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Abstract

The ultrasound envelope intensity distribution can be used for speckle detection
and for measuring the distance between images by speckle decorrelation. However,
this intensity signal is rarely available. Many researchers work with B-scan data
which has been scan-converted and subject to nonlinear mappings to compress the
dynamic range. This paper presents an approximate algorithm for recovering the
intensity signal from B-scan data. It is then used as the basis of a speckle detector
using the statistics of a homodyned k-distribution.

1 Introduction

There is a considerable body of theory associated with the ultrasound envelope intensity
distribution. Raw data in this form can be used for speckle detection (Dutt and Greenleaf
(1994)), to govern adaptive speckle suppression algorithms (Dutt and Greenleaf (1996a))
and for measuring the distance between images by speckle decorrelation (Li (1995); Chen
et al. (1997); Tuthill et al. (1998)).

However, ultrasound data is most easily available in the form of a B-scan, after it
has been subject to scan conversion (resampling onto a rectangular grid), logarithmic
compression and other proprietary nonlinear mappings built into the ultrasound machine.
These processes affect the statistics of the data and many of the attractive properties
theoretically derived for the raw intensity data are lost.

In this paper, we present an iterative strategy for deriving the approximate envelope
intensity signal from the pixel values of a displayed B-scan. We then describe an extension
of the algorithm of Dutt and Greenleaf (1994) which uses this information to detect the
regions of speckle in the image. The intensity speckle signal, generated from conventional
B-scans by these techniques, has the correct statistical properties to be used in decorrela-
tion algorithms (Chen et al. (1997)), thus enabling 3D ultrasound data to be constructed

1



without the requirement for a position sensor, or access to lower level signals from within
the ultrasound machine.

2 Finding the Envelope Intensity from the B-scan
Pixel Value

To compute the intensity signal, we need to invert the logarithmic compression and other
nonlinear signal processing performed by the ultrasound machine. Several groups of re-
searchers (Crawford et al. (1993); Kaplan and Ma (1994); Dutt and Greenleaf (1996b);
Smith and Fenster (2000)) suggest a mapping of the form p = DIn(I) + G, where p is
the B-scan pixel value, I is the envelope intensity, and D and G are parameters of the
mapping. Crawford et al. (1993) report that provided the parameters of the mapping
are chosen correctly, it can be used to approximately invert the compression algorithms
employed by a number of different ultrasound machine manufacturers.

The parameter G does not affect many of the statistics used to measure speckle, such
as the mean divided by the standard deviation, the normalised moments or the skewness
of the distribution. Furthermore, it does not affect the normalised autocovariance used in
the decorrelation algorithms for elevational distance measurement, provided the same G
values are used in the two images being compared (Chen et al. (1997)). This is likely to
be a reasonable assumption if G does not change rapidly across the image.

The challenge, therefore, is to determine an appropriate value for D. Crawford et al.
(1993) use measurements based on a calibrated phantom, while Kaplan and Ma (1994)
require access to the data before scan conversion, which is not often possible with com-
mercially available ultrasound machines.

In this section we present an iterative approach to determining the compression factor
D directly from a speckled patch in the ultrasound image. In Section 3, we show that this
approach is more robust to the nonlinear mappings built into ultrasound machines than
the formula of Kaplan & Ma.

The intensity values of fully developed speckle are known to approximately follow an
exponential distribution (Wagner et al. (1983)). Our approach is to match the measured
normalised moments of I in known speckle regions with the expected values for an expo-
nential distribution. The value of D can thus be found from a small number of manually
selected speckle patches, and then used to determine intensity values for any images ob-
tained using the same ultrasound machine configuration.

In Appendix A we show that the normalised moments, (I") / (I)", of the exponential
distribution are given by I'(n + 1). This is true for positive values of n which are not
necessarily integers. The algorithm proceeds as follows.

1. Choose an initial value for D. (We use 30; the algorithm is not particularly sensitive
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to the starting value.)

2. Invert the compression mapping for a patch of known speckle using Intensity =
exp(Pixel value/D).

3. Compute the normalised moments of the intensity data for the powers n = 0.25, 0.5,
1.5, 2.0, 2.5 and 3.

4. Calculate an error vector from the differences between the six normalised moments
computed and the normalised moments of an exponential distribution.

5. If the sum squared magnitude of the error vector is small compared to the machine
precision, or the search has converged to a (potentially local) minimum of this error
function: finish.

