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Summary

In 3D freehand ultrasound, a position sensor is attached to a conventional ultrasound probe
so that a set of 2D B-scans are acquired along with their relative locations. This allows
the set of B-scans to be reconstructed into a regular 3D voxel array for visualisation and
analysis. This thesis is concerned with two topics: reconstruction and spatial compounding
of 3D freehand ultrasound data.

A key requirement for reconstruction is calibration of the freehand system. Four differ-
ent calibration techniques are described using a common mathematical framework, then
evaluated according to their repeatability, precision and accuracy. The new Cambridge
phantom and the conventional cross-wire phantom are shown to offer the best performance.

Following calibration, interpolation of the set of irregularly spaced B-scans is required
to reconstruct a regular voxel array. A radial basis function interpolation method is
adapted for reconstruction of ultrasound data and compared with three standard recon-
struction methods. The new functional method exploits the underlying shape of the
ultrasound data to fill gaps and average overlapping data, without introducing the kind
of artifacts common with the standard methods.

The second topic, spatial compounding, aims to improve the visualisation and volumet-
ric analysis of the reconstructed data, typically inhibited by artifacts such as speckle. The
basic principle of spatial compounding is to average multiple images of the same object
taken from different viewpoints. With averaging, the signal to noise ratio increases, but
accurate image registration is required to avoid blurring. Although a number of 2D studies
can be found in the literature, this is the first to fully investigate 3D spatial compounding.

An initial series of tests are performed in wvitro. The statistical theory to predict
the increase in signal to noise ratio is developed and verified empirically. Using a novel
registration method based on image landmarks, spatial compounding is shown to improve
visualisation and volume estimation. Having proven the benefits of spatial compounding
in wvitro, tests with higher levels of compounding are performed in vivo. A more robust
correlation-based registration technique is used on an examination of a human gall bladder

and, again, visualisation and volume estimation are clearly improved.
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Glossary

G Centre line, especially the centre line of the ultrasound beam.
2D Two-dimensional.

3D Three-dimensional.

AC Alternating current.

Anechoic Does not produce echoes.

Any-plane slicing The method of viewing 3D data whereby images are created from

cross-sections of the data set.

Apodization The method of unequal weighting of the transmit or receive elements’

signals to reduce grating lobes in an array transducer.

Artifact Any portion of an ultrasound image that obscures diagnostic information or

does not correspond to the true anatomy.

B-scan A 2D cross-sectional image produced by sweeping an ultrasound beam through

a plane.

Calibration phantom A device with certain known dimensions that is used to calibrate

a 3D freehand ultrasound system.
CT Computed tomography.
Cuberille A regular 3D array.
DC Direct current.
DW Distance-weighted.
DOF Degree(s) of freedom.

Doppler ultrasound The measurement and display of fluid motion using the change in

frequency of ultrasound pulses.
ECG Electrocardiogram.

Edgel Edge element.
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xxiv Glossary

Fps Frames per second.

Freehand Movement of the ultrasound probe without restriction.

In vivo Within a living organism.

In vitro In an artificial environment outside the living organism, i.e. opposite of in vivo.

Look direction The direction of an ultrasound beam with respect to an anatomical

region of intest.
MR Magnetic resonance.

Organ phantom A tissue-equivalent material that has some characteristics representa-

tive of tissues (e.g. scattering or attenuation properties).

Orientation The three degrees of freedom that determine the direction or line of action

of a vector.

Phantom An artificial object used to generate ultrasound images with some known

characteristics.
Pixel Picture element, i.e. element of a 2D array that forms an image.
PNN Pixel nearest neighbour.
Position The location of a point in a Cartesian reference system.
RANSAC Random sample consensus.
RBF Radial basis function.
Rendering A computer-generated image showing a depiction of a structure.

Reconstruction The stage of a freehand ultrasound system where the set of acquired

B-scans are converted into a regular 3D array of voxels.
RMS Root mean squared.
Scan To perform an ultrasound examination.
Scan plane The plane of a B-scan.
SONAR Sound and navigation ranging.

SNR. The signal to noise ratio, calculated by dividing the mean grey level by the standard

deviation.

Surface rendering The method of synthesising a view of a surface from a particular

viewpoint under selected lighting conditions.

TGC Time-gain compensation.
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Volume rendering The method of viewing 3D data whereby an image is created by

casting rays through a cuberille.
VNN Voxel nearest neighbour.

Voxel Volume element, i.e. element of a 3D array that forms a cuberille.






Increasing knowledge brings increasing power, and great as are the triumphs
of the present century, we may well believe that they are but a foretaste
of what discovery and invention have yet in store for mankind.

—Lord Rayleigh, British Association Report, 1884

Chapter 1

Introduction

1.1 History

Scientists have long dreamed of exploring the inner world of the human body. Yet, be-
fore modern medicine, no practical means were available to visualise living anatomy non-
invasively. Today, images are routinely made of a wide variety of internal anatomical
structures, and one of the most popular methods of imaging is ultrasound.

Using sound is a natural way to describe a scene not visible to the human eye. We
do this instinctively when entering a darkened room by listening to the sounds around us.
Thomas Hardy described this well in The Return of the Native (1878), “Compound utter-
ances address themselves to their senses, and it was possible to view by ear the features of
the neighbourhood. Acoustic pictures were returned from the darkened scenery;...” (Cos-
grove et al., 1993).

Near the same time, the famous theoretician Lord Rayleigh wrote the influential book
The Theory of Sound (1877). This work provided the intellectual foundation for the
subject of Acoustics. Shortly later, the discovery of the piezo-electric effect by Jean and
Pierre Curie in 1880 (Curie and Curie, 1880) provided the key for practical applications
of ultrasound imaging.

One of the first applications of ultrasound was the detection of submerged objects. Af-
ter the sinking of the Titanic in 1912, many new devices were proposed for the detection of
icebergs. An initial device that used acoustic signals was patented by M. L. F. Richardson
(1912), but was never constructed . It was R. A. Fessenden who staged the first successful
demonstration in 1914. He used an electromagnetic moving-coil transducer and detected
icebergs up to two miles away (Hunt, 1954). These ideas were further developed in secret
by Paul Langevin, a graduate student of Pierre Curie. The main application then was the
detection of submarines during the war of 1914 to 1918. Langevin’s work on piezo-electric
transducers was made possible by the newly developed high frequency amplifiers supplied
by the French Army. With these amplifiers he achieved considerable success. This work
laid the foundations for subsequent advances in marine SONAR (sound navigation and
ranging) (Hackmann, 1984), non-destructive materials testing (Hull and Vernon, 1988)

and eventually medical imaging.



Chapter 1. Introduction

Probes in all of these fields share a common technique: a piezoelectric crystal is excited
to produce a short ultrasound pulse and the resulting echoes are recorded. The intensity
and timing of the echoes gives information about the structures along the direction of the
ultrasound beam. If the beam is swept through a plane, a 2D (two-dimensional) image
can be created. Because the echo intensities are converted into “brightness” for display,

the 2D image is normally called a B-scan.

The first B-scan of human anatomy was published by the Dussik brothers in 1942 (Dus-
sik, 1942). Yet this image is considered to be mainly artifactual, and it was not until after
the war of 1939 to 1945 that more serious investigations into medical ultrasound imaging
were made. With improvements in display devices and transducers, the first commercial
ultrasound machine, the ‘Diasonograph’, was produced in 1964. Soon after, many more

commercial systems were developed with improved ergonomics and image quality.

Since the 1970’s, image quality has improved dramatically from one generation of ma-
chine to the next. These improvements have been derived mainly from advancements in
miniaturisation and electronics. As ultrasound systems continue to improve, the popu-
larity of ultrasound increases. In the past few years, the revenue generated from sales of
ultrasound equipment has exceeded that of all other imaging modalities (Cosgrove et al.,
1993). The popularity arises from the fact that ultrasound imaging is portable, fast (high
frame rate), easy to operate, comfortable for the patient, relatively cheap, and is safe com-
pared to ionising radiation such as X-rays. Moreover, the latest generation of machines

can generate images of impressive quality.

With the increasing popularity of ultrasound, the number of applications has expanded.
For example surgical, intravascular and needle guidance techniques with 2D ultrasound
are now commonplace. 3D (three-dimensional) ultrasound, the subject of this thesis, is

also starting to be used in regular clinical practice.

Although the basic principles of 3D ultrasound imaging can be traced back as far as
1956 (Howry et al., 1956), the heavy computational requirements have limited develop-
ment. With the advent of modern computers, there has been considerable renewed interest
in 3D methods. In 1989, Kretztechnik AG (Zipf, Austria) produced the first commercial
3D ultrasound machine, the Combison 330 Voluson. Other commercial 3D systems soon
followed.

It will take many clinical trials to fully evaluate the potential of 3D ultrasound, but
initial studies have shown that 3D ultrasound offers unique advantages in a variety of
clinical applications. These include studies of the fetus (Chervenak et al., 1993; Deng et al.,
1996; Steiner et al., 1994), heart (Belohlavek et al., 1993; Ofili and Nanda, 1994; Salustri
and Roelandt, 1995), eye (Cusumano et al., 1998; Downey et al., 1996), brain (Rankin
et al., 1993), vascular structure (Franceschi et al., 1992), breast (Lalouche et al., 1989;
Moskalik et al., 1995), urethra (Ng et al., 1994) and the abdominal organs such as the
kidney (Gilja et al., 1995), gall bladder (Fine et al., 1991), and prostate (Basset et al.,
1991). More and more clinical applications are appearing as experience with 3D ultrasound

increases.
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1.2 Advantages of 3D Ultrasound

Clinical trials have shown 3D ultrasound to have a number of advantages over conventional
2D ultrasound. First, images of the surfaces of structures allow the 3D nature of the
structure to become fully apparent. For example, the diagnosis of cleft palate in fetal
examinations is made easier from 3D renderings of the fetal face, than from 2D cross-
sections (Baba and Jurkovic, 1993; Lee et al., 1995).

From 3D data, 2D cross-sectional images can be produced at any angle, including
angles impossible to achieve by a standard examination, e.g. at a constant depth below
the skin. This plane of imaging has been shown to be useful, for example, in monitoring
follicular development in infertility treatment (Baba and Jurkovic, 1993).

Measurement of organ volume can also be more accurate. Measuring changes in the
volume of an organ over time is often used to monitor the progression of a disease or its
response to treatment. Normally, volumes are estimated from equations involving a few
linear distance measurements, information about the patient (such as age and sex), and a
simple model of the organ shape (Chervenak et al., 1993; McCallum and Brinkley, 1979).
With 3D ultrasound, organ volume can be measured directly from the 3D data, giving
improved results. This is especially important for organs of non-standard shape and size.
Examples where volume or size determination is useful include the fetus (Chervenak et al.,
1993), prostrate (Rahmouni et al., 1992), ventricles (Martin et al., 1990; Ofili and Nanda,
1994; Salustri and Roelandt, 1995), kidney (Gilja et al., 1995) and blood vessels (Hodges
et al., 1994).

The creation of 3D data sets also aids review of the data after the examination. Instead
of producing copies of one or two of the best B-scans, the entire volume can be reviewed
at will. The ability to review the 3D data, after the patient is released, can improve time
efficiency and reduce costs (Nelson and Elvins, 1993). With standardisation, it can also
provide opportunities for tele-medicine (Shahidi et al., 1998). It may also be easier to
re-check diagnoses, which has important legal implications (Baba and Jurkovic, 1993).

3D ultrasound may also improve the fetomaternal relationship. Expectant mothers
often find it hard to understand 2D images, but readily identify with 3D renderings of the
fetal face. A heightened perception of the fetus may have a positive effect on maternal
behaviour, e.g. improved diet, reduction of smoking and alcohol consumption, and better
antenatal attendance (Baba and Jurkovic, 1993).

Finally, education can be enhanced by training medical students on 3D data sets. For
example, a student can interactively re-slice a previously acquired 3D data set to simulate
a real examination. The student can then be tested on the correct diagnosis (Shahidi
et al., 1998).

It must not be overlooked that perhaps the most important advantage is improved
ease of understanding of 3D spatial relationships. Mentally reconstructing a complicated
3D structure from a series of cross-sections, as required by 2D ultrasound, can be difficult
For this reason and the reasons listed above, the use of 3D ultrasound is likely to become

widespread in the future.
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1.3 3D Ultrasound Techniques

High quality, rapid 3D imaging remains a long term research goal. One promising approach
centres around the development of a new type of probe, which sends and receives echos
from a 2D array of elements (instead of the usual one-dimensional array). With parallel
transmission and reception, 2D array probes are capable of scanning an entire volume in the
same time as a single B-scan. Unfortunately, several technical challenges must be overcome
before such probes receive clinical acceptance (Light et al., 1998). Alternative approaches,
which make use of conventional 2D ultrasound technology, include the freehand (Sherebrin
et al., 1996), mechanical swept volume (Rankin et al., 1993; Steiner et al., 1994) and thick-
slice techniques (Baba and Jurkovic, 1993).

Thick-slice volume imaging is a novel technique that produces real-time images of
organ surfaces. The basic idea is to attach a cylindrical defocusing lens to a linear array
probe so that a volume of tissue is scanned— see Figure 1.1. Beams diverging between 30°
to 45° have been used. The ultrasound machine produces images in the same manner as
B-scans, so echoes are depicted as emanating from the central plane. If acoustic interfaces
produce total reflection of the ultrasound energy, renderings of the surface of the interface
are produced. When the probe is rotated axially, the surface renderings also rotate, giving
the appearance of changing the viewpoint.

Although the real-time surface renderings can be quite spectacular, the thick-slice
technique has some fundamental limitations. First, only organ surfaces that produce
nearly total reflections (such as the fetal skin after the third trimester and air-backed
structures) can be imaged this way. Even visualisation of the surface renderings of these
structures are limited to viewpoints from the same direction as the ultrasound beam;
it is impossible to see the back sides of objects. Moreover, it can only generate surface
renderings, so cross-sectional slices are unavailable. Although the thick-slice technique has
some advantages, the limitations mean it is not likely to replace methods that produce
full 3D data sets.

Mechanical swept-volume and freehand techniques construct a 3D data set from a num-
ber of 2D B-scans acquired in rapid succession. The mechanical swept volume approach
uses a special mechanism inside the probe to sweep the plane of the B-scan through a
volume of interest. A hand-held ultrasound probe has six DOF (degrees of freedom) of
movement, but the swept-volume method constrains the movement of the probe to one
DOF. As the probe is moved with one DOF, the scan plane sweeps through a volume, and
a set of B-scans are acquired. The movement of the probe (and therefore the locations
of the B-scans) is typically measured by a potentiometer. The size of the swept volume
is determined by the area of the image in the B-scan and the range of the DOF. Three
different shapes of swept volumes can be produced by scanning with this technique.

The first shape is produced by rotating the probe about an axis in the axial direction
(see Figure 1.2 for definitions of the direction names). This method produces a cone-
shaped swept volume (assuming a sector-shaped 2D image), as shown in Figure 1.3(a).

The second shape is produced by rotating the probe about an axis in the lateral direction.
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Figure 1.1: 3D thick-slice ultrasound imaging. A defocusing lens is mounted on the

face of a linear array probe to produce a divergent beam profile. If the interface ABCD
totally reflects the ultrasound energy, the shadowed region does not contribute to the

image. The interface is then projected onto the central image plane as A*BC*D*
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Figure 1.2: Nomenclature of imaging directions. The axial and lateral directions
define the plane of the B-scan, also called the scan plane. The elevational direction is

perpendicular to the scan plane.
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(a) Cone (b) Fan (c) Prism

Figure 1.3: Mechanical sweep motions. (a) Rotation about an axis in the axial direc-
tion produces a cone-shaped volume. (b) Rotation about an axis in the lateral direction
produces a fan-shaped volume. (c) Translation along an axis in the elevational direction

produces a prism-shaped volume.

This method produces a fan-shaped swept volume (Figure 1.3(b)). Finally, a prismatic
swept volume is produced by translating the probe along an axis in the elevational direction
(Figure 1.3(c)).

There are advantages and disadvantages of each of these methods. The main advantage
of the prismatic volume is the equal interval between each of the 2D image slices. This
means the volume of interest is uniformly sampled. The fan-shaped data set has non-
uniform inter-slice spacing, with increasing gaps at greater depths. The cone-shaped data
set also has non-uniform inter-slice spacing, with the gaps increasing away from the centre
line of the cone. The main disadvantage of the cone-shaped and fan-shaped data sets is
the presence of large gaps. Acquiring a greater number of B-scans reduces the size of the
gaps, but also oversamples other regions and increases acquisition times.

The main advantage of the cone-shaped and fan-shaped data sets is the small acoustic
window used for the entire sweep. Acoustic windows on the human body are small and
sometimes difficult to obtain. Prismatic data acquisition requires large acoustic windows,
which limits the number of possible applications. One exception is 3D intravascular ultra-
sound, where cross-sectional images are acquired by moving a catheter-probe combination
through a blood vessel (Fenster and Downey, 1996; Pasterkamp et al., 1995).

Mechanical swept volume systems are easy to use and produce standardised volumes
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Figure 1.4: 3D freehand ultrasound. Freehand imaging allows the physician to move
the probe freely, so the B-scans can have arbitrary relative locations and may overlap each
other. As the probe moves, the B-scans are captured and stored in computer memory.
A magnetic position sensor measures the position of a receiver (mounted on the probe)
relative to a transmitter (fixed with respect to the patient’s body). The relative location
of each scan plane is then calculated and the B-scans combined into a single volume of
data.

of data. The first commercial 3D system (Kretztechnik Combison 330 Voluson) used the
mechanical swept-volume approach, and subsequent developments of the Voluson machine
have proven popular. Yet they require the considerable expense of a dedicated machine,

and are also limited to a maximum volume dictated by hardware constraints in the probe.

Freehand systems allow arbitrary motion of the probe — see Figure 1.4. The motion
of the probe is unrestricted and the six DOF — three translations and three rotations —
are measured by a position sensor. With a freehand approach, the scan planes are chosen
by the trained physician, for example in a manner consistent with a normal examination.
The scan planes may intersect each other so that the same region in space may be sampled
from more than one probe direction (also called look direction). Gaps may also remain

where no samples are taken.

There are several advantages of a freehand imaging approach over swept-volume ap-
proaches. Freehand systems can be used to obtain arbitrary volumes of data, since the
motion of the probe is unconstrained. They are also cheaper, requiring only a conventional
ultrasound system and relatively inexpensive additional components. Yet the physician
needs to learn how to move the probe to acquire densely sampled data sets. The cost
and flexibility of freehand imaging ensures it remains a popular choice, and with recent
improvements in the speed of data acquisition, combined with careful scanning practice,
the quality of freehand data sets is improving. For these reasons, research into freehand
systems is active, and several commercial systems have recently become available. 3D

freehand ultrasound forms the basis of the research in this thesis.
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Examination Reconstruction Visualisation

Regular voxel array

transmitter

gall bladder

Figure 1.5: Overview of 3D freehand ultrasound imaging. Clinical freehand imaging
involves an examination, reconstruction and visualisation. This example illustrates a study
of a gall bladder.

1.4 The 3D Freehand Technique

The 3D freehand process can be considered in three stages: examination, reconstruction
and visualisation — see Figure 1.5. Figure 1.6 shows a photograph of an examination in
progress and Figure 1.7 shows the data paths.

In the first step of freehand imaging, a position sensor is attached to the probe. The
system is then calibrated to determine the offsets between the position sensor and the
corner of the B-scan plane. The offsets are used with the position measurements to
calculate the relative positions of each of the acquired B-scans.

The ultrasound machine controls are then adjusted to obtain the best images for the
organ of interest. Appendix A gives a brief description of the controls on an ultrasound
machine and how they are typically adjusted. During the examination, the physician
moves the probe slowly and steadily over the region of interest. The B-scans are digitised
by a frame grabber, tagged with the measurements from the position sensor, and stored
in computer memory as 2D arrays of pixels (picture elements).

The set of B-scans are then assembled into a 3D data set using the associated position
data. This process is called reconstruction. Usually the format of the 3D data set is a
scalar array of voxels (volume elements). The 3D scalar array is also known as a cuberille.

In the visualisation stage, portions or all of the reconstructed 3D data are displayed
on the computer monitor. The important properties of a good image are clear detail,
visualisation of detail at depth, distinguishable tissue types, low noise and consistency
of these properties throughout the image (Chervenak et al., 1993). A bad image has no

visible diagnostic information. The goal of the visualisation method is to produce good
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Figure 1.6: 3D freehand ultrasound examination. The author is examined by Dr.

Lol Berman in the Department of Radiology at Addenbrooke’s Hospital.

images that accurately represent the anatomy. Several good reviews of the visualisation
of 3D medical data sets are available (Shahidi et al., 1998; Soferman et al., 1998; Taylor
et al., 1996).

There are many different ways to display 3D data sets. The most conventional is
to view slices of the data set in a manner similar to normal 2D scanning (Chervenak
et al., 1993; Halliwell et al., 1989; Wells, 1993). The difference is that slices from any
look direction may be displayed, regardless of whether any of the original 2D images were

taken in that particular look direction. This is called any-plane slicing.

Efficient algorithms for any-plane slicing allow images to be generated at interactive
rates, making it easy to find structures of interest. The review process is still 2D in
nature, and diagnoses are made in a manner similar to standard B-scan imaging. One
difference between any-plane slicing and B-scan imaging is that the 3D data set may have
been substantially processed during reconstruction. This may include interpolation and
filtering of the data. Therefore, even if a selected look direction coincides with one of the
original look directions, the displayed image may not be exactly the same as the original
B-scan.

