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Abstract

Kanerva’s sparse distributed memory model consists of a fixed non-linear mapping,
called location matching, followed by a single layer of adaptive dot-product step-threshold
links. Various networks of this type are tested on three tasks in order to discover the
circumstances in which this type of network provides an efficient solution.

The networks provide more competitive performance when the dimensionality of the
input patterns is fairly low. For high dimensional inputs the performance of the single layer
network alone is better on the test data, whereas for low dimensional inputs a two layer
adaptive network is required and this needs much more training before it can produce a
better test performance.

A new ‘location pruning’ technique is reported which improves the design of the lo-
cation matching mappings. The resulting network is extensively tested on large pattern
classification tasks to demonstrate the benefits of the algorithm.

The experiments show that the main benefit of the location matching networks is their
ability, using the location pruning algorithm, to train in roughly % to 11—0 of the training
iterations required by single or double layer adaptive networks on the same tasks.
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1 Introduction

Kanerva’s sparsely distributed memory model consists of a fixed non-linear mapping followed
by a single layer of dot-product step-threshold links [PK88]. T will describe this structure, and
various modified versions, in some detail and then show how they perform on three realistic
pattern classification tasks. The tasks vary in the dimensionality of their pattern vectors and in
the number of possible classes. The object is to shed light on the types of application for which
this sort of model is most useful.

2 Types of Networks

The sparse distributed memory model, as originally described by Kanerva, consists of a location
matching layer, which requires binary inputs, followed by a single layer of adaptive links. The
location matching procedure has been extended to work with real valued input vectors [P&F88,
CP&F91] and it is this more general version of the mapping which is described below. A novel en-
hancement to increase the efficiency of the location matching is also reported. This improvement
is called “location pruning.”

In this section both the mappings of the Kanerva model are described. First we discuss
the adaptive single layer network and its training algorithm; then the fixed location matching
preprocessor. Finally the new location pruning algorithm is introduced.

2.1 A Single Layer Network

This work is based on a simple adaptive network consisting of one layer of dot-product links.
An input vector x = {z1,x9,x3,...,2,} determines the values of a set of n input units. These
units are fully connected to m outputs y = {y1,¥2,¥3,- - ., ym} through a matrix of weights. The
weight between input ¢ and output j is w;;. A bias input is provided as x¢ which is considered
to be fixed equal to one. The outputs are calculated from the inputs as follows:

n

o; = E T;Wi5

=0

{1 if o; >0
Yy =

0 otherwise

Notice that the output vector of the network is always binary. The input vector may be either
binary or real valued.

2.2 Training the Network

In this work the network was trained using a relaxation algorithm. This involves repeatedly
presenting training examples to the network and each time altering the link weights just enough
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to make all the output units respond correctly. This algorithm, and a number of others which
perform the same task are clearly presented in Chapter 5 of [D&HT3].

To train the network, pairs of associated input and output vectors are taken from the training
set at random. The network is run using the input vector and the outputs are compared with
the known correct values. Where an output bit is correct no alterations are made to its link
weights. For each incorrect y; we compute the correction

0;&;
b= (Zn—o $2>

for each of the weights on links associated with this output. The quantity p is called the learning
rate, and is set to one initially and gradually reduced as the training progresses.

For every w;; leading to an incorrect output we correct the corresponding weight using

new __ old
wi = wg — 6

Notice that the algorithm involves adjusting the weights immediately after processing each train-
ing example. This enables fast convergence on very large training sets and incremental training
if some of the training data is not initially available.

Reducing the value of p as the training progresses is often not necessary for linearly discrim-
inable problems. It does however improve the quality of the solution obtained for training sets
which are not linearly discriminable.

2.3 Location Matching

In order to compute a non-linear discriminant function using a single layer network it is necessary
to transform the input to a higher dimensional space (see figure 1). We use a location matching
mapping to convert the representation to a binary vector which provides a good input for the
relaxation training algorithm described above.

