A COMPARISON OF PREPROCESSORS FOR THE CAMBRIDGE RECURRENT ERROR
PROPAGATION NETWORK SPEECH RECOGNITION SYSTEM

Tony Robinsonf}, John Holdsworthi, Roy Pattersoni and Frank Fallsidef

1 Cambridge University Engineering Department, Trumpington Street, Cambridge, England.
1 Medical Research Council — Applied Psychology Unit, 15 Chaucer Road, Cambridge, England.

ABSTRACT

This paper makes a comparison of several preprocessors for the
task of speaker independent phoneme recognition from the TIMIT
database using a recurrent error propagation network recogniser [?]

The paper evaluates FFT, filterbank, auditory model and LPC
based techniques in the spectral and cepstral domains and adds
some simple features such as estimates of the degree of voicing,
formant positions and amplitudes. The paper concludes that the
features do not make a significant contribution and that the spec-
tral domain representations, independent of their derivation, are
better suited to this task. However, we find that the recogniser
was relatively insensitive to preprocessor and changes in the archi-
tecture and training of the recogniser are more significant.

The current recognition rate on the TIMIT database of 61 sym-
bols is 69.5% correct (64.0% including insertion errors) and on a re-
duced 39 symbol set the recognition rate is 76.1% correct (70.4%).
This compares favourably with the results of other methods, such
as Hidden Markov Models, on the same task.

1 INTRODUCTION

The Cambridge Recurrent Error Propagation Network Speech
Recognition System has been shown to be able to perform speaker
independent phoneme recognition as well as the best Hidden
Markov Models (HMMs) [?, 7].

Where as the issue of preprocessors for HMMs has been well
researched, this issue has received far less attention from the con-
nectionist viewpoint. However, there is a fundamental difference
between the nearest neighbour decisions surfaces formed in the in-
put space by a HMM vector quantiser and the hyperplanes formed
by error propagation networks. One of the advantages of the con-
nectionist approach is that the elments of the input vector can
have different variances without giving undue bias to these input
dimensions. Thus, while it is necessary to code different types of
HMM input in different codebooks, the connectionist input may
be treated as a single large vector.

This paper begins by describing the basic recogniser and pro-
ceeds to evaluate many commonly used preprocessors. These con-
tain combinations of two forms of input, spectral representations
and simple low dimensional features. The spectral representations
are based on filterbank, Fast Fourier Transform (FFT) and Linear
Predictive Coding (LPC), and in the case of FFT and LPC the
cepstral representations are also used. The features used are zero
crossing rate, energy and estimates of pitch frequency, degree of
voicing, formant positions and amplitudes. In addition to an eval-
uation of preprocessors, other means of improving the performance
of the recurrent net are also considered.

As with our previous work, the evaluation of these preprocessors
is performed on the DARPA TIMIT Acoustic Phonetic Continuous
Speech Database [?] (hereafter known as the TIMIT database).
This is a well respected large database which is widely available
to other researchers, thus enabling comparison between this work
and the work of others.

2 THE BASIC SYSTEM

The phoneme recogniser presented here is derived from earlier work
by two of the authors [?]. In all but the filterbank based prepro-
cessors, the 16kHz digitised speech from the TIMIT database is

Hamming windowed with a duration of 32ms and a frame separa-
tion of 16ms. This frame is passed to the various preprocessors to
vield a vector of about 20 coefficients for the recurrent network.
The net is trained on a 64 processor array of T800 transputers
offering about 60 Mflops. The output from the net is interpreted
as a vector of probabilities that the frame was labelled with a
particular phoneme. This vector stream can be segmented using
dynamic programming to yield the most likely string of phoneme
symbols from the probability distribution. Greater accuracy can
be achieved by using the durational and bigram transitional prob-
abilities to constrain the phoneme string. Each of these steps will
now be described in more detail pointing out where the current
system deviates from that previously reported.