6. Use an optimisation algorithm (e.g. Levenberg Marquart) to estimate a value of D
that reduces the sum squared magnitude of the error vector. Continue from step 2.

For ease of reference, we call this the fractional moments algorithm for extraction of
decompression parameters. To test the algorithm, a set of 3249 random numbers were
generated with an exponential probability density function (PDF). They were then com-
pressed using values of D = 12, 16, 20, 24 and 29. A constant offset, G, was added to
each set of compressed data to make the numbers lie in the range 0-255. The iterative
algorithm was applied to the data and in all cases extracted the value of D to within 1.5%.

3 Detecting Speckle in the Intensity Image

Clifford et al. (1993) and Weng et al. (1991) have demonstrated that the k-distribution is
a good model for the amplitude distribution of diffuse scattering. The square of this signal
models the intensity distribution. Various researchers have estimated speckle parameters
based on its moments (Dutt and Greenleaf (1995); Ossant et al. (1998)).

If we wish to incorporate the statistics of coherent scattering, Jakeman and Tough
(1987) suggest that the homodyned k-distribution provides a better model than the gen-
eralised k-distribution, based on its performance when the proportion of diffuse scattering
is low relative to the amount of coherent reflection. Dutt and Greenleaf (1994) use an
iterative approach to finding parameters of an underlying k-distribution from patches of
an image. In this section, we present an analytical solution to this problem and use it to
demonstrate the robustness of the fractional moments algorithm, presented in the previous
section, in the presence of a nonlinear mapping from an ultrasound machine.

The expression for the probability density function of the homodyned k-distribution is
an unwieldy infinite series (Dutt and Greenleaf (1994)) with parameters

s> = the coherent backscattered signal energy,
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0? = the diffuse signal energy,

pu = the effective number of scatterers in a resolution cell (Dutt and
Greenleaf (1995)).

Following the approach of Dutt and Greenleaf, we wish to extract the following two derived
parameters from a patch of image data: k = s/o and § = 1/u. The moments of the
distribution of the intensity data can be expressed in terms of these parameters: the
amplitude is homodyned k-distributed and the intensity, I, is obtained by squaring it.

() = o[k +2]
(I*) = o*[8(1+B) + 8k + K]
(I*) = o°[48(1+ 3B + 28%) + T2k*(1 + ) + 18k* + &°

Using these expressions, we can compute two statistics: R, the ratio of the mean to the
standard deviation, and S, the skewness. Notice that o has cancelled out of the equations
leaving R and S in terms of just £ and S.

mean (I) k% +2

= = = 1
R standard deviation /<I2> _ <I>2 2vVk?2+28+1 (1)

3 2

5 = skewness = (Lt _ (£ 428+ 1)(68+3) 1 o
((1?) = (I)")= (k% + 28+ 1)

Adding together 6R + S, we get a quartic equation 3U* — (6R + S)U® +6U? —1 =0 in

U = /k? + 283 + 1, which is solved in Appendix B. Useful positive solutions for k& and 3

only exist for certain values of R and S. The solution domain is found by solving for the

lines k = 0 and 8 = 0 in R—S space. These are shown in Figure 1. Positive real solutions

for k and (8 only exist above the solid line kK = 0 and the dashed line g = 0.

Two sets of experiments were performed, each with 120 sets of 3249 random samples
from homodyned k-distributions with various parameters, as follows: ¢ = 1; s = 1, 2, 3,
4,5,6,7,8 9and 10; u=1,2,3,4,5,6,7, 8,9, 10, 11 and 12. These resulted in a range
of values for the derived parameters k = s/o and 8 = 1/p.

The first set of experiments involve only logarithmic compression of the intensity signal.

1. 3249 random numbers are generated from a homodyned k-distribution with the re-
quired k£ and . These numbers are then squared to form an intensity signal.

2. The data is logarithmically compressed and rounded to integers in the range 0-255.

3. 3249 samples from a squared Rayleigh (i.e. exponential) distribution are compressed
using the same compression parameters.

4. The D parameter of the logarithmic compression is estimated from the compressed
Rayleigh data using the algorithm described in Section 2 above and also using equa-
tion (8) of Kaplan and Ma (1994) (adapted to map to intensity rather than ampli-
tude), D = v/6v/m, where v is the variance of the log-compressed data.
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Figure 1: Graph of S = skewness against R = mean / standard deviation. The (R,S)
values of patches analysed in an uncompressed ultrasound image are shown shaded. Lines
are plotted for k =0, k=1, 8 =0and 8 = %. Positive real solutions for £ and 3 only
exist above the lines k =0 and 8 = 0.



