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ABSTRACT

This paper presents a hybrid system using a connectionist
model and a Markov model for the DARPA Resource Man-
agement task of large-vocabulary multiple-speaker contin-
uous speech recognition. The connectionist model employs
internal feedback for context modelling and provides phone
state occupancy probabilities for a simple context indepen-
dent Markov model. The system has been implemented
in real-time on a workstation supported by a DSP board.
The use of context independent phone models leads to the
possibility of time-domain pruning and computationally ef-
ficient durational modelling, both of which are reported in
the paper.

1. INTRODUCTION

In the field of very large vocabulary speech recognition it is
acknowledged that sub-word units must be used as an in-
termediate state between the acoustic and lexical levels. A
common choice for a suitable sub-word unit is the phone and
the use of pronunciation dictionaries justifies this level of
description. However, there is great variation in the acous-
tic realisation of a phone, both between speakers and for
a single speaker depending on context. Some method of
modelling this variation is required in order to produce high
accuracy speech recognition systems.

This paper employs a recurrent connectionist model for
modelling the low level mapping of the context depen-
dent acoustic information to a context independent pho-
netic form. This is followed by a simple Markov model to
perform the decoding to a sequence of words. This sys-
tem places the computational burden at a lower level than
a standard triphone based Hidden Markov Model (HMM)
system (e.g. [5]).

The paper starts with a brief description of the basic hy-
brid system [11], and a real-time implementation of it. The
use of context independent phone models leads to two un-
usual aspects that are explored in the next sections. Firstly,
the outputs of the connectionist model are highly correlated
which leads to the possibility of performing pruning in the
time domain. Secondly, an analysis of the errors reveals that
some phones are being recognised at their shortest possible
duration, i.e. a single frame. This is quite improbable for
most phones and suggests the need for a better durational
model. Finally the performance of the system is evaluated
and compared with other similar systems and suggestion
are made for further improvements.

2. THE BASIC HYBRID SYSTEM

To date there have been two main approaches to building
hybrid connectionist/ HHM systems, both of which employ a
connectionist model for the estimation of HMM state proba-
bilities. The first method is similar to the forward-backward
reestimation algorithm in that both the connectionist and
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HMM structures are simultaneously optimised to maximise
the log likelihood of the observed sequence being generated
by the model (e.g. [1]). The second method is that of Viterbi
training where the HMM is used to make a forced alignment
and so generate the target probability distributions for the
connectionist model (e.g. [7]). Researchers using standard
HMM techniques report that there is little difference in the
performance of the two methods on large vocabulary tasks
(e.g. [3]), and this work employs the second technique for
simplicity.

The form of connectionist model used in this system em-
ploys internal feedback to model the context dependency
in speech. This is in contrast to the more common con-
nectionist solution of using a fixed length input window
which slides over the speech, or the standard HMM ap-
proach which uses multiple states per phone to model a
succession of steady state regions. Comparisons of this sys-
tem with HMMs using triphones for modelling context de-
pendency are favourable for the task of phone recognition
from the TIMIT database [10]. By modelling context ef-
fects internally in the recurrent network, the output can be
context independent phones, which greatly simplifies the
subsequent Markov model.

The recurrent network is shown in figure 1. The input,
u(t), comes from the preprocessor and together with the
state vector, z(t), is multiplied by the weight matrix. The
output is passed though a non-linear transform to yield the
output vector, y(¢t + 1), and the next state vector, z(t + 1).
The weight matrix is trained by unfolding in time using a
modified gradient descent procedure.

y(t+1)

x(t+1)

Figure 1. The Recurrent Error Propagation Network

The current preprocessor employs a power channel, 20
mel scaled power spectra channels, a channel for fundamen-
tal frequency and one for the degree of voicing. There are
160 state units, and 49 output units, one for each phone
in the lexicon. Training the network as a phone classi-
fier on the Resource Management task naturally conditions
the phone probability outputs to match the distribution of
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phones in the database. However, a grammar that well
models this database will also generate this distribution of
phones, and so, following [7], the phone probabilities out-
put by the network are divided by their prior probabilities
of occurrence when doing word recognition.

The speaker dependent part of the Resource Management
database [9] was used in a multiple-speaker mode. Of the 12
speakers in the database, the first 500 sentences from each
speaker were used for training and the last 100 for testing.
There are 894 unique words in the training data, and 392
in the test data. In the test data, 74 of the words do not
occur in the training data.

