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Abstract

This paper describes a speaker independent phoneme and word recognition system
based on a Recurrent Error Propagation Network (REPN) trained on the TIMIT
database.

The REPN is a fully recurrent error propagation network trained by the propaga-
tion of the gradient signal backwards in time. A variation of the stochastic gradient
descent procedure is used which updates the weights by an adaptive step size in the
direction given by the sign of the gradient.

Phonetic context is stored internal to the network and the outputs are estimates
of the probability that a given frame is part of a segment labelled with a context-
independent phonetic symbol.

During recognition, a dynamic programming match is made to find the most
probable string of symbols. This is done at a single level for phoneme recognition
and at two levels for word recognition.

The phoneme recognition rate for all 61 TIMIT symbols is 70.0% correct (63.5%
accuracy including insertion errors) and on a reduced 39 symbol set the recognition
rate is 76.5% correct (69.8%). This compares favourably with the results of other
methods, such as HMMs, on the same database (Lee and Hon, 1989; Levinson et al.,
1989).

Analysis of the phoneme recognition results shows that information available
from bigram and durational constraints is adequately handled within the network
allowing for efficient parsing of the network output. For comparison, there is less

*The foundation of the work described in this paper was presented in June 1988 (Robinson and
Fallside, 1989). The contents of this paper are based on a technical report of March 1990 (Robinson
and Fallside, 1990a), which has been extended to include later work up to November 1990 (Robinson
et al., 1990; Robinson and Fallside, 1990b)



computation involved in the resulting scheme than in a one-state-per-phoneme HMM
system. This is demonstrated by applying the recogniser to the DARPA 1000-word
Resource Management task. Parsing the network output to the word level with no
grammar and no pruning can be carried out in faster than real time on a SUN 4/330
workstation.

1 Introduction

The most promising approach to the problem of large vocabulary automatic speech
recognition is to build a recogniser which has an intermediate level at which phonemes
are represented and which is subsequently mapped onto a string of words. Phonemes
are the smallest linguistic unit that can be used to distinguish meaning (Ladefoged,
1982, p 23). By their symbolic nature they provide a natural boundary for speech
recognition systems between the lower level distributed representations such as the
acoustic waveform and its transformations, and the higher level symbolic represen-
tations such as words and the representation of syntactic and semantic knowledge.
The phoneme recognition approach is practical because the number of phonemes is
small (about 45) compared with the number of words in a large vocabulary task
(at least 1000). Thus speaker independent phoneme models may be trained with a
much smaller speech corpus than would be required to train speaker independent
word models.

Currently the best established technique for large scale automatic speech recog-
nition uses Hidden Markov Models (HMMs) (Levinson et al., 1983; Rabiner et al.,
1983; Rabiner and Juang, 1986). Recently, connectionist models (Rumelhart and
McClelland, 1986; Kohonen, 1988) and more particularly, error propagation net-
works (Rumelhart et al., 1986) have been used with some success in this field (Bourlard
and Wellekens, 1987; Waibel et al., 1987; Franzini et al., 1989; Lippmann, 1989).
The main differences between the HMM and connectionist approach using error
propagation networks are:

e Error propagation networks provide a discriminant decision, i.e. the training
minimises the distance to the target class and maximises the distance to the
other classes. Standard HMMs lack this ability although work is now being
done to develop discriminant HMMs (Bahl et al., 1986; Young, 1990).

e Recurrent nets can use internal storage for short term context information.
Thus the output can represent context-independent phonemes. This contrasts
with the HMM approach where context-dependent phonemes, such as gener-
alised triphones, are needed to achieve good performance (Lee, 1989).

e Recurrent nets have an inherent mechanism for adapting to speaker variability.
Information relating to type of speaker (e.g. female/male) can be gathered
from the input and accumulated over time in the state vector. The recognition
process can then use this slowly varying information to make a more accurate
classification. There is no such mechanism in word HMMs which consist of



concatenated independent phoneme models, although a similar effect can be
achieved through an external mechanism such as the remapping of codebooks.

e Error propagation networks are trained by a gradient descent procedure which
is considerably slower than HMM Baum-Welch parameter reestimation.

e The sequential nature of the speech signal at the phoneme level is more natu-
rally expressed by the state transitions in a Markov model than by the devel-
opment of the state vector in a recurrent net. As a result, the state sequence
of phoneme HMMs can be concatenated to yield the state sequence for word
models but no equivalent operation has been applied to recurrent nets.

