outlier speakers can have a disproportionate effect on the average error rate [65].

Using separate gender dependent models in parallel and choosing the most likely hypothesis
from either set of models gave a 5% reduction in error rate on the development data but showed
a 2% rise in the error rate on the evaluation data. This difference may be due to the gender
independent cluster not enforcing a minimum quantity of training data per distribution for each
gender separately. This can lead to data insufficiency in the gender dependent system. Overall
the gender dependent cross word context dependent system was 18% more accurate than the
gender independent word internal system on the development data and 32% on the evaluation.
This system (marked with a I in table 6.4) was submitted for the H2-C1 test in the Nov’93
evaluation.

Increasing the amount and variety of the training data by using the speaker independent
portion of both the WSJ0 and WSJ1 sections of the database allowed a larger system to be
constructed. This system had two and a half times the number of parameters of the 5718/
trained system. Despite the large amount of data (over 55 hours of speech) used to estimate
the model parameters the time taken to perform the decision tree clustering was only a small
fraction of the total time required to train the system. The improvement in modelling detail

101

Number of | Words | Substitution | Deletion | Insertion | Word | Sentence

Speaker Sentences | Correct Errors Errors Errors Errors Errors
40A 22 99.2% 0.52% 0.26% 0.78% | 1.56% | 18.2%
40B 21 97.5% 1.48% 0.99% 0.25% 2.72% 33.3%
40C 23 95.2% 4.51% 0.25% 1.25% 6.02% 60.9%
40D 22 98.8% 1.20% 0.00% 0.48% 1.67% 22.7%
40E 23 96.0% 3.67% 0.31% 2.14% 6.12% 47.8%
40F 20 89.1% 8.24% 2.65% 0.59% 11.47% | 60.0%
410G 20 97.0% 2.99% 0.00% 0.60% 3.58% 40.0%
40H 21 96.0% 2.25% 1.75% 0.25% | 4.25% | 52.4%
401 22 96.4% 3.12% 0.45% 1.34% 4.91% 50.0%
401 21 93.0% 4.02% 3.02% 0.75% | 7.79% | 76.2%
Overall 215 95.93% 3.11% 0.96% 0.83% 4.90% 46.0%
Mean 21 95.8% 3.20% 0.97% 0.84% 5.01% 46.2%
Deviation 1 3.0% 2.19% 1.12% 0.58% 3.03% 18.0%

Table 6.5: Speaker by speaker results for H1-P0 system used in the Nov’93 evaluation.

and accuracy led to a consistent reduction in error rate of around 23% for both development
and evaluation data.

The final line of the table shows the effect of the use of longer span language models.
The novel decoder architecture employed allows the trigram language model to be integrated
directly into a single pass search in place of the bigram language model. This reduced the task
perplexity from around 106.1 to 61.5 and the word error rate by an average of 25% on both the
development and evaluation test data.

Differences in performance between the test sets are probably due to wide variation in
performance over speakers. Table 6.5 shows speaker by speaker performance of the system used
in the H1-PO test (highlighted with a { in table 6.4).

The final column of table 6.4 also shows the average number of models active for each
frame during decoding. This provides an approximate measure of the computational cost of
recognition for each system. Increases in system complexity improve the accuracy without huge
increases in the computational load. The only substantial increase occurs with the introduction
of cross word context dependent models and this is much smaller than would occur with a static
linear network decoder. Use of the trigram language model actually reduces the average number
of active models per frame despite a substantial increase in the size of the search space. This
disparity is due to the increased accuracy of the trigram language model allowing the search to
be more localised.

Table 6.6 shows results for tests on the open (64K quality filtered) vocabulary. Error rates
for 20k tests are higher because of additional confusable words as well as out-of-vocabulary
words. On average each out-of-vocabulary word produced 1.6 word errors and since the OOV

rate was 1.8% these errors represent over 20% of the final error rate. Use of the trigram

102

Training Type | LM | Eval’92 | Dev’93.0dd | Eval’93 (Models)
S1284 | xwrd/gd | bg | 11.08% 16.17% 14.45% (30.7K)
S1284 xwrd/gd | tg 9.46% 13.71% 12.67% (29.3K)

Table 6.6: Word error rates for 20k systems (H1) used for the Nov’93 evaluation.

produces less improvement at 20k (14%) than at 5k (25%). However the decrease in perplexity
is much smaller at 142.7 for the trigram verses 222.9 for the bigram. Both of these systems
were submitted to the Nov’93 CSR Evaluation, the bigram system in the H1-C2 test and the
trigram one in the H1-C1 test.

The performance of the decoder at 20k is also shown in the table. Despite the factor of
four increase in the size of the vocabulary the number of active models has only increased by
50% compared to 5k tests. The small size of this increase is due to the tree structuring which
ensures that since most ‘new’ words will share initial phones with words already appearing in
the vocabulary they will contribute little to the computation.

Number of | Words | Substitute | Delete | Insert | Word | Sentence

Speaker Sentences | Correct Errors Errors | Errors | Errors Errors
40A 20 96.2% 3.53% 0.29% | 2.35% | 6.18% 55.0%
40B 21 92.4% 6.96% 0.95% | 1.27% | 9.18% 57.1%
40C 22 93.7% 6.02% 0.29% | 1.72% | 8.02% | 50.0%
40D 22 93.1% 6.61% 0.55% | 3.03% | 9.92% | 68.2%
40E 22 93.0% 6.76% 0.24% | 2.17% | 9.18% | 63.6%
40F 24 78.8% 18.41% 2.81% | 2.56% | 23.79% 83.3%
40G 20 93.4% 5.51% 1.10% | 1.10% | 7.72% 55.0%
40H 21 85.6% 13.22% | 1.15% | 2.30% | 16.67% | 76.2%
401 20 93.7% 6.31% 0.00% | 0.66% | 6.98% 50.0%
40J 21 77.2% 19.44% 3.66% | 2.82% | 25.92% 90.5%
Overall 213 89.4% 9.42% 1.16% | 2.09% | 12.67% 65.3%
Mean 21 89.7% 9.19% 1.13% | 2.03% | 12.35% | 64.9%
Deviation 1 6.7% 5.56% 1.27% | 0.82% | 7.20% | 14.3%

Table 6.7: Speaker by speaker results for 20k trigram (H1-C1) system used in the Nov’93

evaluation.

In the November 1993 ARPA CSR Evaluation, five systems were officially entered and
submitted to NIST for scoring. The word internal system was submitted to provide a baseline
to show the effect of the improvements in modelling accuracy made by CU-HTK since the
Sept’92 Resource Management Evaluation. In three (H1-C2, H2-P0 and H2-C1) of the four
tests for which systems were entered the CU-HTK systems produced the lowest word error

103

rates with better performance than systems from BBN [98], BU [62], CMU [33], Cambridge
University Connectionist Group [78], Dragon [83], ICSI [51], MIT Lincoln Labs [66], Philips [2]
and SRI [17]. In the remaining test (H1-C1) only a system from LIMSI [23] produced a lower

word error rate.

6.4.3 November 1994 Evaluation

For the ARPA Continuous Speech Recognition Evaluation the following year, the decoder had
been extended to generate N-Best lattices and to use these as a constraining grammar for faster
recognition. Gender independent cross word triphone systems together with bigram language
models were used to generate lattices for the various test sets. These could be used to constrain
recognition and allow additional (more complex systems) to be evaluated efficiently.

The LIMSI dictionary was made available in 1994 and experiments showed that use of this
dictionary led to a 4% reduction in word error rate compared to systems which used the Dragon
dictionary. Systems produced after the November 1993 evaluation were based on the LIMSI

dictionary.
Vocabulary | Test Set | OOV Rate | Bigram | Trigram | Fourgram
20k’94 Dev’94 2.68% 201.2 128.8
20k’94 Eval’94* 2.38% 208.6 131.2
65k Dev’94 0.31% 240.9 145.3 133.2
65k Eval’94® | 0.65% 232.3 143.9 130.5

Table 6.8: Test set perplexities and OOV rates for various Nov’94 language models.

The Nov’93 evaluation had shown that the presence of out-of-vocabulary words in the test
set produced a substantial proportion of the errors. For the H1-PO0 test in the Nov’94 evaluation
any language model and vocabulary could be used. Preliminary experiments indicated that the
addition of words to the vocabulary rarely resulted in additional errors because these additional
words tended to be relatively low probability poly-syllables. Such words are rarely confused
with other more common ones already in the vocabulary, although they themselves may not be
recognised correctly. Consequently a vocabulary size of 65k was chosen since exceeding a limit
of 2'6 words would have dramatically increased the amount of storage required by the language

model.

System Eval’92 | Dev’93.0dd | Eval’93
Eval’93 571284/ GD | 9.46% 13.71% 12.67%
HMM-1 S1284 GD | 9.45% 12.90% 12.04%
HMM-2 57284 GD | 8.19% 12.34% 11.61%

104

Table 6.9: Comparison at 20k of the Nov’93 evaluation system and the Nov’94 systems.

The 65k vocabulary was chosen by selecting the most common 65464 real words (not spelling
mistakes or other errors) which occurred in a corpus of North American Business news. This
consisted of the 237 million words supplied by the Linguistic Data Consortium for generating
language models, supplemented by the more recent language model development test data.
This development test data was added several times to ensure that any words which occurred
more than once in the development test data would be included in the final list. This larger
vocabulary was chosen in this way in an attempt to minimise the OOV rate on the unseen
test data which had been drawn from articles occurring immediately after the development test
epoch. Table 6.8 gives the OOV rates and test set perplexities for the language models used
in the Nov’94 evaluation. Note these values are given for the preliminary reference answers
(indicated as Eval’94T) which only contain a single transcript for each sentence. One-best word
error rates are given for the final post-adjudication reference answers which contained multiple
alternatives complicating lattice accuracy and perplexity calculations. For the final reference
answers the OOV rates dropped to 1.87% at 20k and 0.42% at 65k.

This data was also used to generate bigram, trigram and fourgram language models for the
65k vocabulary. In this case the language modelling development test data was added sufficient
times to ensure that all bigrams which appeared were included in the final language model but
not all trigrams or fourgrams.