An initial segmentation was achieved using a recogniser
trained on the TIMIT database. This was then refined by
retraining and using forced alignment to get a better set
of phone boundaries. Each training cycle took 32 passes of
the training data to converge. After three cycles the word
error rate stabilised to the values given in table 1.

perp. | correct ins" sub” del™ | errors
975 781% | 3.2% | 16.0% | 5.9% | 25.1%
60 94.6% | 1.4% 3.5% | 1.9% 6.8%

Table 1. Baseline results

3. A REAL-TIME IMPLEMENTATION

The system described above has been implemented on a
SparcStation II with a DSP32C SBus board. The DSP
performs all the processing up to the point of the estimation
of the phone state occupancy probabilities, which are then
parsed to the word level by the UNIX host.

Compared to triphone based large vocabulary HMM ar-
chitectures, the use of context independent network outputs
requires relatively little computation to calculate the phone
state occupancy probabilities. Moreover, the largest task is
that of the forward pass of the recurrent network, which is
mainly repeated multiply and accumulate operations. As
such, the bottom end is well suited to implementation on a
single DSP. The network has 38,456 weights, each of which
occupy 32 bits as floating point values, so the storage space
required is not excessive. Use of the DSP32C digital sig-
nal processor has allowed a complete implementation of the
preprocessor and network in real time with the standard
16ms frame rate.

In this paper, the real-time recogniser uses a standard
Viterbi decoder without employing any pruning. A tree
structured dictionary with one entry for each of the 975
unique pronunciations has 3043 unique states with no gram-
mar. The log probabilities for each state can be accumu-
lated in real time on an unloaded SparcStation II. Currently,
backtracking is performed when more than 128ms of silence
have been detected, which in practice on the Resource Man-
agement database is always at the end of a word and often
at the end of a sentence.

It is expected that the speed improvements gained by
pruning the search space will be more than enough to allow
an optional silence at the end of each word and the use
of the standard word-pair grammar. The remainder of the
paper presents results for these recogniser configurations by
storing the output probabilities for later parsing.

4. TIME DOMAIN PRUNING

Several authors have proposed a variable frame rate acous-
tic analysis for speech recognition. Often the motivation
has been a reduction in the overall computation require-
ments, although in some cases it can also lead to improved
recognition accuracy [8]. This section proposes a variable
frame rate approach at the next level up from the acoustic
level, that of probabilistic state segmentation.
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Figure 2. Example output with boundary pruning

Figure 2 shows the phone state occupancy probabilities
as the output from the recurrent network for the short test
sentence “list group names” (speaker bef, sentence sr507).
Time is displayed along the horizontal axis and each of the
49 phones on the vertical axis. Several steady state regions
can be identified where several consecutive frames have a
near unity estimated state occupancy probability for one
phone, and near zero probabilities for the remainder.

In a standard Viterbi search, phone boundaries are pro-
posed at every frame. However, boundaries in the middle
of the steady state periods will only exist with very low
probability, and this can be used as the basis for a prelimi-
nary segmentation. To be useful to a real-time system, this
segmentation should be computed with minimum delay.

If the assumption is made that observations between two
proposed boundaries are independent then equation 1 can
be used to calculate the probability that the model remains
in any one phone state for the whole segment. The prod-
uct of the state occupancy probabilities for a specific phone
gives the probability of being in that phone state for the
whole segment, and by summing the result over all phones
gives the probability of being in any phone state for the
whole segment. In practice, the original independence as-
sumption is false, so leading to an under-estimate. Use of
the self-loop probabilities may give better segmententation.

t+ 1T
Pt = 3 JLw (1)

This equation can be used to recursively define a series
of boundaries, B(n), such that within any one segment no

value of PtH'T is less than some threshold value, Ppin.
B(0) = o0 (2)
B(n+1) = Bn)+T (3)



such that  Pp(0*T > P > PRUITTH

Provided none of the phone boundaries obtained by the
unconstrained Viterbi decoding are deleted, it is possible to
combine all the frames within a segment such that the like-
lihood of the most probable segmentation, and hence the
recognition results, are unchanged. This is accomplished
by taking the product of the phone state occupancy proba-
bilities over the segment and including the self loop proba-
bilities for all internal transitions within the segment.

B(n+41)—1

I« @

t=B(n)

/(n) — a‘iB(n+1)—B(n)—1

The degree of pruning can be varied by varying the
threshold, Pnin. Table 2 and figure 3 present the percent-
age error for the no grammar and word pair grammar cases
with the degree of pruning. For an increase in the number
of errors by 5%, this technique allows for a reduction in the
frame rate by a factor of 2.8 for no grammar, and a factor of
1.8 with the word-pair grammar. By counting the number
of phone boundaries and the number of frames, the maxi-
mum degree of pruning without missing a phone boundary
is a factor of 5.0. Whilst this is not a great advantage, it is
largely independent of the speed advantages gained by the
use of a standard beam search pruning technique.