The first three points may yield a higher recognition accuracy for recurrent nets and
the last two points may be overcome with sufficient computational resources and
the use of Markov models for higher level processing. This suggests that recurrent
error propagation networks are worth investigating as an alternative to HMMs.

The strategy adopted here is to pass frames of windowed speech through a pre-
processor which are then fed to a recurrent net. This net is trained to model the
frame-by-frame classification of the TIMIT database. A dynamic programming post-
processor is then used to convert this distributed representation into a string of
phoneme and word symbols representing the sentence.

1.1 The TIMIT and Resource Management Databases

Accurate comparison of different speech recognition systems is a difficult task. It is
therefore important to evaluate recognisers on a standard database. The DARPA
TIMIT Acoustic Phonetic Continuous Speech Database (Garofolo, 1988) (hereafter
referred to as the TIMIT database) has been designed to be used for training recog-
nisers at the phoneme level. It has become the most widely available database of
its size and type.

At the time of writing, only the December 1988 Prototype CD-ROM was avail-
able. This contains all the training material of the full database but none of the test
material. Thus, it was necessary to partition this database into training and testing
portions. There are 420 speakers in total which were divided into 317 speakers for
training and 103 speakers for testing. Eight sentences were used per speaker (the
si and sx sentences). The identity of the test speakers are given in table 1, those
marked with an asterisk are believed to have been used by Lee and Hon for testing
their Hidden Markov model recogniser (Lee and Hon, 1989). The authors are grate-
ful to Vassilios Digalakis and Mari Ostendorf of Boston University for their help in
compiling this list.

In order to compare with other techniques and databases, the 61 TIMIT symbols
were mapped onto a set of 50 symbols (Lee, 1989) and a set of 39 symbols (Lee and
Hon, 1989). The TIMIT symbols, the reduced sets and the IPA symbols are given
in table 2 which is an adaptation of a similar table by Seneff and Zue (Seneff and
Zue, 1988; Pullum and Ladusaw, 1986). All occurrences of the the glottal stop, q,
were discounted for the 39 symbol set.



fdmy0*
fjlr0*
fkdw0*
fmbg0
fmem0
fnkl0
fntb0*
frew(
rll0
fsahO
fsak0
fsen0
fsdj0
fsemO*
fsgf0
fsjg0
fsjs0
fsjw0
fskp0
fslbl

fsmal

fsmm0
fspm0
fsrh0
fsxal
ftaj0
ftbr0
fthw0
ft1h0
futb0*
fvkb0
fvmh0
mbjv0*
mdem0*
mdlm0*
mdss0*
mejs0*
mfwk0*
mjee(*
mpam0*
mpfu0*
mrabl

mrds(
mreel
mrfl0
mrgm0(
mrjm0
mrlj0
mrlr0*
mrmsl
mroal
mrpcl
mrpcl
mrre()
mrtj0
mrtk0
mrvg(
mrws(
mrwsl
mrxb0
msas(
mses(

msfh0

msthl
msiv(
msjk0
msjsl
mslb0*
msmc0
msmr(0
msrgl
msrr0
msvs(
mtaal
mtab0
mtas0
mtat0
mtbc0
mtdb0
mteb0
mter(
mtjm0
mtjs0*

mtjul

mtkd0*
mtlb0
mtlcO
mtmr0
mtmt0
mtpf0
mtpgl
mtpp0
mtrr0
mtwh0*
mtwhl
mvlo0
mwbt0
mwdkO0
mwem{
mwew(
mwjg0
mwsh0
mzmb(