2.1 The TIMIT Database

fdmy0* | fsmmO mrdsO | msfhl mtkd0*
fjlr0* fspmO mree0 msfv0 mtlb0
fkdw0* | fsrhO mrflo msjkO0 mtlcO
fmbg0 fsxa0 mrgm0O | msjsl mtmr0
fmemO | ftajo mrjm0 | mslb0* | mtmtO
fnklO ftbr0 mrljo msmcO | mtpfO
fntb0* | ftbw0 mrlr0* | msmr0 | mtpg0
frewQ ftlho mrmsl | msrg0 mtpp0
frllo futb0* mroaQ | msrr0 mtrr0
fsahO fvkb0 mrpcO0 | msvsO | mtwhO*
fsakO fvmhO mrpcl | mtaa0 mtwhl
fscnO mbjv0* mrre0 mtab0 | mvlo0
fsdjo mdemO* | mrtjo mtas0 mwbt0
fsem0* | mdlm0* | mrtkO | mtatO mwdk0
fsgfo mdss0* mrvg0 | mtbcO0 | mwemO
fsjg0 mejs0* mrwsO0 | mtdb0 | mwew0
fsjsO mfwk0* | mrwsl | mtebO mwjg0
fsjwO mjee0* mrxb0 | mterQ mwsh0
fskpO mpam0* | msasO mtjmO | mzmb0
fslb1 mpfu0* mses0 mtjs0*

fsma0 mrabl msfhO mtju0

Table 1: Sentences used in the test set

At the time of writing, only the prototype TIMIT database
was available. This contains all the training material of the full
database but none of the test material. Thus, it was necessary to
partition this database into training an testing portions. There
are 420 speakers in total which were divided into 317 speakers for
training and 103 speakers for testing. Eight sentences were used
per speaker (the si and sx sentences). The identity of the test
speakers are given in table 77, those marked with an asterisk are
believed to have been used by Lee and Hon for testing their Hid-
den Markov model recogniser [?]. The authors are very grateful
to Vassilios Digalakis and Mari Ostendorf of Boston University for
their help in compiling this list.

2.2 Automatic scaling of input

For practical reasons, (memory limitations on disk and in the
transputer RAM), the preprocessed data was scaled to fit into 8
bits per channel. This was done by computing a histogram and
scaling so that no more than one in 500 samples lies outside the

central 15/16th of the range. Typically this meant that one sample
in 1000 would be thresholded.

2.3 The Recurrent Network

The recurrent network falls into the framework described by
Rumelhart, Hinton and Williams [?]. It may be viewed as a single
layer error propagation (back propagation) network, part of whose
output is fed back to the input after a single frame time delay.
This is shown in figure ?? where the external input, u(t), and the
state input, z(t), together form the input vector, the output vec-
tor being composed of the external output, y(t + 1), and the state
output, z(t+1). In practice, the external output is not trained to
classify the current input vector, u(t), but that of n frames pre-
viously, u(t — n). This is to allow some forward context in the
classification, backward context is already available through the
state vector. For most of these experiments, a four frame delay
was used which corresponds to 64ms.

u(t) Error y(t+1
ﬁ/ Propag-
ation
\ Net
x (t)[¢ x(t+1)
Unit
time
delay \ﬁ

Figure 1: The recurrent network

The “time-expansion” or “batch” method of training recurrent
networks 1s adopted for computational efficiency reasons. After
32 frames on each of the 64 transputers, the actual outputs are
compared with the desired outputs and the contribution of these
patterns to the gradient of the cross-entropy cost function is com-
puted. Cross-entropy is used both because of the interpretation of
the output units as probabilities and because it is found to reduce
the training time needed.

An adaptive step size algorithm was necessary to achieve train-
ing in reasonable time. Each weight has a step size associated with
it and the weight is changed by this amount in the direction of the
locally computed gradient. If this gradient agrees in sign with the
gradient when smoothed with a first order filter over the whole of
the training set, then the step size is increased, otherwise it was
decreased. In most experiments, the increase was multiplication
by a factor of 1.116 and the decrease was a factor of 0.9. In two
cases, pzc and pow, this proved to be unstable, and increases of
1.1155 and 1.113 were used, respectively.

For the majority of the work presented in this paper, 96 state
nodes were used, which yields about 20,000 weights to be trained.
32 passes through the training set were found to be sufficient and
this could be achieved in 17 hours on the transputer array.

