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ABSTRACT

Modelling context effects and segmental tran-
sitions in speech recognition systems is very
important. Explicitly modelling segmental
transitions in a RNN framework would cir-
cumvent these problems. We present an in-
teresting application of Principal Curves,
an algorithm to extract a non-linear sum-
mary of p-dimensional data firstly published
in 1989 by Hastie/Stuetzle. The algorithm
can be used to visualize non-linear transient
characteristics in speech. We will show that
between-phone characteristics found within
diphones can be used as discriminant in-
formation to distinguish ambiguous phones.
The technique used is explained and illus-

trated on the examples /bah/, /dah/ and
/gah/.

INTRODUCTION

Since speech is a complex time-sequential
process, it is well established that particu-
lar phones vary acoustically when they oc-
cur 1in different phonetic context. In state-
of-the-art systems based on short term spec-
tral analysis this is achieved by enlarging
the feature vector to include derivatives (e.g.
delta cepstra, delta delta cepstra). Tt is
well known that this increased dimension-
ality introduces parameter estimation prob-
lems when dealing with finite data. Re-
current neural networks (RNN) have been
viewed as a natural choice for modelling
the temporal structure of speech [7]. RNNs
are widely used for context-dependent clas-
sification task because they seem to repre-
sent time implicitly within the “state” of
the network. Nevertheless all RNN architec-
tures in general treat the feedback as an in-
formation source which is fed into a black
box system which enhances the overall per-
formance of the classification task. The eval-
uation of their performance is mainly made
on large tasks whereas there has been no re-
search in depth to look into the decisions
made for individual classes.

Critical questions to the claims of RNNs
were made in the early work from Bur-
rows/Niranjan [1], who showed for very sim-

ple recurrent neural networks the contri-
bution performed by the feedback connec-
tion. Feedback mainly results in generat-
ing a switching delay at class boundaries
and a smoothing of the output decision by
moving the decision boundary. A particu-
lar problem was that RNN were operating
in saturated regions. Especially for the effec-
tiveness of feedback information using tran-
sient information, saturated regions have to
be avoided which makes the network insen-
sitive to the order of presentation of the in-
put vector.

In a first step we are primarily aiming at ex-
plicitly modelling segmental transitions in
the acoustic signal which can be found by
employing the principal curve algorithm to
important speech units. Incorporating tran-
sient models into a RNN framework will
hence incorporate contextual feedback on an
individual phone-pair base.

SUITABLE SPEECH UNITS

As a typical problem in speech recognition
the discrimination of /b/, /d/ and /g/ will be
examined in the context of /ah/. The clas-
sification of the stops /b/, /d/ and /g/ is
very ambiguous in the task of phone clas-
sification. Using the diphone based contex-
tual information given by the transition to
the succeeding phone as an additional infor-
mation source would make the decision much
more discriminant.

A suitable sub-word unit to extract between-
phone contextual information is the diphone.
A diphone is defined as half of one phone fol-
lowed by half of the next phone (see Fig-
ure 1). Because the coarticulation influ-
ence does not usually extend much further
then half way into the next phone character-
istics of these speech units should represent
useful contextual information which will im-
prove the speech recognition process [5, 6].

DATA REPRESENTATION

The aim is to extract temporal trajecto-
ries in a lower dimension whereas the tem-
poral characteristics and the statistics of the
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Figure 1: Schematic of a diphone

data are not necessarily correlated. An ap-
propriate dimensionality reduction scheme-
has to be found which inherently carry a
relationship between the temporal transi-
tion performed by the data and its statis-
tical distribution. Hence additional con-
straints to the data has to be added to force
algorithms to focus on temporal dependen-
cies.

Time Constraint PCA (TC-PCA)
Employing standard PCA for dimensional-
ity reduction focuses on maintaining maxi-
mum variance which is not necessarily corre-
lated to characteristic temporal trajectories.
Hence standard PCA dimensionality reduc-
tion schemes will not find characteristic tra-
Jjectories in lower dimensions. Here two ideas
were used to overcome the weakness of be-
ing unable to visualize the temporal transi-
tions in diphones.

1. The importance of the transient re-
gions between phones leads to an em-
phasising factor which enhances the
resolution of the data in its impor-
tant region. Latest results found that
a quadratic emphasising function de-
livered the best results.
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where mid is the number of the mid-
dle frame to ensure a maximum of em-
phasis onto the middle region of the
speech unit and ¢ the actual frame
within the speech unit. Every speech
unit is constructed of n frames col-
lected from the right and left frames
around the phone boundaries, hence
every speech unit consists of an odd
number of 2n + 1 frames.