Table 1: Identity of speakers used in the test set




TIMIT | 50SET | 39SET | IPA | TIMIT | 50SET | 39SET | IPA
P p p p b b b p
t t t t d d d d
k k k k g g g g

pcl pcl sil p° becl becl sil b°
tcl tcl sil d° dcl dcl sil d°
kel kel sil | k° gcl gel sil g°
dx dx dx ¢ q pau ?
m m m m em em m m
n n n n en en n n
ng ng ng ) eng ng ng b
nx n n T
s S s S sh sh sh S
z Z zh z sh Z
ch ch ch c jh jh jh J
th th th 0 dh dh dh 0
f f f f v v v v
1 1 1 1 el 1 1 ]I_
r r r r W W W w
y y y y h# h# sil ]
pau pau sil 0 epil epi sil 0
hh hh hh h hv hh hh h
eh eh eh € ih ih ih I
ao ao aa ) ae ae ae ®
aa aa aa a ah ah ah A
uw uw uw u uh uh uh U
er er er 3 ux uw uw u
ay ay ay ay oy oy oy a4
ey ey ey ey iy iy iy it
aw aw aw av ow ow ow o%
ax ax ah =Y axr er er
ix ix ih 1 ax-h ax ah 9

Table 2: The TIMIT symbol set with the two reduced sets and TPA symbols



In order to demonstrate word recognition, the network was tested on the DARPA
1000-word Resource Management database (Price et al., 1988). All six speakers on

the first CD-ROM of the speaker-dependent training data (September 1989 release)
were used for testing, with 610 sentences per speaker, (the sb and sr sentences).

2 Preprocessor

The preprocessor used in this paper was a result of a comparison of many prepro-
cessors for this system (Robinson et al., 1990). Linear Predictive Coding (LPC),
Fast Fourier Transform (FFT), filterbank and auditory model techniques were com-
pared by deriving a form of normalised power spectrum plus a power channel for
each. In the case of LPC and FFT, this power spectrum was also represented as a
cepstrum. The addition of other features, such as zero crossings and estimates of
the pitch and formant positions and amplitudes were also investigated. In all cases
a 32ms Hamming window was used with a frame spacing of 16ms. The conclusion
was reached that most preprocessors which were based around a power spectrum
gave similar performance. The simplest of these used the cube root of the powers in
twenty channels derived from the FFT. This design was arrived at by simplifying the
auditory model presented by Bladon and Lindblom (Bladon and Lindblom, 1981),
and is the preprocessor used in this paper.

For practical reasons, (memory limitations on disk and in RAM), the prepro-
cessed data was scaled to fit into 8 bits per channel. This was done by computing
a histogram and scaling so that no more than one in 500 samples lies outside the
central 15/16th of the range. Typically this meant that one sample in 1000 would
be thresholded.

The preprocessor truncated initial and final silences longer than 160ms. This
was done to reduce size of the training data and provide a more even distribution
of symbols amongst frames.

It was also found to be advantageous to preprocess the training data with several
different offsets to better cover the variability in the windowed speech. In a prelim-
inary experiment, this improved the frame-by-frame recognition rate by about 5%,
as can be seen in table 3, although it should be noted that part of the increase is
as a result of increasing the time constant for smoothing the weight changes used in
training (the “momentum” term (Rumelhart et al., 1986)).

no. of | frame-by-frame
offsets | recognition rate

1 61.1%
2 64.2%
4 66.0%

Table 3: Effect of multiple offsets on frame-by-frame recognition rate



3 The Recurrent Net

A recurrent net can be considered as a sequence of error propagation networks
(Rumelhart et al., 1986) where the input and output vectors are divided into external
and internal portions. The external input vector, uq.. _1, consists of the 21 channels
from the preprocessor; and the external output vector, yo._ ar—1 has 61 dimensions,
one per phoneme label, and is fed to the postprocessor. The internal output forms a
state vector, xo. n_1, of 192 dimensions and is fed to the same network in the next
time period as shown in figure 1.

o(t) o(t+l1)

Figure 1: The Recurrent Error Propagation Network

This network operates by concatenating the current external input and the last
internal output vectors to give the complete input vector at time ¢:

