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Abstract

3-D ultrasound is a new medical imaging technique which can quickly
and non-invasively deliver clinically useful renderings of internal struc-
tures. The technique is vulnerable to tissue motion during the scan
which can result in an inconsistent 3-D data set. This paper describes
an algorithm which corrects for tissue motion and other errors that
cause mis-registration during a scan. The resulting 3-D data sets are
clearer and of enhanced diagnostic utility. The registration is achieved
by applying visual tracking techniques outside their traditional area
of application. The algorithm is automatic, incremental and easily
incorporated into existing 3-D ultrasound systems.

1 Introduction

Conventional diagnostic ultrasound imaging is performed with a hand-held probe
which transmits ultrasound pulses into the body and receives the echoes. The
magnitude and timing of the echoes are used to create a 2-D grey-level image (B-
scan) of a cross-section of the body in the scan plane. One of the limitations of
conventional imaging is the requirement that the physician mentally reconstruct
3-D anatomy given multiple 2-D images. Research is underway to overcome this
limitation using 3-D free-hand ultrasound imaging. In this paradigm, a 3-
D position sensor is attached to the probe, so that each B-scan can be labelled
with the position and orientation of the scan plane — see Figure 1. Subsequent
processing can build up a 3-D description of the imaged anatomy, in much the
same manner as is possible using CT or MRI, but with less expensive and inva-
sive technology. Physicians have indicated that there is significant utility in 3-D
ultrasound imaging of a variety of anatomical structures, including the fetus [1],
vascular structure [2], gall bladder [3], breast [4], kidney [5], and heart [6].

A major shortcoming of 3-D free-hand ultrasound imaging is its vulnerability
to registration errors. Typically the largest source of registration error is tissue
motion during the scan which can take up to a minute to complete. Significant
errors can also arise from the position sensor (including calibration), refraction,
propagation speed estimation, and others [7]. The cumulative errors result in mis-
registered slices and an inconsistent 3-D data set which is difficult to interpret
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Figure 1: 3-D free-hand ultrasound imaging. Free-hand imaging allows the physi-
cian to move the probe as in a normal ultrasound examination. The position
sensor measures the position and orientation of each scan plane. Note that the
planes may intersect each other.

at best and completely unintelligible at worst. An example of motion-induced
registration errors is illustrated in Figures 2 and 3. This paper presents a tech-
nique which corrects for tissue motion and several other errors that cause mis-
registration during a free-hand scan. The resulting 3-D data sets are much clearer
and of greatly enhanced diagnostic utility. The registration is achieved by applying
established visual tracking techniques outside their traditional area of application.
Little work on the registration of 3-D ultrasound data sets is evident in the lit-
erature. In one exception [4], two separate data sets were retrospectively registered
using manual landmark matching. This constitutes a one-off, labour intensive solu-
tion to a specific registration problem. Here we propose an automatic, incremental
registration algorithm for use with generic free-hand ultrasound imaging.

2 System Overview

The system comprises a Toshiba model SSA-270A/HG ultrasound scanner with a
3.75 MHz convex curvilinear array probe. The position and orientation of each ac-
quired scan plane, relative to a fixed transmitter, are measured by an AC magnetic
field receiver (Polhemus FASTRAK) mounted on the probe. B-scan images from
the scanner are recorded by an 8-bit frame grabber at 5 frames per second and
stored with the position data in the memory of a Sun SparcStation 10 workstation.

Each image is represented as a 2-D array (P) of intensity values (pmn). A 3-D
scalar array (C) of voxels ¢;;i is chosen as the volumetric representation of the set
of images. The voxel size, chosen according to the tradeoff between memory and
resolution, is typically 7 times the size of the p,,, elements.