2.4 Overview of the preprocessor search

The space of commonly used preprocessors and combinations of
these is too large to search exhaustively. As a simplifying assump-
tion, some representation of the short term power spectrum was
taken to be the most important feature. These representations
were normalised and a separate power channel was added which
was common to all preprocessors. A common feature of preproces-
sors for hidden Markov models is to use the difference of adjacent
frames as extra input to the recognition system. This was thought

to be unnecessary in the recurrent net case as the equivalent in-
formation may be computed by storing the previous input in the
state vector.

The results will be presented in tabular form using a three let-
ter acronym (tla) to refer to the preprocessor and giving the per-
centage correct and the percentages of insertion, substitution and
deletion errors. In addition the accuracy defined as 100% minus
the number of insertion, substitution and deletion errors is given.
Table 7?7 gives the basic recognition rates when only the power
channel is used (pow).

delet.
12.9%

subst.
50.5%

insert
12.9%

accur.

23.7%

correct
36.6%

[tla
| pow

Table 2: Recognition rates: Power alone

3 FFT BASED TECHNIQUES

The basis of the preprocessor used in previous work was the cube
roots of a 20 channel bark scaled Fast Fourier Transform (FFT).
The recognition rates for five different sets of initial weights are
given in table ?7. The mean of these will form the reference pre-
processor, p20. The standard deviation (s.d.) of these results is
about 0.3%, which provides a lower bound for significant difference
between preprocessors.

tla | correct | insert | subst. | delet. | accur.
pr0 | 655% | 6.1% | 27.5% | 7.0% | 59.4%
prl | 65.4% | 6.2% | 27.6% | 7.1% | 59.2%
pr2 66.0% 6.2% | 27.1% 7.0% | 59.8%
pr3 | 65.4% | 5.9% | 27.5% | 7.1% | 59.5%
prd | 65.3% | 6.2% | 27.7% | 7.0% | 59.1%
p20 | 65.5% | 6.1% | 27.5% | 7.0% | 59.4%
s.d. 0.3% 0.1% 0.2% 0.1% 0.3%

Table 3: 20 channel bark scale FFT

Increasing the dimensionality of the preprocessor output may
allow it to carry more information at the expense of increasing
the computation needed in the preprocessor and the recogniser.
More training data is needed if the added channels contain noise,
to avoid the fitting of the model to this noise. Table 7?7 shows
the effect of a factor of three in the number of number of channels
used, there is no discernible trend.

‘ tla | correct | insert | subst. | delet. | accur.
pi6 | 65.5% | 5.9% | 27.4% | 7.1% | 59.6%
p20 | 65.5% | 6.1% | 27.5% | 7.0% | 59.4%
p36 66.3% 6.4% | 26.8% | 6.9% | 59.9%
p48 | 65.6% | 6.4% | 27.3% | 7.0% | 59.2%

Table 4: Dimensionality of input

Table 77 shows the effect of varying the compression function
applied to the channels. pcl is no compression, p20 is the stan-
dard cube root compression, pc5 is a fifth root compression and
pln is the conventional logarithmic compression. pcl shows that
it is important to use some form of compression to reduce the dy-
namic range, but there is little difference between the other three
compression functions.

4 FILTERBANK AND THE AUDITORY MODEL

Two studies were performed to test whether a preprocessor mod-
eled on the human auditory system would be particularly suited
to the recurrent network.

The first stage of auditory processing is spectral decomposition
which is commonly simulated by a bank of band pass filters. Data
from psycho-physical experiments on human subjects indicate the

| tla | correct [insert | subst. | delet. | accur. |
pcl | 62.1% | 7.3% | 20.8% | 8.1% | 54.8%
p20 | 65.5% | 6.1% | 27.5% | 7.0% | 59.4%
pc5 | 65.4% | 6.1% | 27.5% | 7.1% | 59.4%
pln | 65.0% | 6.7% | 28.1% | 6.9% | 58.3%

Table 5: Compression functions

equivalent rectangular bandwidth of these filters vary roughly in
proportion to the center frequency of the filter in accordance with
the following equation modified from [?].

erb(f) = 24.7 4 £/9.265 (1)

In order to provide an input frame for the network every 16ms,
the output of each filter in a bank of such filters is Hamming win-
dowed and then the cube root taken of the energy integrated across
time. Though this is a rather crude method of collapsing the filter
output, rows c20 and ¢36 in table 77 show satisfactory results
for a 20 and 36 channel implementation of this spectral decom-
position stage using 4th order Butterworth filters. These results
confirm that a front end based on auditory parameters can per-
form very well. This is as would be expected given the theoretical
similarity to the bark scaled FFT preprocessor which is already
based on parameters from the human auditory system.