1 forz =0
ogt) = uz(t_)l for 1 <:< L (1)
2D, for L+1<i<N+L

which is then passed forwards through the network by performing a matrix multi-
plication by the weights, w;;, followed by the application of a non-linear squashing
function:

(t+1) _ 1 .
x, = for0<i<N-1 (2)
1+ exp <— i wijog-t)>

7



(t41) _ 1 .
Y, N = for N<:<N+M-1 3
N 1 + exp (_ E]L:ON wﬁggﬂ) (3)

The resulting output is compared with the desired output vector, do_as_1, according
to a cost function. Following Hinton (Hinton, 1987), Baum and Wilczek (Baum and
Wilczek, 1987) and Solla, Levin and Fleisher (Solla et al., 1988) the outputs are

treated as probabilities and the cross-entropy cost function is used:

M-1
log(p®) = 3 dPlog(y™) + (1 — d) log(1 — y*) (4)

=0

Training is performed on a 64-processor array of T800 transputers with the
training data distributed evenly over the processors, each of which has a copy of all
the weights. Of the possible schemes for training recurrent networks (for example,
see (Robinson, 1989; Pearlmutter, 1990)), the “unfolding in time” approach is used
as it is computationally efficient whilst computing a good estimate of the error
signal. On each processor, the forward pass for 32 consecutive frames is made and
the activations are stored in a buffer. The backward pass over this buffer is then
performed and the resulting partial derivatives are summed over all processors to
give an estimate of the gradient based on 2048 frames. There is a trade off in
deciding the number of frames to be processed before updating the weights; a large
number gives a more accurate gradient signal, and a small number allows for more
frequent weight updates. Typical training time was three days or about 10'® floating
point operations.

The network used a novel algorithm for updating the weights. A positive step size
for each weight is defined, and the weights are changed by this step size multiplied
by the sign of the estimated gradient. The estimated gradients are averaged with a
first order filter, the “momentum” term (Rumelhart et al., 1986), which started with
a small time constant and increased over the first few passes through the training set
until it is sufficient to smooth the estimated gradient over the whole of the training
set. Initially all steps sizes are equal, and the step is adapted by multiplying (or
dividing) by a scaling factor if the estimated gradient agrees (or disagrees) in sign
with the smoothed gradient. The scaling factor used was 1.1. The step sizes were
hard limited to be not greater than a factor of 16 above or below the mean step size.
This method has a theoretical disadvantage in that changes in the magnitude of
the step size can occur more rapidly than changes in the smoothed gradient. Thus
it is possible to have a large smoothed gradient which consistently disagrees with
the sign of the estimated gradient and which may result in a rapid reduction of
the step size to the lower threshold, so inhibiting further motion of that weight. In
spite of this potential disadvantage, this method was found to converge faster for
this problem than any other method tried, in particular the technique of Chan and
Fallside (Chan and Fallside, 1987) used in the first version (Robinson and Fallside,
1989), and the similar technique developed by Jacobs (Jacobs, 1988).

The internal representation used to store context in the state units has no ex-
ternal constraints, and as such it is only dependent on the initial weights and their
subsequent adaptation. Whilst it is possible and perhaps worthwhile to study this
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internal representation, such work is outside the scope of this paper. However, it is
important to show that long term context can be stored in this structure. To do this,
a network was constructed with an extra input that was set high or low depending
whether the speaker was female or male, and this was assumed to be an appropriate
format for this information. This network displayed slightly faster learning but no
significant increase in performance. From this experiment it was concluded that the
one additional bit of information was already contained in the state vector in some
form, and therefore that long term context information could be trained into the
recurrent network.

Example output of the model is given in figure 2 plotted against time as a variable
width line per output channel. The hand labels are indicated on the horizontal axis
of the diagram and the recogniser labels on the vertical axis. The shaded rectangles
represent the target outputs. The sentence is “The viewpoint overlooked the ocean”
(TIMIT file: train/dr7/flas0/sx228/sx228.adc) which is of 2 seconds duration.