The first pass of the two pass decoding strategy used a cross word triphone system (similar
to that used in the Nov’93 evaluation) with a bigram language model to generate lattices of
word hypotheses. This system (94’HMM-1) consisted of 6399 shared 12 component mixture
Gaussian state distributions giving a total of 6 million parameters. Comparative results for this
system and the system used in the 1993 evaluation are shown in table 6.9.

Lattice | Sentence Word
Test Density | Error Rate | OOV rate | Error Rate
Dev’94 H1-C1 265 12.3% 2.68% | 0.80-4.05%
Eval’94t H1-C1 | 327 8.9% 2.38% | 0.50-3.44%

Table 6.10: Lattice quality for unlimited vocabulary test data using a 20k recognition vocabu-
lary, cross word triphones and a bigram language model.

Lattice error rates for the the Nov’94 development and evaluation test data using the stan-
dard 20k’94 vocabulary and bigram language model are shown in table 6.10. The word error
rate is range dependent upon the treatment of OOV words (as described in section 5.5.2). How-
ever the sentence error rate is only calculated for sentences which do not contain any out of
vocabulary words. The lattice density gives the number of hypotheses appearing in the com-
plete set of lattices divided by the number of words actually spoken. This gives an indication
of the size of the lattices although duplication of words due to differing phonetic and language
model contexts means that the number of different words hypothesised for each spoken word is
more than an order of magnitude smaller.

Corresponding figures for the 65k vocabulary system are shown in table 6.11. A comparison

105

Lattice | Sentence Word
Test Density | Error Rate | OOV rate | Error Rate
Dev’94 H1-PO 289 16.2% 0.31% 1.15-1.53%
Eval’94t H1-PO | 341 10.7% 0.65% | 0.60-1.50%

Table 6.11: Lattice quality for unlimited vocabulary test data using a 65k recognition vocabu-
lary, cross word triphones and a bigram language model.

of these results shows that the presence of out of vocabulary words in the test is a significant
source of lattice errors. However, unlike the one best error rates, which show an average of
1.6 errors for each out of vocabulary word, lattices contain closer to one error for each out of
vocabulary word.

The use of these lattices allowed a second recognition pass with models having a greater
degree of context dependency. This system used the same method of state tying as the triphone
system, with decision trees used to synthesise models for all possible contexts. However the
questions used to split each node during construction were extended in two ways.

e Longer distance.

The questions were not limited to just the immediately preceding and following phones
(+/ — 1 context) but also the phones adjacent to them. This +/ — 2 context effectively
allows ‘quinphone’ rather than ‘triphone’ context to be represented where this has a
significant effect upon the acoustic realisation of a phone.

e Word boundaries.

Questions concerning the position of the boundary of the current word were also added.
These allow different representations for phones which include a word boundary in their
surrounding context.

These extended context questions (4/—2* context) were used to construct a system referred
to as 94’HMM2. Table 3.1 showed the very large number of distinct contexts that occur at
this level and so the unified Baum-Welch method for collecting statistics about the different
contexts was not suitable. Instead a cross word triphone system (similar but not identical to
the 94’'HMM 1 system) was used to perform a state level Viterbi alignment. This deterministic
alignment was used to generate statistics about all the contexts for each base phone in turn.
The decision trees were then generated in the gender robust fashion described in section 3.8.3.
Separate means and variances were used for male and female data and the likelihoods used to
select questions were summed over both two distributions. This prevented the use of virtual
gender questions and allowed checks for both genders on the occupancy of the tied distributions.
The resultant model set estimated from the S7284 data consisted of 9358 state distributions each
consisting of a 14 component mixture Gaussian distribution. The total number of parameters
(10.5 million for the gender independent version) was significantly higher than that used for
similar triphone based systems. However the triphone systems showed no improvement in

106

accuracy as their number of parameters was increased further. This difference is probably
due to the increased number of contexts allowing commonly occurring triphones (which would
previously have been represented by a single model) to be represented more consistently and
in greater detail by several models.

Comparative results for this system, the triphone system 94’HMM-1 and the system used
in the 1993 evaluation are shown in table 6.9. On these test sets the word error rates of
the 94’HMM-2 system are approximately 6% lower than 94’"HMM-1 and 11% lower than the
equivalent (57284 trained gender dependent) Nov’93 evaluation system.

System Dev’94 | Eval’94
94'HMM-1 GI | 12.51% | 11.67%
94’HMM-1 GD | 12.01% | 11.30%
94'HMM-2 GI | 11.76% | 10.58%
94’'HMM-2 GD | 11.52% | 10.49%

Table 6.12: Word error rates for 20k trigram (H1-C1) systems used for the Nov’94 evaluation.

For the 20k (H1-C1) test each sentence had to be processed independently. Three systems
were run in parallel, gender independent, male and female and the most likely answer chosen.
Because this decision was made independently for each sentence this meant that occasionally
the wrong gender choice could be made. Often in these cases the gender independent models
would be used although for a single sentence the incorrect gender dependent models were
used. It was noted that these incorrect choices of gender normally occurred with very short
sentences and did not effect the overall error rate. Error rates for the Nov’94 development
and evaluation test data are shown in table 6.12 for the 94’HMM-1 and 94’HMM-2 systems
in both gender dependent and gender independent form. The additional context modelled by
94'HMM-2 provides an average of 6% improvement over the triphone system and the use of
gender dependent models an average improvement of only 1.5%.

The 94’HMM-2 GD result (10.5%) was the lowest reported error rate for the H1-C1 Nov’94
test. A. T. & T. [49], Bolt Beranek & Newman [54], Boston University [63], Carnegie Mellon
University [13], Centre de Recherche Informatique de Montreal [56], Cambridge University
Connectionist Group [28], Dragon [81], I. B. M. [5], Karlsruhe University [79], CNRS-LIMSI
[24], M. 1. T. Lincoln Laboratory [68], New York University [85], Philips [20] and S. R. I.
International [18] participated in this evaluation and submitted systems.

The H1-PO0 test allows knowledge of the session (speaker) boundaries to be used. This makes
it possible to apply a consistent choice of gender onwards through a session as well as to adapt
the acoustic and language models to the particular speaker and topic.

The CU-HTK system made use of incremental adaptation of the acoustic models but made
no attempt to adapt the language model. To avoid spurious changes of gender during a session
and reduce the total amount of computation required for the evaluation the choice of speaker
gender was based only on the first two sentences. All three model sets (male, female and
independent) were used to decode the first two sentences (for which adaptation was not used)

107

Language
System Model Dev’94 | Eval’94
94’HMM-1 GI Trigram 9.52 9.18
94’HMM-1 GD Trigram 9.17 8.57
94’HMM-2 GI Trigram 9.14 8.41
94’HMM-2 GD Trigram 8.68 8.22
94’HMM-2 GD Fourgram | 8.26 7.93
94’'HMM-2 GD Adapted | Fourgram | 7.24 7.187

Table 6.13: Word error rates for 65k word (H1-P0) systems used for the Nov’94 evaluation.

and the system used for the remainder of the session (for which adaptation was used) determined
by their relative likelihoods. When a single gender dependent system was most likely in both
cases, this system was used for the remainder of the session. However if different choices were
made or the gender independent system was more likely for either of the first two sentences the
gender independent system was used for the rest of the utterances. This did not occur with
either the development or the evaluation test data and only the gender dependent models were
used.

The scheme used for adaptation, mentioned in section 3.2 and described in detail in [46]
was incorporated directly into the decoder. This enabled transparent adaptation throughout
a session with the recogniser selecting the most likely hypothesis for each sentence using the
current set of models. This hypothesis was passed to the adaptation library which performed
the necessary Baum-Welch frame state alignment to collect statistics about the speaker char-
acteristics. After two files had been recognised the model parameters were updated and these
speaker adapted models used to decode the next sentence. This updating procedure was re-
peated every other sentence throughout the session. (The updating was not performed every
sentence as it was computationally expensive since all mixture means need to be adjusted and
it did not provide significantly better performance).

Table 6.13 gives results at 65k for both the development and evaluation data. Again the
use of wider context models and gender dependency gives small improvements in accuracy of
about 10% but for the 94’H1-P0 test further improvements were made by using a fourgram
language model (4%) and incremental unsupervised speaker adaptation (11%). The adaptation
was particularly effective for speakers with relatively poor performance. Speaker by speaker
results for the H1-P0 system are shown in table 6.14. This system (marked with the { in table
6.13) gave the lowest error rate of any of the systems which took part in the evaluation.