As well as cross-sectional images, it is also useful to create 3D renderings to get a

better understanding of the true shape of the organs. Two techniques, surface rendering

and volume rendering, achieve this through different means.
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Figure 1.7: Data paths of 3D freehand ultrasound imaging.
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Surface rendering requires a surface representation of an organ to be derived from the
3D data set. This normally involves classifying the voxels according to tissue type. The
result is a binary segmentation of the organ of interest. This can be done by manual out-
lining, grey-level thresholding or more sophisticated methods (Bouma et al., 1996; Bouma
et al., 1997). Next, the segmentation results are used to calculate a set of surface elements.
The surface can be depicted as a set of points, line segments, polygons, patches or cubes.
A popular method is “Marching Cubes”, which constructs a surface of small triangles from
the binary segmentation (Lorensen and Cline, 1987). Visualisation then proceeds on the
surface representation alone, allowing it to be viewed from chosen viewpoints and under

selected lighting conditions.

In this thesis, surface rendering is performed with the 3DViewnix software pack-
age (Udupa et al., 1993) using the “semiboundary” approach (Udupa and Dewey, 1991).
Here, a binary version of the 3D data set is created by segmenting the object of inter-
est by grey-level thresholding. The semiboundary representation is created from filled
(segmented) voxels that are surrounded by at least one empty voxel. Each voxel in the
semiboundary also stores the gradient of the data at that point. The semiboundary is
then displayed from any chosen viewpoint using the gradient information for shading. Fi-
nally the lighting direction, and specular and diffuse reflection coefficients, are adjusted

to optimise the image.

The advantages of surface rendering include the relatively short rendering times and
reduced storage requirements (Fenster and Downey, 1996). The surfaces look very clear
since most obstructing or noisy data are normally removed by segmentation. The draw-
backs of using surface fitting algorithms on ultrasound data are the production of false
positive and false negative surface pieces, and incorrect handling of small features (Nel-
son and Elvins, 1993). These drawbacks arise because segmentation, including grey-level
thresholding, is particularly difficult with ultrasound data (Sakas and Stefan, 1995; Sakas
et al., 1995; Steen and Olstad, 1994)

Volume rendering maps the 3D data set directly into screen space. Parallel ray cast-
ing is the most common method of volume rendering (Watt, 1993). First, each voxel is
assigned a colour and opacity, normally calculated from simple functions of the original
voxel intensity values. Rays are then cast from each screen pixel through the 3D data set.
The colour and opacity of each voxel that the ray passes through are blended until the
opacities reach unity or the ray exits the rear of the volume of data. The blended opacities
and colours are then displayed by the screen pixel. The procedure is repeated for all screen
pixels to form an image. Additional visual cues, such as shadowing and reflections, may
also be added.

The main advantage of volume rendering is the use of the entire 3D data set for each
2D display. No a priori segmentation is required, so surface fitting artifacts are eliminated.
It has also been suggested that the averaging process of ray casting reduces the effect of
noise on the rendered image (Wells, 1993). The main disadvantage of volume rendering

is related to its main advantage: the rendering process is slow because the entire 3D data



Chapter 1. Introduction

set is used for each new viewpoint. It is also difficult to see the interior details of a large,
noisy data set without removing some of the surrounding data.

Standard surface and volume rendering methods used successfully in MR (magnetic
resonance) and CT (computed tomography) imaging have limitations when applied to
ultrasound data. Ultrasound images have several unique properties (Sakas et al., 1995):
a significant amount of noise; lower dynamic range; blurred boundaries several voxels
wide; boundaries with varying grey levels caused by variations in surface curvature and
orientation; shadowed regions; and non-uniform spatial resolution. This list demonstrates
that visualisation of ultrasound data is a challenging problem. Fetuses are exceptions
that are easier to render because they are surrounded by anechoic amniotic fluid. It is
relatively simple, therefore, to isolate the fetus from surrounding tissue and noise (Steiner
et al., 1994). Yet for most other examinations, the standard surface and volume rendering
methods are unsuccessful and new methods are required (Sakas et al., 1995).

In addition to visualisation, the 3D data sets are often subject to further data analysis.
Examples of data analysis include size and volume estimation (Chervenak et al., 1993),
organ shape modelling (Cootes et al., 1995; Neveu et al., 1994; Taylor et al., 1996) and
texture classification (Chervenak et al., 1993; Wells, 1993). All of these techniques can be
used for making diagnoses.

This thesis is concerned with improving the performance of 3D freehand ultrasound.
Each of the steps of the 3D freehand process involves measurement errors. In order to get
the best performance out of the system, it is important to consider the sources of error
that affect the quality of the results.

1.5 Sources of Measurement Error

1.5.1 Ideal Imaging Process

Since 3D freehand ultrasound is made up of a set of B-scans, it is helpful to look at the

physics of an idealised 2D ultrasound imaging process:

A finite length ultrasound pulse is transmitted by the transducer in the probe.
The pulse passes uniformly through the material, and the scatterers that make
up the material reflect part of the pulse and transmit the rest deeper into the
material. The pulses are transmitted and reflected linearly. The amplitude and
the timing of the pulses received by the transducer are converted into intensity-
distance data. The higher attenuation of pulses returning from deeper locations
is compensated for using the exact attenuation coefficient of the material. As
the beam is swept through a plane, the set of collected intensity-distance data

s used to create a 2D image.

In reality, the interactions described in the ideal case are non-linear and include ad-
ditional errors. The pulse consists of a small range of frequencies, instead of a single

frequency. The amplitude and frequency properties of the pulse change in a non-linear
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Frequency Axial Resolution Maximum Imaging

(MHz) (mm) Depth (mm)
2 0.77 300
3.5 0.44 170
5 0.31 120
7.5 0.20 80
10 0.15 60

Table 1.1: Maximum imaging depth and axial resolution. Approximate values are
listed for common frequencies of ultrasound probes. Calculations are based on a two cycle

pulse propagating through human tissue (Kremkau, 1993).

manner as it passes through the tissue. For example, the speed of propagation and ampli-
tude attenuation depend on both the type of tissue the ultrasound pulse traverses and the
pulse frequency. Both specular and diffuse reflection occur. The ultrasound beam can be
refracted or de-focused. Real transducers produce non-uniform beams. In 3D freehand ul-
trasound, the position sensor and system calibration also contribute errors. Despite these
phenomena and errors, images useful for diagnosis are still obtainable by careful selection
of the imaging parameters.

The following is a review of the measurement errors and limitations to give an intuitive
feel for the types of problems that arise in 3D freehand ultrasound imaging. The categories
are not independent nor comprehensive, but cover the most significant effects. The de-
scription of these categories demonstrates that the interaction of ultrasound in biological
materials is not fully understood and is an active area of research (Evans and Martin,
1988; Evans, 1986; Hill, 1986).

1.5.2 Sonographic Artifacts: Propagation Group
Axial Resolution

Axial resolution is the minimum distance between objects positioned axially that are im-
aged individually. A first approximation is the spatial pulse length divided by two (Harris
et al., 1991; Kremkau, 1993; Wells, 1993) — see Figure 1.8. Typical values are listed in
Table 1.1. For a given frequency, the axial resolution varies slightly throughout the image
because of changes to the pulse shape as it travels through the medium (Harris et al., 1991;
Preston, 1991; Wells, 1993). Despite changes in pulse shape, the first approximation is
close to the real axial resolution, and a number of ultrasound systems have demonstrated
resolutions similar to the Table 1.1 values (Chervenak et al., 1993).

Table 1.1 also shows that the physician is faced with the trade-off between imaging
depth and axial resolution. High frequency pulses give high axial resolution but low
imaging depth because of higher attenuation (Chervenak et al., 1993; Kremkau, 1993;
Wells, 1993). The physician normally chooses the highest frequency probe capable of
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Figure 1.8: Spatial resolution. Axial resolution is related to the pulse length. Lateral

and elevational resolutions are related to the focusing of the beam.

imaging to the required depth.

Lateral Resolution

Lateral resolution is the minimum distance between objects positioned laterally that are
imaged individually. 2D images are produced by steering a beam through the scan plane.
Most modern probes use an array of transducer elements and steer the beam either by
selective activation of a subset of elements or by selective timing of the elements’ activa-
tions. The lateral resolution may therefore be approximated as the beam width in the
scan plane (Kremkau, 1993; Wells, 1993). The beam width is usually taken as the 6 dB
width of the amplitude distribution.

The beam shape depends on the type of probe used, the intensity of the ultrasound
pulses and the properties of the tissue. The beam width is a function of axial distance
and has a minimum cross-sectional area at the focal point — see Figure 1.8. For single
focus transducers, the lateral resolution is worse away from the focal region. Probes using
multiple focal points help to maximise lateral resolution throughout the image.

For linear array probes, it has been shown (Whittingham, 1991) that the diameter of
the focal spot can be calculated from the focal length (F'), the wavelength (\) and the
radius of the effective aperture (a):

F

lateral resolution = —. (1.1)
a

For F = 50 mm, A\ = 0.44 mm (3.5 MHz wave in average human tissue) and a = 10 mm
(the transducer effective radius) the beam width is 2.2 mm. Experiments on a circular

disk transducer performed in vivo and in vitro verify the calculations (Moshfeghi and
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Figure 1.9: Beam width artifact. The thin interface of the organ boundary becomes
blurred because of the finite width of the beam.

Waag, 1988). Advanced techniques and higher frequency probes produce higher lateral

resolutions.

Elevational Resolution

Resolution is also limited in the elevational direction because of the finite beam width in
the elevation plane. Alternatively, artifacts are introduced in the B-scan by objects that
are off the imaging plane, but still in the beam path (Chervenak et al., 1993; Fish, 1990;
Kremkau, 1993). The finite elevation thickness also blurs sharp material boundaries —
see Figure 1.9.

The beam’s elevational width varies with the type of probe, imaging depth and material
properties. On most modern ultrasound machines it is focused by a fixed lens. A study
of the elevational beam width of a 3.5 MHz phased array sector probe gives beam widths
ranging from 10 mm at a 2 cm depth, to 6 mm at a 12 cm depth, with a minimum of
3 mm at the 8 cm focus (Skolnick, 1991).

Speckle

The grainy appearance of 2D ultrasound images is caused mainly by speckle — see Fig-
ure 1.10. The speckle phenomenon results from the constructive-destructive interference
of the coherent ultrasound pulses back-scattered from the multiple tiny reflectors that

constitute biological materials.
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Figure 1.10: Speckle. A B-scan of the right kidney and liver is shown on the left. The
expanded portion on the right clearly shows the grainy texture of the liver caused by

speckle.

In some situations, the speckle pattern provides useful information for the physician,
such as for classification of tissue type and identification of organ pathology. But in many
other situations, speckle is considered an annoyance and a hindrance to diagnosis. Speckle
unfortunately falls into the high sensitivity range of spatial frequency in human vision. The
frequency spectrum of speckle is also similar to the imaging system modulation transfer
function. The combination of these two effects means speckle can obscure important
diagnostic information in ultrasound images (Wells, 1993). For this reason, speckle is
removed in some applications to improve diagnosis. For example, filters are often employed
in volume rendering of 3D ultrasound data sets (Bamber et al., 1992; Steen and Olstad,
1994).

Reverberation

Reverberation is the phenomenon whereby multiple reflections are produced off the sensor
face. Ideally the sensor face should have the same acoustic impedance as skin, so that all
ultrasound energy is transmitted, and none reflected. Unfortunately, there is a substantial
difference in acoustic impedances (Chervenak et al., 1993; Fish, 1990; Kremkau, 1993) so
multiple reflections can occur — see Figure 1.11. Matching layers, such as coupling gel,
help to reduce this effect. “Comet tails” (often seen below hard objects such as kidney

stones) are also caused by reverberation, but the reverberation occurs within the object.

Refraction

Refraction of the beam changes the beam direction and results in distorted images — see
Figure 1.12. Objects are located at the wrong position because the true beam path differs
from the estimated path (Chervenak et al., 1993; Fish, 1990; Kremkau, 1993).
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Figure 1.12: Refraction artifact. Incorrect placement of the object results from refrac-

tion of the beam direction.
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Figure 1.13: Multi-path artifact. Incorrect placement of the object results from a

lengthening of the beam path through multiple reflections.

Multi-path Reflections

Improper positioning of an object can also result from a difference in the length of the
return path from the incident ultrasound path. An example is shown in Figure 1.13.
In general, multi-path reflections blur the object boundaries in the image (Fish, 1990;
Kremkau, 1993). They can also produce mirror-images of the object, often seen below the

uterine wall in fetal images.

Side Lobes and Grating Lobes

Side lobes are minor beams of sound travelling in a direction different from the main beam
— see Figure 1.14. Side lobes of sufficient intensity produce echoes from objects off the
main beam path (Chervenak et al., 1993; Fish, 1990; Kremkau, 1993).

Grating lobes are lobes produced by array transducer probes (Fish, 1990; Kremkau,
1993). As the number of array elements increases and the gaps between the elements
decrease, the size of the lobes decreases (Whittingham, 1991). The lobes also change
shape as the beam is steered. Apodization — unequal weighting of the transmit or receive
elements’ signals — reduces grating lobes but increases the width of the main beam (Wells,

1993). Lobes off the main beam are present to some degree in all ultrasound systems.
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Figure 1.14: Side lobes of an unfocused disk transducer. The side lobes of ultrasound

can produce artifacts from strong reflectors off the main beam path.

Tissue  Propagation Speed (mm/us)

Fat 1.44
Brain 1.51
Liver 1.56
Kidney 1.56
Muscle 1.57

Table 1.2: Propagation speeds of soft tissue in vivo.

Speed Errors

Ultrasound systems typically use a propagation speed of 1.54 mm/us to calculate the dis-
tance to reflectors from the elapsed return time of the echoes (Kremkau, 1993). The value
of 1.54 mm/us is the average propagation speed of ultrasound in soft human tissue. The
actual propagation speed varies with the type and temperature of the tissue. Table 1.2 lists
the propagation speeds of several types of commonly imaged tissue at normal body tem-
perature. Objects located in materials with a propagation speed greater than 1.54 mm/us
will be incorrectly placed too near the probe and vice versa (Fish, 1990; Kremkau, 1993).

The shape of objects within the image will also be distorted — see Figure 1.15

A less significant effect is the dependence of propagation speed on frequency for a given
material. For example, the ultrasound propagation speed in the human brain (measured in
vitro at 37° Celsius) changes from 1.561 mm/us to 1.566 mm/us as frequency is increased
from 1 to 10 MHz (Hill, 1986).
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Figure 1.15: Speed errors. The difference in the speed of sound in the two types of

tissue results in expansion of the slower medium and compression of the faster medium.

Range Ambiguity

The maximum depth that can be imaged unambiguously is determined by the pulse rep-
etition frequency (Kremkau, 1993). In other words, a second pulse should be transmitted
only after all echoes are received from the first pulse. Otherwise, echoes from the first
pulse will appear as artifacts in the second image. In reality, this is not a problem if the
physician chooses the correct probe and pulse repetition frequency for the desired imaging

depth. The trade-off that occurs is between range ambiguity and frame rate.

1.5.3 Sonographic Artifacts: Attenuation Group
Contrast Resolution

Contrast resolution is the smallest detectable difference in echo intensity. The contrast
resolution perceived by the physician depends on the ultrasound system, the computer
monitor and the human visual system. The echo contrast dynamic range is usually com-
pressed to the range most sensitive to the human eye. For example, the ratio of smallest
to largest intensities of returning echoes may be 100 dB. A typical display with 256 grey
levels has a dynamic range of 24 dB. The dynamic range of human perception of grey
levels is approximately 20 dB (Kremkau, 1993).

High contrast resolution also benefits spatial resolution. Individual detection of two
closely spaced objects depends on measuring the amplitude of two separate but partially
overlapping distributions — see Figure 1.16. Contrast and spatial resolution are also
affected by noise and artifacts that obscure or distort objects in the image.

Furthermore, contrast resolution is also dependent on the processing of the echo data.
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Figure 1.16: Contrast resolution. For two echoes to be distinguishable individually, the
depression between the two peaks of the summed signals must be detectable — an issue

of contrast resolution.

255

grey level
on monitor

O T T 1T T 1T 171 1™
0 255
echo level in memory

Figure 1.17: Post-processing curve. The curve is used to convert between the echo
levels in memory and grey levels on the display monitor. A steep slope improves contrast
resolution, although a steep slope over one range of echo levels is accompanied by a shallow

slope over the remaining ranges.
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Strong reflector

Figure 1.18: Shadow artifact. When the transmitted acoustic energy at a boundary
approaches zero, no information is obtained from tissue below the boundary. This results

in a dark shadowed region.

Some ultrasound systems allow manual control of the post-processing curve that relates
echo levels after processing (amplification, demodulation, filtering and compression) to
grey levels on the display monitor (Kremkau, 1993). A steep slope of the curve produces
very different grey levels from echo levels of near equal amplitude. The physician can
improve contrast resolution over a portion of the dynamic range at the expense of the
remaining dynamic range — see Figure 1.17. In general, image processing techniques that

enhance visibility of features in 2D images also enhance visibility in 3D.

Shadowing

Shadowing occurs when ultrasound pulses are greatly attenuated behind strong reflectors
such as bone or lung (Chervenak et al., 1993; Fish, 1990; Kremkau, 1993), as shown in
Figure 1.18. The only way to produce image data from the shadowed region is to view it

from another look direction that is not blocked by the strong reflector.

Shadows can also be caused when the beam is refracted and de-focused by certain
tissue interfaces. If the beam is sufficiently de-focused, then the returning echoes are
too weak to be detectable. The image, therefore, exhibits a shadowed region below the
interface (Chervenak et al., 1993; Kremkau, 1993).
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Figure 1.19: Enhancement artifact. When the ultrasound pulse passes through an
anechoic region, such as a fluid filled cavity, little of the acoustic energy is absorbed.
Since the time-gain amplification attempts to compensate for higher attenuation at greater

depths, over-amplification occurs below the anechoic region.

Enhancement

Enhancement is the opposite of shadowing. Some tissues or fluids (such as amniotic fluid)
are anechoic, so they do not reflect or absorb much ultrasound energy. Regions below
anechoic tissues or fluids return echoes of greater than expected amplitude (Chervenak
et al.,, 1993; Kremkau, 1993), as shown in Figure 1.19. Enhancement can also occur
because of the inherent higher intensities near the beam focus (Kremkau, 1993). TGC
(time-gain compensation) amplifies distant echoes more than proximal echoes to account
for the greater attenuation of distant echoes. Manual control of the TGC curve is required
because of the variation in attenuation coefficient among different types of materials. The

physician typically controls the shape of the curve to reduce the enhancement phenomenon.

Anisotropy

It has been found that some tissues contain anisotropic scatterers that only appear from
certain look directions (Moskalik et al., 1995). The physician has been trained to find the
look directions that offer high visibility of anatomical features. Freehand imaging has a
clear advantage over other 3D imaging methods by allowing the physician to choose these

look directions during the examination.
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Electronic Noise

Electronic noise is unavoidably introduced during the analogue processing of the echo
pulses. The analogue process normally involves amplification, demodulation and compres-
sion of the signals before digital conversion. Electronic noise dominates at low intensities

and ultimately limits the maximum imaging depth (Wells, 1993).

1.5.4 Position Sensor
Sensor Accuracy and Precision

One way to measure the position and orientation of the probe for 3D freehand imaging
is to use a transmitter-receiver system. The two most popular sensors are the Fastrak
(Polhemus Incorporated, Colchester, Vermont, USA), and the Flock of Birds (Ascension
Technology Corporation, Burlington, Vermont, USA). Although the Fastrak and the Bird
sensors both use magnetic fields in their operation, the Fastrak is energised by bursts of
sinusoidal current, and the Bird is energised by rectangular pulses of direct current. Thus
the Fastrak is an AC (alternating current) system, and the Bird is a quasi-DC (direct
current) system. Since the earth’s magnetic field contributes to the DC magnetic field,
the Bird sensor measures the earth’s field and subtracts it from its own signals. The
accuracy and precision ratings of the two sensors are listed in Table 1.3.

Both sensors have sufficient accuracy and resolution for 3D freehand ultrasound, but
the errors in orientation can be amplified because of the lever-arm effect. The position
sensor is attached at a location above the top of the B-scan, so pixels at the bottom of
the B-scan are furthest away. A small angle of error in orientation can result in a large
error in position for deeper pixels. The position sensor is normally attached to the probe
with a small extension bar, as shown in Figure 1.4. The length of the extension bar
is therefore kept as short as possible to minimise the effect of orientation errors, while
avoiding interference with the probe.

The performance of the Fastrak and Bird sensors is also affected by nearby metal
objects and interfering fields (Nixon et al., 1998). In practice, errors are minimised by
carefully preparing the examination room before tests. For example, a wooden bed is
normally used for examinations, a clear path is kept between the transmitter and receiver,
and other field generating devices are placed as far away as practical.

A number of other position sensors have also been used for 3D freehand ultrasound.
Spark-gap acoustical sensors were among the first devices to be used, but accuracy can
be severely degraded by changes in air pressure and temperature (King et al., 1991).
Also, patients did not always tolerate the spark-gap devices near their bodies. Mechanical
arms (Ohbuchi et al., 1992) offer high performance and robustness (Rohling et al., 1994),
but are relatively expensive and can be obtrusive during an examination. Optical-video
systems (State et al., 1994; Trobaugh et al., 1994) can provide exceptional accuracy and
precision (Rohling et al., 1994) but are also expensive and require a clear optical path

between the receiver and the transmitter. The cost-performance ratio of the magnetic
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Sensor Position Orientation Notes
Accuracy Resolution Accuracy Resolution
Polhemus Fastrak 0.76 mm  0.38 mm 0.15° 0.025° (a)
Ascension Flock of Birds 1.78 mm  0.76 mm 0.5° 0.1° (b)

Table 1.3: Manufacturers’ specifications of Bird and Fastrak position sensors.
Accuracy ratings are expressed as the RMS (root mean squared) errors from the true
positions and orientations. Resolution ratings signify the smallest detectable difference in
measurements. Notes: (a) specifications at 760 mm separation between the transmitter

and receiver; (b) specifications at 305 mm separation.

position sensors is the main reason why the Polhemus Fastrak and the Ascension Bird
are the most popular position sensors for 3D freehand ultrasound. The Fastrak position

sensor is used for all experiments in this thesis.