5. The compressed data from the homodyned k-distribution is uncompressed using each
of the parameter estimates from step 4, and the statistics R and S are calculated in
each case.

6. k and S are found from each pair of R and S values using the method described
above.

A second set of experiments were then performed to assess the robustness of the two
approaches when the data is subject to an additional nonlinear mapping. To do this, the
procedure above was repeated with a nonlinear mapping applied to both the homodyned
k, and Rayleigh, data at the end of steps (2) and (3). The mapping was the default
pixel transformation used by a commercially available ultrasound machine, and is shown
in Figure 2.

Non-linear post-processing from an ultrasound machine

2001

150+

Mapped value
=
o
o

50

0 50 100 150 200 250
Input to mapping

Figure 2: One of the post-processing mappings used by the Diasus ultrasound machine
produced by Dynamic Imaging Ltd.

While the algorithm described in Section 2 is able to partially compensate for a non-
linear mapping, a further correction to the measured values of R and S can be used to
improve the resulting estimates of £ and 3. Once the iterative procedure for finding the
decompression factor D has converged, the values of R and S from the idealised speckled
data are compared with theoretical predictions for fully developed speckle (R =1, S = 2).
The errors observed are used as additive corrections to the values of R and S calculated
from the uncompressed homodyned k data before solving for £ and . This correction is



valid for R and S values close to those for speckle and thus improves estimates of £k and (3
when they are both small.

The results are shown in Figure 3. Graph (a) shows that both decompression algorithms
work well for the idealised data. The mean squared error in k for the fractional moments
approach is 0.023 and for Kaplan & Ma’s approach is 0.021. The standard error for these
figures is about 0.004. Graph (c) shows that the fractional moments algorithm is more
robust and partially compensates for the nonlinear mapping, resulting in a mean squared
error of 0.606 (standard error 0.074) compared to a figure for the Kaplan & Ma approach
of 1.861 (standard error 0.162).

Graphs 3(b) and (d) show similar results for estimating u. The deduced value of p is
unreliable above about 4 for the sample size used in the experiment (3249). The reason for
this can been seen from the graphs of probability density functions shown in Figure 4. For
w > 50, the PDF is indistinguishable from the Rayleigh PDF (1 = o0) and there is much
less variation in the graph shape for different values of y than there is for different k.

4 Experiments on B-scan data

The decompression and speckle identification algorithms were run on ultrasound data of
a kidney in order to illustrate their operation. Two square (57 x 57 pixel) patches of
speckle were manually identified in one of the scan images. These are shown in Figure
5(a). The algorithm of Section 2 was applied to the speckle pixel values from these squares
(and similar data from 9 neighbouring images) and an estimate of the effective logarithmic
compression factor, D, was obtained.

Decompression factor D = 19.08
Mean / standard deviation R =  1.07 (should be 1 for speckle)
Skewness S = 295 (should be 2 for speckle)

Using these results, the complete images were decompressed to give an effective intensity
signal, I = exp(p/D), from the pixel value, p, in the B-scan.

The algorithm from Section 3 was then used to identify regions of speckle in the images.
Round patches of 3249 pixels (radius 32.2 pixels) were analysed at every point in each image
and two statistics, R = mean/standard deviation and S = skewness, were computed. These
figures were then corrected using the residual errors observed during the calculation of the
decompression parameter, by subtracting 0.07 from R and 0.95 from S. The resulting
cloud of points in (R, S) space is shown as shading in Figure 1.

To identify speckle in the images we require thresholds for k£ and . With samples
of size 3249, we know from the experiments in Section 3 that estimates of u above 4 are
unreliable, so we cannot expect to differentiate between values of 5 below i. We therefore
set our [ threshold at %. We choose a threshold of 1 for &, so as to accept any patch in
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Figure 3: k and p values extracted from compressed simulated data. In (a) and (b) the data
is just logarithmically compressed. In (c) and (d) a nonlinear mapping from an ultrasound
machine post-processor is also applied. Graph (c) shows that the fractional moments
algorithm is more robust than Kaplan and Ma’s algorithm and partially compensates for
the nonlinear mapping.
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the same density function for ¢ = 1, s = k£ = 0 and various values of u. Notice that the
graph shape changes more with variation in £ than it does for variation in .

which the intensity of diffuse speckled reflection is greater than the intensity of coherent
reflection. The borders defined by these thresholds in R—S space are shown in Figure 1.
The sliver of space between them is the region deemed to contain points with statistics
derived from predominantly speckled data.