6.5 Summary

This chapter has presented results which show that both the decoding and acoustic modelling
techniques developed in this thesis are capable of state of the art performance. The accuracy
of the decision tree clustering technique was shown to be comparable to bottom-up techniques

108

Number of | Words | Substitute | Delete | Insert | Word | Sentence

Speaker Sentences | Correct Errors Errors | Errors | Errors Errors
410 15 92.6% 6.11% 1.31% | 1.31% | 8.73% 73.3%
411 21 95.4% 4.23% | 0.37% | 0.55% | 5.15% | 57.1%
412 15 96.3% 3.711% | 0.00% | 1.98% | 5.69% | 80.0%
4t3 16 98.0% 2.04% 0.00% | 0.26% | 2.30% 43.8%
4t4 16 94.0% 5.711% 0.30% | 0.90% | 6.91% 68.8%
4t5 15 96.6% 2.42% 0.97% | 0.73% | 4.12% 60.0%
4t6 15 84.0% 13.12% 2.89% | 2.89% | 18.90% | 80.0%
417 15 97.3% 2.53% 0.21% | 0.84% | 3.59% 46.7%
418 16 92.5% 5.64% 1.88% | 1.25% | 8.78% 62.5%
4t9 17 96.5% 2.70% 0.81% | 0.81% | 4.31% 47.1%
4ta 15 93.9% 5.01% 1.06% | 0.26% | 6.33% 60.0%
4tb 15 90.7% 8.10% 1.25% | 2.49% | 11.84% | 86.7%
4tc 15 95.0% 4.31% 0.72% | 0.24% | 5.26% 60.0%
4td 17 80.8% 13.65% 5.58% | 1.54% | 20.77% | 82.4%
4te 16 96.3% 3.50% 0.23% | 1.86% | 5.59% 43.8%
4tg 15 95.3% 4.45% 0.30% | 2.67% | 7.42% 53.3%
4th 16 98.0% 1.57% 0.39% | 0.79% | 2.76% 43.8%
4ti 15 95.4% 4.64% 0.00% | 1.55% | 6.18% 60.0%
4tj 15 96.2% 3.51% 0.29% | 0.00% | 3.80% 60.0%
4tk 16 96.4% 3.08% 0.51% | 1.28% | 4.87% 50.0%
Overall 316 94.0% 5.01% 0.99% | 1.18% | 7.18% 60.8%
Mean 15 94.0% 5.00% 0.95% | 1.21% | 7.16% 61.0%
Deviation 1 4.4% 3.26% 1.30% | 0.84% | 4.89% 13.7%

Table 6.14: Speaker by speaker results for the 65k fourgram speaker adaptive (H1-P0) system
used for the Nov’94 evaluation.

with the added advantage of being able to synthesise accurate models for unseen contexts.
This allows the use of cross word triphone (or longer distance context dependent) models for
substantially increased accuracy. A decoder architecture suitable for these types of models and
very large vocabularies has been investigated. The use of maximum model and word end prun-
ing techniques in addition to beam pruning has improved the efficiency of the recognition and
reduced the required computational resources. Further development of the decoder has allowed
lattice generation and rescoring which increase the efficiency of system evaluation and optimi-
sation by an order of magnitude and enable the use of more complex acoustic and language
models. Although the decoder is incapable of real time operation, optimisation of the code,
faster output likelihood calculation and the addition of some form of lookahead should allow

real time operation.

109

Chapter 7

Conclusions

This dissertation has addressed a number of key issues involved in the design of a large vocab-
ulary speech recogniser based on hidden Markov models. In particular, it has investigated the
problems posed by the use of context dependent models in such recognisers. A method of build-
ing cross word context dependent models has been developed in conjunction with a decoder
capable of using these models for large vocabulary recognition. The techniques developed have
been applied to a variety of large vocabulary recognition tasks and the performance analysed

both in terms of the computational complexity and the recognition accuracy.

7.1 Review of the Work

Speech is inherently highly variable, however, a significant proportion of this variability is due
to consistent contextual effects. This thesis has shown that enhanced recognition performance
is obtained when the models account for these consistent differences.

In order to exploit context dependent models in a large vocabulary recogniser, two problems
must be solved. Firstly, a method must be found to train the models which takes due account of
the sparseness of the training data and the fact that many of the models required for recognition
will not occur at all. Secondly, a decoder must be designed which can incorporate these context
dependencies, not just within words but across word boundaries. The latter is particularly
important when dealing with fluent speech when the co-articulation effects are substantial.

To solve the first problem, decision trees are used to determine significant and consistent
differences across contexts. These decision trees are then used to cluster the states of hidden
Markov models. Sharing parameters in this way increases the trainability and robustness of
the resulting recogniser and allows the models to capture fine contextual differences. The
decision trees are generated using statistics from the training data in conjunction with linguistic
knowledge supplied in the form of questions. The linguistic information is used to supplement
the training data when there are few (or no) examples of a particular context. The structure of
the trees is chosen to maximise the likelihood of the training data and the resulting algorithm
allows the construction of accurate recognition systems in a computationally efficient manner.
The ability of this procedure to generate accurate models for unseen contexts allows the effects
of cross word context dependency to be captured. In a typical database only a small proportion

110

of the possible contexts occur. As a result, alternative methods of system construction, which
do not have the ability to produce models for unseen contexts, are less accurate.

Although the acoustic models are more accurate when the effects of cross word context
dependency are taken into account, their use complicates the decoding process. Conventional
decoding approaches make use of a static network in which each word is individually represented.
Such approaches are unsuited to the use of cross word context dependent models, long span
language models or very large vocabularies, yet all of these features are necessary to produce
accurate speech recognisers. Many decoding schemes now make use of multiple passes in which
computationally simple but relatively inaccurate models are used initially to constrain the
search space of later passes using more accurate models. Such schemes can be complicated to
implement because of the need to carefully integrate the different systems used in the multiple
passes.

Hence, the solution proposed here for the decoding problem is to adopt a simple one-pass
strategy. A novel decoder design, that uses accurate acoustic and language models from the
outset, has therefore been proposed. This decoder uses dynamic network construction and
model sharing, through tree structuring of the network, to reduce the computational load.
Early application of the most accurate acoustic and language models allows the search space to
be heavily constrained, without introducing search errors. The architecture employed by this
decoder also allows the generation of multiple hypotheses in the form of a lattice with little
computational overhead. These lattices can then be used to speed system development and
allow the evaluation of more detailed but computationally expensive models.

Experiments were initially performed on the medium vocabulary Resource Management
task to evaluate the accuracy of the decision tree based modelling approach. These experiments
showed that the approach was as accurate as other state clustering techniques, whilst allowing
generation of models for unseen contexts. This ability enabled the construction of cross word
triphone models and their use substantially increased recognition accuracy. The new decoder
architecture allowed the use of such models at the expense of a small increase in computational
complexity. As the size of the recognition vocabulary and complexity of the recognition task
are increased, the efficiency of the decoder and the discriminative ability of the models becomes
more important. Improved modelling accuracy was possible with the larger Wall Street Journal
database by extending the amount of context considered by the decision tree. Efficient decoding
using quinphone models was possible though the use of lattices generated using triphone models.

Together the new decoder design and the decision tree synthesised models were used to

produce a recognition system with state of the art performance.

7.2 Suggestions for Further Work

All the work in this thesis has used speech recorded in quiet laboratory conditions. Performance
of the recognition systems degrades substantially when the source of the speech is not highly
controlled. In particular, the presence of noise and distortion, which barely effect human recog-
nition performance dramatically reduce the accuracy of typical automatic speech recognisers.
To be useful in practical applications, speech recognisers must be more robust to background

111

noise and distortion.

Similarly all the speech was read from prepared texts. Recognition performance drops
substantially for spontaneous or conversational speech. This is due to the fluent nature of such
speech not matching either the acoustic or the sentence based language models. In particular
accounting for restarts and hesitations will probably need some form of dialogue modelling and
require that the speech recogniser interact with the user when it needs to obtain clarification.

Whilst the recognition system described in this thesis gives high accuracy there is room for
further refinement of the acoustic models. Improvements in modelling accuracy may require
that even more contextual features be taken into account. For instance, none of the systems used
for this work have taken account of variation in stress. Both stress and prosody form important
cues for human speech recognition. It may be possible to investigate such features in the decision
tree framework by extending the type of questions that are used during construction. When
consistent differences are due to such effects, the additional questions will be used during tree
construction and the resulting models will be able to capture these differences. Accuracy may
also be increased if the trees could be constructed in a way that maximises the ability of the
models to distinguish between different words. Such discriminative training schemes tend to
be computationally expensive but have demonstrated that they can improve the ability of the
models to make fine distinctions. This ability becomes more important as vocabulary size and
task complexity increase.

Perhaps more importantly, the decoder can be improved still further, particularly with
regard to its computational efficiency.

Two of ways in which the efficiency of the decoder could be increased have been mentioned
in the text. The calculation of the output likelihoods represents a significant proportion of the
total computation, especially at the tighter beam widths necessary for fast recognition. No
attempt was made to decrease the computational cost of these calculations, beyond caching the
likelihoods for each tied-state distribution. These computations could be pruned in a similar
manner to that used during the beam search. Each frame, many of the mixture components
will be relatively unlikely and their exact likelihoods are not important. If a computationally
efficient way to approximate these likelihoods could be found, this could be used to determine
the most likely components. Calculation of the exact output likelihoods would then be restricted
to this set and decoding efficiency improved. Vector quantisation provides an efficient way to
divide the input space into a finite number of regions. Exact output likelihood calculations
could be restricted to the components that fall within the most likely region of the input space.

Lookahead has also been suggested as a way of improving decoding efficiency. A substantial
proportion of the computation during decoding with the tree structured network is involved
in the final layer of the network. Restricting the size of this layer by not considering in detail
the unlikely models could substantially decrease the computation. If a fast but approximate
estimate of the relative likelihood of each model over the duration of the next phone could be
found, then these values could be used as lookahead to constrain network growth.

Improvements in decoding efficiency may also be possible through further refinement of the
network architecture. In the current decoder little use is made of the back-off nature of the

language models. Path merging only occurs at the end of a word when the language model

112

probabilities of all following words are the same. Forinstance, when a trigram language model is
used, paths only merge if they have a common two word history (unless only bigram probabilities
are used following a particular word pair). Normally explicit trigram probabilities will exist for
only a small proportion of possible following words. If these words were treated separately, the
remaining backed-off paths (which only use bigram probabilities) could be merged with paths
with the same phonetic context ending in the same word (rather than the same last two words,
the criteria normally required to merge paths using a trigram). This is similar to the way in
which a linear network can be divided into back-off and bigram portions described in section
4.2.5. This additional path merging should reduce the number of model instances by allowing

more sharing of computation.

7.3 Conclusions

The use of context dependent models to capture consistent contextual variation has been inves-
tigated. A method of constructing a context dependent hidden Markov model based continuous
speech recogniser for unlimited vocabularies has been developed. This recogniser uses a new
decoding architecture to enable efficient use of cross word context dependent acoustic and long
span language models with large vocabularies. In the 1994 ARPA continuous speech recognition
evaluation, this recogniser produced the lowest error rate of any of the systems submitted.

113

Appendix A

Tasks and Databases

Experiments were performed on a variety of standardised continuous speech recognition tasks.
As well as the Resource Management and Wall Street Journal tasks (described below) the
techniques developed in this work have been used on both American conversational speech
(Switchboard [59]) and read speech from other languages [75].