Before the start of the examination, the c;;, voxels are all zero. As each image
is acquired, each voxel c; ;1 that is intersected by the scan plane is set to the average
value of the p,,, elements which intersect the voxel. When an image intersects
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(a) 10 Images (b) 30 Images (c) 50 Images

(d) 90 Images (e) 110 Images (f) 125 Images

Figure 2: Reconstruction of an organ phantom without correction for organ mo-
tion. A set of 125 B-scans was obtained by free-hand scanning. The images were
acquired by scanning first from left to right, then right to left. These figures show
the incremental filling of the reconstruction volume. Motion-induced registration
errors are evident: the surface of the phantom constructed after the left-to-right
scan (a to ¢) does not match the surface constructed by including the following
right-to-left scan (d to f). In particular, the top of the reconstruction of all slices
in (f) shows multiple surfaces created from the overlapping, mis-registered images.
The rendering program attempts to generate surfaces from voxel intensities above
a certain threshold. Portions of the surface of the phantom are missing in (c)
because the threshold was chosen to minimise speckle and improve clarity of the
image. The surfaces in all images are calculated with the same threshold.

voxels whose values have previously been set, a registration procedure is used to
align the image to the existing data in C — see Section 3. The registered image
is then added to C using a form of compounding.

Initial tests were performed on an organ phantom which consists of a water-
filled latex balloon submerged in a warm water bath. To simulate breathing mo-
tion, the phantom was slowly moved half-way through each examination to a new
location one half the width of the phantom away. In-vivo examinations were then
performed on the gall bladder of a healthy human subject. A breath-hold was
maintained but small subject movement during the examination was inevitable.

After a portion of C is filled it can be displayed by several methods includ-
ing volume ray-tracing, surface rendering and any-plane slicing [8, 9]. Surface
rendering is used in Figures 2 and 5, and any-plane slicing in Figures 3, 6 and 7.



British Machine Vision Conference

Figure 3: Cross-section of a reconstruction, without registration, of an organ phan-
tom. The surface reconstruction (left image) is the same as in Figure 2(f). The
cross-section clearly shows the two mis-aligned ellipses which correspond to the
boundary of the phantom. The top ellipse corresponds to images taken during the
left-to-right sweep of the scan and the bottom ellipse to the right-to-left sweep,
after a small amount of motion of the phantom. The stratified look of the cross-
section results from selecting a slice at an angle to the original B-scan images.

3 Registration Algorithm

3.1 Overview

Traditionally, registration problems in medical imaging are viewed as unconstrain-
ed searches for the transformation which brings one image (or set of images) into
optimal alignment with another [10]. The search space is typically very large,
resulting in a computationally expensive registration algorithm. With 3-D free-
hand ultrasound imaging, we can take advantage of the fact that individual images
are acquired in rapid succession, and any registration error should vary smoothly
from one frame to the next. This observation raises the possibility of performing
efficient registration within a visual tracking framework.

T*, the optimal transformation that registers the image P with the existing
data in C, is constrained to compensate only for physically realistic registration
errors. In general, it may be necessary to compensate for tissue motion, inaccurate
measurement of the scan planes’ positions, and imaging errors such as refraction
and propagation speed estimation. In this study, however, the largest source of
error was tissue motion during the scan. Registration by a rigid-body transfor-
mation can correct for simple tissue motion and scan plane position measurement
errors. The imaging errors of refraction and speed estimation can only be partly
corrected by rigid-body transformations. Imaging errors are small compared to
motion and scan plane position errors if a small angular range of probe directions
is used. For example, the phantom study corrected errors of up to 12 mm, and
the in-vivo study up to 7 mm. For comparison, an example of speed estimation
errors is readily calculated. The scanner uses a propagation speed estimate of
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1540 m/s in the production of B-scans. If a B-scan is taken through 10 mm of fat
(at 1440 m/s) followed by 90 mm of muscle (at 1570 m/s), object positions are
mis-calculated by up to 1 mm. Warm water has a propagation speed near 1540
m/s so speed errors are negligible in the phantom tests. Different geometries and
tissue types will produce errors that are still likely smaller than motion-induced
errors. T* is therefore constrained to a rigid 6 degree-of-freedom transformation.

Smoothly varying registration errors result in smoothly varying parameters of
T*, hence the suitability of a tracking framework. The tracking framework works
best when objects are completely scanned from one extent to the other, then
rescanned from different directions without lifting the probe from the subject.
This is consistent with normal ultrasound examinations of internal organs.