\ Pmin | speed-up [ no grammar | WP grammar \
1.00 1.00 25.1% 6.8%
0.81 1.50 25.2% 6.9%
0.53 1.99 25.1% 7.3%
0.40 2.35 25.4% 7.5%
0.25 2.96 25.7% 8.3%
0.10 3.86 28.5% 14.1%

Table 2. Effect of pruning on the error rates
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Figure 3. Time domain pruning with no grammar and with
the word-pair grammar

5. MINIMUM STATE DURATIONS

It is widely acknowledged that a standard HMM provides
poor durational modelling. This is especially important if
a single state is to model a relatively large unit such as
a phone as the exponential decay of probability of state
occupancy with time is a poor match to the observed du-
ration distribution. Proposed solutions to this problem in-
clude explicitly computing the distribution from the train-
ing set, using parameterised versions with the Poisson or
Gamma distributions [6], and using minimum and maxi-
mum durations[2, 3].

Minimum duration constraints can be easily incorporated
by rewriting every state as a sequence of states with tied
emission probabilities. If only one of the states has a non-
zero self-loop probability, as in figure 4, then the computa-
tional overhead is very little, only two extra lookup opera-
tions for every phone model. This is achieved by keeping a
buffer of the accumulated log probabilities for each state in
the grammar with the length of the minimum state dura-
tion. A similar buffer is kept for the state occupancy prob-
abilities for each phone (in the same way as equation 4),
and on entering a state the probabilities for a delay of the
minimum phone duration are used.

Figure 4. Lower bounds on state durations

Minimum state durations were calculated from the
TIMIT database so as as to exclude no more than a given
fraction of occurrences. Self-loop probabilities, a;, are then
calculated by assuming that all occurrences that fall below
the minimum duration take the minimum value. Figure 5
shows the true durational distribution for an example phone
[eh], the distribution of the standard system (minimum du-
ration of 1), and the distribution when bounded by 1/32
and 1/16 of the total number of occurrences (minimum du-
rations of 3 and 4 respectively).
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Figure 5. Bounded state durations for [eh]

Figure 6 plots the total number of errors against the
threshold fraction of occurrences which controls the min-
imum duration. It can be seen that there is a considerable



improvement in performance when minimum duration con-
straints are applied, from an error rate of 25.1% to 23.0% in
the case of no grammar and from 6.8% to 5.7% when using
a word pair grammar. The width of the minimum is rela-
tively wide so the performance does not depend critically
on the threshold chosen.
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Figure 6. Time domain pruning with the word-pair gram-
mar

6. CONCLUSION

This paper has presented a hybrid connectionist/Markov
model recogniser capable of real-time recognition. Because
the system uses context independent phone models, it has
been shown that a limited amount of pruning is possible in
the time domain. This pruning scheme always increases the
error rate, while other schemes have reported a decrease in
error rate [8]. The use of minimum durations for the phone
models has been used to give increased performance at little
computational cost. However, the best reported results in
this paper still have over twice the error rate of the best
systems (for example BBN report 2.6% word error rate on
this task [4]).

An analysis of the remaining errors shows that the major-
ity are caused by short words. “the” and “a” each account
for 10% of all the errors made with the word-pair grammar,
while “what”, “of”, “to”, “on”, “in” account for the next
10%. Unlike similar HMM based systems for this task, the
current system makes no attempt to explicitly model these
short words.

The use of a large number of context dependent phone
models gives a certain degree of robustness to the pronun-
ciation dictionary. This robustness is achieved by using
infrequently used triphones to model minor errors in tran-
scription, or pronunciation variation. In contrast, the use of

context independent phone models with a single transcrip-
tion per word is relatively brittle. However, with increasing
vocabulary size, triphone contexts will necessarily become
less specific to individual words, so resulting in a decrease
in the transcription robustness. It is expected that the use
of a multiple-pronunciation dictionary will increase the ro-
bustness to pronunciation variation.

Currently the word boundary modelling is poor, as can be
seen in the example sentence “list group names” of figure 2.
The generated transcription is [ 11h s tcl gcl g r uw pcl n
ey m z |, even though the sequence [tcl gcl] is illegal and
there is a clear release of the /p/. Again, this is an area for
further work.

In conclusion, a reasonably simple system has been pre-
sented with an unusual method for modelling context de-
pendency. Further work is necessary to bring this system
to state-of-the-art performance.
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