A.1 Parameterisation

In order to use hidden Markov Models the continuous speech data must be converted into a series
of discrete observations or frames in a process called parameterisation or coding. For this work
all speech data was parameterised in the same way. This coding had been used successfully with
continuous density distributions models on both the TIMIT ([93]) and Resource Management
([91] and see the following section) tasks.

Twelve mel-frequency cepstral coefficients (MFCCs) were calculated on a 25ms window ad-
vanced by 10ms each frame. The speech data was pre-emphasised with the filter 1 — 2°97 and
then a Hamming window applied to split the continuous stream into frames. A fast Fourier
transform is performed to calculate a magnitude spectrum for the frame. This spectrum is
averaged into twenty-four triangular bins arranged at equal mel-frequency intervals (where
Fmet = 25951logo(1 + %)). Finally the following cosine transformation and lifter were per-
formed to calculate the twelve MIFFCCs.

24

T, .
= ;mjcos <ﬂ(]—0.5)> (A.1)
22 . 7mn ,
c; = (1-}—787/77,(5)) ¢ (A.2)

The normalised log energy is also found. The actual acoustic energy in each 25ms period
is calculated and the maximum found. All values are then normalised with respect to the
maximum (which is set to +10dB) and values below a silence floor (set to -50dB) clamped to
that floor.

This thirteen dimensional vector is stored on disk but is expanded upon loading to produce
the thirty-nine dimensional parameter vector upon which the models are trained. The vector

114

is extended by appending first and second order differences of the static coefficients. The
differences are found using the following regression calculation, first to find the first order
differences from the static parameters and then applied to the first order differences to find the

second order ones.

S r(pilt +7) - pilt - 7))
op; = = (A.3)

For the first two and last two frames of the utterance, these equations cannot be used and
simple differences are calculated instead.

Basic channel normalisation can be performed by subtracting the average of the static
cepstral coefficients over an utterance in a process of cepstral means subtraction [21]. This was
also performed automatically upon loading the file but was not used for all systems. When it
was not used this will be specifically mentioned in the system description.

A.2 Resource Management

The DARPA Resource Management Database is a collection of speaker dependent and speaker
independent continuous speech data for both training and testing speech recognition systems
[74]. The speech comes from a variety of speakers of North American English collected by
Texas Instruments in quiet environments using close talking, noise cancelling, head mounted
microphones.

The subject of the material is the management of Naval resources and gives the corpus
its name. The sentences used as prompts were generated from a list of 900 different template
queries. Because of this small number of sentences, the vocabulary and number of different
word sequences is relatively limited (with approximately 1000 words and a task perplexity of
around 9).

The corpus is split into speaker independent and speaker dependent sections. This work was
concerned speaker independent recognition and so the speaker independent, 51109, section of
the database was used for training. This consists of 3990 sentences from 109 different speakers
(hence S1109) totalling approximately 3.3 hours of speech data. 2830 of the utterances were
from the 78 male speakers and remaining 1160 utterances from the 31 female speakers.

A.2.1 Test Data and Conditions

The speaker independent test data was that used in the four official DARPA Resource Man-
agement evaluations occurring in February 1989, October 1989, February 1991 and September
1992. Each of the test sets, which are referred to by the date of the evaluation, consists of 30
sentences from 10 new speakers giving a total of 300 utterances per test.

Two testing conditions were defined, both less constrained than the actual source of the
data.

e No Grammar (NG).

115

Name | Utterances | Speakers | Words | Duration

Training | SI1109 3990 109 34722 | 3.3 Hours
Test Feb’89 300 10 2561 | 16.4 Mins
Oct’91 300 10 2684 | 17.0 Mins

Feb’91 300 10 2484 | 16.3 Mins

Sept’92 300 10 2559 | 16.3 Mins

Table A.1: Summary of the Resource Management database.

No language model is used and the grammar is fully connected. All 991 words can follow

any other word and all are equiprobable.

e Word Pair Grammar (WP).

A word pair syntax defined by the word pairs which occurred in the template queries
provides a grammar for constrained recognition. For each word in the vocabulary, a set
of equiprobable followers is defined. T'he average branching factor of this grammar on the

test data is approximately 60.

Although the perplexity of both tasks seems relatively high, the complexity of the task is
much lower because of the ability of the acoustic models to learn the true source language model
(which has very low perplexity) directly from the training data [69].

A.3 Wall Street Journal

The Wall Street Journal Corpus is a larger and more varied database of spoken North American
English produced by ARPA as a successor to the Resource Management corpus. The prompting
texts were drawn from articles appearing in the Wall Street Journal (a daily American financial
newspaper). Initially the articles used for both the training and testing portions of the database
were quality filtered to limit the vocabulary to the 64,000 most frequently occurring words in the
whole database (which consists of approximately 37 million words of text). Recently however
the task has moved away from a specific newspaper and a fixed vocabulary towards the wider
subject area of North American business news and unlimited vocabulary (with no articles
removed because of unseen words).

The data was collected using close talking head mounted Sennheiser microphones (data
was also collected simultaneously from a variety of desktop microphones but the experiments
described in chapter 6 have only used the close talking data).

This collection was performed in two stages producing a two part database.

o WSJO.

For the initial section of the database speakers were asked to say the prompts exactly as
given, with any punctuation symbols and numbers expanded as individual words. Half the
prompts were verbalised punctuation in which the punctuation symbols (such as COMMA)

116

were included and said as any other words. The remaining non-verbalised punctuation
section had all punctuation symbols removed.

This section was split into three sections of almost equal size.

— Longitudinal Speaker Dependent, LSD.
— Long term speaker independent (or short term speaker dependent), S772.
— Short term speaker independent, S18/.

Of these only the SI84 section was used for training. This consisted of 7193 sentences
from 84 different speakers (42 male and 42 female) for a total around 12.2 hours of speech.

o WSJI.

For the second larger section of the database prompt texts were no longer pre-filtered to
specify the way in which numbers, punctuation and abbreviations should be pronounced.
The individual speakers used their normal speaking style. The resulting data was similar
to the non-verbalised WSJO0 data although some of the punctuation, such as QUOTE,
UNQUOTE and OPEN PARENTHESES was spoken.

This was split into two sections of almost equal size.

— Long term speaker independent, S725.
— Short term speaker independent, ST200.

Again only the short term speaker independent data ST200 was used. This contained
29320 sentences from 200 new speakers (100 male and 100 female) for a total of 45.1
hours of speech.

For some of the experiments both the short term speaker independent portions of the
database, S184 and ST200, were used for training and these are collectively referred to as S1284.
Experiments indicated that supplementing this with the long term speaker independent data
(5712 and S125 referred to as S137) did not noticeably improve accuracy.

The supplied data contained substantial amounts of silence at the beginning and end of
each utterance (in total around 15.3 Hours). This quantity of silence data was unnecessary and
led to over training of the silence model.

The beginning and end of each sentence tended to be much quieter than within sentence
periods of silence (which included non-speech noises such as breathing and tongue clicks). Since
these represented the majority of the data the silence model became a better fit for these quiet
portions and a worse fit for other phenomena. This resulted in insertion errors occurring if any
sounds occurred during periods of ‘silence’. To prevent this effect the training data was stripped
of excess silence by limiting the period of silence at the beginning and end of sentence period
to 200ms. This had the beneficial side effect of substantially decreasing the storage needed for
the acoustic training data as well as reducing the computation required in training.

117

Language Models

Unlike the Resource Management task the grammar of the sentences was not constrained and
any sequence of words could appear in a sentence. With such a simple fully connected grammar
a language model is necessary to reduce the task perplexity. The language model provides a
probability for each sequence of words. This work has only made use of backed-off N-gram
language models [37]. In an N-gram language model the probability of the current (N**) word
is assumed to be dependent only upon the identity of the previous N — 1 words.

So

p(wilwy...wi—1) = plwiwi—psr...wi=1) (A.4)
plwy..w;) = H plw;|w;—ptq...wj—1) (A.5)
7=1

However there are still too many probabilities to be able to estimate these directly from a
corpus of text and so a backing-off procedure is used to estimate the probability of rare or un-
seen events. For example a trigram requires the estimation of (number of words in Uocabulary)3
probabilities. Only a fraction of these can be accurately estimated from the number of occur-

rences in the corpus for example using

(A.6)

unt i W
Prob(w;|wi_ow;_1) = Func <C0un (w;_gw 1w)>

Count(w;—qw;—1)
When there is not enough data for this to be a reliable estimate, backing-off occurs and

instead a less specific distribution is used to estimate the probability of the i** word.

Pr(w;|wi—gw;—1) = Prob(w;|wi—yw;_1) if known (A.7)
else Bowt(wi_gw;_1) * Pr(w|w;_1) (A.8)
and
Pr(w;|w;—1) = Prob(w;|w;—1) if known (A.9)
else Bowt(w;_1) * Prob(w;) (A.10)

Where Bowt() are normalisation constants to ensure that

Prob(word|history) = 1.0 (A.11)
word C vocabulary

Some standard language models were available and these were used unaltered in the Nov’93
evaluation. However for the primary test in Nov’94 sites were given the opportunity to choose
their own vocabulary and generate their own language models from a large corpus of text; The
North American Business News (NAB) corpus containing over 200 million words of text. Table
A.2 shows the sources of this text and highlights with a 7 the WSJ data used to estimate the
language models for the 5k and 20k’93 vocabularies.

Generating language models provided the opportunity to fix some deficiencies that had
become apparent in the standard language models [89]. Comparison between the way in which
the text had been processed and the way in which prompt texts had been spoken (in the WSJ1
training data) revealed two main problems.

118

Source Description Period Words

Wall Street Journal Financial Services Newspaper | 1987-1989 | 38M7y
1990-1992 | 32M
Dow Jones Information Services | Financial Information Service | 1992-1994 | 40M
Associated Press General News Wire Service 1988-1990 | 110M

San Jose Mercury General Business News 1992 11M

Table A.2: Source of texts for North American Business News corpus.

e Numbers.