The network contains 56026 weights which are processed at every 16ms frame
yielding 3.5 million multiply and accumulate operations per second. This may be
carried out in three times real time using a SUN 4/330 workstation. Thus a real time
implementation should be possible on a processor which has support for the multiply
and accumulate operation (e.g. i860, DSP32C, TMS32C30), with sufficient spare
processing power to perform the subsequent parsing operation and the necessary
data movement.

4 Phoneme Recognition

In the hand labelled data, a phoneme symbol is realised as a set of consecutive
frames, each of which has the target output distribution for that symbol. A state
transition model to generate the possible sequences of frame labels for a six phoneme
example is shown in figure 3. The model is in one of the states which corresponds
to the frame label at that time. The self loops allow for the label to be repeated
and the other transitions (marked by solid and dashed lines) allow for any of the
possible phoneme labels to come next. The transitions can be restricted, say to
those marked with a solid line, which restricts the sequence of phonemes which can
occur. In the example of figure 3 these are restricted to the symbols for the words
“she had”, namely /sh iy hh ae dcl d/

Any target sequence of frame labels can be compared with the actual output
of the REPN by summing the frame-by-frame cost function of equation 4 for each
frame. Thus it would be possible to generate every possible sequence of target frame
labels, compare these sequences with the output of the network for an utterance, and
pick the smallest distance to give the best match sequence of phonemes for that utter-
ance. Alternatively, a more efficient method is that of dynamic programming (Aho
et al., 1983, p311) which may be used to find the best match. This method is the
basis of speech recognition using Dynamic Time Warping (DTW) (Ney, 1984), Hid-
den Markov Models (HMM) employing a Viterbi search and is also used in most
hybrid HMM/connectionist systems (for example (Morgan and Bourlard, 1990)).



hg  dhix v ux  pcl op oy n au voaEr 1 uh kelk dh iy o

b dhis oW U= pcl op ay h au voanr 1 uh kol k dh iy aw zh iv n

Figure 2: Example output from the recurrent net.
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Figure 3: State transition diagram for frame label generation

Central to the dynamic programming method is the “principle of optimality”
which means that if the best sequence has been found between any two points in
the speech, say from A to B, and also from point B to another point, C, then the best
sequence from A to C is the sequence from A to B followed by the sequence from B
to C. This can be applied to the phoneme recognition problem if the least value of
the accumulated cost function is associated with each node in figure 3. Initially, at
time ¢ = 0, the least accumulated distance, D, is zero for every valid stating node,
n. At any time, equation 4 defines the distance, C{!), between the actual output at
t and the target output for node n. The best accumulated distance to node m at
time ¢ + 1 is then just the minimum of the possible accumulated distances plus and
transition cost, T,,,:

DY = min (DY + CO +1T,,,) (5)
At the end of the sentence, the possible legal final nodes are searched to give the
best accumulated distance for the whole sentence. If the best transition is noted at
each time step, then this information can be used to trace the best route backwards
through the sentence, yielding the best match phoneme string.

Increasing the average transition cost, (7,,), increases the average duration of
the phonemes and so results in fewer insertion errors and more deletion errors. In a
complete speech recognition system it is assumed that insertion and deletion errors
are equally harmful and thus the transition cost provides a useful mechanism for
balancing these errors. The simplest non-trivial form for the transitional cost is:

T = {O for m #n (6)

[ otherwise
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Figure 4 shows the trade off of insertion for deletion errors for a range of 3. The
recognition accuracy is also shown which is defined to be 100% minus the percentage
of insertion, substitution and deletion errors.

i
.)\B\ME\(i Correct

®  Accuracy

80

60

Percentage

Substitution

Deletion

Insertion

Bias

Figure 4: Changes in recognition rate for variation in the bias, 3

In addition, other forms of T,,, have been considered and the recognition rates
when insertion and deletion errors cancel is shown in table 4. Three forms for the
transition cost based on bigram probabilities, B,,,, were tried, and in addition du-
rational probabilities were used. The bigram probability distribution was calculated
from a matrix of the number of co-occurrences of the two symbols in the training set.
Similarly the duration probability distribution of was calculated from a histogram of
the duration in frames of all the occurrences of that symbol in the training set. To
avoid zero probabilities, a small constant (0.5) was added to each frequency count
before normalisation.

