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Abstract

Object-oriented programming has been widely proposed as a discipline suited to extracting
parallelism from a program. However, object-oriented programming provides no more guar-
antee of efficient parallelism than procedural programming. The divide-and-conquer (D&C)
algorithm does guarantee a measure of efficient parallelism as demonstrated by many re-
searchers. We present a system that uses object-oriented techniques to encapsulate the D&C
algorithm and which is much more flexible than our previous work. We go on to describe a
stack-based evaluation algorithm that allows the nesting of D&C evaluations. We use this
framework to implement a tree-based language model which gives good parallel performance.
We then present some techniques for achieving better performance and which are universally
applicable to D&C problems. Finally we analyse the performance in theoretical terms and
show that a suitable implementation can achieve better speedup than N/log: N.

1 Introduction

Practical parallel computing has been a reality for an appreciable number of years. Research in
this area has matured and significant advances have been made, especially with regard to hardware
organisation and architecture. For MIMD computers, however, managing and programming for
concurrent performance has proved, with the obvious exception of data-parallel programming, to
be a difficult and largely intractable problem [13].

Object-oriented concurrent programming, in various forms and levels of sophistication, has been
proposed as an answer to this intractability. The debate continues - passive objects, active objects,
threaded message invocations, remote procedure calls [6] - though there is some agreement that
concurrency mechanisms make object-oriented languages better at modelling real-world situations.

However, it has been pointed out that the heart of object-oriented programming is orthogonal
to concurrency. Although the general object-oriented programming model bears similarities to the
concurrent programming model, programming with an object-oriented discipline does not neces-
sarily generate the speedup that marks the holy grail of concurrent programming. If concurrency
issues are addressed, most notably locality of reference [11], then object-oriented programming
can yield the performance that one requires, but to constrain the programmer in this fashion
is to contradict the supposed benefits of object-oriented programming coupled with concurrent
programming,.

An object-oriented program can be rather like a tangled mess of threads from a concurrency
point-of-view. Although each thread exhibits significant concurrency with other threads, the whole
is not separable. If the whole is not separable then large-grain evaluation cannot be performed in
an efficient way and even fine-grained evaluation has proven tricky [5].

Many concurrent programming systems realise the need for the programmer to play a sig-
nificant role in identifying concurrency and allowing their design decisions to be influenced by



concurrency issues [10]. Yet, all too often, object-oriented concurrent programming is mooted as
a universal panacea for the problems of concurrent programming, placing no constraints on the
programmer apart from the discipline of object-oriented programming. Experience shows us that
taking advantage of the programmer’s skill in grasping the structure of a problem invariably reveals
levels of concurrency that would have been missed by an automatic system. However, allowing
the programmer to make explicit parallelism decisions is not the only way of capitalising on this
skill. Instead, constraints can be placed on the programmer which, if satisfied, are guaranteed to
yield usable concurrency. Parallel functional languages operate in this way. In a similar manner
object-oriented programming can be constrained through the use of the D&C algorithm [16].

1.1 Paper organisation

In section 2 we describe the D&C algorithm and its parallel implementation. Section 3 describes
the object-oriented D&C approach and its implementation together with some additional features.
We also examine the approach in the light of the actor programming model. Section 4 describes
a method of reducing a programmers burden under object-oriented D&C. Section 5 describes
tree-based language models and their parallel implementation under object-oriented D&C. Finally
we give some performance results for our system in section 6. We also give some performance
improvements that should be applicable to any MIMD D&C system.

2 Divide-and-Conquer

In this section we briefly describe the D&C algorithm and its parallel implementation.

D&C is well known for its parallel evaluation properties and has been widely used in a functional
language evaluation context [18] as well as a programming paradigm in its own right [2, 15].

The D&C algorithm can be represented in pseudocode as follows:

FUNCTION divacon (data)

BEGIN

IF simple (data)

THEN RETURN evaluate (data)

ELSE combine (divacon (divide (data)))
END

where divide() divides a task into sub-tasks, simple() specifies if the task is small enough to
compute, combine() combines partial results and evaluate() yields a partial result from a sub-task.

2.1 D&C as a Means to Parallelism

Interest in D&C as a programming paradigm lies in the potential for parallelism in computing
partial results for divided data. Axford [2] describes it as follows:

Suppose there are P processors available for parallel computation, then y = Divacon (d) can
be computed by:

1. Compute a set of data values dy,da, ds, ..., dp by repeated application of Divide() to d until
the data is subdivided into P parts.

2. For each of the data values d;, compute a partial result by sequential computation on the
i-th processor.

3. By repeated application of Combine() to pairs of partial results, compute the final result y
from the set of partial results y1, y2, ys, ..., Yp.



These three stages can each be implemented in parallel, although the greatest parallelism is possible
for stage 2.

However, as we will describe, the parallelism of stages 1 and 3 can be critical for good perfor-
mance of parallel D&C systems.

3 Kernel Structure

In this section we describe desirable properties for an object-oriented D&C system. We also
describe, in general terms, the implementation of these features in a C++ environment. Finally,
we compare object-oriented D&C with the actor model of concurrent computation and describe
how various features fit into this model.

3.1 General approach

The basis for object-oriented D&C is to incorporate the primary D&C functions into an object.
This design consideration together with normal object-oriented features yields quite a powerful
programming paradigm [16].

Previously, we described [16] an object-oriented D&C structure that incorporated various fea-
tures in a “bolted-on” fashion. In using this structure it became apparent that a more uniform and
cleaner approach was needed, so that these features would then be an integral part of the design
and so that more advanced features could be incorporated. The goals of this new design were:

Full polymorphism. Our previous implementation consisted of two basic class structures. One
represented the D&C functionality required, the other the data on which that functionality
would work. The reason for this separation of data and functionality, which appears contrary
to the goal of object-oriented programming, was two-fold. Firstly, the data-holding struc-
tures needed to be kept simple and small as the number of data objects produced during
D&C evaluation was considerable. Secondly, there was no immediately apparent way of rep-
resenting actions and data which were common to all D&C objects, if all actions and data
were defined in a single structure. Hence, this global data was folded into the functional half
of the design as this was in itself global to all D&C objects.