The simplest form of location matching involves choosing a large number of random points in
the input space {Gy, Gq, Gs, ..., G,}. These are the locations, and each one is associated with a
single bit {zy, 23, 23,...,2,} in the output representation from the location matching mapping.
The locations are randomised when the network is initially set up and they are then considered
fixed. Location matching is a fixed non-linear mapping, the locations are not permitted to move
around during network training.

The idea is that each bit z; in this output is turned on if and only if the input is close, in
some sense, to the corresponding location G;. To implement this we define a metric M() on the
input space and fixed constant radius, R. For an input F each element of the the x vector is
determined as follows:

o { 1 if M(F,G;) <R
1 0 otherwise
The radius R is set so as to ensure that some specified fraction of the locations are activated for

each input. Depending on the problem and the architecture of the rest of the network, between
1% and 20% location activation is used.
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Figure 1: Network structure consisting of a fixed non-linear mapping followed by a single layer
of adaptive links.

This location matching procedure transforms the input pattern to a high dimensional binary
representation while preserving information on the closeness of input patterns under the metric
M(). Similar patterns in the input space will map to binary vectors with a large number of
identical bits, whereas different inputs will map to vectors a large Hamming distance apart.

In [CP&FI1] we showed that if the a hypercube metric is chosen for M() then each location is
usually only functionally dependent on a small fraction of the elements of the input vector. When
the input vector is of high dimensionality a considerable increase in efficiency can be obtained
by using this metric. The hypercube metric is defined:

M(F, G) = max over all ¢ of |f; — g

Instead of having to work out a sum of squares across the complete input one just has to check
a small number, usually between 3 and 10, of the input values against fixed thresholds. All
the other coordinates of the input vector are then taken to be within the required radius of the
location irrespective of their values. In order to configure this arrangement correctly the number
of checks performed by each location should be randomised from a Poisson distribution. Given
the likelihood of a check being satisfied (usually this averages to 0.5) the poisson distribution
can be scaled to give any desired average rate of activation among the locations.

2.4 Location Pruning

Choosing the locations completely randomly is inefficient. Often the result is a model in which
a significant proportion (say 20%) of them play no useful role in the pattern recognition task.
We need a technique for choosing more locations in regions of the input space which are most
critical to the task being performed, while retaining a reasonable coverage over the rest of the
space in order to ensure robust recognition performance.

One idea might be to base the location centres on the some examples from the training data.
This is not a good strategy because it is the edges of the activation domains of the locations



rather than their centres which need to be close to the input patterns. A good configuration
would place the edges of the activation regions of many locations along pattern class boundaries
in the input space.

In this work an approach has been devised which involves starting with a large number of
locations and pruning them down until one is left with a useful subset. The object is to keep a
group of locations which are all activated by a reasonable proportion of the training examples,
and which are as different from each other as possible. One might, for example, start with
20,000 locations and prune them down to 500. These 500 may then be used to to form a location
matching mapping which is more efficient to train and use than the original 20,000 and much
more effective than 500 completely random locations.

The pruning is performed in two stages. In the first pass all the locations which are not
active for more than a specified percentage of the input patterns are discarded. Typically 20,000
locations can be reduced to roughly 1,500 by keeping only those which respond to 20% or more
of the training examples. The second pruning stage is more complicated and involves using
simulated annealing to choose 500 of the remaining 1,500 locations such that the sub-sets of
input patterns that they respond to are as different as possible.

The optimisation required in this second pruning stage is performed using a Boltzmann
machine [AH&S85]. A single node in the Boltzmann machine is used to represent each of the
1,500 remaining locations. The Boltzmann machine is run through a single annealing schedule.
If, at the end of the annealing, the node is on then the location is retained. If the node is
off then the location is discarded. The Boltzmann machine is fully interconnected using only
negative weights on the links. These weights are set by gathering statistics on the number of
training examples which a given pair of locations both respond to. Thus if a pair of locations are
on together 50 times when processing the training data, the weight between the corresponding
nodes in the Boltzmann machine would be —50.