Essentially, it is proposed to find T* using landmarks [10]: anatomical features
which can be reliably detected in all frames. Landmarks generally lie on surface
boundaries which are distributed smoothly in 3-D space. Thus, when a newly
acquired image P is inserted into C, its landmarks should lie close to landmarks
detected in other frames. Registration errors are corrected by searching for cor-
responding landmarks and applying a transformation to the new plane so that
the landmarks are brought closer together. The landmarks used in this study
are edge elements (edgels) automatically extracted by the Canny edge detection
algorithm [11] from a thresholded B-scan. The edgels are produced at a lower
resolution corresponding to the voxel size in the reconstruction. The edgel set is
further pruned by chaining neighbouring edgels together and eliminating chains
with fewer than three edgels. This reduces the number of edgels produced by
speckle, an artifact common to all ultrasound images. Figure 4 shows typical B-
scans of the phantom and gall bladder along with the edgels that are produced by
the Canny edge detector. The set of edgels produced in this manner is sufficient
for high contrast phantom and gall bladder reconstructions but more sophisticated
landmark extraction techniques could be used for other in-vivo studies.

As the B-scans are acquired, edgels are stored in a 3-D vector array L which is
aligned with C. The data in the first image, and likely the next several images, will
not intersect any existing data in the initially empty array C. When a scan plane
intersects non-empty voxels in C, T* is determined by finding correspondences
between edgels in the new image and edgels in L.

3.2 Selection of correspondences

Potential correspondences between edgels in the B-scan and edgels in L are found
by searching an sub-volume in L around each edgel in the image. The search for
correspondences must be restricted if the registration is to proceed rapidly. To this
end, a motion model is required to describe the expected change in registration
error from one frame to the next. Then, given a registration error in one frame, the
search for correspondences in the next can be greatly constrained. A simple zero-
velocity motion model, with a small uncertainty in position based on expected
maximum motion, is sufficient to account for the motion-induced errors in the
phantom tests. The motion model is restricted further to account for the smaller
level of errors in the in-vivo examinations.
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(a) Phantom

(c) Gall Bladder (d) Edgels

Figure 4: Automatic landmark detection. Images (a) and (c) show B-scans of the
organ phantom and gall bladder respectively. Notice the speckling throughout the
images and other artifacts. The intensity of the boundaries of both the phantom
and gall bladder are also non-uniform and contain gaps. Images (b) and (d) show
the edges detected by the Canny algorithm after pruning short chains of edgels.
As well as the phantom and gall bladder boundaries, the detector also finds edges
which do not correspond to real physical structures. These can generate false
correspondences which must be tolerated by the registration algorithm.

3.3 Determination of transformation matrix

The set of correspondences produces more constraints than are required to de-
termine T*. A least squares estimation of T* is inappropriate because many
of the candidate correspondences are outliers. Instead, the RANSAC regression
technique [12] is used to determine T* and reject the erroneous correspondences:

1. Choose three pairs of corresponding edgels at random from the full set of
correspondences.

2. Reject these correspondences if they are not consistent with a rigid body
transformation. Also reject these correspondences if the edgels in P are
too close together or co-linear (otherwise the calculation of T in step 3 is
ill-conditioned).

3. Calculate a linear affine transformation T which brings the three edgels in
P into precise registration with the corresponding edgels in L. The pruning
in step 2 ensures that T represents a rigid body transformation. Transform
all the remaining edgels in P by T.

4. Count how many of the transformed edgels in P register with their counter-
parts in L. Those edgels that do register contribute to the consensus set for
T. The remaining edgels are deemed outliers.

5. Repeat from 1 until a T is found with a consensus set larger than a preset
threshold: this T becomes the estimate of the optimal transformation T*.

The consensus threshold is calculated as the percentage of the edgels in P that
register with edgels in L. For the phantom tests the threshold is set at 25%.
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The in-vivo study uses 12% to reflect the higher number of false edgels. The
technique described above is sufficiently robust to tolerate a significant proportion
of erroneous correspondences.