The problem with this approach was that the D&C functionality could not be made fully
polymorphic as it had to be typed by the data structure it was going to use - in other words
this information had to be built into it. The D&C functionality required a polymorphic
interface because this interface was to be used by the D&C evaluation code, and we did
not want to duplicate this code for every different type of D&C problem! In the end this
evaluation code was parameterized upon the D&C data structure using a class template
facility, thus putting the onus on the compiler rather than the programmer.

However, this is not a particularly neat solution and runs into all sorts of problems if we want
to evaluate more than one type of D&C problem at the same time. The obvious solution is
to bundle the two halves into one type of object. A fully polymorphic interface can then be
written and all the original problems go away.

“Virtual” object-creation. Once D&C objects are fully polymorphic they can be evaluated
without any knowledge of their true type. However, for this anonymity to be transmitted
coherently in a message passing environment we must have some way of reconstructing these
objects into their actual type.

Multiple evaluations. Provision of the features described above paves the way for concurrently
evaluating multiple types of D&C objects. This would then allow programs to be written
more flexibly, incorporating a greater degree of parallelism.

Mix-in-based program development. Ideally, most useful D&C functionality should be pro-
vided as a library if at all possible. This means that a programmer would be able to build
his program from existing building blocks. However, given the four D&C primitives it would
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be a rather large library that had to provide all possible combinations of different primitives.
What is needed is the ability to “mix in” single primitives, thus only requiring these single
primitives in the library.

Delayed evaluation. We previously described [17] the advantages of delayed evaluation for cre-
ating efficient high-level algebraic operations. However, this feature was rather difficult to
use in its previous incarnation.

3.2 Stack-based evaluation

Previous MIMD D&C implementations have generally adopted a tree-like evaluation structure.
This has the advantage of maintaining the node orderings as well as being an easy structure to
traverse. Another approach is to split the entire task completely and then gradually evaluate the
pending sub-tasks. However, this is to perform a breadth-first evaluation which results in high
memory overheads. Additionally, if division involves some computational overhead - and in many
problems division represents the only computational overhead - then efficient parallelism is not
possible. This approach can also suffer from incorrect task ordering.

D&C lends itself naturally to recursive evaluation. However, parallel evaluation requires that
we have access to tasks that have not yet been evaluated and recursive evaluation does not allow
us to do this easily.

Sedgewick [20, p45], gives an algorithm for traversing a binary-tree using a stack rather than by
a recursive method. By modifying this algorithm it proves possible to evaluate a D&C task using
a stack. We can do this by virtue of the fact that a D&C object holds all information necessary
for further division at that point.

Two issues must be considered. Sedgewick’s algorithm gives a way to traverse a tree in place,
but of course the D&C algorithm necessitates building a tree and ascending it as well. The former
is important to consider since as the tree is not in-place, the ordering of the nodes cannot be fixed
rigidly. The latter is important as the original algorithm discards the tree information after it has
visited nodes - so the information we require for division is present but that for combination is
lost.

The combination problem can be solved by introducing a second stack onto which nodes are
placed after they have passed through the divide stage of evaluation. If we do this correctly then
we can pop successive pairs of nodes from this stack for combination (figure 1). Unfortunately, this
works fine except for a few pathological cases which cause incorrect node ordering or evaluation.
A trivial example is shown in 1.

If we have an unbalanced tree, where a node has less than two children, then the problem is
more serious. If we modify the algorithm to cope with the left node only case then the right node
only case fails and vice versa.

The way we solve this problem is by introducing a key to the stack which we use to encode the
level at which a particular object is in the tree. 1.e. the root object is at level 0, its two children
are at level 1 and so on. By doing this we can make sure that only pairs with the same level are
combined. The modified algorithm is given in program 2.

3.2.1 Advantages of a stack

Stack-based evaluation of D&C problems provides more than just a simple, elegant algorithm.
Most MIMD D&C implementations utilise a stack for holding pending tasks [14, 16] because the
tasks can be taken from the bottom of the stack for parallel evaluation. Since our whole evaluation
scheme is stack based, tasks eligible for parallel evaluation are readily available. However, more
importantly, we can nest our evaluations.

3.2.2 Nested evaluation

We have argued [16] that the design of efficient parallel algorithms should only be a means to an
end, rather than an end in itself. However, many parallel implementations concentrate solely on
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Figure 1: Stack-based evaluation

the efficiency of a single algorithm without much thought as to the operation of this part in a wider
whole. This is especially true of D&C implementations. We have argued that D&C gives us the
means to integrate together efficient parallel algorithms; nested evaluation makes this more of a
reality. By adopting a stack-based evaluation structure, it becomes possible to evaluate multiple
D&C task at the same time, i.e. a D&C task can contain other, differing D&C tasks which will be
evaluated in parallel as well as the main task.

The beauty of this system is that, although nested D&C tasks imply a finer grain of concurrency,
they do not imply a performance loss. This is because the higher level, and therefore larger, tasks
will be stacked first. The finer grain tasks will only be evaluated in parallel if there are no larger
tasks available on the stack. In theory this should only happen at the very beginning and end of
processing.

In case parallel evaluation is not required - in debugging D&C applications for example - it is
easy to provide a recursive implementation which is interchangeable with the stack-based algorithm.
If necessary, it would be trivial to pass a flag to a D&C object, when it is initialised, determining
which algorithm to use.



Dac Dac::run() const {
Dac 1,r,n;
int s; // current level
/*
*x This 1s our ewception - when the root node is simple then we simply evaluate
* it.
*/
if (simple()) return evaluate();
/*
* we now save the stack positions in case we recursively call this function
*/
int ppos = *p;
int gpos = *q;

p—rpush(xthis, DacStack::limbo, 1); // musn’t spawn this one !

while (!p—empty(ppos)) { // emptiness is relative to ppos
/*
*x we’ll start to divide until we have something to combine
*/

while (!q—pair(gpos)) {

s = p—key(); // get the level
n = p—pop(); // get the object
/*
* note that n might have suddenly become simple under our noses ...