The second stage of auditory processing involves some form of
magnitude compression and then adaptation with respect to signal
level both across time and across frequency. This adaptation is
required in order to cope with the very great variation in signal
level encountered in the environment. The results fed in table 77
are from a implementation of such a system including filtering,
pure logarithmic compression and rapid level adaptation. These
results though reasonable were disappointing when compared to
other preprocessors.

tla | correct | insert | subst. | delet. | accur. |
c20 | 65.5% 6.0% 27.3% | 7.2% 59.5%
c36 | 65.4% | 6.5% | 27.5% | 7.1% | 58.9%
fed | 61.3% 7.2% 31.0% | 7.7% 54.1%

Table 6: Filterbank and Auditory model recognition results

This poor performance could be due to two factors. Firstly
adaptation combined with the pure logarithmic compression could
be performing an excessive normalisation of the input signal giving
rise to an over emphasis of small features in the signal. To pre-
vent excessive normalisation we propose to implement a limit on
adaptation determined by the recent signal level. Psycho-physical
data suggest such a time varying adaptation limit exists in the the
human auditory system.

The second cause of the poor performance could be the spectral
sharpening included in this more complete simulation to model
the effect known as two-tone suppression in hearing. Current net-
works are limited to a small number of input channels. In this case
the sharpening can result in a spectral feature being entirely con-
tained in one channel of network input. As a result of this, small
variations in the position of spectral features such as formants can
result in a feature moving completely from one channel to another.
This again brings about an over-emphasis of small variations in the
input. Further tests will be necessary with either this sharpening
removed, or perhaps the input vector to the network smoothed. In
the longer term, however, when using this type of spatially organ-
ised input, the network should probably be adapted to somehow
associate points adjacent in the input frame.

5 LPC BASED TECHNIQUES

Linear Predictive Coding (LPC) is a very popular front end for
speech recognition systems because of the low computational cost
compared with FFT or filterbank methods. All the preprocessors
considered in this section will use 16th order LPC computed using

the autocorrelation method. acf is just the autocorrelation values,
1pf is the resulting linear predictor filter coefficients, 1pa is the log
area ratios of the equivalent lossless tube, cep are the cepstral co-
efficients derived from LPC and 120 is a the cube rooted 20 sample
bark scale spectrum derived from the LPC filter. In addition, the
Smoothed Group delay model of Singer, Umezalia and Itakura was
included because of its good quantisation properties [?7].

It is interesting to note that although all these representations
are derived from the same set of autocorrelation coefficients, there
is a significant range in performance. 1lpf and acf which are lin-
early related to the power spectrum (pcil), show poorer perfor-
mance even though this mapping can be incorporated into the
first layer of weights at no additional cost. 120 shows slightly
worse recognition than p20, presumably because of the smoothing
imposed on the power spectrum by the LPC representation.

tla | correct | insert | subst. | delet. | accur.
Ipf | 54.6% | 8.1% | 37.3% | 8.1% | 46.6%
acf 58.9% 7.4% | 33.2% 8.0% | 51.4%
lpa | 62.0% | 7.3% | 30.8% | 7.2% | 54.7%
cep 63.4% 6.6% | 29.3% 7.3% | 56.8%
sgd | 64.4% | 6.3% | 28.3% | 7.3% | 58.1%
120 64.7% 6.3% | 28.0% 7.3% | 58.4%
p20 | 65.5% | 6.1% | 27.5% | 7.0% | 59.4%

Table 7: LPC based preprocessors

6 ADDING ADDITIONAL FEATURES

The previous sections have established that the bark scaled FFT,
p20, was as good as any of the preprocessors tried. This section
adds additional features to this preprocessor in the hope that new
information will be added which will increase the recognition rate.
The frame rate of 16ms is towards the high end of those used
in speech recognition so preprocessors pp2, pp4 and pp8 divide the
frame into 2, 4, and 8 sections respectively and calculate the power
in each section so that an energy contour through the frame is
available. These results are given in table 7?7 which show no trend
of increasing accuracy with more energy channels, even though
examination of the weight matrix reveals that some units detect
changes in amplitude within a frame.