Every node in the Boltzmann machine is given the same positive bias which is controlled
during the annealing schedule to ensure that roughly the correct number of nodes are left on
when the machine reaches equilibrium. If, at a particular stage in the annealing, there are n out

of a possible p nodes on then
n 1

p B l+eT
where ¢ is the average activation energy of the nodes in the machine including the global bias.
Rearranging we obtain:

S = <p 1)

— = —Inl=—

T n

so if we want w of the p nodes to be on we need to change the global bias by

€ € o
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The annealing schedule used for the Boltzmann machine is a geometric progression starting at a
temperature equal to the maximum magnitude activation energy of any node and with a common

ratio of 1.01 [PH&F86].

SR

SR

This two stage pruning strategy provides an efficient way of getting a fairly small set of useful
locations while still retaining a reasonable degree of coverage of the input space.
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Task Inputs | Binary | Training Testing
Outputs | Examples | Examples
Vowels 4 10 1000 494
Words 329 146 6620 2620
Wheat 33 1 23006 2000

Table 1: Characteristics of the three tasks.

3 Pattern Classification Tasks

In this section the three tasks used in the experiments are described. The length of the input
and output vectors and the sizes of the training sets are summarised in table 1.

3.1 The Peterson & Barney Vowel Classification Problem

The version of the Peterson Barney [P&B52] data used in these experiments consists of two
repetitions of 10 vowels by 76 people. There were 33 men, 28 women and 15 children. Some of
the data is missing and 1494 of the 1520 possible vowels are present in the database. We received
the data from Steven J. Nowlan (Toronto) who originally obtained it from Ann Syrdal (AT&T
Bell Labs, Holmedell) in October 1989.

Each data item consists of four real numbers specifying the four formant frequencies together
with an indication of the vowel being spoken and whether the speaker was a man, woman or
child. The age and gender information was not used in these experiments. The database was
split randomly into a 1000 example training set and a test set of 494 examples. The task thus
consisted of taking four numbers at the input of the classifier and determining which vowel
corresponded to that particular set of formant frequencies.

3.2 The Lex-Net Word Classification Problem

This word recognition problem involves generating a mapping from the output of a connectionist
phoneme recogniser [R&F91] to a transcription in terms of complete words. The phoneme recog-
niser produces an output vector every 16ms specifying the probabilities of each phoneme in that
segment of speech. These probability vectors are processed using the time-compression network
developed by the LEARN project [RFR&PI1, RFP&R92]. Sequences of similar probability vec-
tors are removed and replaced by a single representative vector derived from their average. The
number of frames compressed in this way is also recorded for future use if needed.

Each of the composite phoneme probability frames is labelled with the word in which it
occurred. In the initial experiment 6620 such frames, derived from the DARPA resource man-
agement task, form the training set and a further 2620 make up the test set. There are forty
nine possible phonemes in each frame and 146 possible output words. In order to be able to



recognise the output words from the phoneme frames the classifier has to make use of context.
In these experiments three frames of context were provided on each side of the labelled frame.
This resulted in seven-frame input vectors with a total of 7 x 49 = 329 values.

The pattern classes are not linearly discriminable but a linear classifier can perform quite
well as we shall see.

3.3 The Wheat Problem

This problem involves detecting one particular strain of wheat from among 22 others. The
database contains 23006 grains of wheat of which roughly half are mercia and the others are
different varieties. Each grain is described by a vector of 33 real numbers and a single bit
indicates whether it is a mercia grain or not. The feature vectors are derived using a new image
based system developed at the National Institute for Agricultural Botany in Cambridge [K&D86,
PDK90]. A further set of 2000 grain measurements forms a test set for the task.

To solve this problem a system must have 33 real valued inputs and a single bit output to
indicate mercia or non-mercia. As there are 23 different types of wheat, only one of which we
wish to detect, the background pattern class is highly multi-modal. This provides a particular
challenge for pattern recognition systems.

4 Experiments

Three networks were used to solve each of the three pattern classification tasks. A single layer
of links alone, the links with a conventional location matching preprocessor, and the links with
a location matching preprocessor configured using location pruning. A number of extra control
experiments were performed using the vowel data alone because the smaller training set in this
task made it quicker to train.