*/
/*

* if our two child nodes are simple then we evaluate them and push them
* onto the combine stack. Otherwise we push both nodes onto the evaluation
* stack. Note that either way we are going down a level.

*/

if (!n.simple() && !(n = n.divide(l,r))) {

if (M.simple() || !r.simple()) {
p—rpush(r, DacStack::pending, s+1);
p—push(l, DacStack::limbo, s+1);

else {
q—push(l.evaluate(), s+1);
gq—push(r.evaluate(), s+1);

}

if we couldn’t divide then we evaluate the current node and push it for
combining. This should cope with the case when the root node is simple as
* well as the case when we might not think things are simple but we still

* can’t divide ...

*/

/*

* X

} else {
g—push(n.evaluate(), s); // level is constant

3
/*
* if we have a pair of operands to combine ...
*/
while (g—pair(gpos)) {
s = q—key(); // we are going up a level
r = q—pop();
1 = q—pop();
gq—push(l.combine(r), s-1);

3
/*
*x The last object left is the one we want ...

*/

return g—pop();
}

Figure 2: The stack evaluation algorithm
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3.3 Virtual object construction

Passing anonymous objects around a message-passing environment necessitates some means of
reconstructing objects based on a message. Coplien [8, p290ff] describes a scheme for implementing
exemplar-style programming in C++. The techniques he uses allow for arbitrary classes to register
in an exemplar list. When an object is to be created, its construction parameters are presented to
each registered exemplar in turn to see whether it can consume the input and return an object. By
modifying this operation slightly we can assign each D&C class a type code with which registered
D&C exemplars can determine whether an incoming object is of its type and act accordingly.

The advantage of Coplien’s approach is that the number of exemplars need not be known by
the management code and new classes can be added to the exemplar list, simply by linking in the
appropriate library, no code modification is necessary.

3.3.1 Nstreams

Coplien’s exemplar example consumed characters from a static buffer. Although it would be
possible to do this in a message-passing environment, this sort of input/output operation is far
more simply performed using C++ streams. These structures dynamically request input from a
stream source in a manner transparent to the user [19] and are designed in such a way that the
stream source can be modified relatively easily. Thus we have designed message-passing iostreams
called nstreams based on the Trollius”™ message passing calls nsend () /nrecv(). These structures
transparently send and receive network packets when sinking and sourcing information as per
standard iostreams.

Unfortunately, iostreams are designed to transmit information in ascii format, which is fine for
writing data files to disk or scanning for user input, but which leads to data expansion during
message-passing! In order to overcome this, we designed binary iostreams which are constructed
from normal iostreams but which force binary reads and writes to be performed, thus optimising
the volume of data transmitted.

In addition to this optimisation we wanted to make sure that long messages are transmitted
directly rather than being intermediately buffered. This is not a problem except for the fact that
these un-buffered messages could potentially overtake the buffered messages. For this reason we
make sure that the un-buffered messages are only transmitted when the stream is flushed (implicitly
or explicitly) at which point we can ensure that the buffered information is sent first.

3.4 Interface design

In this section we build up a object-oriented D&C interface, gradually incorporating desirable
features.

3.4.1 The basic interface

class Dac {
public:
virtual const boolean simple() const;
virtual Dac divide(Dac& 1, Dac& r) const;
virtual Dac evaluate() const;
virtual Dac combine(const Dac& d) const;

Figure 3: Basic interface

To start with we need the D&C primary functions. In order for the interface to be fully
polymorphic, all function arguments and return values must be expressed in terms of a generic
D&C object, see figure 3.



class Dac {
friend class DacRep;

public:
virtual const boolean simple() const {
return d_rep—ssimple();
}

virtual Dac divide(Dac& 1, Dac& r) const {
return d_rep—divide(lr);

virtual Dac evaluate() const {
return d_rep—evaluate();

virtual Dac combine(const Dac& d) const {
return d_rep—combine(d);

}
/] reference counting

Dac() {}

Dac(const Dacé& d) : d_rep(d.d_rep) {
if (d_rep) d_rep—count++;

const Dac& operator= (const Dac& d) {
if (d_rep # d.d_rep) {
if (d.d_rep) d.d_rep—count++;
if (drep && --d_rep—count < 0) delete d_rep;
d_rep = d.d_rep;

}

return xthis;

}
~Dac() {

if (d_rep && --d_rep—count < 0) {
delete d_rep;

}

d

rep = d;

¥

protected:
DacRep *d _rep;
ks

class DacRep : public Dac {
friend class Dac;

public:
DacRep() : count(1) {}
unsigned char count;

h

Figure 4: Reference counting



3.4.2 Reference counting and labelling

A little thought shows that this immediately creates a problem. All polymorphic behaviour
in C++ is exhibited through operations on references or pointers to objects. If we are to return
from functions, objects which exhibit polymorphic behaviour, then it is references or pointers that
must be returned. Unfortunately, this creates a memory-management nightmare as all objects
referenced in this manner would have to have global lifetime. Fortunately there is a way around
this problem; by using Coplien’s [8, p133] envelope and letter idiom we can make the interface
simply a label for a real object that can be changed readily without affecting the label. So in this
instance our label is “D&C object” but what the real object might be is not pre-determined by
the interface. The other advantage of this idiom is that we can incorporate reference counting for
the actual objects so that memory-management is no longer a problem and object assignment and
copying is cheap.

Coplien’s original design had class member functions delegating their operation through a
pointer to an object of the same class; rather like a klein bottle. However, we require that all D&C
objects have some global information - like size - and we do not want to make the “labels” any
larger than necessary. For this reason we delegate the D&C interface’s functions through a pointer
to an object of a class derived from the interface class. See figure 4.

3.4.3 Mix-in support

We now wish to incorporate support for mix-ins. Mix-ins combine class functionality through
the use of multiple-inheritance and a common base class. For example a base class X might declare
the functions a() and 6(), and two other classes A and B, derived from X, might define one each
of these functions. If we were then to require a class C' that required the functionality of a() or
b() or both, we could then derive C' from X, to make it have the interface of X, and additionally
make C' “mix in” A or B depending on the functionality required.