‘ tla | correct | insert | subst. | delet. | accur.
p20 | 65.5% | 6.1% | 27.5% | 7.0% | 59.4%
pp2 | 66.0% | 6.2% | 27.0% | 6.9% | 59.8%
pp4 | 65.4% | 6.2% | 27.8% | 6.8% | 59.2%
pp8 | 65.8% | 6.1% | 27.3% | 6.9% | 59.7%

Table 8: Differing numbers of energies per frame

For Hidden Markov Model recognition, the bark (or equivalently
mel) scaled cepstrum, bsc, is more often used than the frequency
domain representation. Table 77 shows a slightly worse perfor-
mance in the cepstral domain, but this figure is very close to the
pln entry of table 7?7 to which it is linearly related.

p20 was augmented with several types of feature: pzc adds zero
crossing information; pf0 adds the position of the highest peak
in the cepstrum corresponding to a pitch frequency; pf3 adds the
positions of the first three formants measured as peaks in the bark
scaled spectrum; ppa adds the amplitudes as well as the positions
of these peaks. Finally pre is the bark scaled spectrum with four
energies per frame (as pp4), and all the above features with the
exception of the amplitudes of the formants, which corresponds
to the preprocessor of previous work. All these results are given
in table 77, but unfortunately no preprocessor offers significantly
better results than p20.

7 TUNING THE RECURRENT NET

The number of state units was set to 96 in order to achieve train-
ing of many preprocessors at reasonable speed. Table 77 shows

tla | correct | insert | subst. | delet. | accur.
p20 | 65.5% | 6.1% | 27.5% | 7.0% | 59.4%
bsc | 64.8% | 6.4% | 28.2% | 7.0% | 58.4%
pzc | 65.2% | 6.4% | 27.8% | 7.1% | 58.8%
pfv | 65.1% | 6.2% | 27.8% | 71% | 58.9%
pfo | 65.8% | 6.0% | 27.1% | 7.1% | 59.8%
pf3 | 66.0% | 6.1% | 27.1% | 6.9% | 59.9%
ppa | 65.7% | 6.4% | 27.4% | 6.9% | 59.3%
pre | 65.6% | 6.3% | 27.6% | 6.8% | 59.3%

Table 9: Additional features

the effect of increasing this to 128, 192 and 256. The number of
weights, and hence the amount of computation needed per train-
ing pair, increases as the square of the number of state units. This
limited the maximum dimensionality to 256. Also shown in ta-
ble ?? is the effect of preprocessing the data with multiple offsets
and training on all the slightly different sets of data. Four offsets
were chosen and the number of presentations of all the training
data was increased from 32 to 96. pd4 has the standard four frame
delay and pd6 has a six frame delay, both with 192 state units.

tla | correct | insert | subst. | delet. | accur.
p20 | 66.5% | 6.1% | 27.5% | 7.0% | 59.4%
128 67.1% 6.1% | 26.2% 6.7% | 61.0%
192 68.9% 6.0% | 24.8% 6.2% | 63.0%
256 69.4% 57% | 24.5% | 6.2% | 63.6%
pd4 69.5% 55% | 24.0% | 6.4% | 64.0%
pdé 69.0% 51% | 24.5% 6.5% | 63.9%

Table 10: More state units and more training data

It is clear that increasing the number of state units and using
multiple offsets both provide significant increase in performance.

8 COMPARISON WITH HMM

The best Hidden Markov Model phoneme recognition results are
currently obtained by using multiple codebooks and smoothed tri-
phone models and the best published results to date for the TIMIT
task come from the SPHINX recognition system [?]. By simply
mapping the 61 TIMIT symbol set onto the 39 CMU/SPHINX
symbol set for the pd4 configuration it is possible to make a com-
parison between the Hidden Markov Model (HMM) and the Artifi-
cial Neural Network (ANN) techniques. These results are shown in
table 7?7, the difference in performance between the two techniques
is believed to be significant.