The perl scripts which converted numbers to words never inserted the word AND between
clauses whereas people often did. For instance the number 723 would be converted to
ONE HUNDRED TWENTY THRFEFE but would normally be said as ONE HUNDRED
AND TWENTY THREE or A HUNDRED AND TWENTY THREF. This was corrected
by inserting the word AND or changing occurrences of ONFE to A in the processed text
a certain proportion of the times these situations occurred. However no attempt was
made to allow for the fact that people occasionally said 1234 as TWELVE HUNDRED
AND THIRTY FOUR rather than ONE THOUSAND TWO HUNDRED AND THIRTY
FOUR.

e Abbreviations.

Some words were pronounced as abbreviations so CORPORATION could be said as
CORP. and INCORPORATED as INC.. This was corrected by using the language model
entries of the full form for the abbreviated word. For simplicity this was actually im-
plemented by manipulating the dictionary (and adding additional pronunciations which
resulted in different symbols) rather than altering the language model.

Finally table A.3 gives details of the language models used for experiments and evaluations
together with an indication of the perplexity and proportion of out of vocabulary words (mea-
sured on the evaluation test data and using the preliminary reference answers in the case of the
Nov’94 figures).

A.3.1 Test Data and Conditions

Official ARPA Continuous Speech Recognition evaluations were conducted in Nov’92, Nov’93
and Nov’94. Cambridge University HTK systems (CU-HTK) using decision tree clustered state
models (chapter 3) and the tree structured dynamic network decoder (chapter 5) were submitted
to the tests in 1993 and 1994 and chapter 6 gives the full results.

For each of these evaluations new test data was recorded. This included development test
data which was supplied a few months before the November evaluation as well as the evaluation
data (which could only be used for a single run to produce the official results).

119

Name | Vocab Type Size | Words Test OOV Rate | Perplexity
5bg 5k bigram | 0.8M | 37M | H2.C2 Eval’93 0.29% 106.1
5tg 5k trigram | 3.7M | 37M | H2.C1 Eval’93 0.29% 61.5

20bg93 | 20k’93 | bigram 1.5M | 37TM | H1_.C2 Eval’93 1.82% 222.9

20tg93 | 20k’93 | trigram | 6.5M | 37M | H1_.C1 Eval’93 1.82% 142.7

20bg94 | 20k’94 | bigram 5.0M | 237TM Eval’94 2.38% 208.6

20tg94 | 20k’94 | trigram | 11.2M | 237M | H1_C1 Eval’94 2.38% 131.2

65bg94 | 65k’94 | bigram 6.2M | 237TM Eval’94 0.65% 232.3

65tg94 | 65k’94 | trigram | 16.3M | 237M Eval’94 0.65% 143.9

65fg94 | 65k’94 | fourgram | 26.4M | 237M | H1_P0 Eval’94 0.65% 130.5

Table A.3: Language models for North American Business News.
Test Set | Domain | Vocabulary | CD-ROM Name | Sentences | Words
Eval’92 WSJ 5k si_evl5.nvp 330 5353
Dev’93.0dd | WSJ 5k si-dt_05 (subset) 248 4074
Dev’93.s6 WSJ 5k si_dt_s6 202 3319
Eval’93 WSJ 5k si_et_h2 215 3851
Eval’92 WSJ 64K QF si_ev]20.nvp 330 5643
Dev’93.0dd | WSJ 64K QF | si_dt_20 (subset) 252 4069
Eval’93 WSJ 64K QF siet_hl 213 3446
Dev’94 NAB Unlimited csrnabl_dt_h1 310 7388
Eval’94 NAB Unlimited csrnabl_et_h1 316 8190

Table A.4: Summary of the Wall Street Journal database test sets.

Table A.4 gives details of the various test sets including the vocabulary, official name as well
as the name used in chapter 6. The domain refers to the source of the texts either the Wall
Street Journal or the more general North American Business News corpus.

For each test in the evaluations, the CC Coordinating Committee defined a set of test
conditions. These included specifying the data that could be used to train a system, the
language model used and what additional side information is available to modify the system’s

behaviour.

e Nov’93 Evaluation

The 1993 evaluation consisted of two core or hub tests and several spoke tests [40]. The
hub tests investigated continuous speech recognition of North American English speakers
in a noise free environment. The spoke tests investigated the effect of noise and adaptation
on the accuracy of such systems. Standard bigram and trigram language models at both
5k and 20k were estimated on 37 million words of WSJ text and supplied by MIT-LL.

120

The hub tests differed in the size of the test vocabulary;

The first hub (H1) used data quality filtered at 65k and defined two open vocabulary
tests investigating acoustic modelling which used standard 19979 word (20k) vocabulary
bigram (H1-C2) and trigram (H1-C1) language models. A primary test which allowed
any vocabulary and training was not entered.

The second (H2) used data from a closed 4986 word (5k) vocabulary and again provided
standard bigram. For the H2-C1 test the bigram language model and S84 acoustic
training had to be used although for the H1-P0O test any language model and acoustic
training data were allowed. The full official results can be found in [65].

Test Vocabulary | Language Model | Acoustic Training | Side Info
93’H1-C1 20k’93 20tg93 S1284 or SI137 None
93’H1-C2 20k’93 20bg93 S1284 or SI137 None
93’H2-P0 5k Any Any Session
93’H2-C1 5k 5bg S184 or ST12 None
94°’H1-P0O Any Any Any Session
94’H1-C2 20k’94 20tg94 S1284 or SI37 None

Table A.5: Summary of the Nov’93 and Nov’94 evaluation test conditions.

e Nov’'94 Evaluation

The November 1994 Evaluation also consisted of two hub tests and several spoke tests
[39]. This time the second hub was over a telephone channel rather than a close-talking
microphone and CU-HTK did not take part. However variants of the systems used in
the hub tests were submitted for the spoke tests investigating recognition in noise and
speaker adaptation. Again only a single run was allowed for systems officially submitted.
Full results of all tests can be found in [64].

For the primary test (H1-P0) any data could be used for training acoustic and language
models, however, this had to be produced prior to the testing epoch (16 June 1994 on-
wards) to ensure it was not possible to ‘train on the test data’. Session boundaries and

utterance order were known to allow the use of incremental speaker adaptation schemes.

The contrast condition (H1-C1) investigated differences in acoustic modelling and so de-
fined a standard 20k vocabulary, trigram language model (provided by CMU [80]) and
specified the acoustic training data (either S71284 or S137).

These conditions are summarised in table A.5.

121

Appendix B

Dictionaries and Phonetic Questions

B.1 Dictionaries

Phone based speech recognisers require a dictionary or lexicon to specify pronunciations for
each word. The choice of phone set is usually governed by the availability of machine readable
dictionaries (which are suitable for speech recognition) that cover the task vocabulary. However
the choice is important as the phone set and dictionary have a significant effect on recognition
accuracy.

A single dictionary was used for Resource Management experiments. This was based on the
dictionary appearing in [42] (using a set of 48 phones) which contained a single pronunciation
for each of the 991 words appearing in the database. The vocabulary for Resource Management
is fixed and so these pronunciations covered all words that appeared in any test or training
data.

The number of words appearing in both the training and testing portions of the Wall
Street Journal database was much higher than for the Resource Management task (over 13000
different words appear in the S728/ acoustic training data). The size of the vocabulary makes the
availability of a suitable dictionaries which covered the required vocabulary of prime importance
as it would require substantial effort to generate one by hand.

Three separate dictionaries were used for the Wall Street Journal experiments. The choice
of dictionary was governed initially by availability and coverage of the required vocabulary and

secondly by system performance.

e Dragon.

Dragon Systems Inc. made available in 1992 a dictionary that covered the S728/ training
data as well as the 5K and 20K Nov’1993 test vocabularies. This dictionary contained
a total of over 29000 words with around 1.1 pronunciations for each word. The original
dictionary contained three levels of stress for the vowels as well as syllable boundary
markers. For the systems described in chapter 6 stress marking were ignored and the
syllable markers deleted to give a dictionary composed of 44 phones.

o LIMSI.

122

ARPABET | LIMSI | Example | IPA || ARPABET | LIMSI | Example | 1PA
Vowels Plosives
aa a bott Ja/ b b bet /b/
ae Q@ bat Je®/ d d debt /d/
ah . but /A/ g g get /g/
ao c bought | /o/ k k cat /k/
aw w bout /ab/ p p pet /p/
ax X about /o/ t t tat /t/
axr X butter | /o/ Fricatives
ay Y bite /al/ dh D that /0/
eh E bet /e/ th T thin /0/
er R bird /3t/ f f fan /f/
ey e bait Jel/ v v van /v/
ih I bit /1/ s S sue /s/
ix — dating | /3/ sh S shoe /f/
iy i beet /i/ 7 7 700 /7/
ow) boat /o/ zh 7Z meagure | /3/
oy 0) boy /o1/ Affricates
uh U book Ju/ ch C cheap | /tf/
uw u boot Ju/ jh J jeep /dz/
Glides Nasals
1 1 led /1/ m m met /m/
el L bottle /1/ em M bottom | /m/
r r red /r/ n n net /n/
w w wed Jw/ en N button | /n/
y y yet /i/ ng G thing /n/
hh h hat /h/

Table B.1: The LIMSI dictionary phone set.

The following year LIMSI made available the lexicon they used in the 1993 Evaluation.
Experiments indicated that the LIMSI dictionary provided better consistency and higher
accuracy than the Dragon dictionary and so once it had been made available this dic-
tionary was used (in particular the systems used in the Nov’94 ARPA CSR evaluation
were based on the LIMSI dictionary). Approximately 22,700 words were present in the

123

LIMSI | Dragon | KFL || LIMSI | Dragon | KFL
Vowels Plosives
aa aw,ah aa b b b
ae aa ae d d d,dd
ah uh ah g g g
ao awh ao k k k,kd
aw ow aw p p p,pd
ax - ax t t t,td
axr - - Fricatives
ay ay ay dh dh dh
eh eh,ae eh th th th
er ur er
ey ey ey v v v
ih ih ih
ix - ix sh sh sh
iy ee iy 7 7 7
ow oh ow zh zh -
oy oy oy Affricates
uh 00 uh ch ch ch
uw ooh uw jh j jh
Glides Nasals
1 1 1 m m m
el ul - em um -
r r r n n n
w w w en un en
y y y ng ng ng
hh h hh

Table B.2: Equivalences between different phone sets

dictionary (again with around 1.1 pronunciations per word) and since the dictionary did
not contain lexical stress information the phone set (of 45 phones) was used unchanged.