2. Adding temporal constraints to our
data will force the algorithms to em-
phasise the time-dependencies. By
adding another dimension to the data
vector representing the frame order

and hence its temporal ordering is forc-
ing the algorithm to focus on temporal
transitions. The strength of the added
time-constraint can be chosen by a fac-
tor.

TC-PCA for dimensionality reduction forces
the first principal component almost to be
parallel to the time axis depending on the
employed strength of the used constraints fo-
cusing on the temporal importance of our
data representation. An important indica-
tor for a sufficient time constraint can be
found by using the ordering of the succeed-
ing frames of each diphone. Assuming that
the first principal component line is defined
by f(A) = X + Aa, where a is the first linear
principal component, then for a correct tem-
poral ordering the line f(A) is represented by
n tuples (A;, f;) for each diphone represented
by ¢ frames [x1 ...x,] , joined up in increas-
ing order of A to form a straight line. Mak-
ing sure that the tuples are sorted in increas-
ing order of A;, one can maintain the tem-
poral constraints.

PRINCIPAL CURVES

The algorithm for principal curves described
by Hastie/Stuetzle [4] was firstly published
in 1989 describing a method of extracting
a smooth one-dimensional curve that pass
through the “middle” of a p-dimensional
data set providing a nonlinear summary of
the data. The algorithm for constructing
principal curves starts with the usual prin-
cipal component line. This line is then
smoothly bent according to the actual data
representation, by locally averaging of p-
dimensional points and iteratively minimis-
ing the orthogonal distances to the new
curve.

The principal curve is defined by given X a
random vector in RP. Let f denote a smooth
unit-speed curve in RP parameterised over
A C R', a closed interval, that does not in-
tersect itself (A; # Az == £(Ay) # £(Ag))
and has finite length inside any finite ball in
R?. The projection index A¢ : RP — R/ is
defined as:

Ae(x) = sup{A : [[x — £(A)] = inf [x — £(z)[]}

The projection index Ag(x) of x is the value
of A for which f(A) is closest to x. If there
are several values, the largest is picked.

The definition can be interpreted as start-
ing with the first principal line to provide a
initial ordering and collecting for any par-
ticular parameter value A all observations



that have f(A) as their closest point on the
curve. If £f()) is the average of those obser-
vations, and if this holds for all A, then f
is called a principal curve. Because there
is in general only one observation x; re-
lated to a certain A; the observations pro-
jecting into a neighbourhood are locally av-

eraged.

The principal curve algorithm iterates through

Projection-Ezpectation steps until the rela-
tive change in the distance from the data
points to its projections is below a certain
threshold. As a initial projection step the or-
dering given by the first principal compo-
nent is used.

|D2(X:fi_1) - DQ(XJfZ”
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with
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Expectation

As the expectation step a locally weighted
running line smoother is employed to esti-
mate a new f(A) which will be used to calcu-
late the new projecting points and hence the
new distance from the data points to its pro-
We used the algorithm for ro-
bust locally weighted regression suggested
by Cleveland [2] calculating the parameters
in a linear regression minimising the follow-
ing expression, thus that [;’j()\i) are the val-
ues of §;:

jections.

n
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For each A;, weights, wg(A;), are defined for
all A, & = 1,...,n using the weight func-
tion W. This is done by centering W at A;
and scaling it so that the point at which W
first becomes zero is at the rth nearest neigh-
bour of A;. For each i let h; be the dis-
tance from A; to the rth nearest neighbour
of A;. That is, h; is the rth smallest number

among |A; — A;|, for j = 1,...,n. This pro-
cedure for computing the initial fitted val-
ues is referred to as locally weighted lin-
ear regression f'(z\,)

f(n) = Z/?j(/\i)Af

To maintain the robustness a different set of
weights, d, is now defined for each (A;, f(A;))
based on the size of the residual f();) —f'()\i).
Let ¢ = f(\) — f'()\z) be the residuals
from the current fitted values. Let s be
the median of the |e;|, then the robustness
weights are defined by

dr = B(er/6s)

lz| < 1
] > 1

B(z) = (1—2%% for
= 0 for

To compute new f();) for each i the linear
regression described above is performed with
the weights drwg(X;) at (Ax,f(Ax)). To
refine the regression the robustness step to
perform locally weighted linear regression
might be performed several times.