Preliminary experiments were performed to adjust the parameters of the models and appro-
priately configure them for the tasks. An average location activation of 20% was chosen as this
appeared to give the best performance on the test data with the relatively small numbers of lo-
cations being used. The weight update factor p was varied according to the formula p = 9+::Scle’
where ‘cycle’ was the number of training cycles completed.

A training cycle did not necessarily involve training on every pattern in the training data.
Training examples were picked at random from the training set and used to train the network.
The weight updates were performed immediately after each training presentation. When a num-
ber of examples equal to the number in the training set had been presented, a cycle was said to
be complete.

The networks were trained until the performance on the training data appeared not to be
improving any further. All three tasks were attempted using a single layer network alone, then
a fixed mapping of 500 random locations was added as a preprocessor. An alternative fixed



Network Type Vowels | Words | Wheat
Single Layer Network Alone 39.3 67.5 86.9
100 Random Locations 53.8
Approx. 100 Pruned Locations 72.9
500 Random Locations 82.4 43.2 7.4
Approx. 500 Pruned Locations 83.8 59.3 82.8
Two layer Backprop Network 85.2

Table 2: Network Performance Percentages on Test Data.

mapping of pruned locations was also tried. In all cases the algorithm was set to prune to a
target of 500. The wheat and word tasks started with 20,000 locations and pruned to 453 and
437 respectively. The vowel task was started with 10,000 and pruned to 467.

As the vowel task involved a rather smaller training set a number of extra control experiments
were performed. Location matching layers with 100 random and 96 pruned locations were tried.
In this case the pruning started from 10,000 locations with a target of 100. Results for a con-
ventional two layer backpropagation network applied to exactly the same problem were kindly
made available by the author of [JPMG92]. In this network there were 15 hidden units and the
learning rate n was 0.9, with a momentum term « of 0.1

In section 2.3 above, the use of checks on individual elements of the input vector is described.
Each check normally has three parameters; which element of the input vector it refers to, the
threshold and a binary quantity specifying which side of the threshold the input must be on for
the check to be satisfied. A location is considered to be on when all its checks are satisfied. In
the Lex-Net word classification experiment a slightly more complicated type of check was used.
In this case two sets of four input elements are randomly chosen and the check is satisfied if the
largest of the eight input values occurs in one set of four rather than the other.

5 Results

The results are presented using two error measures. For both training and test performance the
percentage of output vectors completely correct is calculated and these figures are detailed in
the subsections below. For the test data I have also measured the proportion of the examples
for which the highest responding output unit is the correct answer. These percentages are
summarised for all three tasks in table 2.

5.1 DPeterson & Barney Vowel Results

The results for the Peterson and Barney vowel task are shown in table 3. The single layer network
on its own performs poorly. This is probably because of the low dimensional input vector; just
the four formant values.



Network Type Training | Complete correct | Test: Highest
Cycles output vectors Output is the
Train Test Correct Answer
Single Layer Network Alone 4371 | 334 36.8 59.3
100 Random Locations 2811 | 48.8 39.7 53.8
Approx. 100 Pruned Locations 2780 | 83.3 55.5 72.9
500 Random Locations 1303 | 100.0 67.0 82.4
Approx. 500 Pruned Locations 136 | 100.0 74.9 83.8
Two layer Backprop Network 1000 | 91.5 82.0 85.2

Table 3: Network Performance Percentages: Vowel Classification.

Network Type Training | Complete correct | Test: Highest
Cycles output vectors Output is the
Train Test Correct Answer
Single Layer Network Alone 395 | 99.6 52.3 67.5
500 Random Locations 3089 | 97.9 26.5 43.2
Approx. 500 Pruned Locations 168 | 100.0 39.7 59.3

Table 4: Network Performance Percentages: Word Classification.

The experiment with the 100 random and pruned locations shows how the pruning algorithm
results in much more effective location positions. This makes a difference to the performance
when the network is working with a minimal number of locations. The random location network
achieves only 53.8% on the test set where the pruned net reaches 72.9%. With 500 locations, even
the random network does quite well and the benefits of the pruning algorithm are less noticable.

The backpropagation network performs best of all, but notice that the location matching
network with 500 pruned locations does almost as well and requires significantly fewer training
iterations.