Truetalk Text-to-Speech System.

The A. T. & T. text-to-speech system, Truetalk, was used to supplement the LIMSI
dictionary and provide pronunciations when the vocabulary was extended beyond that
covered by the LIMSI dictionary. Pronunciations generated by TrueTalk were mapped to
the LIMSI phone set (using the equivalences in table B.2). This method of extending the
dictionary was another reason for using the LIMSI dictionary as it was easier to map the
phone set used in the speech synthesiser to that of LIMSI rather than that of Dragon.

124

The original dictionary supplied by LIMSI used a single character to represent each phone
and this had to be modified for use by the training tools and the recogniser. Consequently a
single case alphabetic representation similar to the ARBAPFET style symbols used in TIMIT
as well as the KFL. Resource Management and Dragon WSJ dictionaries was used instead.

The ARPABET symbols together are shown in table B.1 together with the original LIMSI
ones. The table also gives an example of a word containing each phone (with the letters realised
as the phone underlined) and the equivalent standard International Phonetic Alphabet symbol.

Table B.2 shows how the phone sets from the Dragon and Kai-Fu Lee dictionaries are related
to the LIMSI phones. Most of the phones have direct one to one equivalents but there are some

exceptions.

e Kai-Fu Lee, Resource Management

This phone set contains additional phones for occurrences of 4, k, p and t when they may
are optionally released (dd, kd, pd and td) as well as an explicit model of the compound
t s (ts) and the alveolar flap (dx). It does not have equivalents for the reduced form of

er (axr), for two of the syllabics (el and em) or for zh.

e Dragon WSJ

The Dragon WSJ phone set does not have any explicit models for reduced vowels (ax, ix
and axr) but has two extra vowels not included in the LIMSI phone set (ae which is very

similar to eh but is always followed by r and ah which is similar to aw).

General Questions

Feature Phones
Stop bdgkpt
Nasal em en m n ng

Fricative | ch dh f jh s sh th v z zh
Liquid |elhhlrwy

Vowel | aa ae ah ao aw ax axr ay eh er ey ih ix iy ow oy uh uw

Front aebehemfihixiympvw

Central | ah aoaxrd dhelenerlnrstthzzh

Back aa ax ch g hh jh k ng ow sh uh uw y

Table B.3: General questions.

B.2 Phonetic Questions

The questions used to construct the decision trees are chosen to incorporate linguistic knowledge
into the clustering procedure by ensuring that unseen contexts are grouped with those which
one would expect to be linguistically similar ([14], [88]).

125

Simple position independent binary questions concerning phonetic features were used. These
were of the form feature[off] meaning “Does the phone at offset off have the feature feature 77.
The complete set of questions is defined by the range of offsets used (+/ — 1 for triphones or
+/ — 2 for quinphones) and the set of phonetic features. The question is answered by checking
if the phone at the offset is a member of the set of phones which has the phonetic feature.
For instance in the phone string w ih dh y uw the question Liquid[+1] concerning dh would
be true because the phone at offset 41, y, is a member of the set of liquids, el hh 1 r w y.
Whereas the question Liquid[-1] would be false because ih does not appear in the set.

Other questions concerning non-phonetic features such as the position of word boundaries
and the speaker gender were also used. These are described together with the experiments in
which they were used.

Vowel Questions

Feature Phones

Front Vowel | ae eh ih ix iy

Central Vowel | aa ah ao axr er

Back Vowel ax ow uh uw

Long ao aw el em en iy ow uw
Short aa ah ax ay eh ey ih ix oy uh
Dipthong aw axr ay el em en er ey oy

Front Start aw axr er ey

Fronting ay ey oy

High ih ix iy uh uw
Medium ae ah ax axr eh el em en er ey ow
Low aa ae ah ao aw ay oy
Rounded ao ow oy uh uw w
Unrounded aa ae ah aw ax axr ay eh el em en er ey hh ihixiylry

Reduced ax axr ix

I'Vowel ih ix iy

EVowel eh ey

AVowel aa ae aw axr ay er

OVowel a0 oW 0y

UVowel ah ax el em en uh uw

Table B.4: Vowel questions.

Preliminary experiments showed that the addition of further linguistically well motivated
questions increased the accuracy of the resultant models, whilst reducing the number of ques-
tions so that only broad phonetic distinctions remained reduced the accuracy. Consequently
a single large set containing questions about a wide variety of phonetic features was used for
all experiments. The clustering procedure automatically chooses the most important questions

126

and so the broad class distinctions tend to be used most often [95].

The set of phones for each phonetic feature depends upon the phone set used. Tables B.3,
B.5 and B.4 show the features together with the set LIMSI phones with the feature. These sets
can be transformed to use the Dragon or Resource Management phones using the equivalences
shown in Table B.2.

As well as these features, a question was included for each phone. These are not shown but
just consist of the feature with the name “phone” with one member phone. This allows each

phonetic context to be treated separately when enough data is available.

127

Consonant Questions

Feature Phones
Unvoiced ch fhh k psshtth
Voiced bddhelemengjhlmnngrvwy

Front Consonant

bemfmpvw

Central Consonant

ddhelenlnrstthgzzh

Back Consonant

ch g hh jh k ng sh y

Fortis

ch fkpsshtth

Lenis

b d dh g jh v z zh

Neither Fortis or Lenis

elemen hhlmnngrwy

Coronal

chddhelenjhlnrsshtthszzh

Non Coronal

bemfghhkmngpvwy

Anterior

bddhelemenflmnpstthvwz

Non Anterior

ch g hh jh k ng r sh y zh

Continuent

dh el em en fhh Il m nngrsshthvwyzzh

Non Continuent

bchdgjhkpt

Positve Strident

ch jh s sh z zh

Negative Strident

dh f hh th v

Neutral Strident

bdelemengklmnngprtwy

Syllabic

axr el em en er

Voiced Stop bdg
Unvoiced Stop ptk
Front Stop b p
Central Stop dt
Back Stop g k
Voiced Fricative ch dh v z zh
Unvoiced Fricative ch fssh th
Front Fricative fv
Central Fricative dh s th z
Back Fricative ch jh sh zh
Affricate ch jh

Not Affricate

dh f s sh th v z zh

Table B.5: Consonant questions.

128

Bibliography

[1]

2]

[3]

[9]

[10]

Alleva F., Huang X., Hwang M-Y. ‘An Improved Search Algorithm Using Incremental
Knowledge for Continuous Speech Recognition.’, Proceedings ICASSP, Minneapolis, pages
307-310, 1993.

Aubert X., Dugast C., Ney H., Steinbiss V. ‘Large Vocabulary Continuous Speech Recog-
nition of Wall Street Journal Data.’, Proceedings ICASSP, Adelaide, pages 129-132, 1994.

Austin S., Peterson P., Placeway P., Schwartz R., Vandergrift J. ‘lowards a Real-Time
Spoken Language System Using Commercial Hardware.’, Proceedings DARPA Speech and
Natural Language Workshop, Hidden Valley, pages 72-77, 1990.

Austin S.; Schwartz R., Placeway P. ‘The Forward-Backward Search Algorithm.’, Proceed-
ings ICASSP, Toronto, pages 697-700, 1991.

Bahl L. R., Balakrishnan-Aiyer S., Franz M., Gopalakrishnan P. S., Gopinath R., Novak M.,
Padmanabhan M., Roukos S. ‘The IBM Large Vocabulary Continuous Speech Recognition
System for the ARPA NAB News Task.’, Proceedings ARPA Spoken Language Systems
Technology Workshop, Austin, pages 121-126, 1995.

Bahl L. R., de Souza P. V., Gopalakrishnan P. S., Nahamoo D., Picheny M. A. ‘Context
Dependent Modeling of Phones in Continuous Speech Using Decision Trees.’, Proceeding
DARPA Speech and Natural Language Processing Workshop, Pacific Grove, pages 264-268,
1991.

Bahl L. R., de Souza P. V., Gopalakrishnan P. S.; Nahamoo D., Picheny M. A. ‘Decision
Trees for Phonological Rules in Continuous Speech.’;, Proceedings ICASSP, Toronto, pages
185-188, 1991.

Bahl L. R., de Souze P. V., Gopalakrishnan P. S., Nahamoo D., Picheny M. A. ‘A
Fast Match for Continuous Speech Recognition Using Allophonic Models.’, Proceedings
ICASSP, San Fransisco, pages 17-20, 1992.

Baum L. E. ‘An Inequality and Associated Maximisation Technique in Statistical Estima-
tion for Probabilistic Functions of Markov Processes.’, Inequalities 3, pages 1-8, 1972.

Bellegarda J. R., Nahamoo D. ‘Tied Mixture Continuous Parameter Models for Large
Vocabulary Isolated Word Recognition.’, Proceedings ICASSP, Glasgow, pages 13-16, 1989.

129

[11] Bocchieri ‘A Study of the Beam-Search Algorithm for Large Vocabulary Continuous Speech
Recognition and Methods for Improved Efficiency.’, Proceedings Eurospeech, Berlin, pages
1521-1524, 1993.

[12] Brown P. ‘The Acoustic-Modelling Problem in Automatic Speech Recognition.”, PhD The-
sis, IBM T. J. Watson Research Center, 1987.

[13] Chase L., Rosenfeld R., Hauptmann A., Ravishanhkar M., Thayer E., Placeway P., Weide
R., Lu C. ‘Improvements in Language, Lexical and Phonetic Modelling in Sphinx-I1.",

Proceedings ARPA Spoken Language Systems Technology Workshop, Austin, pages 60-65,
1995.