In order for mix-ins to work, the base class defining the interface must must be a virtual ancestor
of all its derived classes. This means that all descendants of the base class share a single instance.
The current D&C design makes this constraint easy to satisfy as we just make the envelope (Dac)
a virtual ancestor of the letter (DacRep). Any mix-in definitions must then be derived from Dac.

This raises one other issue. Using mix-ins can be made safe by making the base class functions
all pure virtual. This means that the base class does not define these functions, and the compiler
forces the programmer to define these functions in derived classes. Unfortunately, our “klein bottle”
design means that the D&C base class functions are already defined to delegate their operation to
the derived letter. Thus if a programmer happens to forget to really define one of these functions
- and the compiler will allow him to do this - any call will default to the base class definition.
This obviously gives rise to a never-ending recursion that will only terminate when the process’
stack space is exhausted. We can overcome this problem we introducing an intermediate “pure”
interface that we place between the envelope and letter in the inheritance hierarchy. All mix-in
definitions can then be derived from this pure interface and the compiler will then complain unless
all functions are properly defined. See figure 5.

3.4.4 Exemplar support

Finally we must add exemplar support so that objects can be transmitted around a message
passing environment. The functionality required by the interface is given in Coplien and comprises
three functions: one to find a type match between a list of registered exemplars and an input stream
which subsequently calls the relevant object constructor, another - simply a virtual placeholder -
to output a type identifier and associated object to a stream and a third to register an exemplar
in the exemplar list.

The exact mechanism of these three is not important here, however their effect upon derived
classes is. A D&C class with input/output ability is characterised by three associated functions.
One a virtual function which returns an object of its type constructed from an input stream,
another the associated input stream based constructor, and a third an output function for the



class Dac {
friend class DacRep;

public:
virtual const boolean simple() const {
return d_rep—simple();
}

virtual Dac divide(Dac& 1, Dac& r) const {
return d_rep—divide(l,r);
}

virtual Dac evaluate() const {
return d_rep—evaluate();

virtual Dac combine(const Dac& d) const {
return d_rep—combine(d);

/] reference counting
Dac() {}
Dac(const Dac& d);
const Dac& operator= (const Dac& d);
~Dac();

protected:
DacRep *d_rep;
}s

class DacPure : public Dac {
public:
const boolean simple() const=0;
Dac divide(Dac& 1, Dac& r) const=0;
Dac evaluate() const=0;
Dac combine(const Dac& d) const=0;

DacPure() {}
g

class DacRep : virtual public DacPure {
friend class Dac;

public:
DacRep() : count(1) {}
unsigned char count;

+i

Figure 5: Mix-in support
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class ADacClass : public DacRep {
protected:
Obj anotherMember
int aMember;
// construction from an input stream
ADacClass(ibstreamé& i) : DacRep() , anotherMember(i) {
i > aMember;

// exemplar registration constructor
ADacClass(ExemplarConstructor e) : DacRep(e) {}

// Tvirtual” construction from in input stream
virtual DacRepx* scan(ibstream& 1) {

return new ADacClass(i);

/[ output to a stream
virtual void spawn(obstream& o) {
o & anotherMember < aMember;

// registered exemplar
static ADacClass* exemplar;

e

ADacClass* ADacClass::exemplar = ::new ADacClass(exemplarConstructor);

Figure 6: Exemplar support

object. In addition to these each class must have a static member of its own class which serves to
register the class in the exemplar list. See figure 6.

Unfortunately, as can be seen although flexible, this approach to object transmission is rather
tedious from a programmers point of view. We will examine the relief of this problem in section 4.

3.5 Object oriented D&C and the actor model

This section relates object-oriented D&C to the actor model and shows how delayed evaluation
becomes a natural extension to object-oriented D&C in this framework.

The actor [1] object-oriented programming model represents programs as an interacting set of
computational agents which map incoming communications to 3-tuples consisting of"

1. a finite set of communications sent to other actors;
2. a new behaviour; and,

3. a finite set of new actors created.

Now that the D&C primary functions (figure 3) are part of a D&C object rather than separate
from it, we can see that they constrain D&C objects to a form of these rules. The rules are limited
by the requirements of the D&C algorithm !, namely that incoming communications are mapped
to a finite set of new D&C objects created where the set is one of:

e a fixed number N created through division for N-ary D&C;
e a single object created through evaluation;

e a single object created through amortization of other objects, where the incoming communi-
cation contains one or more other objects.

Note that the second is a call-by-value form of (2) above. Although a D&C object could
conceivably change its type internally - since its interface is purely a “label” - it is intentionally
made difficult by the const-ness of the primary functions.

1This is really what we would expect, the actor model being so powerful.
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One might think that not changing type would lead to a proliferation of D&C objects; and for
the recursively and tree evaluated cases this is so. However, with the stack based algorithm, the
number of D&C objects is kept to be minimum by virtue of the fact that there are no used D&C
objects serving as placeholders. Thus the rules above are all extended such that:

e no object changes its behaviour; and,

e an object’s existence is terminated upon acceptance of a communication

The only disadvantage that can be envisaged is that of not being able to easily reuse object
memory allocations. The advantages are many, not least the simple programming perspective that
is realised.

In fact we could rewrite the rules so that changing an object’s behaviour became integral to the
operation; so that division, for example, would involve an object changing its state and creating
N — 1 new objects. However, this removes the uniformity of the approach by making a distinction
between types of children.

3.5.1 A homogeneous approach

In our previous implementation D&C objects had to be clumsily represented in terms of evaluation
objects and result objects. Now the types of object are homogeneous: all are D&C objects but the
type of D&C object can be transformed when a change of functionality is required. This eliminates
the need for functional baggage that would clutter the definition of D&C objects. It also means
that changing form can be accommodated easily.

For example if we have some operation that involves a matrix changing into a scalar, we can
separate the two distinct types by defining a D&C object that deals with matrices, a D&C object
that deals with scalars and a mapping between the two. If we then want to define an operation that
involves only matrices we are not denied the possibility of using the matrix type object. Previously
we would have had to define a single D&C object that knew about matrices and scalars and defined
operations on both - and the object would be specific to that single operation.