Parsing with explicit durational constraints requires one storage location per
phoneme as opposed to a single storage location if duration constraints are not
used. From table 4 it can be seen that the durational information makes little
difference to the recognition results. This is a very important for fast parsing to the
word level, as described in the next section.

A confusion matrix for the 1,,, = 8 *log B,,, results is given in figure 5. The
hand labels are on the vertical axis and the recogniser labels are on the horizontal
axis. The null symbol, -, is added so that insertion and deletion errors may be
shown. The area of the square at the intersection of two symbols is proportional
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Toon correct | insert | subst. | delet. | accur.

I¢] 69.1% | 7.5% | 23.3% | 7.5% | 61.7%

B+ log B, 69.8% | 6.2% | 24.0% | 6.3% | 63.6%

B xlog B 70.0% | 6.6% | 23.5% | 6.5% | 63.5%

B4+ duration 69.5% | 6.9% | 23.7% | 6.9% | 62.6%

B+ log B,,,+ duration | 69.8% | 5.9% | 24.0% | 6.1% | 63.9%

Table 4: Recognition rates for difference transition functions

a
pe a = phtdky
hapeiaaaauucsuaoeiaonaxi- & hh = zecjtd e ennn cccoccocecod

~#Fuihhoeahwhrxyyyyuwwsrshllruwyhvyshzhhhhhfymmannggxphtdkgl111117x4q
mEmEE .- m - .. i a . i msE-m-EEEE - . - - - . m.=m-W.- - - EEEs"--smE--z®_

Figure 5: Confusion matrix
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to the number of such points in the test set. The resolution is three phonemes per
pixel rounded up (about 0.01% of the total). The strong diagonal represents the
70.0% of symbols recognised correctly, and the remainder are errors. The top sixteen
errors from this matrix are given in table 5. The most common substitution errors
are between symbols belonging to the same broad class and often involve reduced
vowels.

hand | recogniser | percentage
label label of all errors
ix ih 1.50%
ix ax 1.23%
- dcl 1.13%
- ix 1.07%
r - 0.94%
ih ix 0.94%
ix - 0.92%
- tel 0.85%
Z s 0.84%
n - 0.83%
tcl dcl 0.81%
| - 0.77%
- dh 0.76%
s Z 0.74%
- r 0.73%
- n 0.73%

Table 5: The sixteen most common errors

4.1 Comparison with the SPHINX phone recogniser

The best conventional technique for phoneme recognition is that of HMMs using
multiple codebooks and generalised triphones, in particular the phoneme recognition
of the CMU SPHINX system (Lee and Hon, 1989). In order to compare the results
of this paper with the HMM approach, the 61 symbols set is mapped to a 39 symbol
set according to table 2. Also the test set is reduced to those sentences marked with
and asterisk in table 1. The recognition rates for the two sizes of symbol set and
the two test sets of sentences are given in table 6.

5 Word Recognition

This section outlines the extension of the REPN phoneme recogniser to the problem
of word recognition. The 1000 word DARPA Resource Management task is used to
demonstrate the system.
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tla test set | nsymbol | correct | insert | subst. | delet. | accur.

REPN large 61 70.0% | 6.6% | 23.5% | 6.5% | 63.5%
REPN large 39 76.5% | 6.7% | 17.0% | 6.6% | 69.8%
REPN small 61 69.4% | 7.5% | 24.6% | 5.9% | 61.9%

REPN small 39 76.4% | 7.6% | 17.7% | 5.9% | 68.9%
SPHINX | small 39 73.8% | 7.7% | 19.6% | 6.6% | 66.1%

Table 6: Comparison with the SPHINX phone recogniser

The dictionary was based on that used in the SPHINX system (Lee, 1989, Ap-
pendix II). The SPHINX phoneme set was expanded according to table 7 and the
output of the recogniser was reduced according to table 2. In addition, multiple clo-
sures, such as /kcl tcl/ were reduced to the first symbol. No attempt was made
to deal with glottal stops, epenthetic silences or pauses.