[14] Connor J. D. ‘Phonetics.’, Penguin Books, 1973.

[15] Cormen T. H., Leiserson C. E., Rivest R. .. ‘Introduction to Algorithms.’;, Massachusetts
Institute of Technology Press, 1990.

[16] Davis S. B., Mermelstein P. ‘Comparison of Parametric Representations for Monosyllabic
Word Recognition in Continuously Spoken Sentences.’, IFEFE Transactions on Acoustics,
Speech and Signal Processing, Vol. 28, No. }, pages 357-366, 1980.

[17] Digalakis V., et al. ‘SRI November 1993 CSR Hub Evalulation.”, Oral Presentation at
ARPA Workshop on Spoken Language Technology, Merrill Lynch Conference Centre, 1994.

[18] Digalakis V., Weintraub M., Sankar A., Franco H., Neumeyer L., Murveit H. ‘Continuous
Speech Dictation on ARPA’s North American Business News Domain.’;, Proceedings A RPA
Spoken Language Systems Technology Workshop, Austin, pages 88-93, 1995.

[19] Downey S., Russell M. J. ‘A Decision Tree Approach to Task Independent Speech Recog-
nition.”, Proceedings IOA Autumn Conference on Speech and Hearing, Windermere, pages
181-188, 1992.

[20] Dugast C., Kneser R., Aubert X., Ortmanns S., Beulen K., Ney H. ‘Continuous Speech
Recognition Tests and Results for the NAB’94 Corpus.’, Proceedings ARPA Spoken Lan-
guage Systems Technology Workshop, Austin, pages 156-161, 1995.

[21] Furui S. ‘Cepstral Analysis Technique for Automatic Speaker Verification.”, IEEE Trans-
actions on Acoustics, Speech and Signal Processing, Vol. 29, No. 2, pages 254-272, 1981.

[22] Gauvain J-L., Lee C-H. ‘MAP Estimation of Continuous Density HMM: Theory and Ap-
plications.’, Proceedings DARPA Speech and Natural Language Workshop, pages 185-190,
1992.

[23] Gauvain J. L., Lamel L. F.; Adda G., Adda-Decker M. ‘The LIMSI Continuous Speech Dic-
tation System: Evaluation on the ARPA Wall Street Journal Task.”, Proceedings ICASSP,
Adelaide, pages 557-560, 1994.

130

[24]

[25]

[26]

[27]

[28]

Gauvain J.-L., Lamel L., Adda-Decker M. ‘Developments in Large Vocabulary Dictation:
The LIMSI Nov94 NAB System.’, Proceedings ARPA Spoken Language Systems Technology
Workshop, Austin, pages 131-138, 1995.

Giachin E. P., Rosenberg A. E.; Lee C-H. ‘Word Juncture Modeling Using Phonolog-
ical Rules for HMM-Based Continuous Speech Recognition.’, Proceedings ICASSP, Al-
berqueque, pages 737-740, 1990.

Gotoh Y., Hochberg M. M., Silverman H. F. ‘Using MAP Estimated Parameters to Improve
HMM Speech Recognition Performance.’, Proceedings ICASSP, Adelaide, pages 229-232,
1994.

Hetherington I. L., Phillips M. S., Glass J. R., Zue V. W. ‘A* Word Network Search for
Continuous Speech Recognition.’, Proceedings Furospeech, Berlin, pages 1533-1536, 1993.

Hochberg M. M., Cook G. D., Renal S. J., Robinson A. J., Schechtman R. S. ‘The 1994
ABBOT Hybrid Connectionist-HMM Large-Vocabulary Recognition System.’, Proceedings
ARPA Spoken Language Systems Technology Workshop, Austin, pages 170-177, 1995.

Hon H-W., Lee K-F. ‘Recent Progress in Robust Vocabulary-Independent Speech Recog-
nition.”, Proceeding DARPA Speech and Natural Language Processing Workshop, Pacific
Grove, pages 258-263, 1991.

Huang X. D., Lee K-F. ‘On Speaker Indpendent, Speaker Dependent and Speaker Adaptive
Speech Recognition.’, Proceedings ICASSP, Toronto, pages 877-880, 1991.

Hwang M-Y., Huang X. ‘Subphonetic Modeling for Speech Recognition.’, Proceedings
DARPA Speech and Natural Language Workshop, New York, pages 174-179, 1992.

Hwang M-Y., Huang X., Alleva F. ‘Prediciting Unseen Triphones with Senones.’, Proceed-
ings ICASSP, Minneapolis, pages 311-314, 1993.

Hwang M., Rosenfeld R., Thayer E., Mosur R., Chase L., Weide R., Huang X. ‘Improv-
ing Speech Recognition Performance via Phone-Dependent VQ Codebooks and Adaptive
Language Models in SPHINX-IL.’, Proceedings ICASSP, Adelaide, pages 549-552, 1994.

Jelinek F., Mercer R. L. ‘Interpolated Estimation of Markov Source Parameters from Sparse
Data.’, Pattern Recognition in Practice, North-Holland, pages 381-397, 1980.

Juang B. H., Levinson S. E.; Sondhi M. M. ‘Maximum Likelihood Estimation for Mul-
tivariate Mixture Observations of Markov Chains.’, IEFFE Transactions on Information
Theory, Vol . 32, No. 2, pages 307-309, 1986.

Kannan A., Ostendorf M., Rohlicek J.R. ‘Maximum Likelihood Clustering of Gaussians
for Speech Recognition.’, IEFFE Transactions on Speech and Audio Processing, Vol.2 No.
3, pages 453-455, 1994.

131

[37] Katz S. M. ‘Estimation of Probabilities from Sparse Data for the Language Model Com-
ponent of a Speech Recogniser.”, IEFF Transactions on Acoustics, Speech and Signal Pro-

cessing, Vol. 35, No. 3, pages 400-401, 1987.

[38] Kenny P., Hollan R., Gupta V., Lennig M., Mermelstein P., O’Shaughnessy D. ‘A* -
Admissible Heuristics for Rapid Lexical Access.’, Proceedings ICASSP, Toronto, pages
689-692, 1991.

[39] Kubala F. ‘Design of the 1994 CSR Benchmark Tests.’, Proceedings ARPA Spoken Lan-
guage Systems Technology Workshop, Barton Creek, pages 41-46, 1995.

[40] Kubala F., Bellegarda J., Cohen J., Pallett D., Paul D., Phillips M., Rajasekaran R.,
Richardson F., Riley M., Rosenfeld R., Roth B., Weintraub M. ‘The Hub and Spoke
Paradigm for CSR Evaluation.’, Proceedings ARPA Workshop on Human Language Tech-
nology, Merrill Lynch Conference Centre, pages 31-36, 1994.

[41] Lacouture R., Normandin Y. ‘Efficient Lexical Access Strategies.’, Proceedings Eurospeech,
Berlin, pages 1537-1540, 1993.

[42] Lee K-F. ‘Automatic Speech Recognition: The Development of the SPHINX System.’,
Kluwer Acedemic Press, 1989.

[43] Lee K-F. ‘Context-Dependent Phonetic Hidden Markov Models for Speaker-Independent
Continuous Speech Recognition.”, IEFE Transactions on Acoustics, Speech and Signal Pro-
cessing, Vol. 38, No 4, pages 599-609, 1990.

[44] Lee K-F. ‘Large Vocabulary Speaker Independent Continuous Speech Recognition.’, PhD
Thesis, Carnegie Mellon University, 1988.

[45] Lee K-F., Hon H-W. ‘Speaker-Independent Phone Recognition Using Hidden Markov Mod-
els.”, IKEFE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No 11, pages
1641-1648, 1989.

[46] Leggetter C. J., Woodland P. C. ‘Flexible Speaker Adaptation Using Maximum Likelihood
Linear Regression.’, Proceedings ARPA Spoken Language Systems Technology Workshop,
Barton Creek, pages 110-115, 1995.

[47] Leggetter C. J., Woodland P. C. ‘Speaker Adaptation of Continuous Density HMMs using
Multi-variate Linear Regression.’, Proceedings International Conference on Spoken Lan-
guage Processing, Yokohama, pages 451-454, 1994.

[48] Levinson S. E. ‘Continuously Variable Duration Hidden Markov Models for Automatic
Speech Recognition.”, Computer Speech and Language, Vol. 1, No. 1, pages 29-45, 1986.

[49] Ljolje A., Riley M., Hindle D., Pereira . ‘The AT&T 60,000 Word Speech-to-Text Sys-
tem.’, Proceedings ARPA Spoken Language Systems Technology Workshop, Austin, pages
162-165, 1995.

132

[50] Lowerre B., Reddy R. ‘The Harpy Speech Understanding System.’, Trends In Speech Recog-
nition, Prentice Hall Publishers, pages 340-360, 1980.

[51] Morgan N.; et al. ‘Scaling a Hybrid HMM/MLP System for Large Vocabulary CSR.’,
Oral Presentation at ARPA Workshop on Spoken Language Technology, Merrill Lynch
Conference Centre, 1994.

[52] Murveit H., Butzberger J., Digalakis V., Weintraub M. ‘Large-Vocabulary Dictation Using
SRI’s Decipher Speech Recognition System: Progressive Search Techniques.’, Proceedings
1CASSP, Minneapolis, pages 319-322, 1993.

[53] Ney H., Haeb-Umbach R., Tran B-H., Oerder M. ‘Improvements in Beam Search for 10000
Word Continuous Speech Recognition.’, Proceedings ICASSP, San Francisco, pages 9-12,
1992.

[54] Nguyen L., Anastasakos T., Kubala F., LaPre C., Makhoul J.; Schwartz R., Yuan N.,
Zavaliagkos G., Zhao Y. ‘The 1994 BBN/BYBLOS Speech Recognition System.’, Proceed-
ings ARPA Spoken Language Systems Technology Workshop, Austin, pages 77-81, 1995.

[55] Nilsson N. J. ‘Principles of Artificial Intelligence.’, Springer- Verlay, 1982.