5.2 Word and Wheat Classification Results

The results for the word classification task are shown in table 4 and those for the wheat classi-
fication are in table 5. As in the vowel experiments above the networks with pruned locations
perform better than the random ones; they train a lot faster for the word task and produce better
results on the test data.

It is not surprising that the single layer network does so well and beats the best location
matching network on the word recognition task. This task has a very large input vector of 329
elements, in such a redundant representation it is understandable that a good linear discriminant
can be found. It is quite remarkable that the single layer network does so well on the wheat task
with only 33 input elements, again it provides the best solution of the three architectures tested.



Network Type Training | Complete correct
Cycles output vectors
Train Test
Single Layer Network Alone 42818 | 83.3 86.9
500 Random Locations 3714 | 728 7.4
Approx. 500 Pruned Locations 3476 | 78.4 82.8

Table 5: Network Performance Percentages: Wheat Classification.

6 Conclusions

Experiments in [CP&F91] had led me to believe that location matching networks were best suited
to classification tasks in high dimensional feature spaces with multi-modal pattern classes. The
failure of the this sort of network to perform well on the wheat task is an interesting discovery
and suggests that this is not at all the case.

Networks using location matching mappings appear to be useful to perform classification
tasks where the input pattern is intrinsically fairly low dimensional and where the required
discriminant function is complex. Where this sort of network is appropriate the location pruning
algorithm results in faster training than the other networks tested and produces good performance
on the test data. The training is robust and the weights may be updated after each example
presentation.

7 References

AH&S85 Ackley, D.H., Hinton, G.E. and Sejnowski T.J. (1985) “A learning algorithm for

Boltzmann machines” Cognitive Science, 9, pps 147-169.

CP&F91 Clarke, T.J.W., Prager, R.W. & Fallside F. (1991) “The modified Kanerva model:
theory and results for real time word recognition.” Proceedings of the IEE section F, Vol.

138, pps 25-31.

D&H73 Duda, R.O. and Hart, P.E. (1973) “Pattern Classification and Scene Analysis.” John
Wiley & Sons. New York.

JPMG92 Gosling, J.P.M. (1992) “Using the GANNET evolutionary neural network training
system with the Peterson and Barney vowel database.” Technical Report of the GANNET
IED project (GR/F 34848). Cambridge University Engineering Department, March.

PK&88 Kanerva, P. (1988) “Sparse Distributed Memory” MIT Press, Cambridge, Massachusetts,
USA.

K&D86 Keefe, P.D. and Draper, S.R. (1986) “The measurement of new characters for cultivar
identification in wheat using machine vision.” Seed Sci. and Technol. Vol. 14 pps 715-724.

PDK90 Keefe, P.D. (1990) “Observations concerning shape variation in wheat grains.” Seed
Sci. and Technol. Vol. 18, pps 629-640.

10



P&B52 Peterson, G.E. and Barney, H.L. (1952) “Control Methods Used in a Study of the
Vowels.” JASA 24, pps175-184.

PH&F86 Prager, R.W., Harrison, T.D. and Fallside, F. (1986) “Boltzmann machines for speech
recognition” Computer Speech and Language, 1, pps 3-27, Academic Press.

P&F88 Prager, R.W. and Fallside, F. (1988) “The modified Kanerva model for automatic
speech recognition, Computer Speech and Language, 3, pps 61-81, Academic Press.

R&F91 Robinson, A.J. and Fallside, F. (1991) “A recurrent error propagation speech recogni-
tion system.” Computer Speech and Language, Vol. 5, pps 257-274.

RFR&PI1 Russell, N.H., Fallside F., Robinson, A.J. & Prager R.W. (1991) “Lexical access
using a recurrent error propagation network.” Proc. EuroSpeech pps 1023-1026, September

1991.
RFP&R92 Russell, N.H., Fallside, F., Prager, R.W. & Robinson, A.J. (1992) “Lexical access

using a recurrent error propagation network with non-linear time compression.” Int. Conf.
on Spoken Lang Processing, Banf, October 12-16, 1992.

11