Sensor Latency and Acquisition Rate

A moving sensor will provide readings of past positions because of latency: the time be-
tween movement of the sensor and the corresponding change in the recorded position. For
example, a 4 ms latency (Polhemus manufacturer rating) for a probe moving at 100 mm/s
gives a position error of 0.4 mm. Slow motion of the probe during an examination re-
duces the effect of latency errors. If constant, the latency can be measured and its effect
subtracted from the position measurements (Prager et al., 1998a).

Although the position sensor can produce readings at a high rate, the video frame
grabber normally limits the acquisition rate. A low acquisition rate requires the physician
to move the probe slowly to avoid large gaps between images. So, for a system acquiring
25 fps (frames per second), the probe must be moved at 25 mm/s to get 1 mm spacing
between B-scans.

Calibration

The angles and offsets from the position sensor receiver to the corner of the B-scan are
used in the reconstruction stage to determine the relative positions of the B-scans. Since
calibration determines these angles and offsets, any inaccuracies in calibration are carried

over as systematic errors in the reconstruction.

1.5.5 Tissue Movement

Movement of the subject during a prolonged examination results in errors when recon-
structing a 3D data set from 2D images. There are few clinical applications where the
imaged anatomy is nearly stationary (an exception is the examination of a breast im-
mobilised in a mammographic unit). In many examinations, significant errors arise from

heart pulsations, breathing, varying pressure on the skin in contact with the probe and
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Figure 1.20: Spatial compounding. This is a simple illustration of 2D spatial com-
pounding. Two B-scans are taken of the same object, in the same plane, but from differ-
ent viewpoints. The two B-scans are accurately aligned and then averaged together. The
averaging process produces a compounded image with an improved SNR. The principle

extends to 3D, where compounding can be performed wherever scan planes intersect.

whole-body movement. Some of the errors involve simple translations and rotations of the
subject, but others produce non-rigid tissue deformation. Motion-related errors can be
minimised by increasing the acquisition rate, thus reducing the examination time. ECG
(electrocardiogram) gating and temporary suspension of breathing can also reduce motion
artifacts. Nevertheless, the design of systems that are tolerant to tissue movement remains

one of the major challenges in 3D ultrasound.

1.6 Spatial Compounding

Considerable research has been directed towards methods to reduce ultrasound artifacts in
an effort to improve diagnosis. Spatial compounding is one method that has been investi-
gated in the past. The underlying principle is to average multiple images of the same region
of interest taken from different look directions. The speckle signal, which de-correlates
from different look directions, is suppressed by the averaging operation. Conversely, real
anatomical features (tissue boundaries, for example) will be observed in the same loca-
tion from all look directions. Provided the alignment of the scan planes is accurate, the
averaging operation will highlight the real anatomical features — see Figure 1.20.

The different viewpoints must be separated by a minimum distance to fully de-correlate
the speckle patterns. Translation of forty percent of one transducer aperture diameter
was experimentally derived for de-correlation in the beam focus of a linear phased array
probe (Trahey et al., 1986b). For fully uncorrelated speckle, it has been established that
compounding multiple B-scans lying in the same plane can improve the SNR (signal to
noise ratio) by as much as the square root of the number of B-scans used (Burckhardt,
1978; Hernandez et al., 1996; Kerr et al., 1986). SNR is defined here as the ratio of the
mean grey level to the standard deviation, for an image with no resolvable structures. This
is a commonly used figure of merit for imaging systems (Trahey et al., 1986b). Spatial

compounding has also been demonstrated to fill in shadowed regions (He, 1997) and reduce



Section 1.6. Spatial Compounding

other artifacts (Wells, 1993).

Unfortunately, there is a fundamental trade-off between speckle reduction and spatial
resolution: multiple compounding results in a decrease in spatial resolution (Wells, 1993).
If structures in one image are not exactly coincident with the same structures in another
image, then the compounded image will appear blurred. Even if an accurate position
sensor is used to measure the locations of the B-scans, other measurement errors still
result in a small amount of misalignment. The main errors that cause misalignment (also
called registration errors) include refraction, multi-path reflection, speed errors, sensor
errors, latency, calibration and tissue movement. Despite these errors, if the misalignment

is small, then the trade-off may be acceptable.

In addition to spatial compounding, there are a number of other techniques for reducing
speckle in ultrasound images. These include filtering, frequency compounding, temporal

compounding and signal reconstitution.

Filtering is commonly used, and a variety of different filters have been suggested (Craw-
ford et al., 1993; Evans and Nixon, 1995; Sakas et al., 1995). For example, median filters
attempt to suppress speckle while retaining sharp edges. More sophisticated filters attempt
to adapt themselves for different parts of an image. In this way, the filter is optimised
for each type of tissue in the image, instead of using a single filter for the entire image.
But finding a filtering method that works well on a wide variety of images is a difficult
challenge. Moreover, unlike compounding techniques, filtering does not introduce any new

information.

Frequency compounding is similar to spatial compounding, except that different pulse
frequencies are used instead of different look directions (Trahey et al., 1986a). Compound-
ing images taken at different frequencies reduces speckle because speckle also de-correlates
with a change in frequency. Unfortunately, if the transducer’s available bandwidth is di-
vided into a number of partially overlapping spectra for frequency compounding, then
each pulse contains a narrower range of frequencies. This limits the ability to create short
pulses, so axial resolution is reduced. Because of this trade-off, little success has been

achieved with frequency compounding (Wells, 1993).

Temporal compounding is closest to spatial compounding since it directly averages
conventional B-scans. It is called temporal compounding because it is implemented with
a variable persistence display that averages a number of successive frames (Chervenak
et al., 1993; Wells, 1993). The average of several closely spaced B-scans will show a
reduction in speckle since the look direction has changed slightly. The main problem with
temporal compounding is that the images being averaged do not generally depict the same
anatomical region. Yet, if the ultrasound probe is moved slowly, and the anatomy is slowly
changing, the anatomical features will be only slightly blurred. In many cases, physicians
prefer a small level of display persistence and simply use the speed of the probe to control

the level of compounding.

Signal reconstitution refers to techniques that attempt to recover information in the

echo signals before it is lost in the image formation process. For example, the speckle
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artifact can be recognised in the phase domain using the original echo signals (Leeman
and Seggie, 1987). This suggests it can be removed before image formation, but signal
reconstitution remains a difficult challenge.

In summary, there are a number of alternative techniques for reducing speckle, but
many produce images with considerably reduced spatial resolution (Wells, 1993). Spatial
compounding is particularly attractive with 3D freehand ultrasound, since the locations
of the B-scans are already measured by the position sensor. It can also be performed with

a standard freehand system without the need for any internal modifications.

1.7 Motivation and Original Contributions

1.7.1 Reconstruction

As already mentioned, 3D ultrasound imaging has proven diagnostic utility in a number
of different clinical applications. This thesis is concerned with making advances in 3D
freehand ultrasound imaging in an effort to make better diagnoses. It is sensible to begin
with the reconstruction process in order to obtain the highest quality data. First, accurate
calibration of the position sensor to the B-scans is required to correctly place each B-scan
into the reconstruction volume. Then an interpolation step is needed to fill the voxel
array while preserving as much of the image information as possible. These two issues are
tackled in Part I.

To start, Chapter 2 looks into the problem of calibration by comparing the various
calibration techniques found in the literature. The most important contributions of this
chapter are the establishment of a common mathematical framework, and a comprehensive
series of comparative tests. The aim of the tests is to quantitatively answer the most
important questions of calibration: “What are the relative repeatabilities, precisions and
accuracies of each of the different calibration methods?” These tests provide an idea of
what levels of calibration errors to expect in the reconstructed data sets. The mathematical
framework allows questions on parameter identification, numerical conditioning and the
effects of measurement errors to be answered. In this way, the differences in performance
of the calibration methods can be explained using the theoretical framework.

Chapter 3 tackles the problem of reconstruction. The main goal is to prove the feasi-
bility of using smooth functions to interpolate the set of irregularly spaced B-scans into a
regular 3D voxel array. A spline-based method is adapted to the interpolation problem,
and improvements are made to deal with the very large numbers of clustered data points
encountered with 3D freehand ultrasound data. Chapter 3 also summarises the traditional
reconstruction methods found in the literature. An important contribution is the evalu-
ation of the advantages and disadvantages of the various methods (including the spline
method) in a series of quantitative tests. The main questions are “How do the methods
deal with gaps and overlapping data?”’ and “Are any reconstruction artifacts generated?”
In other words, can spline interpolation improve on standard methods and produce the

highest quality reconstructions?
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1.7.2 Spatial Compounding

Spatial compounding is investigated as a method for realising further improvements in the
quality of the 3D data sets. Although 2D spatial compounding has been the subject of
considerable research in the past, it is not employed on any widely available commercial
ultrasound system. Since the emphasis of modern ultrasound machines is on real-time
B-scan imaging, there is little time for the calculations required for spatial compounding.
Only temporal compounding is common, since it is easy to implement without taking
much away from the real-time abilities. But, as mentioned, temporal compounding is a
non-optimal way of reducing speckle, since the B-scans from non-coincident planes are
averaged.

With 3D freehand ultrasound, it is easy to incorporate spatial compounding by simply
examining a region of interest from a variety of look directions. This creates a dense set
of overlapping B-scans. The position sensor readings, combined with calibration, ensure
that the B-scans are compounded only where they overlap. Unfortunately, small errors
in data alignment result in a loss of resolution (blurring). Yet 3D ultrasound brings new
challenges, such as 3D visualisation and volume estimation, that demand a certain degree
of speckle reduction. This suggests that the trade-off between resolution and speckle
reduction in spatial compounding may be acceptable. Plus, because the reconstruction
stage of freehand imaging is performed off-line, time is available to align the B-scans more
accurately using the features in the images themselves. This process is called registration.
The new challenges of 3D ultrasound, combined with advances in image registration and
high speed computing, make 3D spatial compounding a promising topic of research.

Part IT of this thesis performs an in-depth investigation into spatial compounding
from the perspective of 3D freehand imaging. Since little work has been done on 3D
spatial compounding, Chapter 4 starts with a statistical study. The statistical theory
for the improvement in SNR is developed, and a series of tests are performed in wvitro
to verify the theory. This work is the first to investigate whether 3D visualisation and
volume estimation are improved by spatial compounding. Another important contribution
is the development of a landmark-based registration technique to correct some of the
misalignment. As mentioned, the key to spatial compounding is accurate registration.

In Chapter 5, spatial compounding is extended to examinations performed in vivo, to
verify its merits on human patients. This study is the first to apply a robust correlation-
based registration technique, originally designed for other modalities such as MR and
CT, to ultrasound data. The main question is “Can sufficiently accurate registration be
achieved with data obtained in vivo?” In summary, the main contribution of Part II is

the proof-of-concept of 3D spatial compounding.
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The work which deserves, but I am afraid does not always receive,
the most credit is that in which discovery and explanation go
hand in hand, in which not only are new facts presented,

but their relation to old ones pointed out.

—Lord Rayleigh, British Association Report, 1884

Chapter 2

Calibration

2.1 Introduction

A key requirement of all freehand imaging systems is calibration. This involves determin-
ing the position and orientation of the B-scan plane with respect to the sensor mounted on
the probe. The results of the calibration take the form of six constant offsets, three for po-
sition and three for orientation. These offsets are combined with the sensor measurements
to calculate the positions of the B-scans during reconstruction. Accurate calibration is
essential for a consistent reconstruction that preserves true anatomical shape.

Calibration is required regardless of the type of position sensor used in the examina-
tion. A number of different position sensors have been used for freehand systems (see
Section 1.5.4), but only a few articles in the literature mention calibration (Barry et al.,
1997; Carr, 1996; Detmer et al., 1994; Hughes et al., 1996; Leotta et al., 1997; Nelson and
Elvins, 1993; State et al., 1994). Even fewer have seriously investigated the accuracy and
precision of calibration.

A rough estimate of the calibration parameters can be obtained by external measure-
ments of the probe and position sensor. Yet the origin of the sensor (for example, the
centre of the wire coils in an electromagnetic receiver) and the corner of the B-scan are
not well defined with respect to the external cases of the sensor and probe. For these
reasons, calibration is preferably performed by imaging a phantom: an artificial object
with some known physical properties or dimensions. Measurements from an examination
of the phantom, combined with its known physical properties, can be used to determine
the six offsets.

In this chapter, all calibration phantoms mentioned in the literature are described
using a common mathematical framework. The precision, accuracy and repeatability of

each of these techniques are then compared in a series of tests.

2.2 Coordinate Systems

To see how calibration fits into the 3D freehand process, it is necessary to describe the

reconstruction equations. Figure 2.1 shows the four coordinate systems used for recon-
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Figure 2.1: Coordinate systems. The reconstruction process uses four coordinate sys-
tems. The transmitter is often placed on a cantilevered support above the examination

table, to give an unobstructed path to the receiver.

struction. P is the coordinate system of the cropped B-scan P, with an origin in the
top left hand corner. The y-axis is in the axial direction, and the z-axis in the lateral
direction. The z-axis is in the elevational direction, out of the plane of the B-scan. R
is the coordinate system of the position sensor’s receiver and T is the coordinate system
of the transmitter. The reconstruction volume, created from the set of acquired B-scans,
takes the form of a 3D voxel array C. The origin of coordinate system C' is located at the
corner of the reconstruction volume.

During reconstruction, every pixel in every B-scan has to be located with respect to the
reconstruction volume. Each pixel’s location (¥x) is transformed first to the coordinate
system of the receiver R, then to the transmitter 7' and, finally, to the reconstruction vol-
ume C. The overall transformation can be expressed as the multiplication of homogeneous

transformation matrices:

% =°Tr T BTp x (2.1)
where
Spll
Py — Syv
0
1

A standard notation is adopted, so that /T is the transformation from coordinate system
I to coordinate system J. u and v are the column and row indices of the pixel in the
cropped image, and s, and s, are scale factors with units of mm/pixel. C is the pixel’s

location in the coordinate system C.
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A transformation between two three-dimensional coordinate systems has six degrees of
freedom: three rotational (o, 3,7) and three translational (z,y, z). There are many ways
to parameterise a rotation, including unit quaternions, rotation matrices and a variety
of three-angle systems. An z-y-z fixed-angles scheme (Craig, 1989) is chosen here. The
rotation between two coordinate systems is effected by first rotating through ~ around the
z-axis, then through 8 around the y-axis, and finally through o around the z-axis (the
order of rotation is significant). The fixed rotation axes are aligned with the first coordinate
system. Using this convention, the homogeneous matrix describing the transformation
takes the following form:

JTI(a:,y,z,a,ﬁ,7) =

cosacosf cosasin@siny —sinacosy cosasinfcosy + sinasin-y
| . (22)
—sin g cos Bsin~y cos B cosy

x
sinacos 3 sinasinfsiny 4+ cosacosy sinasinfcosy —cosasiny ¥y
z

0 0 0 1

Each of the transformation matrices in equation (2.1) plays a different role in recon-
struction. The most straightforward is 7 Tg, which is derived directly from the position
sensor readings. In the context of reconstruction, “T7 is included largely as a matter of
convenience. If omitted, and the reconstruction volume is aligned with the transmitter,
this might place the B-scans a long way from the origin of C, resulting in a vast, largely
empty voxel array. In addition, the anatomy might appear upside down in C, with the
head towards the bottom of C and the feet towards the top: it all depends on the posi-
tioning of the transmitter with respect to the patient. Such effects can be corrected by
allowing an arbitrary transformation ¢“Tr, set as required for each examination. That
leaves just f'T p, which needs to be determined by calibration. Although the scale factors
sz and sy could be derived from the axis markings on the B-scan, these are also included
in the calibration for convenience.

Once calibration is performed, equation (2.1) can be used to calculate “x for every
pixel. Then the voxels of C can be set according to the intensities of the pixels they
intersect. A basic algorithm simply runs through each pixel in every B-scan and fills the
nearest voxel with the value of that pixel. Multiple contributions to the same voxel are
averaged. This algorithm, called the PNN (pixel nearest neighbour) algorithm, is depicted

in Figure 2.2. Other reconstruction algorithms are introduced in Chapter 3.

2.3 Calibration Phantoms

2.3.1 Cross-wire Phantom

Calibration is performed by scanning a phantom of known geometric dimensions. Equa-
tions similar in form to equation (2.1) can be written using knowledge of the phantom
geometry and the position sensor measurements. These equations are then solved to de-

termine the calibration parameters.
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1. Acquire 2D image P and associated position data T T

2. Insert image P into reconstruction volume C
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Figure 2.2: PNN reconstruction algorithm. Steps 1 and 2 are repeated for all B-scans
acquired in an examination. The accumulator n in step 2.3, used to average overlapping
data, is also stored at each voxel and set initially to zero. In practice, step 2.2 is omitted

since it is equivalent to step 2.3 for n=0.
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(a) Cross-wire phantom (b) Three-wire phantom (c) Single-wall phantom

Figure 2.3: Calibration phantoms. (a) A crossed wire is scanned in a water bath,
producing a white cross in the B-scan. The crossed wires can be scanned from a variety of
directions, but the scan plane must intersect the crossing point. The origin of C is placed
at the point where the wires cross. (b) Three mutually orthogonal, intersecting wires are
mounted in a box. B-scans of each wire exhibit a white dot. The origin of C is located
at the point where the wires cross, with the axes running along the three wires. (c) The
floor of the water bath is scanned, producing a white line in the B-scan. The origin of
C is located on the floor of the water bath, with one axis orthogonal to the plane of the

floor.

A common calibration phantom is the cross-wire phantom (Barry et al., 1997; Detmer
et al., 1994). Two intersecting wires are mounted in a water bath, with the transmitter
placed at some fixed location with respect to the wires — see Figure 2.3(a). For calibra-
tion purposes, C is not coincident with the corner of the reconstruction volume, but is
placed instead at the intersection of the wires. This simplifies the calibration equations
considerably.

The location where the wires cross is scanned repeatedly from different directions, with
each B-scan showing a detectable cross (the reader may wish to skip ahead to Figure 2.8(a)

for a typical example). The pixel at the centre of the cross should satisfy:

Szl

Sy

=1 TR BTp (2.3)

_= o O O

The first three rows of equation (2.3) give three equations involving the measurements
TTg, u and v, and the unknowns BTp, “T7, s, and sy. If there are m B-scans, then
the equations can be stacked together to produce a system of non-linear homogeneous
equations of size 3m:

0=1(6,9) (2.4)
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where 6 are the measurements and ® are the unknowns. Given an over-determined set
of equations (such that 3m is greater than the number of unknowns ®), the system can
be solved by several iterative methods. The popular and robust Levenberg-Marquardt
algorithm (More, 1977) is used here. At iteration j, the update A® to the current estimate

®; is derived from the first order Taylor expansion of equation (2.4):

0="1(6,8) ~ £(6,%;)+ %(@ — ®))
= Af = J(®-3;)=JAd (2.5)

where Af is the error vector —f(0,®;) and J is the gradient matrix 0f(6, ®;)/0®, also
known as the Jacobian. The Levenberg-Marquardt algorithm produces the updated pa-

rameter values ®;1:
i1 =3+ (ITT+ ) 1ITAS (2.6)

where ¢ is a damping term chosen at each step to stabilise convergence, and I is the
identity matrix. This method becomes the standard iterative least squares algorithm for
e = 0. At each step, Af and J are evaluated at the current estimate ®;. This process is
iterated until the corrections A® are sufficiently small.

Only the scale values and T p are of interest in calibration, but Ty is also unknown.
The parameters of “T7 must also be solved for, even though these values will be sub-
sequently discarded and a convenient “T7 adopted for reconstruction (as explained in
Section 2.2). At first sight, therefore, it appears that ® must be a 14-element vector,
composed of s; and sy, the six parameters of RTp and the six parameters of “Tp. Yet it
is clear from inspection of the geometry that the coordinate system C can be at any orien-
tation and still satisfy equation (2.3). This means that the three orientation angles of “ T
are not identifiable !. These angles are therefore removed from ®, and, for convenience,
set to zero in equation (2.4). Table 2.1 lists the identifiable parameters ®.

The final requirement for identifiability of the parameters is sufficient range of motion
of the probe about the crossed wires. All six DOF must be exercised to produce a set of
independent equations. This means the crossed wires must be imaged from a variety of
different viewpoints.

Given a sufficiently wide range of viewpoints, accuracy of calibration with a point
object depends on how well the centre of the point can be located, as well as the degree
to which the point remains fixed in space with respect to the transmitter 7'. This means
care must be taken so that both the transmitter and phantom are rigidly mounted and
are not susceptible to mechanical vibrations. Given the quality of ultrasound images, it
is common practice to locate the point by hand in each B-scan, making the calibration
process fairly time-consuming.

Several papers (Leotta et al., 1995; Leotta et al., 1997; State et al., 1994) have described
this calibration method using other point objects (such as a pinhead or a small suspended

bead) instead of the crossed wires. The calibration equations, however, remain unchanged.

!The unidentifiable parameters can also be discovered by singular value decomposition of the Jacobian
matrix — see Appendix B
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® Cross-wire Three-wire Single-wall
e v v v
Sy v v v
x v v v
y v v v
Y U v v v
o v v v
B v v v
gl v v v
z v v -
y vi v -
T, oz v Y,
a - Vv -
s Y, v
g - v v
Table 2.1: Identifiable parameters. Some parameters of Trp, marked ‘—, are not

identifiable by the cross-wire and single-wall methods, so are removed from the vector of

parameters P.

2.3.2 Three-wire Phantom

Another calibration technique uses a three-wire phantom (Carr, 1996), as shown in Fig-
ure 2.3(b). This technique also involves scanning wires in a water bath, but it requires
three wires to be accurately mounted in orthogonal directions. The accuracy of calibration
depends on the orthogonality and straightness of the wires, as well as the degree to which
the wires remain fixed in space with respect to the transmitter.