Where an image patch has statistics that meet the rules 0 < k£ < 1, and 0 < 8 < %
all the points in the patch are accepted as speckle. The speckle found in the first frame of
the data set is shown in Figure 5(b). Figure 5(c) shows the 16274 frame of the data and
Figure 5(d) shows the speckle regions identified in it.

5 Discussion and Conclusions

We have presented the fractional moments algorithm for the decompression of B-scan
ultrasound images to produce an approximate intensity signal. This algorithm produces
similar results to the quicker approach of Kaplan and Ma (1994) for pure logarithmic
compression, but also works in the presence of a nonlinear mapping where the Kaplan
formula does not apply.

The envelope intensity obtained from the decompression process can be used by a
variety of algorithms that rely on the statistics of the ultrasound signal. These include
speckle detection algorithms, adaptive speckle suppression algorithms, and algorithms for
measuring the distance between B-scan slices using speckle decorrelation.



(a) The first frame of a scan through
a kidney, showing the manually iden-
tified speckle regions used to deter-
mine the image decompression pa-
rameters.

(¢c) The 16274 frame of a scan
through a kidney.

(b) Speckle found in the image shown
in (a).

(d) Speckle found in the image shown
in (c).

Figure 5: Results
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We have also presented an extension of the approach of Dutt and Greenleaf (1994) to
perform speckle identification in B-scan images. We have described a new analytical means
of solving for the parameters of the underlying homodyned k-distribution from statistics
of the data. This has been tested on simulated data to produce quantitative results, and
on B-scan ultrasound images of a kidney to illustrate its operation.

These algorithms open the way for 3D ultrasound data to be constructed from conven-
tional B-scans using speckle decorrelation, without the requirement to have access to lower
level signals from within the ultrasound machine.

6 Appendix A: Fractional order moments of the ex-
ponential distribution

The probability density function of the exponential distribution is

1 —1
o) = 55 o (53)
The nth order moment is therefore
o Jn -1
I = — —)dI
() 0o 202 P (202>

Using Euler’s integral from page 255 of Abramowitz and Stegun (1970), we obtain (I™) =

(20%)"T'(n+1) = (I)"T'(n+1). Thus the normalised nth order moment of the distribution
is given by % =T(n+1).

7 Appendix B: solving for £ and § in terms of R and
S

If we take six times equation (1) plus equation (2) we obtain a quartic equation 3U* —
(6R+ S)U3 +6U? —1=0in U = /k2+ 2B + 1. Using symbolic algebra software, the
solutions to this equation can be expressed in terms of the following quantities:

d = 6R+S

¢ = Vei—@

I = V& —48+12t

m = \/2d? — 96 — 12t + (2d° — 144d) /I

n = \/2d2 — 96 — 12¢ — (243 — 144d)/1

The four solutions for U are: Uy = 4™ [, = dtlom 17, — d=lin g U, = 4=1=n,
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From these values of U, we calculate corresponding solutions for k£ and 3, rejecting
negative or imaginary values:

k = vV2UR -2

1 1
5= 5(Us+gm-3)

These solutions are only meaningful when both £ and 3 are greater than zero. To find
the conditions for this to be the case, we solve for R and S when k£ = 0, and then when

B =0.
First the case for £ = 0. Equations 1 and 2 give:

1
R = ——
V2B +1
g _ 68+3 1
V2B+1  (28+1)3
_ 3 _ps
=85 = 7 R
= R(S+R*) = 3

The case for § = 0 is the same in principle, but involves more complicated algebra
(requiring automatic manipulation by the symbolic algebra package):

R - k? 42
2VE2 +1
5 — 3(k*+1) -1
(k2 +1)%
g 16 — 48Rt + 72R% — 84R* + T2R*

32R%t — 32R% — 48R* + 18R? + 6Rt + 32R6 — 1

where t = +/R? — 1. Figure 1 shows that £ = 0 defines the boundary for 0 < R < 1 and
B = 0 takes over for R > 1.
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