T* is used to transform the new image P into the coordinates of C. The ele-
ments of the registered image can now be added to C. Where the registered image
intersects already-filled voxels, averaging is used to compound the new image with
the existing data in C. Speckle patterns become uncorrelated if a region is viewed
from different look directions so speckle (and other artifacts) can be significantly
reduced by averaging [9, 13]. Compounding images taken from different look di-
rections theoretically increases the signal-to-noise ratio in proportion to the square
root of the number of compounded images [9, 14]. Yet, accurate registration is a
prerequisite for maintaining image quality.

4 Results, Conclusions and Future Work

The registration algorithm yields a more consistent reconstruction of a 3-D data
set from multiple B-scans than reconstructions based on position sensor data alone.
Figures 5 and 6 show the reconstruction, with registration, of the phantom which
was allowed to move during the scan. Figure 7 demonstrates the need and benefits
of registration for in-vivo examinations. Clearly, motion-induced errors must be
corrected to achieve clear 3-D renderings. Furthermore, compounding intersecting
registered images results in a reduction of the speckle noise and can fill in regions
of the reconstruction that were missed by a single sweep of the anatomical region
of interest. The ultrasound examinations in this paper contain a limited number
of intersecting images so only a small amount of speckle reduction is observed.
Work is underway on a new system to acquire B-scans at 25 frames per second
which will allow a higher level of compounding.

Success of the registration technique has shown a sensitivity to the parame-
ters values such as the size of the correspondence search space and the consensus
threshold. Essentially, for each new type of examination, the series of B-scans
must be previewed to determine the level of false edgels and size of the maximum
registration error. Once an optimal set of parameter values is determined for a
particular type of examination (the gall bladder for example) the reconstruction
proceeds automatically by registering each new B-scan as it is acquired.

The robustness of the algorithm could be improved by employing more so-
phisticated motion models tuned to specific motion patterns (eg. breathing). The
motion models can be learned from examples using established system identifica-
tion techniques [15]. For difficult data sets, where the detection of landmarks is
unreliable, it may be necessary to employ a tracking algorithm which is capable
of maintaining several motion hypotheses simultaneously [16].

In summary, the registration technique described in this paper demonstrates
the ability to correct motion-induced errors and improve the quality of the 3-D
reconstructions. 3-D ultrasound data is normally difficult to segment and visualise.
3-D data sets reconstructed from many overlapping, but accurately registered, B-
scans is a very promising technique for improving the data quality and subsequent
segmentation and visualisation.
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(a) 10 Images (b) 30 Images (c) 50 Images

(d) 90 Images (e) 110 Images (f) 125 Images

Figure 5: Reconstruction of an organ phantom with correction for organ motion.
The use of the registration algorithm during reconstruction results in a better
alignment of boundary contours — compare with Figure 2. The surfaces in all
images are calculated at the same threshold, equal to the value used in Figure 2.
The compounding of both the left-to-right and right-to-left scanned images is
particularly useful for reducing the uncorrelated speckle noise and filling in surface
patches missed by the single left-to-right sweep. With 1 mm? voxels, 46% of the
filled voxels are intersected by 1 B-scan, 34 % are intersected by 2, 10% by 3, and
10% by 4 or more. Further compounding will further reduce the speckle noise.

Figure 6: Cross-section of a reconstruction, with registration, of an organ phantom.
The surface reconstruction (left image) is the same as Figure 5(f). The cross-
section is at the same location as in Figure 3. The two ellipses have been aligned.
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(b) Existing Images at (c¢) Superposition of (a)
Measured Location of (a) and (b)

(d) Original Image: (e) Existing Images at (f) Superposition of (d)
identical to (a) Registered Location and (e)

Figure 7: Registration of an in-vivo transverse and longitudinal gall bladder exam-
ination. The bottom row shows the elimination of a double boundary, shown in the
top row, that is produced by mis-registered images. This figure is produced with
1 mm? voxels to enhance clarity, but registration was performed with 2 x 2 x 2 mm
voxels. With 2 x 2 x 2 mm voxels, 35% of filled voxels are intersected by 1 B-scan,
33% are intersected by 2, 16% by 3, and 16% by 4 or more.
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