The coordinate system C' is placed at the origin of the wires, and the z, y and z axes
oriented along the three wires. Each wire is scanned, one at a time, along its length from
a variety of look directions. The wire appears as a detectable dot in the B-scan (for a
typical example see Figure 2.8(b)). For the wire along the z-axis, the pixel at the centre

of the wire should satisfy:

= CTT TTR RTP (27)

= O O 8

1

The left hand side of the equation becomes (0 y 0 1)T for the y-axis and (0 0 z 1)T for the
z-axis. The two zero components of each equation give two equations in the unknowns ®.
All six parameters of ©T'r are identifiable, giving 14 unknown parameters — see Table 2.1.
As with the cross-wire phantom, many B-scans are acquired from a variety of viewpoints,

ensuring all 6 DOF are exercised. The wires are located by hand in each image, and the
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over-determined set of 2m equations is solved using the Levenberg-Marquardt algorithm.

The advantage of the three-wire method over the cross-wire method is that it is in-
trinsically easier to scan a length of wire than to keep the B-scan centred about a fixed
point. Yet each wire must be scanned separately, keeping track of which wire each B-
scan intersects. This means calibration times are almost as long as with the cross-wire

technique.

2.3.3 Single-wall Phantom

In the process of designing a new 3D freehand ultrasound system, researchers at the
University of Cambridge (Prager et al., 1998a) started to investigate alternative methods
of calibration. Their aim was to find a method that was less laborious than the wire-
based techniques, so that calibration could be easily performed by a non-specialist. In
this way, a conventional ultrasound machine, with almost any type of probe, could be
quickly converted into a 3D freehand system.

When scanning the cross-wire and three-wire phantoms, they found that the floor of
the phantom produced clear, consistent lines in the B-scans. The wires were removed and
calibration was performed using the floor of the water bath alone — see Figure 2.3(c).

Calibration in this way has several advantages. Simple water baths with planar surfaces
are readily available, so there is no need to construct a special phantom. Furthermore,
the plane should show up as a strong, straight line in the image (Figure 2.8(c) shows a
typical example) making it easier to detect than dots and crosses. This is because there is
much more redundant evidence for the presence of a line in an image. In other words, it is
possible to locate a straight line even when portions of the line are corrupted or missing.
The same cannot be said of dots and small crosses. Making the most of this advantage,
an automatic line detection algorithm was developed (Prager et al., 1998b).

The equations for single-wall calibration can be expressed in the same form used for
the cross-wire and three-wire techniques. If the coordinate system C is defined to lie in
the floor of the water bath, with the z-axis orthogonal to the floor, pixels lying on the line

in the B-scan should satisfy:

= CTT TTR RTP (28)

= o e 8

The zero component of the equation gives one equation in the unknown parameters ®.
Yet the equation can be written for two pixels on the line (two points uniquely define a
line), giving two equations per B-scan.

From inspection of the geometry, it is evident that several parameters of Tt are not
identifiable. The rotation of the floor about the z-axis (a) and the translation of the floor
in its own plane (z,y) do not affect the z-component of “x. This leaves 11 identifiable

parameters — see Table 2.1.
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1. vertical motion 2. side-to-side rotation 3. front-to-back rotation
==
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4. horizontal movement in x direction 6. rotation about vertical axis
5. horizontal movement in y direction

Figure 2.4: Minimal sequence of motions for single-wall calibration. All six degrees
of freedom must be exercised to identify the 11 parameters.

The optimisation algorithm needs at least 11 independent equations to solve for these 11
unknowns. Although each B-scan can be used to write two equations, the resulting equa-
tions will not necessarily be independent unless the probe is moved appropriately while
scanning the wall. As with the other methods, the motion of the probe must exercise all
six DOF — see Figure 2.4. The over-determined set of 2m equations is then solved using
again the Levenberg-Marquardt algorithm. The accuracy of the calibration depends on
the flatness of the floor, as well as the degree to which the floor remains fixed in space

with respect to the transmitter.

2.3.4 Cambridge Phantom

Unfortunately, single-wall calibration is susceptible to problems caused by the width of
the ultrasound beam and the nature of specular reflection. When the beam is not normal
to the wall, the first echo to return to the probe comes from the edge of the beam closest
to the wall — see Figure 2.5. This effect introduces position errors into those B-scans
taken at oblique angles. The problem is compounded by the weak echo obtained when the
wall is scanned obliquely, since much of the ultrasound energy is specularly reflected away
from the probe and the amount of Lambertian reflection is small. Both of these effects
conspire to spoil the ultrasound image when the scan plane is not normal to the wall.
Unfortunately, such scanning angles are required for effective calibration, as discussed
previously.

A new phantom, dubbed the “Cambridge phantom” (Prager, 1997), was designed to
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Figure 2.5: Beam thickness problem with single-wall calibration. When the wall
is scanned from oblique angles, the finite beam thickness results in a thick, blurred line in
the image. The thick line arises because point B is encountered by the ultrasound pulse
before point A on the centre line. The echo from point B corresponds to the top of the

line in the ultrasound image, which does not reflect the true position of the wall.

overcome the difficulties experienced with planar calibration. The phantom consists of
two parts: a clamp that fits around the probe, and a thin brass bar mounted between
two circular disks — see Figures 2.6 and 2.7. The top of the bar, which is approximately
1.5 mm thick, is squared-off and slightly roughened with emery cloth.

The idea is that the clamp constrains the thin bar to move only in the centre of the
ultrasound beam. The bar is attached to the disks in such a way that the upper edge of
the bar is aligned with the centre of each disk. This means that as the disks are rolled
from side to side, the upper edge of the bar stays at a constant height above the floor. In
essence, the Cambridge phantom is similar to the single-wall phantom, but the wall is a
virtual plane traced out by the top of the bar. This plane has two important properties.
First, only the slice required to reflect the centre of the ultrasound beam exists at each
moment in time. Secondly, that slice is usually oriented towards the ultrasound probe, so
the beam is reflected straight back to the probe, producing a strong, clear image — see
Figure 2.8(d). The exception is when the clamp is rotated about the bar (motion 2 in
Figure 2.7). Even with this motion, however, by roughening the surface of the bar slightly,
clear images can be obtained for a sufficiently wide range of angles.

The calibration procedure using the Cambridge phantom is summarised as follows:

1. Place the clamp around the ultrasound probe. Adjust it so that the slots through

the two sides of the clamp are aligned with the scan plane of the probe. This is
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Figure 2.6: Calibration using the Cambridge phantom. A 7 MHz linear array probe
is fitted into the phantom’s clamp, which itself is fitted around the brass bar immersed
in the water bath. The position sensor’s transmitter is suspended from a cantilevered
support above the water bath, and the receiver is attached to the probe at the end of a

rigid extension bar.

Insert ultrasound probe
into clamp and tighten bolts

>
74

S = Ul

1. Raise and lower clamp about bar

6. Rotate clamp and wheel about vertical axis

20
@] (T

N\ 4.Slide clamp aong bar

2. Rotate clamp about bar

wheel rotates
about top

wy.

3. Rotate wheedl
A/

5. Translate clamp and wheel along floor

Figure 2.7: Motions of the Cambridge phantom. Accurate calibration requires a

minimal sequence of motions covering all six degrees of freedom: compare with Figure 2.4.
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easily checked by ensuring that a clear image is obtained when the clamp is placed

over the bar.

2. Immerse the phantom in water and slot the clamp over the bar. Scan the bar from
all possible angles, subject to the constraints imposed by the clamp. Figure 2.4
shows the minimum sequence of motions required for calibration. The shape of the
phantom and the way it interacts with the clamp ensures that a clear image of the

bar will always be visible in the B-scan.
3. Detect the lines in the image.

4. Solve the same system of equations derived for the single-wall phantom — see equa-
tion (2.8).

2.4 Comparison of Calibration Techniques

2.4.1 Method

A series of tests was undertaken to evaluate the performance of each of the four calibration
methods under typical scanning conditions. Phantoms for three of the calibration meth-
ods (three-wire, single-wall, and Cambridge) were obtained directly from the inventors of
each method. The cross-wire phantom was constructed by crossing two cotton wires and
immersing them in a water bath, as described in (Detmer et al., 1994). The wires were
crossed so that they did not form a plane; this ensured crosses were produced in images
from all look directions. The three-wire phantom was constructed by placing 1 mm di-
ameter nylon wires under tension between precision drilled holes in the walls of a perspex
water bath, as described in (Carr, 1996). The holes were positioned to make the wires
orthogonal. The single-wall phantom was no more than the floor of a water bath. The
weight of the water, acting on a flat table under the floor of the bath, helped to reduce
any error arising from the flexibility of the floor. Construction of the Cambridge phantom
is described in Section 2.3.4.

The ultrasound machine used in these experiments was a Toshiba model SSA-270A/HG
(Toshiba America Medical Systems, Tustin, California). The Stradx acquisition soft-
ware (Prager et al., 1998a) was used in conjunction with an 8-bit frame grabber and a
Silicon Graphics Indy workstation (Silicon Graphics Incorporated, Mountain View, Cal-
ifornia). Although the acquisition software can record at 25 fps, a lower frame rate of
5 fps was selected for the calibration experiments to allow significant motion of the probe
between frames.

Calibration experiments were performed with a 7 MHz linear array probe, a 40 mm
depth range and the imaging controls (such as time-gain compensation, focus, overall gain
and acoustic power) adjusted to give optimal images of each phantom. The images were
then cropped to 328x409 (widthxdepth) pixels. Figure 2.8 shows some typical B-scans of
the phantoms.
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(a) Cross-wire (b) Three-wire (c) Single-wall (d) Cambridge

Figure 2.8: Typical B-scans of calibration phantoms. (a) The cross from the two
wires is located near the bottom left hand corner of the B-scan. (b) The dot near the top
of the B-scan is one of the wires of the three-wire phantom. (c) The top line is the floor
of the single-wall phantom, the second one down is a reverberation. (d) The top of the

brass bar is clearly visible.

A Polhemus Fastrak position sensor was used for all tests. To minimise interference
from the electronics inside the ultrasound probe, the receiver was mounted at the end
of a rigid nylon extension bar about 25 cm from the probe face. The mounting was not
disturbed during the experiments, so the results of successive calibrations can be directly
compared.

Twenty calibration experiments were performed using each of the cross-wire, single-
wall and Cambridge phantoms. Practical time constraints limited the evaluation of the
three-wire phantom to ten trials. The scanning protocols are described in Figure 2.9 and
Table 2.2. Any B-scans that did not reveal a clear image of the phantom were discarded.
For the Cambridge phantom, the probe was completely removed from the clamp between
each trial, and then re-mounted. For the cross-wire and three-wire phantoms, the pixel
coordinates (u,v) needed for the calibration equations were extracted by hand in each B-
scan. The pixel coordinates for the single-wall and Cambridge phantoms were determined
with an automatic line detection algorithm (Prager et al., 1998b). In all experiments, the
Levenberg-Marquardt algorithm (equation (2.6)) was used to determine ®, taking care
to remove unidentifiable parameters and scale the remaining parameters to produce as
well-conditioned a problem as possible. Details of the numerical methods are provided in
Appendix B.

For all calibration experiments, the water bath was filled with water at room tempera-
ture. This means that the estimated scale factors s, and s, will reflect the speed of sound
in water (1.48 mm/us at 20° Celsius (Hill, 1986)) and not human tissue (1.54 mm/us:

the average for soft tissue (see Section 1.5.2)). The temperature in the room was ther-
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(a) Cross-wire (b) Three-wire

(c) Single-wall

(d) Cambridge

Figure 2.9: Scanning protocols. The outlines of the B-scans are shown for a typical

examination of each phantom. Table 2.2 provides details of the range of angles and

positions covered by each examination.

Cross-wire Three-wire Single-wall Cambridge
number of B-scans ~ 53 ~ 193 ~ HT78 ~ 530
z translation (mm) +84 +67 +108
y translation (mm) +84 +67 +71
z translation (mm) +44 +17 +17
max. inclination to z-axis 50° 19° 69°
twist of B-scan +87° +90° +90° +90°

Table 2.2: Scanning protocols. The table gives approximate values for the ranges of
angles and positions covered by the examinations in Figure 2.9. The translations relate

to the centre of the probe face, with & and y axes oriented along the floor of the water

bath, and the z-axis pointing upwards.

These are the same directions as the axes of

coordinate system C' in Figure 2.1. The angle of inclination to the z-axis defines a cone
of look directions, and the twist angle describes rotation of the B-scan around its centre
line. Relatively large numbers of B-scans were acquired for the Cambridge and single-wall

phantoms, since the images they produce are amenable to automatic detection.
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x translation +18 mm
y translation 420 mm
z translation +7 mm
max. inclination to z-axis 67°
twist of B-scan +87°

Figure 2.10: Scanning pattern used for reconstruction precision experiments.
With this motion, the cross was observed within the full depth range of the B-scan

(40 mm). See the caption of Table 2.2 for an explanation of the motion parameters.

mostatically controlled, so the water temperature was stable. Any variations observed in
the calibration parameters cannot, therefore, be attributed to a change in the prevailing
speed of sound. Of course, calibration before an examination performed in vivo should
use a fluid in which the speed of sound matches that observed in human tissue.

The repeatability of the calibration solutions was assessed by looking at their stability
across the multiple trials of each phantom. To this end, the change in the position (relative
to the position sensor’s receiver) of the bottom right hand corner (umqz, Umaz) of the B-

scan was determined under two different calibrations:

trial 1 trial 1 trial 2 trial 2
Aflx = BT, Px — B, Px (2.9)
where
simal (N Umaz
L trial 1
thrzal % _ Sy X Umaz
a 0
1

This measure involves all six parameters of #Tp and the two scale values, so ‘ARX‘
indicates the repeatability with which points in the scan plane can be defined relative to
the position sensor’s receiver. It is a direct measure of calibration repeatability that does
not depend on other sources of error associated with reconstruction. For the Cambridge,

cross-wire and single-wall phantoms, 190 values of ‘ARX ‘ were calculated (using all possible

pairs drawn from the twenty trials). For the three-wire phantom, 45 values of ‘ARX‘ were
calculated (using all possible pairs drawn from the ten trials).

The reconstruction precision was also assessed by scanning the cross-wire phantom
immediately after completion of the calibration tests. The cross was observed from 49
different viewpoints, covering a range of angles and depths — see Figure 2.10. The location
of the cross was labelled by hand in each B-scan, and then mapped to the reconstruction
space using the calibration parameters and the position sensor readings. This was done for
the multiple calibration solutions obtained using each of the four calibration phantoms,
giving 70 reconstructions in total.

In each reconstruction, the cross appeared as a cloud of 49 points. The reconstruction

precision was assessed by looking at the tightness of this cloud. To this end, the change
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7

Figure 2.11: Phantom used for assessing reconstruction accuracy. Each of the ten

inter-pin distances marked on the diagram is about 100 mm.

x translation +156 mm
y translation +57 mm
z translation +14 mm
max. inclination to z-axis 31°
twist of B-scan +83°

Figure 2.12: Scanning pattern used for reconstruction accuracy experiments.
With this motion, the pinheads were observed within the full depth range of the B-scan

(40 mm). See the caption of Table 2.2 for an explanation of the motion parameters.

in the position (relative to the position sensor’s transmitter) of the cross observed from

two different viewpoints was measured:

view 1 view 1 view 2 view 2
ATx=TTp Rrp Px — Ty R, Px (2.10)
where
Sy X uvie'wi
vaiewi _ Sy X pUlew?t
a 0
1

So ‘ATX‘ indicates the precision with which points can be located in the reconstruction

volume. 1176 values of ‘ATK‘ were calculated (using all possible pairs drawn from the 49
views). The process was repeated for each of the 70 reconstruction volumes.

The reconstruction accuracy was also assessed by scanning (immediately after com-
pletion of the calibration runs) the phantom shown in Figure 2.11. The phantom consists
of eight dressmaker’s pins arranged in a plane. Each pin was observed from eight different
viewpoints, covering a range of angles and depths, as shown in Figure 2.12. The locations
of the pins were labelled by hand in each B-scan, and then mapped to the reconstruction
space using the calibration parameters and the position sensor readings. This was done for
the multiple calibration solutions obtained using each of the four calibration phantoms,
giving 70 reconstructions in total.

To assess the accuracy of the reconstruction, the ten inter-pin distances marked in Fig-

ure 2.11 were examined. Each of these distances was measured directly using sophisticated
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Cross-wire Three-wire Single-wall Cambridge

no. trials 20 10 20 20
B-scans used 51/53 106,/193 480/578 530/530
RMS error (mm) 0.56 1.04 0.48 0.34

Table 2.3: Quality of calibration data. The table lists the number of trials used in
the comparative tests, and the proportion of B-scans deemed to be of acceptable quality
for inclusion in the calibration. The RMS residuals of the set of equations (2.4) at the
solution @ are also listed. The proportion of acceptable B-scans and the residual errors

represent the average across all trials of each phantom.

Calibration Technique K
Cross-wire 17.5
Three-wire 47.5
Single-wall 447.8
Cambridge 87.5

Table 2.4: Condition number. The condition number (k) is listed for representative

calibrations of each of the four calibration techniques.

metrology equipment to an accuracy in excess of one-hundredth of a millimetre. In each
reconstruction, the ten inter-pin distances were estimated 64 times, using all combinations
of the eight observations of each pin. The error in each of these measurements was used
to assess the reconstruction accuracy. In total, 640 error measurements in each of the 70

reconstructions were obtained.

2.4.2 Results

Table 2.3 shows statistics indicative of the quality of the data being used to estimate the
calibration parameters. For all four phantoms, a large proportion of the acquired B-scans
revealed the calibration feature (wire or plane) clearly enough that the feature could be
reliably labelled and used to generate some of the calibration equations (2.4). In general,
the Cambridge phantom produced the highest quality images.

For all phantoms, the Levenberg-Marquardt algorithm (equation (2.6)) converged to a
stable solution in around 15 iterations. No local minima were encountered: the algorithm
repeatedly converged to a unique solution, independent of starting position (though note
the discussion on “mirror” solutions in Appendix B). After the Levenberg-Marquardt algo-
rithm had converged, the RMS (root mean square) residual of the system of equations (2.4)
was evaluated at the solution ®. The residuals are listed in Table 2.3. Assuming ® is the
globally optimal solution, the residual errors give an indication of the self-consistency of
the calibration equations. Perfectly consistent equations should produce an RMS error of

Z€ero.
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Cross-wire Three-wire Single-wall Cambridge

no. observations 190 45 190 190
mean (mm) 1.47 5.37 3.27 0.92
max (mm) 3.37 12.09 10.07 2.32

Table 2.5: Calibration repeatability. The quantity tabulated is ‘ARX ‘ for the bottom

right hand corner of the B-scan, where ‘ARK‘ is defined in equation (2.9). ‘ARX‘ was

calculated for each pair of calibration solutions drawn from the multiple trials of each

phantom.
Cross-wire Three-wire Single-wall Cambridge
no. observations 23520 11760 23520 23520
mean (mm) 1.65 2.67 3.43 2.17
max (mm) 4.78 10.31 11.67 7.13

Table 2.6: Reconstruction precision. The quantity tabulated is ‘ATE‘ for a point
target (the cross in the cross-wire phantom), where ‘ATK‘ is defined in equation (2.10).

‘ATK ‘ was calculated for each pair of views drawn from the 49 views of the cross, giving

a total of 1176 values per reconstruction.

To determine the numerical conditioning of the four calibration methods, condition
numbers were calculated for representative examinations — see Table 2.4. A low condition
number corresponds to good identifiability of parameters, as described in Appendix B. The
condition numbers were less than 100 for the Cambridge, cross-wire and three-wire phan-
toms, indicating good identifiability. Only the single-wall phantom produced a slightly
ill-conditioned set of equations. This can be attributed to the limited range of scanning
motions that resulted in clear images of the wall. In other words, it was not possible to
observe the wall from a sufficiently large range of angles to produce a well-conditioned
problem.

Table 2.5 shows the results of the calibration repeatability experiments described in
Section 2.4.1. These results indicate to what extent repeated trials with the same phantom
produce the same calibration parameters.

Table 2.6 shows the results of the reconstruction precision experiments described in
Section 2.4.1. These results indicate how precisely the position of a point can be defined
in a 3D reconstruction volume. They reflect the size of the cloud obtained when imaging
a point from different directions, but say nothing about reconstruction accuracy (whether
the cloud is in the right place). Table 2.7 shows the results of the reconstruction accuracy
experiments with the pinhead phantom described in Section 2.4.1. These results indicate
whether distances calculated between points in the reconstruction volume correspond to

the true distances.
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Cross-wire Three-wire Single-wall Cambridge

no. observations 12800 6400 12800 12800
mean (mm) 0.04 —0.15 0.14 0.23
std. dev. (mm) 1.12 2.18 1.63 1.33
min (mm) —3.98 —8.10 —6.53 —5.62
max (mm) 4.31 7.83 5.72 4.46

Table 2.7: Reconstruction accuracy. The quantity tabulated is the error in each of
the ten inter-pin distances shown in Figure 2.11. The true inter-pin distances were all
approximately 100 mm. As explained in the text, 640 error measurements were obtained

in each reconstruction.

2.4.3 Discussion
Performance

There are many ways to assess the performance of a calibration procedure. We might start
by asking, “If I do another calibration tomorrow, shall I get the same result?” The figures
in Table 2.5 help us answer this question. The calibration parameters define the position
and orientation of the scan plane, with respect to the position sensor’s receiver. These
tests have measured how a supposedly fixed point on that plane (the bottom right hand
corner of the B-scan) moves around under repeated calibrations with the same phantom.
The Cambridge phantom appears to provide the most stable calibration parameters. Of
course, we have no idea whether these calibration parameters are correct: they’re just
stable. Yet it is clear that stability is a prerequisite for a “perfect” calibration technique.