3.5.2 Delayed evaluation

In viewing object-oriented D&C as a specialised actor system we have made no reference to mapping
(1) above for general actors. Allowing D&C objects to be replicated, amortized or transformed
purely fits within the confines of creating a finite set of new actors (3). However, delayed D&C
evaluation features, described in [16], operate by combining objects of differing types prior to
D&C evaluation, and subsequently performing this evaluation upon the aggregate object using
delegation [4]. This possibility fits neatly into mapping (1), as an aggregate D&C object would
first create a finite set of children and then pass on the communication to its constituent members.

The obvious application for this is in evaluating arithmetic expressions where, for example, we
might wish to evaluate the matrix expression A+ B+ C'. Delaying the evaluation of this expression
means producing an aggregate - in our case D&C - object, and delegating calls to the aggregate’s
interface to the individual object’s functions. See figure 7.

3.5.3 Envelope/letter advantages for delayed evaluation
In using delayed evaluation we have two objectives:
e constructing the aggregate; and,

e evaluating the aggregate.

In the example given above the aggregate is constructed using overloaded arithmetic operators.
However, previously there was no clear way in which to organize an object hierarchy that allowed
the interactions of evaluation and construction to be separated. For example in the expression
A =B+ CxD where A— D are general objects. The evaluation sequence would have been:

12
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R=A+B+C R=A+B+C
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v

)
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Figure 7: Delayed evaluation

A = B+CxD
A = B+ TimesObj[C, D]
A = AddObj[B, TimesObj[C, D]]

where O[Py, ..., P,] denotes an object O containing objects P, ..., P,.

Whereupon the compound AddObj is evaluated and assigned to A. However, in order for
this sequence of events to operate correctly, AddObj and TimesObj must be derived from some
generic ArithObj which defines the addition and multiplication operators; otherwise TimesObj
and AddObj would need to define every possible operator combination. During subsequent D&C
evaluation these functions are completely redundant. In addition, defining any new operators
would necessitate recompilation of all the arithmetic classes.

With the envelope/letter idiom all these problems go away. The aggregate constructors can
be defined within a wrapper derived from the envelope class Dac, while the aggregates themselves
can be defined normally - derived from the letter class DacRep. The wrappers then serve purely to
build an aggregate object, old wrappers being discarded when they are redundant:

ArithWrap[A] = ArithWrap[B] + ArithWrap[C| x Arithwrap[D]
ArithWrap[A] = ArithWrap[B] + ArithWrap[TimesObj[C, D]]
ArithWrap[A] = ArithWrap[AddObj[B, [TimesObj[C, D]]]]
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This also means that the assignment operator can be completely generic and included in the
definition of the wrapper.

Of course these features are a subset of the possibilities under the actor regime and thus delayed
evaluation represents a natural usage of object-oriented D&C rather than an added feature.

4 Translation versus code 1nsertion

In this section we briefly describe an approach to overcome some of the tediousness of programming
with D&C objects.

Many parallel object-oriented systems [9], with some exceptions [3], use a language translator
to parse their particular flavour of the target language. For C++ at least, this is not particularly
desirable as one has to have the translator as well as the target language compiler and ensure
that the two are compatible. In addition the programmer has to learn the new constructs and - as
shown by the C++ standardization effort - these constructs may well just be unnecessary syntactic
sugar.

Such is true of our object-oriented D&C additions to C++ - we can incorporate these constructs
using existing language features. We could augment the C++ language definition in order to make
the programming of these constructs easier, but with the portability problems given above. In
addition it is not always clear what a programmer’s intentions for a D&C object are, and enforcing
a translator-based regime could yield an undesirable degree of inflexibility.

However, making C++ objects into D&C objects s slightly cumbersome and some sort of
automation would be desirable. If we are not going to write a translator then the obvious solution
is to automatically insert the required code directly into the source - and we can achieve this by
using the GNU emacs editor.

4.1 Dac-mode

GNU emacs differs from most editors in that it is almost infinitely reconfigurable through the
use of its internal lisp interpreter. It also has a powerful regular expression library. These two
features, used in conjunction with each other, mean that quite complicated language constructs
can be parsed by emacs. It is even possible to execute lisp commands non-interactively so that
emacs can be used as a pseudo-translator if so desired.

Thus we have written an emacs “mode” - dac-mode - that allows a user to modify a C++ file
by inserting text relevant to D&C evaluation. The only constraint is that data members of D&C
objects, that require transmission, be delimited by special comments. Since the inserted text is
editable, any wrong assumptions made by the lisp code can be corrected by the programmer. The
lisp code will not attempt to update D&C-relevant constructs that are already in existence.

The whole environment manages to maintain programming flexibility whilst removing repeti-
tious work.

5 Application to grammar modelling for speech recogni-
tion

In this section we describe the use of tree language models for speech recognition and the imple-
mentation of one particular tree growing algorithm using object-oriented D&C. We then consider
a parallel improvement to the algorithm using nested D&C.

In the field of automatic speech recognition (ASR), language models, which attempt to provide
an accurate prediction of the next word in a sequence, are important for good overall performance
of any ASR system.

Decision trees (figure 8) are one possible type of language model [21]. A tree T' may be viewed
as a set of nodes T' = {to,¢1,...,tn}, with ¢y reserved as the root node. The input to the tree
Wj—n; Wj—nt1,. .., Wj—1 is a string of the previous n words, and the output from a leaf of the tree
is a probability distribution over the possible predicted words W Starting from the root node
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Figure 8: Tree

of the tree, at each non-terminal node %, a binary function (). is performed on wy, one of the n
words of the input. This function takes the form: ‘is wy € SI?7°, where SJ is the jth set of words
(for binary branching 0 < j < 2). If the result is true, the left branch from the node is followed
otherwise the right branch. This is repeated until a terminal node is encountered.

In growing a tree, the objective lies in minimizing risk for a given cost constraint. Each step
consists of splitting some terminal node ¢ into two children in order to maximize a merit function,
merit(.), for some test @), which will lead to a tree which satisfies the global constraints.

Due to the computational complexity of growing optimal trees, practical design procedures
(deciding on the best splits and hence the sets S; ) are invariably steepest-descent based. However,
even practical approaches are extremely computationally intensive and a good candidate for parallel
evaluation.