[56] Normandin Y., Bowness D., Cardin R., Drouin C., Lacouture R., Lzarides A. ‘CRIM’s
November 94 Continuous Speech Recognition System.’, Proceedings ARPA Spoken Lan-
guage Systems Technology Workshop, Austin, pages 153-155, 1995.

[57] Odell J. J. “The Use of Decision Trees With Context Sensitive Phoneme Modelling.’, MPhil
Thesis, Cambridge University, Engineering Dept, 1992.

[58] Odell J. J., Valtchev V., Woodland P. C., Young S. J. ‘A One-Pass Decoder Design for Large
Vocabulary Recognition.’, Proceedings ARPA Workshop on Human Language Technology,
Merrill Lynch Conference Centre, pages 405-410, 1994.

[59] Odell J. J., Valtchev V., Woodland P. C., Young S. J. ‘Recent Developments in the HTK
Large Vocabulary Continuous Speech Recognition System.’, Proceedings IOA Autumn Con-
ference on Speech and Hearing, Windermere, pages 39-46, 1993.

[60] Odell J.J., Woodland P. C., Young S. J. ‘Tree-Based State Clustering for Large Vocabulary
Speech Recognition.’, International Symposium on Speech Image Processing and Neural
Networks, Hong Kong, pages 690-693, 1994.

[61] Ostendorf M., Bechwati I., Kimball O. ‘Context Modeling with the Stochastic Segment
Model.’, Proceedings ICASSP, San Fransisco, pages 389-392, 1992.

[62] Ostendorf M., et al. ‘Stochastic Segment Modelling for Continuous Speech Recognition:
Wall Street Journal Benchmark Report.’, Oral Presentation at ARPA Workshop on Spoken
Language Technology, Merrill Lynch Conference Centre, 1994.

133

[63] Ostendorf M., Richardson F., Iyer R., Kannan A., Ronen O., Bates R. ‘The 1994 BU
NAB News Benchmark System.’, Proceedings A RPA Spoken Language Systems Technology
Workshop, Austin, pages 139-143, 1995.

[64] Pallet D.S., Fiscus J. G., Fisher W. M., Garofolo J. S., Lund B. A., Przybocki M. A. ‘1994
Benchmark Tests for the ARPA Spoken Language Program.’, Proceedings ARPA Spoken
Language Systems Technology Workshop, Austin, pages 5-38, 1995.

[65] Pallett D.S., Fiscus J. G., Fisher W. M., Garofolo J. S., Lund B. A., Przybocki M. A. ‘1993
Benchmark Tests for the ARPA Spoken Language Program.’, Proceedings A RPA Workshop
on Human Language Technology, Merrill Lynch Conference Centre, pages 49-74, 1994.

[66] Paul D. B. ‘The Lincoln Large-Vocabulary Stack-Decoder Based HMM CSR.’, Proceedings
ARPA Workshop on Human Language Technology, Merrill Lynch Conference Centre, pages
399-404, 1994.

[67] Paul D. B. ‘An Efficient A* Stack Decoder Algorithm for Continuous Speech Recognition
with a Stochastic Language Model.’, Proceedings ICASSP, San Fransisco, pages 25-28,
1992.

[68] Paul D. B. ‘New Developments in the Lincoln Stack-Decoder Based Large-Vocabulary CSR
System.’, Proceedings ARPA Spoken Language Systems Technology Workshop, Austin,
pages 143-147, 1995.

[69] Paul D. B., Baker J. K., Baker J. M ‘On the Interaction Between True Source, Training
and Testing Language Models.’, Proceedings ICASSP, Toronto, pages 569-572, 1991.

[70] Paul D. B. ‘Algorithms for an Optimal A* Search and Linearizing the Search in the Stack
Decoder.’; Proceedings ICASSP, Toronto, pages 693-696, 1991.

[71] Pieraccini R., Lee C-H., Giachin E., Rabiner L. R. ‘Complexity Reduction in a Large
Vocabulary Speech Recogniser.’, Proceedings ICASSP, Toronto, pages 729-732, 1991.

[72] Pieraccini R., Lee C. H., Giachin E.; Rabiner L. R. ‘Implementation Aspects of Large
Vocabulary Recognition Based on Intraword and Interword Phonetic Units.’, Proceedings
DARPA Speech and Natural Language Workshop, Hidden Valley, pages 311-318, 1990.

[73] Placeway P., Schwartz R., Fung., Nguyen L. ‘The Estimation of Powerful Language Models
from Small and Large Corpora.’, Proceedings ICASSP, Minneapolis, pages 33-36, 1993.

[74] Price P. J., Fischer W., Bernstein J., Pallett D. ‘A Database for Continuous Speech Recog-
nition in a 1000 Word Domain.’, Proceedings ICASSP, New York, pages 651-65/, 1988.

[75] Pye D., Woodland P. C., Young S. J. ‘Large Vocabulary Multilingual Speech Recognition
Using HTK.’, Proceedings Furospeech (Forthcoming), Madrid, 1995.

[76] Rabiner L. R. ‘A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition.’, Proceedings of the IEFFE, Vol. 77, No. 2, pages 257-285, 1989.

134

[77]

[78]

[79]

[80]

[81]

[82]

Robinson A.J. ‘An Application of Recurrent Nets to Phone Probability Estimation.’, IEEE
Transactions on Neural Networks, Vol. 5, No 2, pages 298-305, 1994.

Robinson T., Hochberg M., Renals S. ‘IPA: Improved Phone Modelling with Recurrent
Neural Networks.’, Proceedings ICASSP, Adelaide, pages 37-40, 1994.

Rogina I., Waibel A. ‘The JANUS Speech Recogniser.’, Proceedings ARPA Spoken Lan-
guage Systems Technology Workshop, Austin, pages 166-169, 1995.

Rosenfeld R. ‘The CMU Statistical Language Modeling Toolkit and its use in the 1994
ARPA CSR Evalulation.’, Proceedings ARPA Spoken Language Systems Technology Work-
shop, Barton Creek, pages 57-50, 1995.

Roth R., Gillick L., Orloff J., Scattone F., Gao G., Wegmann S., Baker J. ‘Dragon Sys-
tems’ 1994 Large Vocabulary Continuous Speech Recogniser.’, Proceedings ARPA Spoken
Language Systems Technology Workshop, Austin, pages 116-120, 1995.

Sakoe H., Chiba S. ‘Dynamic Programming Algorithm Optimization for Spoken Word
Recognition.’, Readings in Speech Recognition, Morgan Kaufmann Publishers, pages 159-
165, 1978.

Scattone F., et al. ‘Dragon’s Large Vocabulary Speech Recognition System.’, Oral Pre-
sentation at ARPA Workshop on Spoken Language Technology, Merrill Lynch Conference
Centre, 1994.

Schwartz R., Austin S. ‘Efficient, High-Performance Algorithms for N-Best Search.’, Pro-
ceedings DARPA Speech and Natural Language Workshop, Hidden Valley, pages 6-11, 1990.

Sekine S., Steling J., Grishman R. ‘NYU/BBN 1994 CSR Evaluation.’, Proceedings ARPA
Spoken Language Systems Technology Workshop, Austin, pages 148-152, 1995.

Soong F. K., Huang E-F. ‘A Tree-Trellis Based Fast Search for Finding the N Best Sentence
Hypotheses in Continuous Speech Recognition.’, Proceedings ICASSP, Toronto, pages 705-
708, 1991.

Viterbi A. J. ‘Error Bounds for Convolutional Codes and an Asymptotically Optimal De-
coding Algorithm.’, IKFKFE ‘T'ransactions on Information Theory, Vol. 13, No. 2, pages
260-269, 1967.

Wells J. C. ‘Accents of English 3: Beyond the British Isles.’, Cambridge University Press,
1982.

Woodland P. C., Leggetter C. J., Odell J. J., Valtchev V., Young S. J. “The Development of
the 1994 HTK Large Vocabulary Speech Recognition System.’, Proceedings ARPA Spoken
Language Systems Technology Workshop, Barton Creek, pages 110-115, 1995.

Woodland P. C.; Odell J. J., Valtchev V., Young S. J. ‘Large Vocabulary Continuous
Speech Recognition Using HTK.’, Proceedings ICASSP, Adelaide, pages 125-128, 1994.

135

[91]

[98]

[99]

Woodland P. C.;, Young S. J. ‘Benchmark DARPA RM Results with the HTK Portable
HMM Toolkit.”, Proceedings DARPA Continuous Speech Recognition Workshop, Stanford,
pages 71-76, 1992.

Woodland P. C., Young S. J. ‘The HTK Tied-State Continuous Speech Recogniser.’, Pro-
ceedings Furospeech, Berlin, pages 2207-2210, 1993.

Young S. J. ‘The General Use of Tying in Phoneme-Based HMM Speech Recognisers.’,
Proceedings ICASSP, San Fransisco, pages 569-572, 1992.

Young S. J. ‘The HTK Hidden Markov Model Toolkit: Design and Philosophy.’, Cambridge
University Engineering Dept. Technical Report No TR152, 1993.

Young S. J., Odell J. J., Woodland P. C. ‘Tree-Based Tying for High Accuracy Acoustic
Modelling.’, Proceedings ARPA Workshop on Human Language Technology, Merrill Lynch
Conference Centre, pages 286-291, 1994.

Young S. J., Russell N. H. ‘Token Passing: A Simple Conceptual Model for Continuous
Speech Recognition Systems.’, Cambridge University Engineering Dept., Technical Report
No. 38, 1989.

Young S. J., Woodland P. C., Bynre W. J. ‘HTK Version 1.5: User, Reference and Program-
mer Manuals.”, Cambridge University Engineering Dept & Entropic Research Laboratories
Inc, 1993.

Zavaliagkos G. ‘BBN Hub System and Results.’, Oral Presentation at ARPA Workshop on
Spoken Language Technology, Merrill Lynch Conference Centre, 1994.

Ney H.,Mergel D., Noll A., Paeseler A. ‘A Data-Driven Organisation of the Dynamic
Programming Beam Search for Continuous Speech Recognition.’, Proceedings ICASSP,
Dallas, pages 833-836, 1987.

136