To decide whether the calibrations are correct, we might again ask a question: “Given
a calibration, if I look at a point from different viewpoints, will it always map to precisely
the same point in the reconstruction volume?” The results in Table 2.6 relate to this
question. The Cambridge and cross-wire calibrations appear to produce the most precise
reconstructions. If we look at a point from two significantly different directions, we can
expect a distance of about 2 mm between the two reconstructed positions of the point.
With reference to the results in Table 2.5, this suggests that the Cambridge calibrations
are somewhat biased. They are tightly bunched together but not evenly spread around the
optimal solution. The cross-wire calibrations are more variable but more equally disposed
around the optimal solution.

We have yet to establish full confidence in the calibrations. We know that fixed points
are reconstructed as, more or less, points, but we do not yet know whether these points
are in the right place. So we ask one, final question: “If I scan something that is 100 mm
long in the real world, will it come out as 100 mm long in the reconstruction?” The
results in Table 2.7 help us answer this question. The cross-wire calibration is remarkably
accurate in this respect. There is hardly any bias in the measured lengths, and the

standard deviation of the measured distance is just greater than 1 mm: about 1% of the
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length being measured. The Cambridge phantom is also good: it has a slight tendency
to produce over-estimates of length (by about 0.25 mm on average), but can still measure

lengths to within about 1.5% of their true values.

The calibrations produced by the single-wall and three-wire phantoms are not as good.
There is significant uncertainty in the calibration parameters (Table 2.5), which leads to
relatively poor point reconstruction precision (Table 2.6). The length accuracy figures
(Table 2.7) do not reflect these errors to the same extent, since the measurements are not

sensitive to point reconstruction errors out of the plane of the pinheads.

In Section 2.3.4, two of the main sources of error in single-wall calibrations were iden-
tified. The first concerns identifiability of the calibration parameters. Because only a
limited amount of energy is reflected back towards the probe, scanning can only be per-
formed from a limited range of viewing angles. The limited range leads to relatively poor
conditioning of the calibration problem. The poor reflection at oblique angles can be im-
proved by roughening the floor of the water bath, thus producing better images of the
plane from a wider range of angles. The other source of calibration error is the effect
of the finite beam width. Simulations were performed to investigate the effects of beam
width, and the results are presented in Appendix C. The simulations support the idea that
the finite beam width is responsible for a large proportion of the errors. Unfortunately,

roughening the floor of the water bath will do nothing to reduce beam width effects.

The performance of the three-wire phantom is disappointing. In Table 2.3 we see that
the calibration equations are not as self-consistent as with the other techniques. This
suggests inaccuracies in the phantom construction: the calibration equations are based on
mutually orthogonal wires, and yet the wires are not, in reality, mutually orthogonal. The
three-wire phantom was relatively difficult to construct, requiring great precision in the

positioning of the wires.

Other researchers (Detmer et al., 1994; King et al., 1991; Leotta et al., 1995; Leotta
et al., 1997) have used similar measures of reconstruction accuracy and precision, but
these should be compared with caution to those reported here. Measured reconstruction
performance depends critically on the range of scanning angles and positions, as well as
the type of position sensor and the quality of the ultrasound equipment. The results
presented in Tables 2.6 and 2.7 are meaningful only in the context of examinations using
similar ultrasound equipment, position sensing devices, and examinations that cover a
similar range of angles and positions to those described in Figures 2.10 and 2.12. In
range-of-motion studies, it was observed that many common clinical examinations 2 fall
within the envelope of motions described in Figures 2.10 and 2.12. Thus, Tables 2.6 and 2.7
provide an upper bound on the reconstruction accuracy and precision one can expect in
such clinical examinations. It is an upper bound, since reconstructions of data obtained

in vivo are also susceptible to a whole range of other errors, including motion artifacts.

2 A number of routine clinical examinations of the left kidney, right kidney, liver, Achilles tendon, rotator
cuff, aorta and thyroid gland were monitored.
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Ease of use

Ease of use is another important measure by which a calibration technique should be
assessed. It is rather difficult to quantify ergonomics, but calibration with the single-wall
phantom is certainly the easiest and fastest. The probe can be moved about freely, and
B-scans acquired continuously until a sufficiently wide range of motions are covered. The
automatic detection of lines then helps to greatly reduce the time required to determine
the calibration parameters.

The Cambridge phantom is equally easy to use, once the probe is inserted into the
clamp. It is sometimes difficult to accurately align the scan plane with the bar of the
phantom, so care must be taken to achieve good results. Since the alignment is only
performed once before the calibration, the extra time required to get good alignment is
relatively small, but experience is still required to get repeatable results. Once inserted, it
is easy to adopt a particular series of movements to ensure all six DOF are exercised. In
this way, the examinations can be performed rapidly, and with automatic line detection,
the calibration results are readily obtained.

Unlike the Cambridge phantom, the cross-wire technique does not require the probe
to be accurately mounted on the apparatus before the calibration runs, yet the crossed
wires must be placed in the plane of each acquired B-scan. This requires the operator to
simultaneously look at the crossed wires on the ultrasound monitor, hold the probe steady
in the right location, and start and stop data acquisition. This process makes cross-wire
calibration the most time consuming technique.

The three-wire phantom can be scanned more rapidly than the crossed-wire phantom,
since the entire length of the wires can be imaged with continuous data acquisition. Yet
each of the wires must be imaged one at a time, so the examination takes longer than
the Cambridge or single-wall techniques. Some care must still be taken with alignment of
the probe, since the best images (depicting a small circular dot) are obtained when the
B-scan is perpendicular to the wire. This must be traded off against the requirement of
exercising all six DOF.

It may be possible to create software to assist in labelling images from the cross-wire
and three-wire techniques to speed up calibration. Determination of which feature in the
image corresponds to the wire (noise in the image occasionally obscures the wire) may be
assisted by tracking features in a series of B-scans. Fully automatic detection, however, is
not likely to be feasible.

To illustrate the total time required for calibration, reconstruction and visualisation,
a representative 3D freehand examination was performed. Calibration was performed
using the Cambridge phantom, a human carotid artery was examined by a physician,
and any-plane slicing and surface rendering were used to display the results. The elapsed
time between mounting the position sensor on the probe and viewing the results was 15
minutes. Figure 2.13 shows the results.

To achieve the best possible results, calibration was performed with suitably warm

water (approximately 40° Celsius), so that the speed of sound matches that observed in
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human tissue. The data acquisition was not gated to an ECG, so the pulsative motion
of the artery results in small ripples in the reconstruction. Other reconstruction errors
were caused by variation in the contact pressure between the probe and the skin, position
sensor errors, refraction, and the other errors listed in Section 1.5. These errors cannot
be addressed by calibration. Despite these limitations, fairly clear and consistent 3D

reconstructions are obtained.

2.5 Conclusions

This chapter has addressed the issue of freehand 3D ultrasound calibration. The existing
techniques were reviewed and their performance assessed under representative scanning
conditions. The cross-wire technique produced impressive results, but took the longest
to perform, typically several hours. The three-wire technique was slightly easier, but
construction of the phantom required much greater precision, and its performance was
worse. The single-wall phantom was the easiest to use and the simplest to construct.
Unfortunately, the effects of the finite beam width and limitations on the range of motion
severely degraded its performance. These two problems are alleviated by the Cambridge
phantom, which is based on the same principle of using a single flat wall as the standard for
calibration. Combined with automatic line detection, the Cambridge technique was easy,
rapid and produced good results. The main disadvantages of the Cambridge technique
are the need to precisely machine the apparatus and the time required to correctly clamp
the ultrasound probe to it.
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(a) B-scan (b) Outlines of B-scans

(c) Surface rendering (d) Cross-sectional slice

Figure 2.13: 3D reconstruction of the carotid artery. Reconstruction is performed
with the PNN algorithm after calibration with the Cambridge phantom. In (a), a B-scan
of the carotid artery is shown. The artery is the dark circle just above the centre of the
image. In (b), the outlines of the B-scans are shown. The reconstruction volume has
dimensions of 277 x 242 x 299 voxels, with a voxel dimension of 0.3 mm. In (c), an axial
view of the artery is shown. A surface rendering is produced with a narrow grey-level
threshold, shown from a viewpoint looking down the artery. In (d), a re-slice of the voxel
array is shown. A grey-level image is obtained by slicing the voxel array at the location
shown in (c). A 90 mm length of the carotid artery is visible: such a view cannot be

obtained using standard 2D ultrasound.






Et harum scientarum porta et clavis est Mathematica.
‘Mathematics is the door and the key to the sciences.’

—Roger Bacon, Opus Majus, 1267

Chapter 3

RBF Interpolation

3.1 Introduction

While the B-scans acquired in a freehand examination can be reviewed individually, recon-
structing them into a regular array makes it possible to use conventional 3D visualisation
and data analysis tools. These tools include any-plane slicing, volume rendering, surface
rendering, segmentation and registration procedures. The reconstruction step is important
because any loss of image quality, or the introduction of artifacts, must be avoided. For
example, a small loss in image quality during reconstruction can make a barely detectable
pathology in a B-scan become undetectable in the reconstructed data. This may result in
a misdiagnosis.

In the previous chapter, the pixel nearest neighbour (PNN) reconstruction method was
described. This popular reconstruction method, although fast and easy to implement, may
not be ideal. A new reconstruction technique that aims to improve on existing techniques
is proposed in this chapter and compared with the standard methods, including the PNN
method. This is done by performing a series of comparative tests to evaluate each method’s

ability to fill gaps and average overlapping data.

3.2 Reconstruction Methods

3.2.1 Overview

Since the motion of the probe in freehand imaging is controlled by the physician, the
B-scans can be at any relative position and orientation. This means the pixels lie at
irregular locations in the array of voxels. The reconstruction problem is therefore classified
as unstructured, or scattered, data interpolation ! (Nielson, 1993).

A survey of the literature reveals a number of different methods for reconstruction
of 3D freehand ultrasound data sets. Most of these methods are rather simple because
they were designed to minimise the time and memory required for reconstruction. This

is because physicians want to visualise the 3D data sets immediately after acquisition, so

!Since the pixels are grouped onto planes, the data are actually best described as semi-structured.
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the reconstruction should take ideally only a few seconds. Although almost all freehand
systems perform reconstruction at some stage, details of the reconstruction method are
often unpublished since the method is considered ad hoc. Nevertheless, the methods that
have been published can be classified into the following categories: voxel nearest neighbour

interpolation, pixel nearest neighbour interpolation and distance-weighted interpolation.

3.2.2 Voxel Nearest Neighbour Interpolation

The concept of VNN (voxel nearest neighbour) interpolation is easy to understand: each
voxel is assigned the value of the nearest pixel (Sherebrin et al., 1996). There are no
parameters to set. A naive implementation traverses the array one voxel at a time and
finds the value of the nearest pixel, but this is computationally inefficient. Using the fact
that the nearest pixel lies along a line normal to the nearest B-scan greatly speeds up the
reconstruction, making it perhaps the fastest of all reconstruction methods. Moreover,
a new 3D ultrasound imaging system, developed at the University of Cambridge (Prager
et al., 1998a), can rapidly produce slices of the set of B-scans without reconstructing
an entire voxel array. By using the voxel nearest neighbour interpolation method with
dedicated graphics hardware, slices can be generated at interactive rates.

Although this reconstruction method has the advantage of avoiding gaps in the voxel
array, reconstruction artifacts can be observed in slices through the voxel array. When
a slice plane intersects several of the original B-scans, we can consider the interpolated
image as a collage of projections from the intersected B-scans. Registration errors, in-
cluding tissue motion and sensor errors, contribute to slight misalignment of the B-scans.
This results in mismatches among the neighbouring pieces of the collage. The lines of

intersection between the pieces then become visible — see Figure 3.1(a).

3.2.3 Pixel Nearest Neighbour Interpolation

PNN (pixel nearest neighbour interpolation) is perhaps the most popular reconstruction
method (Fine et al., 1991; Hottier and Collet Billon, 1990; McCann et al., 1988; Nelson
and Pretorius, 1997), and was used in Chapter 2. The basic algorithm consists of two
stages. In the first stage, the algorithm simply runs through each pixel in every B-scan
and fills the nearest voxel with the value of that pixel. Multiple contributions to the
same voxel are usually averaged, although recording only the maximum value has also
been suggested (Nelson and Pretorius, 1997). The parameters to set at this stage are the
weights on the multiple contributions. The PNN algorithm in Section 2.2 described this
first stage of the algorithm, and used simple averaging of multiple contributions to the
same voxel. Yet gaps can occur in the voxel array when the voxel size is small compared
to the distance between the acquired B-scans. In practice, this situation is inevitable with
voxel arrays of similar resolution to the B-scans. The second stage fills these remaining
gaps in the voxel array. A variety of methods have been used, including averaging of filled
voxels in a local neighbourhood (McCann et al., 1988; Nelson and Pretorius, 1997) and

interpolating between the two closest non-empty voxels in the transverse direction to the
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Figure 3.1: Reconstruction artifacts. In (a), voxel nearest neighbour interpolation is
used to reconstruct an examination of a neck muscle. A small slice of the voxel array
is shown. The slight misalignment between the projections of the two nearest B-scans
arises from registration errors. In (b), pixel nearest neighbour interpolation is used to
reconstruct an examination of the thyroid. The boundary between the voxels filled by the
first bin-filling stage and voxels filled by the second hole-filling stage is evident. In (c),
distance-weighted interpolation is used to reconstruct an examination of the bladder. The
slice is truncated because the neighbourhood for selecting points is set too small, leaving

some voxels unfilled.
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B-scans (Hottier and Collet Billon, 1990). Other publications (Fine et al., 1991) do not
describe the method for filling gaps, so it is assumed that they adopt similar approaches
or choose the voxel size large enough to avoid gaps. The parameters to set at this stage
are the weights of the nearby voxels used to fill the gaps.

In summary, this method can be considered as a two stage process: “bin-filling” and
“hole-filling”. The first stage of bin-filling the voxel arrays with pixels is fast, but the
second stage may take longer, depending on the particular method chosen. Unfortunately,
artifacts can be generated by this two stage process. For example, voxels calculated by
local averaging in the second hole-filling stage can appear smoothed. Thus a slice passing
through regions of both first stage and second stage filled voxels may show the boundary
between the highly detailed bin-filled voxels and the smoothed hole-filled voxels — see
Figure 3.1(Db).

3.2.4 Distance-weighted Interpolation

Like the voxel nearest neighbour interpolation method, DW (distance-weighted) interpo-
lation proceeds voxel by voxel. Yet instead of using the nearest pixel, each voxel value is
assigned the weighed average of some set of pixels from nearby B-scans. The parameters
to choose are the weight function and the size and shape of the neighbourhood.

The simplest approach is to consider a fixed spherical neighbourhood of radius 7,4z,
centred about each voxel (Barry et al., 1997). All pixels in this neighbourhood are weighted
by the inverse distance to the voxel and then averaged. This is similar to Shepard’s
interpolation method (Shepard, 1968). Unfortunately, it has the disadvantage of not
reproducing any of the local shape properties implied by the data, because the resulting
interpolant typically has local extrema at the data sites (Nielson, 1993). It also requires
Tmaz t0 be set prior to reconstruction. If 7,4, is set too small, gaps may result — see
Figure 3.1(c). Yet if 74 is set too large, the voxel array will appear highly smoothed,
since the effect of inverse distance weighting can be quickly overwhelmed by the much
larger number of data points falling into the larger local neighbourhood. Nevertheless,
with dense B-scans and a small value of 7,4, excellent results are claimed (Barry et al.,
1997).

Another distance-weighted interpolation method was designed to be incremental, so
that the reconstruction volume could be viewed during acquisition of the B-scans (Ohbuchi
et al., 1992). This means that filtering and hole-filling cannot wait until the end of the
examination. To reduce the chance of gaps remaining after all B-scans are acquired, each
B-scan fills a “thick slab” of voxels surrounding it. The voxels in this thick slab are
calculated by convolving the 2D B-scans with a truncated 3D Gaussian kernel. To mimic
the spatial resolution of the ultrasound beam, the kernel is made wide perpendicular to
the B-scan and narrow within the B-scan plane. The convolution acts as both a way of
filling gaps and a filter to smooth the data. Multiple contributions to the same voxel can
occur when the thick slabs overlap, but the Gaussian shape of the kernel ensures that the

multiple contributions are averaged with larger weights on the contributions from closer
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B-scans 2. In summary, each voxel value represents a weighted average of nearby B-scans,
with an asymmetric Gaussian weight function attached to each B-scan. Although this
method has the advantage of being incremental, the trade-off is that gaps may still occur.
If the truncated Gaussian weight function is smaller than the distance between B-scans,
some voxels will remain unfilled.

Another distance-weighed method that uses a non-uniform neighbourhood is based on
grouping pairs of B-scans (Trobaugh et al., 1994). In this method, each voxel is filled only
by the nearest two B-scans that fall on either side of it. For each of the two B-scans,
lines are drawn perpendicular to the B-scan plane, passing though the voxel. Bi-linear
interpolation within each B-scan determines the contributing pixel value from that B-scan.
The voxel is then set to the inverse distance-weighted average of the two contributing pixel
values. This method has the advantage of retaining the resolution of each B-scan in the
voxel array and avoiding gaps. Although it is clear which pairs of B-scans to use with
simple motions, such as linear sweeps, it is not clear which pairs to use with more arbitrarily
located B-scans. It has been suggested that the pairs be chosen time sequentially (Carr,

1996), but this may not be optimal for all types of scanning motions.

3.2.5 Radial Basis Function Interpolation

It is perhaps intuitively obvious that reconstruction should be attempted using a tradi-
tional functional interpolation method. In other words, choose a particular function, such
as a polynomial, determine the polynomial coefficients to make it pass through the pixel
values, then evaluate at regular intervals to produce a voxel array. Yet there have been
no previously published attempts at functional interpolation of 3D freehand ultrasound
data, since there are severe computational demands to overcome. For example, simple
volume splines (Nielson, 1993) require solving a set of N linear equations, where N is
the number of pixels summed over all B-scans. This requires O(N3) calculations. For
modern computer workstations, N cannot be much larger than 500 before this becomes
prohibitively slow and numerical inaccuracies arise (Nielson, 1993). This makes a typical
ultrasound reconstruction problem of several million pixels infeasible.

There is a great deal of literature on interpolation, spanning a variety of disciplines,
and progress has recently been made in the area of tackling very large data sets. Reviews
of some of the popular methods are described in (Foley, 1987; Franke, 1982; Nielson,
1993). To help select an appropriate method for solving the 3D ultrasound reconstruction

problem, the requirements are listed below:

e the method must interpolate scattered trivariate data;
e the method must be fast, i.e. O(N) complexity and non-iterative;

e the interpolating function must be smooth;

2The authors also include a weight related to the “age” of each of the multiple contributions, so that

new overlapping B-scans overwrite old B-scan values.
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e both interpolation and approximation must be possible;
o large overshoots must be avoided.

The smoothness requirement arises from the assumption that the input data (the set
of B-scans) is smooth. Although the underlying anatomy is not smooth, it is measured
by a finite width ultrasound beam with a smooth intensity profile. This is tantamount to
convolution of the anatomical function with the beam profile, creating a smoothed image.
Signal processing, such as filtering of the echo signals, smooths the data even more.

The approximation requirement arises from the existence of measurement errors. These
errors include tissue motion (such as breathing, pulsative and whole body motions), po-
sition sensor errors and calibration errors. This means it may be desirable to change the
interpolating function into an approximating function that passes close to, but not exactly
through, the data points 3.

The final requirement of eliminating overshoots refers to the desire to have the range
of interpolated voxel values in the same [0, 255] grey-level range as the B-scans. This
requirement is related to the approximation requirement, since an approximating function
can often reduce overshoots compared with interpolating functions.

After surveying the recent advancements in trivariate interpolation of large data sets,
a method was discovered that ideally suits these requirements. This method was recently
developed by researchers at the University of Illinois for interpolation of multivariate
geographical data sets (MitdSovd et al., 1995). They dubbed the method “completely
regularized splines with tension”. The Illinois method is summarised as follows.

Consider a set of pixel values pj,j = 1,...,N that are located at the positions x;,
where x; = (z;,y;, 2;) is expressed with respect to the voxel array. The basic idea is to
find a spline S(x) that passes as close as possible to the data points and is as smooth

as possible. These two requirements can be combined together in such a way that S(x)
fulfills

N
> Ipj = S(x)° + wI(s) = minimum. (3.1)
j=1

The first component is the deviation of the spline from the data points, and the second
is a smoothness function I(s). The weight w determines the relative cost of the two
components.

The solution can be expressed (Talmi and Gilat, 1977) as

N
S(x) =T(x)+ > a;jR(x,x;) (3.2)

i=1

3Strictly speaking, the term interpolation should only refer to functions that pass exactly through the
data points. For simplicity, hereafter interpolation shall refer to either interpolating or approximating

functions.
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Figure 3.2: Radial basis function. Increasing the tension reduces the range of influence

of the radial basis function.

where T'(x) is the trend function, a; are scalar coefficients, and R(x, x;) is an RBF (radial
basis function) whose form depends on the choice of I(s). In other words, the interpolation
function is a combination of a trend function (typically a polynomial) and a set of simple
radial functions placed at each data point. The radial basis functions are weighted so that
their sum, when added to the trend function, passes close to the values of the given data
points.