For the purposes of this work, a clustering-based algorithm due to Chou [7] and implemented
serially by Waegner and Young [21] was employed. Vectors consisting of the conditional prob-
abilities of the predicted words, conditioned on a particular instantiation of wyg, are iteratively
clustered into bins. The clustering algorithm is classically D&C with all computation being done
in the divide phase of the algorithm.

5.1 Parallel implementation of Chou’s algorithm

The strategy we employed in implementing a parallel version of Chou’s algorithm is important as
it reflects a general strategy for writing programs using object-oriented D&C. Our initial strategy
entailed the following:

1. Identify how the algorithm is “divide-and-conquer-able”.

2. Identify data that child nodes require from their parents and vice versa and encapsulate these
in an object definition (class) derived from DacRep.

3. Identify data required by all nodes and add these to the class as static members.

4. Add the required primary D&C functions to the class definition through: inheritance if they
are standard, or by writing them if they are not.

5. Format the class in the emacs editor with dac—-mode so that objects of that class are usable
in a message passing environment.

6. Define any initial conditions required.
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Our original aim was to use much of the serial code, which was written in C, as it stood. Much
of the original code was concerned with actual D&C evaluation, so this could be thrown out in
favour of our parallel framework; leaving only the guts of the partitioning algorithm itself. This,
we hoped, could be left as a C module that only required linking in to the parallel framework.
For an initial attempt this proved possible - if slightly clumsy - by defining appropriate conversion
operators from C++-world array objects and the like to C-world arrays. However, when it came
to more complicated implementations, it was found far easier to recompile the C-code with a C++
compiler thus giving the C-module easy access to all the C++-world data structures. Although this
approach does not work with programs for which the source is unavailable, it is vastly preferable
from a flexibility point-of-view.

The clustering algorithm made up the flesh of the divide() phase of the algorithm and in
terms of writing functionality there was little else to do. Since we are growing these trees and
therefore have no interest in combining anything, evaluate() was made to return a null D&C
object. This object did nothing except satisfy the requirements for successful completion of the
evaluation algorithm; i.e. that it could be transmitted and combined.

5.1.1 Tree dumping

One other important issue needs considering. Data is generated from each non-terminal and
terminal node in the tree, but how can we guarantee that the tree constructed on disk is ordered
correctly 7 The data cannot be written to a single file as there is no way to tell size or shape of
a tree before evaluation - it is an unbalanced D&C computation. The only obvious solution is to
write a separate file for each sub-task evaluated. Several methods were tried of naming these files
so that their order could be determined easily, but this required preorder node-number information
which would have been available under a serial implementation but was indeterminate under the
parallel implementation.

In the end the nodes were numbered in level order - a numbering scheme which is independent
of the size of the tree. The output files were identified by the root node that was processed in
a sub-task, and then the files were parsed using Sedgewick’s stack-based pre-order tree-traversal
algorithm in order to discover their concatenation order.

Since tree growing is more generally applicable to D&C than just for language modelling, this
technique should be more widely applicable.

The speedup results for the initial implementation are given in section 6.

5.2 Improved parallel performance using nested D&C

In this particular tree-growing application we are trying to partition a corpus into two at each
non-terminal node. The partitioning algorithm is of time complexity O(N). So it can be seen that
at the start of evaluation, when there is a single large context, the (serial) partitioning of this will
dominate the execution time of the whole. At the end of execution the partitioning is of many
small contexts but these are done in parallel.

Thus it would be desirable to parallelise the initial partitioning somewhat to achieve better
processor utilisation. The partitioning algorithm involves looping over the entire corpus for each
member of a given context. Thus, if we were to parallelise across the context elements we should
be able to improve the performance of the partitioning by a factor close to the number of elements
in a context.

5.2.1 Nested Implementation

In designing this extra level of parallelism we adopt an approach similar to that given above.
However, this time we are merely iterating over an integer so a general D&C iterator can be used
to do much of the programming leg-work. From a functionality point-of-view we merely have to
separate the loop and the partitioning algorithm, and assign each to a class.

At this point we can make use of inheritance to simplify the class definition. The tight coupling
of the outer loop with the partitioning algorithm also implies a tight coupling of data and we
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can thus factor the data common to both control structures into a single base class. It is worth
considering this property for a moment, as it is an important one for our object-oriented approach.
In general, once a D&C strategy has been decided for a particular problem, then the next candidates
for parallelism are any outer loops in the D&C primary functions. However, the only required
additions to the locality of reference already provided by the D&C partitioning, will be data local
to the D&C primary functions. Thus, the factoring together of common data will be a common
occurrence in making use of nested D&C, and it is only by virtue of the object-oriented approach
that this is made simple.

The fact that the parallelised looping is a sub-task of the parallelised clustering is coped with
is because of the generality of the stack-based approach described in section 3.2.

A comparison of the performance of the two approaches is given in section 6.

6 Performance of the system

In this section we give performance results for the simple and nested implementations of the tree-
growing algorithm. We then consider some implications of these results and give some improved
results through an understanding of D&C systems in general.

In the ensuing discussion it is important to realise that tree-growing is a true D&C application,
in other words the appropriate method of serial evaluation is D&C. For this reason there is no
need to compare the parallel implementation with a control as the uniprocessor case is the same,
performance wise, as the serial case; neglecting processor usage due to scheduling. It is also
important to realise that partition size [18] is an integral part of the algorithm, thus finding an
optimal partition for parallel evaluation must be entirely separate from specifying a D&C partition.

6.1 Non-nested implementation

Figure 9 gives the speedup results for the non-nested implementation using a small corpus of
16384 words (16376 contexts) and a cluster size of 64 words. The experiments were conducted on
a toroidal mesh of T800 transputers running the Trollius”# operating system.