SPHINX | 505ET SPHINX | 505ET
B bcl b BD bcl
D dcl d DD dcl
G gcl g GD gel
p pcl p PD pcl
T tcl t TD tcl
K kel k KD kcl
TS tcl t s | SIL h#

Table 7: SPHINX to 50SET symbols

The computation may be decreased if the dictionary is ordered as a tree structure
as in figure 6 as phonemes that occur at the beginning of many words need only be
searched for once. Ordering the dictionary in this way gave a search space of 3058
nodes as compared with 6366 nodes with no shared phonemes.

Two level dynamic programming can be used to search for the best word string
in much the same way as in the phoneme recognition. Every node in figure 6 has
an associated least value of the accumulated cost function. At every time step,
equation 5 can be used to update this value. However, with a tree structured dic-
tionary the possible transitions are limited to either looping to the same state, or
descending down the tree. This limits the number of possible transitions into a node
to two, so the dynamic programming may be carried out with a simple comparison
of these values for each node. Some care must be taken to deal with the terminal
nodes correctly during backtracking. The computational load of this approach is
considerably less than a multi-state HMM. This advantage is borne out in prac-
tice as the complete 1000 word parsing stage without grammar can be carried out
faster than real time on a SUN 4/330 workstation with no pruning. Results for this
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Figure 6: Part of the tree structured 1000 word dictionary

task are given in table 8 (Lee, 1989; Lee et al., 1990). The “Imp.” results include
the bilinear transform, multiple codebook and implicit insertion/deletion modelling
improvements over the baseline SPHINX system, but do not include other improve-
ments such as word duration modelling, context-dependent phones or function-word
dependent phones. As such they represent roughly the baseline state of the REPN
system.

Method | database | stage perp. | correct | accur. || perp. | correct | accur.
REPN TIMIT | baseline | 992 | 52.6% | 44.1% 60 76.4% | T1.2%
SPHINX | TIMIT Imp. 997 | 38.5% | 32.1% 60 - -
SPHINX RM Imp. 997 | 50.0% | 45.3% 60 91.2% | 90.6%
SPHINX RM Jan90 997 - 81.9% 60 - 96.2%

Table 8: Resource Management word recognition rates

Further insight into the difference in performance in table 8 can be obtained by
examining the relative performance of the phoneme recogniser on the TIMIT and
the Resource Management databases on the 50 symbol set. The “correct” Resource
Management transcriptions were generated by concatenating the pronunciations for
each word giving a phoneme recognition rate of 62.6% correct (50.5% accuracy)
compared with the TIMIT results of 71.1% correct (65.5% accuracy). This is a
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45% increase in the number of errors when porting between these databases. The
increased error rate has two main sources: firstly, there may be variations in the
recording conditions of the two databases; and secondly, there are a range of pro-
nunciations which are acceptable for a given word, so limiting the transcription to
a single pronunciation will necessarily introduce errors. In addition, there are fewer
possible phonetic contexts in the 1000 word task, so there are variations present in
the training of the REPN which are absent in the testing conditions.

6 Conclusion

This paper has described the use of a Recurrent Error Propagation Network (REPN)
for the task of speaker independent phoneme and word recognition from continuous
speech.

The phoneme recognition results have been shown to be slightly better that the
best known HMM results which use multiple-codebooks, restricted HMM transitions
and context-dependent phoneme models. In contrast, the REPN approach considers
all types of preprocessor output in the same way, has no constraints on the internal
structure and produces context independent phoneme information. Thus the REPN
method is considerably simpler than the HMM method. Good phoneme recognition
is likely to underlie future large vocabulary systems and this paper has presented a
viable alternative to HMM phoneme recognition.

Investigation of durational constraints in phoneme recognition has shown that
the internal context in the REPN is sufficient to adequately model phoneme dura-
tion. This leads to a very efficient parsing strategy for the output as only one state
per phoneme is necessary. To demonstrate this, a baseline word recognition system
has been built for the 1000 word DARPA Resource Management task. Initial results
have been presented which are similar to the SPHINX system in its early stages of
development.
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