tla test | size | correct | insert | subst. | delet. | accur.
ANN | large 61 69.5% 5.5% | 24.0% 6.4% | 64.0%
ANN | large 39 76.1% | 5.7% | 17.4% | 6.5% | 70.4%
ANN | small | 61 | 69.3% | 6.3% | 24.6% | 6.1% | 62.9%
ANN | small 39 76.3% 6.3% | 17.6% 6.1% | 69.9%
HMM | small 39 73.8% 7.7% | 19.6% 6.6% | 66.1%

Table 11: Comparison with the SPHINX phone recogniser

9 CONCLUSION

From the previous sections it can be seen that most power spec-
trum based preprocessors give about the same performance. It
would have been possible to run each preprocessor several times
with different starting weights, so eliminating this source of vari-
ance and so obtaining a more accurate ranking. However, the dif-
ference between preprocessors was found to be small and changes
to the network were found to yield far more significant improve-
ments.

Is is perhaps not surprising that the conventional signal pro-
cessing front ends perform better for speech recognition by ma-
chine than the auditory model, since signal processing methods

have been intensively studied and optimised for just this pur-
pose, whereas auditory models have been pursued mainly for psy-
chophysical modelling results.

It is interesting that the autocorrelation function (acf) and lin-
ear predictive filter (1pf) performed worse than the other LPC
techniques, even though the latter preprocessors could all be de-
rived from the former. This demonstrates that although within
the connectionist framework it is theoretically possible to perform
any arbitrary mapping, the data representation, in the form of the
choice of preprocessor, is important.

Unfortunately, the best preprocessor for phoneme recognition is
not necessarily the best for word recognition, as has been demon-
strated by a number of researchers including Russell et. al. [7].
As a result, this work is currently being extended to word recogni-
tion and preliminary results from the 1000 word DARPA Resource
Management task will soon be presented [?].

This paper has presented the results of training 35 networks at
about 17 hours each on a 64 processors array. This represents
over 4 CPU years and it is disappointing that no significant im-
provement in preprocessors was found. However, changes to the
recurrent network have yielded increases in performance, and the
authors believe that the resulting technique yields the best results
on this task to date.

10 ACKNOWLEDGEMENTS

The work described in this paper was carried out as part of an ES-
PRIT Basic Research Action project (3207). The authors would
like to acknowledge NIST for the provision of the TIMIT database
and the ParSiFal project IKBS/146 which developed the trans-
puter array.

REFERENCES

[1] Tony Robinson and Frank Fallside. Phoneme recognition from
the TIMIT database using recurrent error propagation net-
works. Technical Report CUED/F-INFENG/TR.42, Cam-
bridge University Engineering Department, March 1990.

[2] Kai-Fu Lee and Hsiao-Wuen Hon. Speaker-independent phone
recognition using hidden Markov models. [EEE Transactions
on Acoustics, Speech, and Signal Processing, 37(11):1641 1648,
November 1989.

[3] John S. Garofolo. Getting Started with the DARPA TIMIT CD-
ROM: An Acoustic Phonetic Continuous Speech Database. Na-
tional Institute of Standards and Technology (NIST), Gaithers-
burgh, MD, 1988.

[4] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning
internal representations by error propagation. Technical Re-
port 1CS-8506, University of California, San Diego, September
1985.

[5] Brian R. Glasberg and Brian C. J. Moore. Derivation of filter
shapes from notched-noise data. Hearing Research.

[6] H. Singer, T. Umezaki, and F. Itakura. Low bit quantiza-
tion of the smoothed group delay spectrum for speech recog-
nition. In Proceedings of the IEEFE International Conference
on Acoustics, Speech, and Signal Processing, pages 761-764,
Albuquerque, 1990.

[7] M. J. Russell, K. M. Ponting, S. M. Peeling, S. R. Browning,
J. S. Bridle, R. K. Moore, 1. Galiano, and P. Howell. The
ARM continuous speech recognition system. In Proceedings of
the IFEFE International Conference on Acoustics, Speech, and
Signal Processing, pages 69-72, Albuquerque, 1990.

[8] Tony Robinson and Frank Fallside. Word recognition from the
DARPA resource management database with the Cambridge
recurrent error propagation network speech recognition sys-
tem. In Third Australian International Conference on Speech
Sctence and Technology, Melbourne, November 1990.