As can be seen performance is good though, as noted in [16], there are some discontinuities in
the curve. As we explained [16] these discontinuities can be attributed to the connectivity of a
transputer node. The depth-first evaluation scheme that we employ means that the size of task
offloaded to neighbouring processors decreases in size as 1/2" where n is the task number. So
the first processor receives 1/2 the problem, the second 1/4 and so on. However, once the nearest
neighbours have been exhausted due to the single-steal rule [14], then the speedup is limited to
some extent by the size of problem remaining on the root processor. Thus we would expect the
speedup to be limited to 27tinks; however many processors there are. This is borne out by figure 9.
The processor numbering scheme we have adopted means that there is only one link available for
1-4 processors, two for 5-12 processors and three for 12-16 processors. The breakpoints for the
number of links correspond to the discrepancies in the graph. The sudden drop in performance
after each breakpoint can be attributed to a large proportion of the problem being scheduled to a
solitary processor. This processor is connected to the newly available link with no other neighbours
to offload to.

However, the results are inconclusive and we will present more compelling evidence below.

6.2 Nested implementation

In figure 9 the speedup results for the nested implementation are presented, together with the non-
nested implementation. As can be seen, the nested implementation gives a significant improvement
over the simple implementation. We would also expect this improvement to increase as the problem
size i1s increased and parallel overheads become less significant. However, we would expect the
maximum performance increase to have an upper bound equal to the maximum speedup given by
the nested performance only - in this case 8.
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Figure 9: Nested and non-nested performance

6.3 Performance improvements

We have surmised that the performance of a depth-first D&C system will be limited by the
connectivity of the processors, and we have provided some scanty evidence for this. Therefore,
for a 4-link processor, we would expect the performance to be largely unaffected by an increase in
the number of processors past 16, if the connectivity of the processors remained unchanged. If we
increase the number of processors from 16 to 32, we obtain the results given in figure 10.

Obviously the system as it stands is not at all scalable, and scalability is highly desirable.
However, if our connectivity argument is right then we can achieve better scalability by utilising
a processor network with a higher degree of connectivity. Specifically, if we require each processor
to have access to a larger number of neighbours, then a hypercube architecture is the obvious
candidate. Furthermore, if speedup is limited to 27¢»¥s and speedup is also limited to nprocessors
then we will attain maximum speedup for:

Niinks —
2 - inOCeSSOTS

Niinks = lng (nprocessors)

which is true for all hypercubes.

6.3.1 Virtual hypercubes

It is clear that a hypercube interconnection network is desirable for D&C systems, but a transputer
only has four links! Ideally we would use a network of TI C40’s which would yield a physical hy-
percube of maximum degree 6; but is this really necessary? We can achieve higher dimensionality
hypercubes we forming groups of physically connected hypercubes and connecting these to each
other by means of “virtual” - or multi-hop - links. Arranging for this to happen is simple if the
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Figure 10: 32 processors non-nested performance

real hypercubes are numbered in units of 16. In this case a processor will have virtual neighbours
at processor identifiers:

(procid + 2'F*) MOD 2°+°

where 1 =0,1,....

Applying this to the 32 processor case yields the results given by figure 11. As can be seen the
speedup is now much more linear with a greater maximum speedup.

Parallel overheads could possibly account for the decreasing efficiency. If this is the case then
increasing the problem size should result in increased efficiency.

6.3.2 Problem scaling to reduce overheads

By increasing the size of problem we obtain the results given by figure 12. As can be seen
increasing the problem size does increase the efficiency of the system. However, a corpus of 100000
words was the largest problem that could be tried with the memory available, and it is not clear
that the maximum efficiency has been obtained with a problem of this size.

Interestingly enough adding a further dimension to the hypercube (figure 13) for the 100000
word case yields little further speedup, performance actually decreasing after 46 processors. It
would therefore appear that tuning the D&C partition would be a sensible thing to do, to limit
the number of processors used, as well as evaluating still larger problems.

7 Theoretical speedup

In this section we present some theoretical speedup results for D&C and relate them to the practical
results presented in section 6. Lewis et al [12] gave the maximum possible speedup for D&C
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problems as N/logaN. However, our results exhibit rather better performance than this for an
algorithm with classical D&C properties. Therefore, we develop a better model of D&C which takes
into account the effects of problem scaling. These results tie up well with the practical results of
section 6. We then develop a more complex model which takes into account the possibility of
variable divide time; a property which the tree algorithm should exhibit. However, the theoretical
results are much worse than our experimental results and so we conclude that this property is not
significant for the tree algorithm.

7.0.3 Framework

In the execution of a D&C problem, we define d = 1... D as the depth down the D&C tree so that
there are:

np = 27 (1)

terminal nodes in the tree if the tree is balanced. This also means that there are:

N = 2Pt (2)

nodes in the tree in total, and
2P -1 = np-1 (3)
= (4)

non-terminal nodes. We note also that the maximum depth:

D = log(np)/log(2)
= logz(np) (5)
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We define:

tqg = time to perform a single divide
t. = time to perform a single combine
t; = time to perform a single evaluation

but we will often assume that t; = ¢..
We assume that communication time is zero and that there is no limit to the availability if
Processors.

7.1 Basic D&C

We first investigate a simple theoretical model of D&C, where the divide time dominates, which
yields the result given by Lewis et al [12].

We note that it is not possible to make use of more than np processors. Thus if we wish to
evaluate all nodes in parallel the execution time will be:

T(HD) Dtd—{—tf—I-Dtc
9Dty + 1

2 4loga(np) +1; (6)

if t; = t.. This is because the time to evaluate in parallel all nodes at depth = & will be ¢4 and all
nodes at depth k& cannot be evaluated before nodes at depth £ — 1.
The serial execution time for this problem is given by:

T(l) = nttd—{—nttc—i—nptf

(TLD — 1)(td —}—tc) + nth
= Qtd(nD — ].) + nth (7)

thus the speedup,

5 = T()/TY)
Qtd(nD — 1) + TLth
Qtdlogz(nD) —|-tf

We note that the speedup is np for the best case of {; = 0. The worst case is for t; — 0, which
gives:

lims = Zano—1)
ty—0 2t4loga(np)
np — 1
= — 9
loga(np) )

which is that given by Lewis et al [12].

7.2 D&C with problem scaling

The result obtained above obviously scales very badly with increasing numbers of processors.
However, as demonstrated by Gustaffason et al, the sensible thing to do is to scale the problem
relative to the number of processors. Thus we develop a theoretical model based on this premise.