For the 2D case, if I(s) is chosen to minimise the cost of the second (partial) derivatives
only, then the familiar thin plate spline results. If the same I(s) is used for the 3D case,
the first derivatives of the RBF become divergent at the data points (Mitd§ and MitaSova,
1988). By carefully choosing a more general I(s), it is possible to obtain a simple analytic
expression for the RBF with regular derivatives of all orders everywhere (MitdSovd and

Mitas, 1993). This choice results in 7'(x) = ag, a constant, and

)= £ [Lart (%) - 4] 53)

where r = |x — x| is the distance from x to x;, and erf is the error function (Abramowitz
and Stegun, 1965). The parameter ¢ is a generalised tension parameter, and it controls
the distance over which the point influences the resulting hypersurface. The multiplicative
constant ¢?/4m can be omitted, since it can be combined with the coefficients a;. A plot
of the RBF is shown in Figure 3.2.

The spline coefficients can then be found by solving the set of linear equations
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where §;; is the Kronecker delta function.

There are therefore two parameters that can be adjusted to tune the nature of the
interpolant: ¢ controls the tension, and w controls the level of approximation. The goal
of tuning the interpolant is to find the optimal balance between the requirements of ob-
taining small deviations from the data points and avoiding overshoots. As Figure 3.3(a)
shows, a high level of tension limits the distance at which each point influences the overall
interpolant. Yet the RBF appears spiky and does not replicate the overall shape of the
data. Low tension results in overshoot. Figure 3.3(b) shows that the overshoot from low
tension interpolation may be effectively controlled by allowing a small amount of approx-
imation. In fact, it will be shown that the combination of low tension and a small level of
approximation works well with ultrasound data.

As previously mentioned, the RBF interpolant cannot be calculated using all the data
points of an ultrasound examination at once. In order to localise the volume splines,
the scattered input data must be divided into manageable segments. The basic idea
is that the interpolating function in a local region is not influenced by data at some
sufficiently distant point. The voxel array is therefore divided into many small, non-
overlapping rectangular segments. Individual interpolating functions are then calculated
for each segment until all of the voxel array is covered.

To ensure smooth connections among the RBF’s of neighbouring segments, overlapping
windows are used. This means that a window is established around each segment under
consideration in such a way that it encompasses not only all the data points in the segment
but also a sufficient number of neighbouring data points. All data points in the window are
then used to calculate the RBF’s for that segment. Since the windows overlap each other,
the RBF for each segment will closely (but not necessarily exactly) match the neighbouring
RBF’s. With a reasonable amount of overlap, the differences will be negligible compared
to the quantisation of the grey levels in the 8-bit voxel array.

Segments of fixed size, each containing fewer than a maximum set number of data
points (Kpaz), were initially proposed in (MitdSovd and Mitds, 1993). Windows were
expanded from 3% 3% 3 surrounding segments to 5x5x5 and so on, until a sufficient number
(Kmin) of neighbouring points were included. In later work, the segmentation method was
further developed using an oct-tree representation of the voxel array to improve the ability
to interpolate data with a heterogeneous spatial distribution (Mit4Sova et al., 1995). This
means the segments were continuously divided into eight subsegments until each contained

no more than K., points. In this way, segments of variable size were created to account
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Figure 3.3: 1D example of radial basis function interpolation and approximation.
10 sample data points obtained from an impulse function are shown as diamonds. In (a)
w is set to zero so the RBF exactly passes through the data points. The average of the
data points sets the trend part of the interpolant to a value of 37. With high tension,
the interpolation quickly returns to the trend between data points. With low tension,
overshoots appear. Increasing the tension can be thought of as changing the nature of the
interpolant from a stiff plate to a membrane. In (b) the tension level ¢ was set to a value
of 20. Increasing the level of approximation reduces the amount of overshoot but can
result is large deviations from the data points. A small level of approximation produces a
reasonable trade-off.
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for the clustering of data points. The window around each segment expanded equally in
all directions until it encompassed at least K,,;, points.

If the data are only mildly heterogeneous, this windowing method works well. Unfor-
tunately, the problem of 3D ultrasound reconstruction involves highly clustered data; all
of the input data lie within the planes of the B-scans. For this reason, a more flexible
windowing method is developed here.

The basic problem with expanding a window until a fixed number of data points is
encompassed, is that all the data points may lie on only one side of the segment. This
can create problems with continuity of the interpolating function between segments. A
new windowing method is proposed instead, where the window around the segment is
expanded until data points are found in all directions around the segment. Examples of
the conventional and improved windowing methods are shown in Figure 3.4.

In the 3D case, the window is expanded in all directions at first, but each of the six
faces of the window stops expanding only when a sufficient number of data points fall
within the region defined by that direction — see Figure 3.5. In practice, expansion of the
window in a given direction also stops when it reaches the extents of the voxel array.

The Tlinois software was originally designed to work with 1000 to 10000 data points, so
a number of practical changes are necessary. In order to accommodate several million data
points from an ultrasound examination, points in the oct-tree are stored using recursive
dynamic memory allocation. The oct-tree segmentation is also modified to allow segments
to be divided into four (quad-tree) or two (binary tree) subsegments when one dimension
of the segment is only one voxel wide. This improves the ability to divide the volume
into manageable segments. Yet some very large segments can still remain. For example, a
single empty segment between two nearly parallel B-scans can extend the full length and
width of the B-scans. The window around this segment, expanding one voxel at a time,
will suddenly encompass an entire neighbouring B-scan in a single step. This produces
an intractable number of data points, so these large, empty segments are chopped into
smaller segments too.

In summary, a localised trivariate spline with O(NN) complexity is optimised for the
freehand reconstruction task. The method is efficient enough to handle very large data
sets and flexible enough to handle highly heterogeneous data. The smooth interpolating
function has regular derivatives of all orders, and has good accuracy compared with other
interpolation methods (MitdSova and Mitas, 1993). It also has a variable tension and can

be tuned between interpolation and approximation.

3.3 Comparison of Reconstruction Methods

3.3.1 Method
Tests

A Toshiba Powervision 7000 ultrasound machine was used with a Polhemus Fastrak po-

sition sensor mounted on the probe. To minimise interference from the electronics inside
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Figure 3.4: Example of improved windowing method. This contrived 1D example
illustrates the potential problem of the standard windowing method. Segments are created
by subdividing the length of interest in a binary tree so that each segment contains no
more than 5 (Kpq,) data points. The RBF’s are calculated (with tension ¢ = 3, and
smoothing w = 0.01) for each segment using the data points that fall in the surrounding
window. The standard windowing method expands in both directions from the segment in
single increments until 10 (K,,;,) data points in total are obtained. The standard windows
3 and 4 only contain data on one side of the segment. This creates a large discontinuity
in the interpolating function between segments 3 and 4. The new windowing method
expands in both directions until at least 4 points are found on each side of the segment, or
the limits of the data set are encountered. This way, the interpolants for segments 3 and

4 contain data from both sides of the segments and therefore meet much closer together.
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Figure 3.5: Segment and surrounding window. The segment is the shaded volume
surrounded by the window. The window must encompass data points in each of the six
regions around the segment, one of which is highlighted. This is done by expanding each of
the six faces of the window until each region contains a minimum number of data points.
Determination of which region a point falls into is calculated efficiently using the cross

products of the vectors to the corners of the planes separating the regions.

the ultrasound probe, the receiver was mounted at the end of a rigid nylon extension
bar about 25 cm from the probe face. Calibration was performed with the Cambridge
phantom (Prager et al., 1998b) using suitably warm water (approximately 40° Celsius) to
match the speed of sound in human tissue. The Stradx acquisition software (Prager et al.,
1998a) was used in conjunction with an 8-bit frame grabber and a Silicon Graphics Indy
workstation. The images were matched to the position sensor readings and recorded at a
rate of 25 fps.

Two examinations were performed in vivo by a physician on a healthy human subject.
First, an examination of a thyroid gland was performed with a 7 MHz linear array probe.
Each B-scan was cropped to 328 x409 pixels, with a pixel size of 0.087 mm. A single sweep
of the organ with a slow and steady motion resulted in a dense set of 219 nearly parallel
B-scans. Figure 3.6 shows the outlines of the set of B-scans and a typical B-scan.

The second examination was performed with a fan-shaped sweep over the extents of
the bladder. A 3.75 MHz convex curvilinear array probe was used, and a total of 468
B-scans were acquired. Each B-scan was cropped to 480x413 pixels, with a pixel size of
0.34 mm. Because the probe produces sector-shaped B-scans, the acquired images were
masked so that only the ultrasound intensity data were used in each of the interpolation
methods. Figure 3.7 shows the outlines of the set of masked B-scans and a typical B-scan.

These two examinations were chosen because they allow tests of the reconstruction
methods with different organs, probes, depth settings, ultrasound machine settings and
types of probe motion.

The tests were designed to evaluate the ability of the reconstruction methods to inter-
polate the ultrasound data and fill in gaps. Since the true underlying anatomical function
is unknown, the different methods were tested by artificially removing data from the two

examinations. The four different reconstruction methods were then evaluated on their
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(a) Outlines (b) B-scan

Figure 3.6: Thyroid examination. The outlines of the B-scans are shown in (a) with a

typical B-scan shown in (b).

(a) Outlines (b) B-scan

Figure 3.7: Bladder examination. The outlines of the masked B-scans are shown in (a)

with a typical B-scan shown in (b).
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ability to predict the intensity values at the locations where the data were removed. In
other words, a good reconstruction method will interpolate the removed data points with
values very near to the data that was originally there.

First, a B-scan near the middle of the sweep was selected. The voxel array (with
voxels equal in size to the pixels) was aligned exactly with this B-scan so that pixels fell
exactly onto voxels. A percentage of the pixels was then removed randomly from the
B-scan, creating gaps of various sizes. The rest of the pixels and all other B-scans in
the reconstruction were used in the interpolation to fill in all voxels in the voxel array.
The values of the removed (original) pixels could then be compared to the values of the
voxels aligned with them. The voxel array stored the interpolation results as floating point
numbers to avoid the influence of quantisation. The average of the difference between the

interpolated and the original data over all missing data points was then calculated by

1 M
V= Mz':zl'pi — ¢l (3.6)

where p; is the original pixel that was removed from the reconstruction, ¢; is the interpo-
lated value of the voxel aligned with p; and M is the number of removed pixels. A low
value of V indicates a good ability to interpolate over the gaps.

The tests were performed with eight different percentages of removed data: 0%, 25%,
50%, 75%, 100%, 300%, 500% and 700%. For the 25%, 50%, 75% and 100% tests, pixels
were removed only from the selected B-scan n. The 300% test removed all of the pixels
of B-scan n and all of B-scans n—1 and n+1. The 500% and 700% tests further removed
B-scans n+2 and n+3. The 0% test was also included, since a reconstruction method may
not exactly replicate the original data points. For example, a functional approximation
method will miss the data points. For the 0% test alone, V was calculated over all pixels
of the selected B-scan.

Each of the eight tests were repeated for ten different B-scans to give mean and variance
estimates of V. In this way, 80 voxel arrays were created for each of the four reconstruction
methods, producing 320 voxel arrays for the thyroid examination. A further 320 voxel

arrays were created in the same way for the bladder examination.

Implementation of Reconstruction Methods

The VNN interpolation method was implemented by traversing the voxel array and filling
each voxel with the value of the nearest pixel. The PNN interpolation method was imple-
mented in two steps. The first step assigned each pixel to the nearest voxel in the array.
Multiple contributions to a single voxel were averaged together. The second step filled
the remaining gaps. Empty voxels were filled by taking the average of the filled voxels in
a 3 X 3 x 3 neighbourhood. The remaining unfilled voxels were then filled by averaging
originally filled voxels in a 5 x 5 x 5 neighbourhood and so on, until all voxels were filled.
This is similar to the method described in (Nelson and Pretorius, 1997).
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The high quality reconstructions reported in (Barry et al., 1997) motivated the im-
plementation of the inverse distance-weighted method with a spherically shaped local
neighbourhood. The one parameter to choose in this method was the radius, 74z, of the
neighbourhood. If 7,4, was set to cover the largest gaps in the 700% tests, it would have
been much too large for the tests with smaller gaps and excessive smoothing would have
occurred. The radius 7,4, must be set to reasonable but not arbitrary values for each of
the tests.

In (Barry et al., 1997), a 7 MHz linear array probe was used to examine the carotid
artery, a similar examination to the thyroid gland. The authors suggested two 74, values:
0.25 mm and 0.5 mm. In the examination of the thyroid gland, the distances between the
centres of the B-scans ranged from 0.09 mm to 0.52 mm, with a mean of 0.32 mm. Using
a radius 74, equal to 0.25 mm would not have been large enough to fill in all gaps, so
0.5 mm was used in the 0%, 25%, 50%, 75% and 100% tests 4. For the 300%, 500% and
700% tests, rmqz must be increased to cover all gaps. It was sensible to increase rpqz
by the mean (0.32 mm) of the B-scan spacing, SO 7pq; was set to 0.82 mm (0.5 mm +
0.32 mm), 1.14 mm (0.5 mm + 2x0.32 mm), and 1.46 mm (0.5mm + 3x0.32 mm) for the
300%, 500% and 700% tests respectively.

To be consistent, the values of r,,4; for the bladder reconstruction were set in a similar
fashion. The radius r,,,; was set to the maximum distance between B-scans for the 0%,
25%, 50%, 75% and 100% tests, then increased by the mean distance between B-scans
for the 300%, 500% and 700% tests. Since the examination used a fan-shaped sweep, the
B-scan spacing was measured at the bottom centre of the B-scan, where the gaps were
larger. The B-scan spacing ranged from 0.41 mm to 0.80 mm, with a mean of 0.60 mm.
The value of 7,4, was therefore set to 0.80 mm for the 0%, 25%, 50%, 75% and 100%
tests, and 1.40 mm (0.80 mm + 0.60 mm), 2.00 mm (0.80 mm + 2x0.60 mm) and 2.60 mm
(0.80 mm + 3x0.60 mm) for the 300%, 500% and 700% tests respectively.

The RBF method was implemented using the oct-tree segmentation and improved
windowing technique described in Section 3.2.5. K4, was set to 30 data points, and each
region of the window was required to contain at least 5 data points.

One final practical change was made to the RBF method. The removal of data in the
300%, 500% and 700% tests of the thyroid examination produced very large gaps in the
reconstruction volume. As mentioned in Section 3.2.5, large empty segments that result
from large gaps in the voxel array are chopped into smaller segments. Yet even with smaller
segments, the surrounding window still occasionally encompassed a very large number of
data points when the gaps were large. To resolve this occasional problem in the 300%,
500% and 700% tests, the window was expanded asymmetrically — see Figure 3.8. This
was done simply to speed up the calculations, since such a large overlap was not required
to get smooth transitions among the segments. As a reassurance for smooth connections

among segments, at least 20 points per region were required for these 300%, 500% and

41t appears that setting rmqq to half of the maximum centre distance between B-scans would have filled
the entire volume without gaps. But because the scan planes were not exactly parallel, larger gaps than
0.52 mm existed. In fact, the value of 0.5 mm was just sufficient to cover all gaps.
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window expands faster in these directions
B —_—=

/

segment window $

.

neighbouring B-scans

Figure 3.8: Asymmetric expansion of window. Instead of expanding all six faces by
the same increment at each step (and counting the data points that fall in each region),
the two faces parallel to the selected B-scan were expanded with a larger increment.
This means the window expands faster towards the nearest data (neighbouring B-scans),
ensuring that the faces for these directions are still relatively small when the window

encounters data.

700% tests, compared with the minimum of 5 points per region for all other tests.

The tension and approximation parameters were tuned manually by viewing a slice of
the voxel array. A fairly low tension ¢ combined with a small amount of data smoothing
w resulted in a good trade-off between minimising overshoot and passing near the data
points. This, in turn, produced high quality slice images. For the thyroid examination,
the values ¢ = 17 and w = 0.01 were used. The bladder examination used ¢ = 25 and
w = 0.1. These values fall within the range of values typically used for geographic data
interpolation (MitdSova et al., 1995).

3.3.2 Results

The overall trends of the test results are illustrated in Figure 3.9 and tabulated in Tables 3.1
and 3.2. To give an indication of the distributions of V" over the 10 trials, box-and-whisker
plots are shown in Figures 3.10 and 3.11. A small but representative set of images of the
interpolated data is shown in Figures 3.12, 3.13, 3.14 and 3.15.

Voxel Nearest Neighbour Interpolation

For both examinations, V is zero at 0% data removal since the voxels are set to their
nearest neighbours: the original pixels of the B-scan. At 25%, 50% and 75%, the nearest
neighbours of the voxels are mainly the remaining pixels of the selected B-scan. Therefore,
the resulting interpolated images appear as a patchwork of irregularly shaped pieces and

relatively large values of V result.
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Figure 3.9: Average interpolation error V for the thyroid and bladder data sets.
For each of the four reconstruction methods, V is calculated for various percentages of

removed data.

Test VNN PNN DW RBF

i’ o i’ o yii o i’ g
0%  0.00* 0.00 0.00+ 0.00 0.00° 0.00 0.64 0.03
25%  6.657 0.12 7.05f 012 7.731 027 4.82 0.25
50% 6.957 0.14 7.31t 013 7.82t 030 6.14 0.33
75% 7.86" 0.16 7.82t 0.13 7.84t 035 6.89 0.39
100% 884 260 7.78" 0.64 790 042 751 0.78
300% 11.66f 200 9.85 0.75 9.48 047 956 0.34
500% 12.90f 1.65 11.27t 0.73 1043 053 10.67 0.29
700% 13.99f 1.32 13.037 1.00 10.95* 0.52 11.32 0.23

Table 3.1: Interpolation error V for the thyroid examination. yu is the mean of V
and o is the standard deviation. { means that the assertion y > pugrpr is statistically sig-
nificant for a confidence level of 0.05. x means that the assertion u < urpr is statistically
significant for a confidence level of 0.05. The assertions are tested with the paired-sample
t-test statistical method (Hogg and Ledolter, 1987).
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Test

VNN

7

o p

PNN

g

DW

I

g

RBF

7

g

0%
25%
50%
75%

100%
300%
500%
700%

0.00*
5.60f
5.50
5.271
4.13

6.92

8.50f
9.371

0.00*
5.01t
5.08
5.19"
5.25t
7.03t
7.801
8.36

0.00
0.39
0.40
0.50
0.38
0.40
0.23
0.26

0.00
0.22
0.25
0.35
0.40
0.15
0.14
0.18

0.00*
5.37
5.32f
5.241
5.11t
6.85
7.62*
8.07*

0.00
0.09
0.09
0.10
0.14
0.12
0.11
0.09

0.96
3.57
3.85
4.13
4.29
6.69
7.73
8.37

0.03
0.25
0.31
0.40
0.37
0.19
0.16
0.16

Table 3.2: Interpolation error V for the bladder examination.

Table 3.1 for an explanation of the tabulated terms and symbols.
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Figure 3.10: Interpolation error V for the thyroid examination. The box-and-

whisker plots show the three quartiles and the extremes of V' calculated over the 10 trials

at each level of removed data. The median (50th percentile) is the line inside the box

of the 25th and 75th percentiles of V. The whiskers show the minimum and maximum

values.
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Figure 3.11: Interpolation error V for the bladder examination. See the caption
of Figure 3.10 for an explanation of the box-and-whisker plots.

For the 100% to 700% tests, the interpolated image is formed from the projection of the
pixels from the nearest B-scan, so the patchwork appearance disappears. For the thyroid
examination, the variance of V is large because some of the projections of neighbouring
B-scans closely match the original B-scan, but others do not. This depends on both the
level of registration error and the similarity of the neighbouring B-scans (a slowly changing
anatomy results in similar neighbouring B-scans). The values of V are generally greater

than those observed with the other three reconstruction methods.

For the bladder examination, the 100% to 700% tests show a smaller variance of V' than
the thyroid examination, but the variance is still large compared with the other methods.
The mean drops at 100%, however, before increasing again for the higher percentage tests.
This may be explained by comparing the level of registration errors to the voxel size. If
registration errors, such as position sensor error, are of similar absolute magnitudes for
the two examinations, the errors will have a smaller effect on the bladder tests. This is
because the voxel size is larger in the bladder tests than in the thyroid tests, so the effect
of the errors is reduced. Yet, as more and more B-scans are removed, the relative effect

of registration errors increases, thereby making V increase again.

In general, however, the results look sharp and detailed for the 100% to 700% tests,
since the projected data exhibit no blurring. Moreover, the join lines between the portions
of the projected data are not discernible for any tests of either examination. This means
that the registration errors are mainly small and the images vary slowly from one B-scan

to the next.
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(a) 0% (b) 50% (c) 100% (d) 500%

(e) 0% (f) 50% (g) 100% (h) 500%

(i) 0% (j) 50% (k) 100% (1) 500%

(m) (n) (0) (p) (a) (r) (s) (t)
0% 0% 50% 50% 100% 100% 500% 500%

Figure 3.12: Typical B-scans interpolated by the voxel nearest neighbour
method. All images are shown for a particular B-scan with various percentages of re-
moved data. Images (a) to (d) are from the thyroid examination, with expanded views
of the area indicated in image (a) shown in images (e) to (h). Images (i) to (1) are from
the bladder examination, with expanded images of the top and bottom areas indicated in

image (i) shown in images (m) to (t).
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(e) 0% (f) 50% (g) 100% (h) 500%

(k) 100% (1) 500%
(m) (n) (0) (p) (@) (r) (s) (t)
0% 0% 50% 50% 100% 100% 500% 500%

Figure 3.13: Typical B-scans interpolated by the pixel nearest neighbour

method. See the caption of Figure 3.12 for an explanation of the images.
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(a) 0% (b) 50% (c) 100% (d) 500%

(e) 0% (f) 50% (g) 100% (h) 500%

(m) (n) (0) (p) (a) (r) (s) (t)
0% 0% 50% 50% 100% 100% 500% 500%

Figure 3.14: Typical B-scans interpolated by the distance-weighted method. See

the caption of Figure 3.12 for an explanation of the images.
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(a) 0% (b) 50% (c) 100% (d) 500%

(e) 0% (f) 50% (g) 100% (h) 500%

(i) 0% (j) 50% (k) 100% (1) 500%

(m) (n) (0) (p) (a) (r) (s) (t)
0% 0% 50% 50% 100% 100% 500% 500%

Figure 3.15: Typical B-scans interpolated by the radial basis function method.