Projection

Aim of the projection step is to reorder the
data according to its distance relationship
to the new generated curve. Starting from
a new curve represented by n points f(j)(~)
one wish to find for each x; in the sample
the value A; = Ag)(xi). First we find the
closest point on the line segment joining
each pair (f(Ag),f(Ag+1)). The closest point
to the curve is then either the projection
onto a line segment or one of the f(\g).
Using these values to represent the curve,
we replace A; by the arc length from fl(j) to
fi(j). Potential problems with this projection
step can be found where the expected values
of the observations project onto f(A;,) or
f(Amaz). To circumvent this problem the
corresponding data points generate a new
f(Amin) or f(Anas) by projecting the data
point onto the first or last line segment
extending the original principal curve.

EXTRACTION RESULTS

Initially the experiments to extract and vi-
sualize the underlying dynamics in our data
representation were made using the pub-
lished algorithm by Hastie which could be



obtained from his ftp-site. The published
algorithm is hard to evaluate because for
higher dimensional data the algorithm uses
the first two vectors to span a plane to per-
form a scatter-plot which fails to show the
initial ordering using the first principal line
and the bent principal curve according to the
minimum squared distance. Because the al-
gorithm was generating controversial results
a MATLAB version of the algorithm was im-
plemented enabling a scatter-plot on a ran-
dom plane by providing two vectors to span
a plane. The following pictures which are
generated for the diphone problem rely en-
tirely on our version which is producing
the scatter-plot by projecting the data onto
the plane spanned by the principal com-
ponents with the largest eigenvalues. The
used data was extracted from the phone
labelled TIMIT database [3]. The MAT-
LAB algorithm is then generating a prin-
cipal curve within that plane showing ad-
ditionally the first principal line as start-
ing principal curve which results from the di-
mensionality reduction scheme using TC-
PCA. Within the pictures the data belong-
ing to different time frames is coloured dif-
ferently.
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(a) Diphone /gah/ after first iteration

Figure 2: Principal Curves generated for the
diphone /gah/ using 14-dim data generated
from the MATLAB algorithm including the
first principal line.

DISCUSSION

The figures 2, 3 and 4 show five temporal
consecutive frames for different diphones ap-
pearing within different contexts. The mid-
dle frame corresponds to the phone bound-
ary. Using time-constrained data one can
clearly observe the different data frames
where additionally the data points belong-
ing to a certain frame are shaded in different

(a) Diphone /bah/ after first iteration

Figure 3: Principal Curves generated for the
diphone /bah/ using 14-dim data generated
from the MATLAB algorithm including the
first principal line.

(a) Diphone /dah/ after first iteration

Figure 4: Principal Curves generated for the
diphone /dah/ using 14-dim data generated
from the MATLAB algorithm including the
first principal line.

colours after the dimensionality reduction
process using TC-PCA. Here the dimension-
ality reduction process is actually used to de-
fine an ordering of the data for the princi-
pal curve algorithm. This means that no in-
formation is thrown away because the princi-
pal curve algorithm works with the high di-
mensional data. Only the results are dis-
played in a lower dimension to visual evalu-
ate the principal curve. The results of gen-
erating principal curves show the different
transient characteristics for each phone-pair.
The trajectories for the final frames for each
diphone seems to be very similar. This fol-
lows the underlying structure of speech that
phones represent acoustically steady state
regions. Observations of different charac-
teristic trajectories within the psecific di-
phone plane formed by TC-PCA for the dif-
ferent CV syllables can be found. They rep-
resent the non linear transitions from one



phone to the next. Here further optimisa-
tion of the algorithm and the data represen-
tation will be employed to get most distin-
guishable trajectories.

CONCLUSION

Using principal curves to extract transient
characteristics in speech units seems to be a
promising application to visualize non-linear
trajectories within diphones. Employing fur-
ther optimisations to the algorithm as well as
to the data representation we expect results
which can be used to distinguish ambiguous
phone-pairs. Here in particular we are inter-
ested in an extension of principal curves to
3D which might lead to a time invariant tra-
jectory with higher discriminant informa-
tion. This additional information to dis-
criminate ambiguous phone-pairs is the base
for further investigation how a RNN frame-
work can be used to model explicitly dis-
criminant transitions to support the recog-
nition process without necessarily enlarg-
ing the input space.
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