If we scale the problem relative to the number of processors then we can view the execution on
n, = 2P processors as a purely parallel evaluation up to depth p, and a serial evaluation of np/n,
nodes.

22



In this case the serial execution time is the same as above, but the parallel execution time is
given by:

T(N) = 2tgogs(ny) + ’;—th + 2ty <’;D - 1)
P P

n
= glogs(n,) + nl(tf + 2ty) — 24 (10)
P

so that the speedup 1s:

Qtd(nD — 1) + TLth

S =
Qtdlogg(np) + Z—I;(tf + 2td) — 2ty

(11)

If we introduce a scaling ratio:

np

a = — (12)
np

np = an, (13)

then the speedup becomes:

24(an, — 1) + anyty

S = 14
Qtdlogz(np) + Ot(tf + Qtd) — Qtd ( )
lim § — 2t4(an, — 1)
ty—0 Qtdlogg(np) + a?td — Qtd
an, —1

loga(np) +a—1 (15)
Thus by increasing a we can produce a more linear speedup than the simple D&C case of
section 7.1. Figure 14 shows theoretical speedups for varying a. These results tie in nicely with
the practical results presented in figure 12. The case @ = 1 is equivalent to the simple case, given
above. It can be seen, therefore, that problem scaling is a good thing to do with D&C systems, as
this yields more efficient speedups.
Note that these are worst case results, in practice ¢; # 0 and therefore the n,t; term will be
significant, increasing the linearity of the speedup.
Intuitively this is the result we would expect; for the case & = 1 processor utilisation is only at
a maximum when nodes at maximum depth are being evaluated. However, if & > 1 then processor
utilisation is at a maximum from depth p onwards.

7.3 D&C with variable divide time

The tree algorithm presented in section 5 processes a context of ever decreasing size. The algorithm
involves looping over each member of the context; so we would expect the iteration time - the divide
time - to decrease as the algorithm progresses. We now analyse the theoretical speedup expected
from systems with this property.

7.3.1 Basic algorithm

The divide time should vary as 1/ng4 where ng is the number of nodes at depth d. If we therefore
take ¢4 as the maximum divide time, then the actual divide time will be ¢4/n4. Thus the serial
execution time for this case will be:

T(1) =

+2th

a2 RN 2
[Z ;z +Z 2

i=0 i=0
= D(tg+t.)+2°
Qtdlogz(nd) + ndtf (16)
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and the parallel execution time will be:

D_lt D_lt
d c
T(N) = [ZT+Z? + iy
i=0 =0
D-1 1
= 2td2§+tf
i=0
1-1/2P
= 2 _ 1
()
= 4td(1—1/nd)+tf (17)

So the speedup will be:

S = T(1)/T(N)

Qtdlogg(nd) + ndtf

Ma(1— 1/ng) +1,
loga(na)

T "

This is a very poor result as for large ny the speedup is loga(ng). Thus, as previously, we must
look at variable divide time with problem scaling.

7.3.2 Variable divide time with problem scaling

In this instance we can again view the parallel execution as purely parallel up to n, nodes and
then serial for nq/n, nodes, ignoring any ¢; terms at depth n, since they are not applicable. We
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note also that the maximum divide time at depth p will be ¢4/n,. Thus:

t n
T(N) 4ta(1 = 1/np) +2_“loga(na/ny) + 1y
P P

t
4t4(1 —1/n,) + 2n—dlog2(a) + aty
P

i
zni (loga (o) — 2) + 4ty + at; (19)
P

The serial execution time is the same as above so the speedup is:

s = T()/T(N)
2tlegz(nd) =+ ndtf
2;—‘: (loga(a) — 2) + 4t4 + oty
2t4logs(any) + anyt;y

= 20
2%(10g2(a)—2)+4td+atf (20)
A4l
T R— )
t;—=0 Qﬁ(logz(a) —2)+ 4ty
_ nploga(any) (21)

loga(a) — 2+ 2n,

Again increasing o will yield better performance but not nearly as good as that for the fixed divide
time case. In practice the ¢; terms will be significant and performance will be better.

7.4 Application to the tree implementation

The tree growing implementation presented in section 5 is one in which the divide time is vari-
able. However, the results presented in section 6 are considerably better than those indicated by
equation 21. This is partially due to the nested implementation but also must be due to the fact
that ¢; # 0 and that there must be some constant element in the divide time. Presumably this
constant element will be less dominant for larger problems so the effect of increasing the scaling
ratio will become less effective for larger problems. For the largest problem tried:

a = ng/ny
100000/64

64
= 2441

Thus for a fixed divide-time and ¢; = 0 the maximum expected speedup on 64 processors is:

HmS = 2441 x 64 — 1
ty— ~ logo64+24.41 — 1
= 53.09

and for the variable divide time case:

. 64log2(24.41 x 64)
limS =
ty— loga(24.41) — 2+ 2 x 64
= 5.20

Which is far less than the results actually obtained (figure 12). So obviously the variable divide
time effect cannot be particularly significant for this particular problem.

We may conclude then that D&C can provide much better speedups than that presented by
Lewis et al [12], if the problem is scaled relative to the number of processors. However, we note
that variable divide time leads to very poor performance even if the problem is scaled. Fortunately,
few problems will only display properties of variable divide time.
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8 Conclusions

We have described the implementation of an object-oriented D&C system together with some of
its finer details, and given some results which demonstrate the system’s ability to achieve useful
speedups.

We can conclude therefore that object-oriented D&C provides a viable way of achieving parallel
performance. However, any conclusions about the usability of the system are necessarily subjective
- though we have given reasons as to why our approach is preferable to defining yet another dialect
of C++.

Within the context of our system, nested D&C evaluation proves to be a useful addition which
yields appreciably improved performance. We would hope to increase the applicability of this
technique, and others, by increasing the scope of our D&C class library. Some of the technical
challenges of implementing this have yet to be addressed, but we believe that the C++ language
is powerful enough for our demands.

In conclusion we would say that D&C works and suitable object-oriented programming tech-
niques can increase its applicability and usability.
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