See the caption of Figure 3.12 for an explanation of the images.
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Pixel Nearest Neighbour Interpolation

For both examinations, V is zero at 0% data removal since the nearest neighbours to the
voxels are the original pixels. At 256%, 50% and 75%, the gaps are filled mainly with an
average of the remaining pixels in the original B-scan. The interpolated image appears as
a patchwork again, and relatively large values of V result.

For the thyroid examination, the mean of V increases progressively for the 500% and
700% tests in contrast to the relatively good performance in the bladder examination.
This can be explained by noticing that the gaps in the bladder data set are much smaller
at the top than the bottom, which limits the blurring effect of the hole-filling stage to the
large gaps at the bottom of the images. With lower levels of blurring in the bladder tests,
lower values of V' result.

Unfortunately, the images exhibit significant reconstruction artifacts in both exami-
nations, especially for the 500% and 700% tests — see Figure 3.13(d) and (h). A visible
boundary exists between portions that are filled, for example, by averages of a 7 X 7 x 7
neighbourhood, and portions filled by a neighbourhood of 9 x 9 x 9, because they involve
different levels of smoothing. The boundaries between the voxels filled by the first bin-fill

stage and second hole-fill stage are also visible.

Distance-Weighted Interpolation

For both examinations, V' is zero for the 0% tests since the weights on the original pixels
that fall exactly on the voxels approach infinity. At 25%, 50% and 75%, the images consist
of voxels filled by the original data (weighted by infinity), along with voxels in the gaps
that are calculated from a weighted average of many neighbouring pixels. The resulting
interpolated data set is therefore a combination of the remaining pixels from the original
B-scan and smoothed data in the gaps.

Since the radius ryq; of the neighbourhood is tailored for each test of 100% and greater
(as explained in Section 3.3.1), the values of V for the thyroid examination are relatively
small. Yet for the 100% test on the bladder examination, the mean of V is considerably
higher than the RBF method, since 7,4 is too large at the top of the image where the
data are dense (but just large enough to fill the gaps at the bottom), resulting in excessive
smoothing at the top. For 300% to 700%, the values of V improve, since the removal of
data offsets the increase in 7,4z

The images show progressive blurring as the percentage of removed data increases, but
no other reconstruction artifacts are generated. For the thyroid examination, the level of
blurring is uniform. For the bladder examination, blurring is slightly greater near the top

of the images.

Radial Basis Function Interpolation

Because an approximating function (which does not pass exactly through the original pixel

values) is used, V is greater than zero for the 0% test. For both examinations, however,
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the mean of V' at 0% is less than 1.0.

At 25%, 50% and 75%, the mean of V is considerably lower than the other methods
and the resulting interpolated data appears the most detailed and least artificial. This is
because the interpolation utilises both the remaining pixel data of the original B-scan and
the neighbouring B-scans. The low values of V' demonstrate the ability of a functional
method to use the general shape of the underlying anatomical data to interpolate across
the gaps.

Yet at percentages of 100% and greater, the RBF is not always significantly better than
the other methods. In particular, the DW method matches it in the thyroid examination.
In the bladder examination, the VNN method matches it for the 100% and 300% tests,
the PNN method matches it for the 700% tests, and the DW method even slightly betters
it for the 500% and 700% tests.

One of the reasons the RBF loses some of its advantage is that the underlying shape of
the anatomical data is lost when the gaps become too large. Another problem is that the
RBF approaches the trend term of the interpolation function in the largest gaps. This is
because the tension needs to be set high enough so that no overshoots appear within the
B-scan. Yet in the gaps, a higher tension results in a faster approach of the interpolation
function towards the trend.

In general, however, the RBF method shows no artifacts in the interpolated data. The
join lines between segments are not visible, since the discontinuities are smaller than the
grey-level quantisation. Also, no overshoots are generated: the range of the interpolated
data matches the range of grey levels in the original B-scans.

For the thyroid examination, the interpolated images become progressively blurred as
the percentage of removed data increases. The level of blurring is uniform throughout
the image. For the bladder examination, however, the denser data at the top of the
images allow the RBF to retain a high level of detail. The blurring then progressively
and smoothly increases toward the bottom of the images where the gaps are larger. The
level of blurring therefore reflects the level of uncertainty in estimation of the underlying
function. In comparison, the DW method shows counter-intuitively the greatest blurring

near the top of the bladder images.

3.3.3 Discussion

The RBF method appears to work well; low values of V' are produced and no artifacts
are generated. It must be noted, however, that the computational demands are much
greater than for the other three methods. The thyroid and bladder data sets can be
reconstructed by the VNN, PNN and DW methods in a few minutes, but the RBF method
requires several hours. Yet the oct-tree segmentation means the RBF method is amenable
to parallel processing. The segments can be interpolated easily in parallel because the
memory storing the pixel values does not change (eliminating read errors). Each process
also writes to a different segment in the voxel array (eliminating write errors). Since many

modern ultrasound machines already have the capacity for parallel processing (the Toshiba
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Powervision 7000 used for these examinations contains more than 60 Pentium processors),

a practical implementation of the RBF method is not infeasible.

The greatest advantage of the RBF method occurs with small percentages of removed
data. This is because the underlying shape of the data can be used to interpolate across
the small gaps and reduce the effect of outliers. This is why the RBF method performs
especially well with small percentages of removed data in the tightly spaced bladder ex-

amination.

The higher percentage tests are representative of what would happen with faster hand
motion during the examination or a slower rate of acquisition by the computer. When the
gaps become too large, the RBF method loses some of its advantage because the shape
of the underlying data is eventually lost. Nevertheless, with few exceptions, the RBF
method performs at least as well as the other methods. It is possible that the performance
of the RBF method can be improved by choosing a different combination of tension ¢ and
smoothing w. But any advantage at low percentages of data removal results in a trade-off
at high percentages. Moreover, the potential improvements are small. The results are
mainly unchanged as long as the tension ¢ is in the range of [10, 25] and the smoothing
w is in the range [0.01, 0.1].

A much greater potential improvement to the RBF lies with the introduction of
anisotropic tension. It is possible for the tension to be different in different directions.
This is a result of the invariance of the RBF functions to translations and rotations, but
not scale (Mit4dSovd and Mit4s, 1993). This means a change in the scale of the dimensions
is equivalent to a change in the tension parameter. By changing the individual scales
of the three axes, the tension is changed for each of these three directions. The tension
should ideally be high within the individual B-scans to avoid overshoots, and low in the
direction orthogonal to the B-scans to fill the gaps between them. This would also be

likely to reduce the blurring in the gaps between B-scans that is evident in these tests.

While the RBF method produces the lowest values of V', it must be admitted that the
VNN method produces the images with greatest clarity. Since the registration errors are
small, the nearest neighbour projections appear to be seamless. But since both examina-
tions of the thyroid and bladder are of organs with a slowly varying shape, the projections
from different B-scans are closely aligned. If more complex shapes are scanned, or the
registration errors increase, the seams will become more visible. Moreover, interpolated
images in large gaps (which depict projections of distant B-scans) appear sharp, but are

strictly incorrect since the anatomy is featured in the wrong place.

In summary, all four methods perform well on both examinations and produce reason-
able images when the gaps are kept at realistic levels. It is also true that all of the methods
could be improved, or tailored to a particular type of examination. Yet the point of this
chapter is not to declare a winner among the different reconstruction methods. Rather, it
is to investigate typical reconstruction techniques on typical examinations and determine

whether a functional interpolation method offers any advantages.
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3.4 Conclusions

The RBF reconstruction method was shown to perform at least as well as traditional
reconstruction methods. The RBF method performed particularly well with small gaps,
but lost some of its advantage when larger gaps were present. This was because the RBF
method alone made use of the underlying shape of the data to interpolate across the gaps.

The RBF method was capable of simultaneously reconstructing areas with densely
overlapping B-scans and areas with large gaps, while making a smooth transition between
them. The resulting quality of the interpolated data was good, with no visible recon-
struction artifacts produced in any of the tests. Unfortunately, the RBF method was
the slowest reconstruction method and is not yet practical in its current form. Yet it is
easily parallelised and given more efficient coding techniques a practical implementation
is feasible.

Many opportunities also exist to exploit the unique properties of the RBF method.
For example, derivatives can be calculated directly from the RBF’s. Accurate derivatives
are often required in applications such as visualisation, registration and segmentation.
A functional representation can also be useful for data compression and filtering. Also,
since an approximating function in general misses the data points, the distance it misses
them by can be considered the predictive error. A large predictive error may be indicative
of image misalignment, so determining which regions have large predictive errors can be

useful for investigations into registration errors.
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Nessuna humana investigazione si pio dimandara vera scienzia
s’essa non passa per le matematiche dimonstrazione.

‘No human investigation can be called real science

if it cannot be demonstrated mathematically.’

—Leonardo da Vinci, Treatise on Painting, 1500

Chapter 4

Spatial Compounding In Vitro

4.1 Introduction

Part I of this thesis focused on reconstructing the best possible 3D data sets from a set
of 2D B-scans. Yet even with accurate system calibration and sophisticated interpola-
tion, problems remain. In particular, visualisation and volume estimation are inhibited
by artifacts including speckle. As mentioned in Section 1.6, spatial compounding is an
effective approach for speckle reduction, and there has been considerable research in the
past on 2D spatial compounding. This chapter takes a fresh look at spatial compounding
from the perspective of 3D freehand ultrasound. Every freehand system has to deal with
compounding in some manner, since it is almost inevitable that the scan planes will inter-
sect. Deliberate, extensive compounding is proposed here, with the aim of producing high
quality 3D data sets which lend themselves to automatic segmentation for visualisation
and volume measurement.

The key to effective spatial compounding is to achieve a sufficiently high registration
accuracy. The accumulation of measurement errors, listed in Section 1.5, means that the
position sensor readings alone will not be sufficient. It is therefore necessary to improve
the registration using image-based techniques.

Little work on the registration of 3D ultrasound data sets is evident in the literature.
In one exception (Moskalik et al., 1995), two separate data sets of the breast were retro-
spectively registered using manual landmark matching. This constitutes a labour intensive
solution to a specific registration problem. Instead, an automatic, incremental registration
algorithm is proposed here, for use with generic freehand ultrasound imaging.

Similarly, little work on 3D spatial compounding has been performed. In some early
cardiovascular work, excised hearts were scanned in a water bath (Belohlavek et al., 1993;
McCann et al., 1988). 2D cross-sectional images were created by averaging a number
of B-scans taken in the same plane but from different look directions. Although a set
of these compounded cross-sectional images were stacked to form a 3D data set, the
spatial compounding was strictly 2D. Since the tests were performed in vitro, registration

errors from tissue movement (and to a smaller extent, changes in the speed of sound in
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surrounding tissue) were reduced. This meant that image alignment was accurate and
high quality images were produced.

In another article (He, 1997), spatial compounding was used for the specific application
of imaging an entire limb. Again, the limb was submerged in water. Cross-sectional
images were created by averaging 36 B-scans acquired while rotating the transducer in
10° increments around the limb. The limb was imaged therefore from a 360° range of
viewpoints within a single plane. Although a set of these cross-sectional images was then
used to create a 3D data set, the spatial compounding was still only 2D. The author’s
main goal was to circumvent the problem of shadowing behind bones, but he also noted a
decrease in speckle noise and an increase in SNR. Blurring was said to be a result of limb
motion, and research on realignment methods was suggested, but not implemented.

One article did use a freehand system to perform spatial compounding in 3D, and
improved visualisation and segmentation were reported (Barry et al., 1997). The authors
used an inverse-distance-weighted interpolation method with a relatively large local neigh-
bourhood to reconstruct the 3D data sets. As described in Section 3.2.4 and demonstrated
in Section 3.3.2, this method of reconstruction can blur the data, making it difficult to
separate the effects of reconstruction from spatial compounding. Alignment of the B-scans
was based on the position sensor alone, so again, no image based registration was per-
formed. Another brief article (Nelson and Pretorius, 1994) cited the improvements that
are possible by 3D compounding, but it simply stated the need for accurate registration
without providing further detail.

The goal of this chapter is to perform an in-depth study of spatial compounding with
three major objectives in mind. The first is to demonstrate how accurate 3D registration
can be achieved using a technique that takes sensor-based measurements of B-scan posi-
tions and applies small adjustments to align anatomical landmarks in the reconstructed
volume. The second objective is to demonstrate how spatial compounding, coupled with
accurate registration, can improve the SNR of the reconstructed data. The final objec-
tive is to develop a statistical theory of 3D spatial compounding and establish agreement
between the predicted and observed improvements in SNR. These objectives are met by
first studying an artificial object (phantom) in vitro. The phantom study allows the 3D
reconstruction process to be evaluated and verified before proceeding to an examination
of a human patient in vivo. This chapter describes the study performed in vitro, and the

next chapter describes the study performed in vivo.

4.2 Reconstruction With Registration

4.2.1 Overview

To acquire high quality, spatially compounded data sets, any registration errors must be
corrected before compounding. (The reader may wish to skip ahead to Figure 4.9 to get
an indication of the level of registration errors.) These errors are corrected by adding an

image registration step to the reconstruction algorithm.
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A variety of image registration techniques are available (Brown, 1992; Maintz and
Viergever, 1998), but many are specialised for particular applications or are computation-
ally expensive. Since the artificial object studied here produces images with well defined
boundaries, registration is attempted using landmarks.

Landmarks are anatomical features which are prominent in the B-scan images. When
a newly acquired B-scan is compounded into a filled (or partially filled) voxel array, any
landmarks in the B-scan should align with existing landmarks in the voxel array. Registra-
tion errors can be corrected by searching for corresponding landmarks and repositioning
the new B-scan plane so that the landmarks are brought closer together.

Registration must be performed with respect to a reliable baseline. If all the B-scans
are repositioned, it is possible to construct a voxel array where all landmarks are in perfect
alignment, but the reconstruction bears little resemblance to the underlying anatomy (for
instance, the voxel array could contain a sheared image of the anatomy). For this reason,
the ultrasound examination commences with a quick pass over the region of interest, filling
most of the voxels with little overlap of the B-scans. No attempt is made to register these
initial B-scans: they act as the baseline. Any small registration errors that occur at this
stage are not corrected, but since the true shape of the anatomy is unknown, these initial
B-scans provide the best estimate of the true shape. Subsequent passes over the region
of interest, from different look directions, are compounded with the baseline data in the
voxel array. The inevitable registration errors are automatically corrected by landmark
alignment as each new B-scan is acquired.

The basic PNN algorithm without the hole-filling stage is chosen for reconstruction
because it offers a simple basis for the study of the SNR statistics: direct averaging of
multiple contributions to the same voxel is performed, and no parameters need to be to
specified by the user. With low resolution voxel arrays, no gaps are likely to remain after
all of the overlapping data are compounded, but with high resolution arrays (small voxels),
small gaps may remain. Instead of filling in the gaps in high resolution reconstructions,
the second stage of the PNN algorithm is omitted so that the statistics are independent of
the type of hole-filling method. The calculations are then made only on the filled voxels.
In this way, the SNR statistics are kept as generic as possible.

Figure 4.1 describes the PNN reconstruction algorithm with the addition of landmark-
based registration. The main difference between this algorithm and the algorithm without
registration (Figure 2.2) is that the image transformation “Tp is replaced with the opti-
mal transformation CT}; that registers the landmarks in the image P with those already
present in the voxel array C. The transformation “T% may be considered as the combi-

nation of the original “Tp and an additional transformation T7e9:

In this study, T"® is constrained to a 6 DOF rigid body transformation. Although some
non-rigid registration errors are undoubtably present, it is hoped that the majority of

registration errors can be corrected with rigid body registration.
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1. Acquire 2D image P and associated position data TTR

2. Find landmarks |, in P - see Figure 4.2

3. Insert image P into reconstruction volume C
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Figure 4.1: PNN reconstruction with registration. Steps 1 to 3 are repeated for all

B-scans acquired in an examination.
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Parameter Organ Phantom

Canny kernel size (mm) 5
Landmark search radius (mm) 6
Consensus set threshold (%) 40

Table 4.1: Registration algorithm parameters. The size of the kernel used in the
Canny convolution represents the best trade-off between the accuracy of boundary lo-
calisation and sensitivity to speckle noise. The radius of the landmark search volume is
related to the expected levels of registration error. The consensus set threshold is specified
as a proportion of the total number of landmarks in each B-scan. Its value is based on an
estimated ratio of the number of true landmarks to the total number of landmarks in a

typical B-scan.

(a) High resolu- (b) Landmarks

tion image

Figure 4.2: Landmark detection. (a) shows the original high resolution image of the or-
gan phantom. Notice the speckling throughout the image. (b) depicts the edgels extracted

from image (a) after chaining and pruning.

4.2.2 Detection of Landmarks

The landmarks used in this study are edgels (edge elements) automatically extracted
by the Canny edge detection algorithm (Canny, 1986). The edgels are produced at the
resolution corresponding to the voxel size chosen for the reconstruction, so the resolution
of the B-scans is reduced correspondingly before edge detection. The kernel size in the
Canny convolution is chosen large enough to minimise the effect of speckle, but small
enough to give good location accuracy. The size of the kernel is given in Table 4.1.

The edgel set is further pruned by chaining neighbouring edgels together and eliminat-
ing short chains. Chains with fewer than three elements are eliminated because speckle
typically produces one or two element chains, while structural boundaries produce longer
chains. Deleting short chains therefore reduces the number of false landmarks. Figure 4.2

shows an example of the detected landmarks.
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4.2.3 Selection of Correspondences

As the B-scans are acquired, landmarks are stored in a 3D binary array L which is aligned
with C. The landmark array L is binary because only the presence of each edgel is stored;
the orientation and strength are discarded since they are not required for alignment. When
a B-scan intersects non-empty (previously filled) voxels in C, “T% is determined by finding
correspondences between landmarks in the new B-scan and landmarks in L.

A minimum number of intersections between pixels in the scan plane and non-empty
voxels in C is needed for accurate registration. In the phantom study, landmark registra-
tion is attempted only when more than 25% of the pixels in the B-scan intersect previously
filled voxels in C 1.

Potential correspondences between landmarks in the B-scan and landmarks in L are
found by searching a spherical volume in L for each landmark in the B-scan. Since the
B-scans are acquired in rapid succession, registration errors are expected to vary slowly
from one B-scan to the next. This observation is used to place the spherical search volume
at an appropriate location in the voxel array, and also limit its size — see Figure 4.3. The
registration algorithm effectively tracks the registration error, which is far more efficient
than performing an unconstrained search for “T% for each B-scan. The size of the search

volume is given in Table 4.1.

4.2.4 Determination of Transformation Matrix and Compounding

The set of correspondences produces more constraints than are required to determine
CT%. For example, each B-scan of the phantom generates approximately 1200 candidate
correspondences, but only three are needed to determine CT}S. A least squares estimation
of CT}; is inappropriate, since many of the candidate correspondences are outliers. In-
stead, the RANSAC (random sample consensus) regression technique (Fischler and Bolles,
1981) is used to determine “T% and reject the erroneous correspondences. RANSAC is
sufficiently robust to tolerate a significant proportion of erroneous correspondences. The
steps of the RANSAC regression are listed in Figure 4.4.

CT% is used to transform the new B-scan image P into the coordinates of the voxel
array C, then the pixels of P are added to C. Where the B-scan intersects previously filled
voxels, weighted averaging is used to compound the new image with the existing data (see
step 3.4.2 in Figure 4.1).

4.3 Method

4.3.1 Acquisition System

The acquisition system consisted of a Toshiba model SSA-270A /HG ultrasound machine, a

7 MHz linear array probe, and a Polhemus Fastrak position sensor mounted on the probe.

'In practice, after the first sweep in the ultrasound examination, all subsequent B-scans intersect a
sufficient amount of baseline data to perform registration.
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Landmarks (edgels)  Existing landmarks Repositioned Optimally
in B-scan in voxel array B-scan registered B-scan

) b ‘®\ /\ »\
—_— —
Apply correction FindCT#
from B-scan n-1 ) @ P ©
@ Search volume

for one landmark

Figure 4.3: Landmark-based registration. In (a), B-scan n is inserted into the voxel
array at the location indicated by the position sensor. Significant registration errors are
evident (exaggerated here for clarity). After applying the rigid body correction found
from registering B-scan n — 1, only small residual errors remain (b). These are corrected
by landmark-based registration. A small spherical search volume is defined around each
repositioned landmark (edgel) in P: any landmarks in L found within this volume are
marked as candidate correspondences for the landmark in P. RANSAC regression is used to
find the optimal rigid body transformation “T% which aligns as many of the corresponding
landmarks as possible — see Figure 4.4. Finally, the B-scan is inserted into its optimal

position in the voxel array using “T% (c).
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1. Randomly pick three pairs of corresponding landmarks from the full set
of correspondences.

2. Reject these correspondences if they are not consistent with arigid
body transformation.

3. Reject these correspondences if the landmarks in P are too close together
or colinear (otherwise the calculation of ©T p instep 4isill-conditioned).

¥

4, Calculate alinear affine transformation T "®9 which brings the three
landmarksin P into precise registration with the corresponding landmarks
in L. Thepruningin step 2 ensuresthat T "*represents arigid body

transformation.

5. Transform al the remaining landmarksin P by T "9

L 2

6. Count how many transformed landmarksin P coincide (within one voxel)
with landmarksin L. Those landmarks that do coincide contribute to the
consensus set for T The remaining landmarks are deemed outliers.

L 2

7. Repeat from step 1 until a T "®isfound with a consensus set larger than a
preset threshold: this T "9 is then combined WithCTP to form the optimal
transformation “Tp.

Figure 4.4: RANSAC regression for determining “T%. The consensus set threshold
is given in Table 4.1.
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To minimise interference from the electronics inside the ultrasound probe, the receiver
was mounted at the end of a rigid nylon extension bar about 25 cm from the probe face.
Images were acquired with an 8-bit frame grabber and a Sun SparcStation 10 workstation
(Sun Microsystems, Inc., Palo Alto, California). A shallow depth setting produced images
with a pixel size of 0.14 mm. The images were then recorded at a rate of 5 fps, and later
cropped off-line to 220x380 pixels.

Because this study was performed before the work on calibration, none of the cali-
bration phantoms were yet available. The calibration parameters were therefore obtained
in a simpler manner. The offsets to the receiver were measured with calipers, and the
scale values were calculated from the graduations of the axes displayed in the uncropped
B-scans. The phantom was mounted in a bath of water at a temperature of approximately
40° Celsius so that the speed of ultrasound in the water approximated the speed in human
tissue (the speed assumed by the ultrasound machine).

Performing calibration with calipers is not as accurate as calibration with the phan-
toms described in Chapter 2. It may appear, therefore, that the registration errors arise
solely from miscalibration, but the study in Chapter 5 used the more accurate three-wire
calibration method and still encountered significant registration errors. This implies that
the errors cannot be attributed only to miscalibration and, even with accurate calibration,

image-based registration is required.

4.3.2 Simulations

Simulations were first performed on a computer generated octahedron. The octahedron
shape was chosen because the boundary of the octahedron in each cross-section is unique
within a local neighbourhood. In other words, each cross-section makes a perfect fit
with the octohedron in only one nearby location, making it easy to verify the results of
registration.

A simulated examination of the octohedron test object was performed from left-to-
right, then right-to-left. Errors were added to the right-to-left portion of the examination
to simulate motion of the object. Figure 4.5 shows that the algorithm can compensate
for different types of motion errors and track the motion accurately. Errors with only one
DOF are shown in Figure 4.5 for clarity, but errors in all 6 DOF were also tracked and

corrected.

4.3.3 Experiments

Tests were performed on a phantom comprising an egg-shaped latex balloon filled with a
combination of water, ultrasound coupling gel and talcum powder. This type of phantom
was used because B-scans of its cross-section produce images of a uniformly speckled
interior, a sharp boundary, and a uniformly speckled exterior with a lower mean grey
level — see Figure 4.6. Grey-level statistics could therefore be measured in two regions
with almost homogeneous statistical features, and the effect of spatial compounding on
the SNR easily observed.
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(a) Random motion errors (b) Sinusoidal motion errors

f= c
E 0 : /r\l élO
‘5 1 start of motio | é al |
8 o
£ £
s 2 15 6 1
g -3 | 24 ]
& -4 R é 2F start of motion B
5 g \
8 -5 180 1
& g
S -6 1 S-2f ]
o °
8 -8 1 8-6 ]

_9, N _8, 4

0 50 100 150 200 25 L 50 100 150 200 25¢
frame number frame number
(c¢) Corrected motion errors (d) Corrected motion errors

(e) Octahedron reconstructed with motion correction

Figure 4.5: Registration of simulated data. (a) and (b) show surface renderings of
the reconstruction (without registration) and two typical cross-sections. Small random
motion errors were added to (a), and small sinusoidal motion errors were added to (b).
(c) and (d) show the motion errors in (a) and (b) that were corrected by the registration

algorithm. (e) shows the result of reconstruction with registration.
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Figure 4.6: Regions of the phantom B-scans. To investigate the effect of compounding
on the image statistics, two regions are defined: region 1 and region 2. Region 1 lies
completely inside the latex balloon and region 2 on the outside. Similar volumetric regions

are defined for the 3D reconstruction volume.

The phantom was scanned in a continuous series of sweeps from one end of the balloon
to the other, producing a large number of overlapping B-scans. Each sweep was carried out
with the probe at a look direction slightly displaced from the previous sweep. About four
and a half sweeps were performed, producing 400 B-scans in total. The first 100 B-scans
corresponded to the first complete sweep, and therefore did not overlap each other.

The PNN algorithm was used to reconstruct volumes from the 400 B-scans at both
high and low resolution. The high resolution reconstructions contained voxels with the
same size as the pixels in the B-scans (0.14mm). The low resolution reconstructions con-
tained voxels seven times the pixel size (lmm). While the high resolution reconstructions
preserved the full resolution of the B-scans, they required a large amount of memory (181
MBytes). Plus, since the PNN method was used without the hole-filling stage, many un-
filled voxels remained in the gaps between B-scans. Low resolution reconstructions (0.5
MBytes with 1 mm voxels) were generated in significantly less time and contained no
gaps. For each resolution, two reconstruction volumes were created, one with registration
(using the PNN reconstruction algorithm with registration in Figure 4.1), the other with-
out (using the standard PNN reconstruction algorithm in Figure 2.2). Four volumes were
therefore reconstructed in total.

Registration was, in fact, only performed at low resolution, with the results applied to
the high resolution reconstructions. Registration at high resolution was infeasible because
of the large number of unfilled voxels and the considerable memory requirements of the
reconstruction algorithm.

To investigate the improvement in SNR with spatial compounding, the grey-level statis-
tics were analysed in each of the four reconstruction volumes at various stages of recon-

struction: after 100 B-scans (initial sweep, no compounding), then 150, 200, 250, 300, 350
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No. of Region 1 Region 2

B-scans mean std. dev. SNR mean std. dev. SNR
100 103.76 18.37 5.65 33.68 5.76 5.8
150 102.45 18.02 5.68 33.60 549 6.12
200 103.09 17.65 5.84 33.39 5.14  6.50
250 103.33 17.03 6.07 32.23 4.77  6.97
300 102.80 16.55 6.21 33.17 466 7.12
350 102.30 16.00 6.39 33.07 445 743
400 101.41 15.74 6.44 33.01 434 7.61

Table 4.2: High resolution reconstruction without registration.

and finally 400 B-scans (heavy compounding). For each case, volumetric regions 1 and 2
were segmented, and then the mean and standard deviation (and therefore the SNR —
the ratio of the mean to the standard deviation) were calculated for filled voxels in each
region. The unfilled voxels were not included in the calculations. Segmentation was per-
formed by manually constructing volumetric masks for regions 1 and 2. Once each mask
was created, it was used for all seven stages of reconstruction (100 to 400 B-scans). In

this way, changes in the observed SNR cannot be attributed to changes in segmentation.

4.4 Results

4.4.1 Signal to Noise Ratio

It is immediately apparent that the SNR increases with the amount of compounding —
see Tables 4.2, 4.3, 4.4, and 4.5. Furthermore, the SNR improves almost identically for
both the registered and unregistered cases. This is because regions 1 and 2 do not include
the area where the phantom boundary is blurred by the registration errors.

The improvement in SNR can be predicted by statistical theory. Previous papers (Bur-
ckhardt, 1978; Hernandez et al., 1996; Kerr et al., 1986) have demonstrated a y/n improve-
ment in SNR for 2D compounding of n uncorrelated B-scans 2. This theory is not directly
applicable to the 3D case, since the voxels are not all compounded the same number of
times. The arbitrary positions and orientations of the B-scans result in some voxels being
intersected more than others. Furthermore, the statistical theory for low resolution com-
pounding must account for both the compounding caused by the intersections of multiple
B-scans as well as the reduction in resolution (when the voxel size is chosen larger than
the pixel size). For these reasons, a full theory of 3D spatial compounding is developed
and presented in Appendix D.

The measured SNR of both the low and high resolution registered reconstructions is

>This assumes that the speckle is uncorrelated across the B-scans. Compounding B-scans from very
similar look directions will result in a smaller improvement in the SNR because the speckle will be partially
correlated.
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No. of Region 1 Region 2

B-scans mean std. dev. SNR mean std. dev. SNR
100 103.76 18.37 5.65 33.68 5.76  5.85
150 102.45 18.02 5.68 33.60 549 6.12
200 103.09 17.65 5.84 33.39 5.14  6.50
250 102.99 16.77 6.14 33.24 4.77  6.97
300 103.28 16.19 6.38 33.16 462 7.18
350 103.37 15.73  6.57 33.06 439 7.53
400 103.24 15.35  6.72 32.99 426 T7.74

Table 4.3: High resolution reconstruction with registration.

No. of Region 1 Region 2 Vol.
B-scans mean std. dev. SNR mean std. dev. SNR (ml)
100 100.39 11.07  9.07 33.22 3.78 879 7.20
150 100.09 10.63 9.42 33.15 341 972 717
200 99.94 9.77 10.23 33.07 3.07 10.77 7.19
250 100.05 9.27 10.79 33.00 2.88 11.46 7.27
300 99.93 8.67 11.53 32.97 2.86 11.53 7.31
350 99.71 8.16 12.22 32.93 2.82 11.68 7.43
400 99.44 7.81 12.73 32.90 2.80 11.75 7.56

Table 4.4: Low resolution reconstruction without registration. The volume of the
phantom, as estimated by semi-automatic segmentation, increases with the number of B-
scans. This is because the registration errors blur the boundary of the phantom, affecting

the semi-automatic segmentation.

No. of Region 1 Region 2 Vol.
B-scans mean std. dev. SNR mean std. dev. SNR (ml)
100 100.39 11.07  9.07 33.22 3.78 879 7.20
150 100.09 10.63 9.42 33.15 341 972 7.16
200 99.94 9.77 10.23 33.07 3.07 10.77 7.19
250 99.91 9.09 10.99 33.00 2.84 11.62 7.20
300 100.02 8.13 1230 32.96 2.78 11.86 7.14
350 100.06 7.76 12.89 32.91 2.68 12.28 7.20
400 100.17 7.27 13.78 32.86 257 12.79 7.18

Table 4.5: Low resolution reconstruction with registration. The volume of the
phantom, as estimated by semi-automatic segmentation, remains almost constant with

higher levels of compounding.
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plotted against the theoretical increase in SNR in Figure 4.7. As the theory predicts, the
SNR increases with increasing levels of compounding. Yet there are a number of differences
between the idealised theory and the actual empirical study. The first is that no attempt
was made to obtain completely uncorrelated B-scans for different sweeps. As mentioned in
Section 1.6, the look directions for different sweeps must be separated by more than forty
percent of the transducer width to obtain completely uncorrelated speckle patterns (Trahey
et al., 1986b). To verify this, the first few sweeps were deliberately performed from similar
look directions, saving large variations in the look direction for the last few sweeps. The
results in Figure 4.7 confirm the theory: the SNR improves most dramatically for the last
few sweeps, when the speckle patterns are less correlated. For this reason, the last four
data points in Figure 4.7 are highlighted for comparison with the predicted values (derived
assuming completely uncorrelated speckle).

The grey-level variations in the B-scans are also not caused entirely by speckle. The
echo amplitudes reflected by a homogeneous medium have an expected Rayleigh distribu-
tion when there is a large number of scatterers per resolution cell. The SNR of a Rayleigh
distribution is a constant, equal to 1.91 (Burckhardt, 1978). The logarithmic compression
of the echo amplitude in the formation of B-scans changes the Rayleigh distribution to an
approximately Gaussian distribution, and the SNR changes to 7.64 (Crawford et al., 1993;
Hernandez et al., 1996; Thijssen et al., 1988). The measured SNR of a typical B-scan in
this study is 5.6 for region 1 and 5.4 for region 2. The lower SNR means that the observed
grey-level variations are greater than the variations produced by speckle. If some of the
variation is a result of real physical structure (such as clumping of the talcum powder
suspension), then it will be correlated across different sweeps and cannot be reduced by
compounding. Despite these differences from the assumptions underpinning the statistical
theory, the slopes of the curves in Figure 4.7 are in remarkably close agreement with the

theoretical predictions.

4.4.2 Visualisation

Cross-sectional slices through the high resolution reconstructions are shown in Figure 4.8,
both with and without registration. It is evident that the registration errors are large
enough to significantly distort the reconstruction, but are dramatically reduced by landmark-
based registration. The effect of compounding is not pronounced at high resolution, be-
cause each voxel is intersected only a small number of times.

Figures 4.9 and 4.10 show the effects of registration and compounding at low resolution.
In both figures the speckle (and other artifacts) are greatly reduced by compounding, but
the shape of the phantom in the unregistered case departs significantly from the original
shape. The registered reconstruction maintains the original shape.

Surface rendering is performed with the semiboundary approach described in Sec-
tion 1.4, using segmentation by grey-level thresholding. Figure 4.11 shows how com-
pounding improves a surface rendering of the reconstruction volume.

The grey-level histograms of regions 1 and 2, shown in Figure 4.12, change as the level
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Figure 4.7: Effect of compounding on SNR for registered reconstructions. Both

high resolution (a, b) and low resolution (c, d) reconstructions show an increase in the

SNR, as the level of compounding increases.

Each ‘4’ data point represents the SNR

calculated at 100, 150, 200, 250, 300, 350, and 400 B-scans. The error bars were estimated
by measuring the RMS variation in the SNR obtained using slightly different volumetric

masks. The z-axis indices, npigh_res and Njoy _res, are defined in Appendix D. A log-log

plot is used because a slope of 0.5 indicates agreement with the theoretical increase in

SNR as n%?. As explained in Section 4.4.1, only the final four data points in each plot can

be meaningfully compared to the theory. In all cases, these data points are in remarkably

good agreement with the theory.
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(a) Unregistered (b) Registered

Figure 4.8: Slices of high resolution reconstructions. A slice of the reconstruction
volume is shown for both the unregistered and registered cases. All 400 B-scans are used
in both reconstructions, but gaps still remain. In (a), the registration errors substantially
distort the circular cross-section of the phantom. The circular shape is restored in (b) by

landmark registration.
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(a) 100 B-scans (b) 200 B-scans

(c) 300 B-scans (d) 400 B-scans

Figure 4.9: Slices of low resolution reconstructions without registration. All slices
are taken at the same location in the reconstruction volume. Speckle is reduced by com-
pounding both inside and outside the object, but registration errors result in substantial

blurring of the object boundary.



104 Chapter 4. Spatial Compounding In Vitro

(a) 100 B-scans (b) 200 B-scans

(c) 300 B-scans (d) 400 B-scans

Figure 4.10: Slices of low resolution reconstructions with registration. All slices
are taken at the same location in the reconstruction volume. Speckle is reduced by com-
pounding both inside and outside the object and blurring of the object boundary is mini-

mal.
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(a) 100 B-scans (b) 200 B-scans

(c) 300 B-scans (d) 400 B-scans

Figure 4.11: Surface renderings of low resolution reconstructions with registra-
tion. The 3D surface renderings are produced by grey-level thresholding. The amount
of speckle outside the object is reduced with increasing levels of compounding. (a) shows
the reconstruction after a single sweep. The object is less obscured by speckle when the

reconstruction volume is heavily compounded in (d).
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Figure 4.12: Histogram of grey levels in the reconstruction volume with reg-
istration. The two regions are described by individual distributions. As compounding
increases, the mean grey level remains constant but the standard deviation decreases. This

effect is particularly visible for the distribution of region 1.

of compounding increases. As expected, the histograms become narrower with higher
levels of compounding. If the histograms of the different regions are non-overlapping,
then fully automatic segmentation can be achieved by thresholding the reconstruction
at the appropriate grey level. Figure 4.13 shows several examples of fully automatic
segmentation by grey-level thresholding. One of the motivations for improving SNR, is
to allow more accurate automatic segmentation. It is evident that compounding with

registration improves the accuracy of automatic grey-level segmentation.

4.4.3 Volume Estimation

A measure is required to quantify the effect of registration errors on the reconstruction.
The volume of the phantom was chosen as the measure for these experiments, since volume
is often sought after by physicians when scanning internal organs (Chervenak et al., 1993).
It can also be compared to the real volume of the phantom, which was measured with a
graduated cylinder to be 7.0 ml 4+ 0.2 ml.

Volumes were estimated by “live-wire” segmentation (Barrett and Mortensen, 1997)
of slices through the reconstructed volume. Live-wire segmentation is a powerful tool for
extracting boundaries in noisy images. It offers a good compromise between accuracy and
amount of user intervention. The technique involves laying an active wire (on a slice by
slice basis) that is attracted automatically to the object’s boundary. The operator assists
the live wire by depositing small sections at a time near the boundary, so that the wire
does not enclose nearby speckle. For these tests, four sections of wire were sufficient to
enclose the phantom cross-section accurately.

The semi-automatic live-wire technique was used instead of grey-level threshold seg-
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(a) Reconstruction using 100 B-scans. The area of the thresholded image on the
right is 243.9 mm?. Live-wire semi-automatic segmentation of the image produces
an area estimate of 256.5 mm?®. The difference arises mainly from speckle in the
interior that falls outside the threshold range.

(b) Unregistered reconstruction using 400 B-scans. The area of the thresholded
image on the right is 217.7 mm?. The area is lower than in (a) because the blurred
regions near the phantom boundary fall outside the threshold range.

(c) Registered reconstruction using 400 B-scans. The area of the thresholded

image on the right is 250.9 mm?. This is close to the area calculated by live-wire

segmentation in (a).

Figure 4.13: Threshold segmentation of low resolution reconstructions. Corre-
sponding slices through the reconstruction volumes are shown on the left of each figure.
For each slice, the histogram of the grey levels is shown in the middle. The images on
the right show the regions segmented by thresholding the grey levels falling into the range
[78, 122]. The grey-level segmentation in (c) is more accurate than in (a) or (b). The
compounding in (c) ensures that the entire object falls within the threshold range and the

registration retains the original circular shape of the cross-section.
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mentation, since thresholding is incapable of completely separating the phantom from the
surrounding noise — see Figure 4.11. Some user intervention is required to avoid incor-
porating the surrounding noise and, therefore, over-estimating the phantom’s volume.

The volume of the phantom was calculated by live-wire segmentation at seven levels of
compounding: after 100, 150, 200, 250, 300, 350, and 400 B-scans. The resulting volume
estimates are given in Tables 4.4 and 4.5 for the low resolution reconstructions. Live-wire
segmentation is not feasible at high resolution, where there are too many gaps around the
boundary.

Without registration, the blurring of the phantom boundary results in an increase
in the segmented volume (range = [7.17, 7.56]) that does not reflect the true volume.
Conversely, the volume calculated from the registered reconstructions is stable (range =
[7.14, 7.20]). The increase in volume by blurring is less dramatic than expected from
looking at slices through the reconstruction (Figure 4.9). This is because the live wire is
attracted to the location with the highest intensity gradient, which was sometimes near
the true boundary and not the edge of the blurred region. It is fair to say that considerably

worse volume estimates could be expected under less favourable circumstances.

4.5 Conclusions

This chapter has shown how spatial compounding can improve the SNR, of 3D ultrasound
reconstructions. The improvement in SNR agreed with the theoretical predictions for
both the high and low resolution cases. The inevitable registration errors were corrected
using an automatic, incremental landmark-based registration algorithm. The resulting
high quality 3D reconstructions were particularly well suited to automatic segmentation
for visualisation and volume measurement.

At present, the reconstruction algorithm only performs registration with rigid body
transformations. This study showed that the majority of registration errors in vitro could
be corrected this way. Although the current reconstruction algorithm was sufficiently
robust to tolerate small non-rigid errors, these errors remained in the final compounded
reconstruction. Yet the level of blurring that resulted from these residual errors was small.

The next step is to investigate spatial compounding in vivo.



The whole is more than the sum of the parts.
—Aristotle, Metaphysica, 330 B.C.

Chapter 5

Spatial Compounding In vivo

5.1 Introduction

The previous chapter has demonstrated the benefits of 3D spatial compounding on an
artificial object. In this chapter, spatial compounding is applied to an examination of a
human patient. The gall bladder is chosen for these tests because it is easy to identify and
small enough to be encompassed in a single sweep. The main goals are still improvements
in visualisation and volume estimation.

To reiterate the discussion in Chapter 1 on measurement errors, there are a number
of properties of ultrasound data that make visualisation and volumetric data analysis
difficult (Sakas and Stefan, 1995). Ultrasound images often have:

e significant noise and speckle (speckle arises from the constructive-destructive inter-

ference of the coherent ultrasound pulses);
e lower dynamic range than MR and CT images;
e blurred boundaries around anatomical features;

e boundaries with varying intensities caused by changes in surface curvature and ori-

entation;
e partially or completely shadowed surfaces from objects nearer the probe;

e variable resolution through the volume, dependent on both the spacing between the

B-scans and the location within a B-scan.

Several of the items in the list above are apparent in B-scans of the gall bladder — see
Figure 5.1.

In response to these problems, considerable effort has gone into the development of new
segmentation and visualisation techniques for ultrasound data. Although some success has
been achieved for special cases such as fetal imaging (Sakas and Stefan, 1995), fast and

fully automatic generic techniques remain elusive. In this chapter, the aim is to exploit
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directions of
pulse transmission

distinct boundary produced
L when the boundary is normal to
Sgll ﬁ")l'gg d‘j; the pulse transmission direction

indistinct boundary signal dropout

blurred boundary
high intensity artifact

Figure 5.1: Typical B-scan of a human gall bladder. The gall bladder is the dark cir-
cular region just left of centre. Most of the properties of ultrasound that inhibit automatic
analysis are present in this image. In particular, the speckle phenomenon is visible as a
granular texture throughout the image. The intensity of the gall bladder boundary varies
around its length. Sections of the boundary that are perpendicular to the pulse transmis-
sion direction produce high intensity echoes, and sections that are parallel produce low

intensity echoes.
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spatial compounding to improve the quality of the 3D ultrasound data, so that existing
visualisation and analysis techniques are more successful.

The previous chapter has already demonstrated that the key to spatial compounding
is accurate registration of image features. This chapter introduces a new, more robust
registration technique for experiments on a human patient. These experiments aim to

demonstrate that image-based registration is feasible for data acquired in vivo.

5.2 Reconstruction With Registration

5.2.1 Overview

In a typical 3D ultrasound examination, the physician scans smoothly and continuously a
region of interest from one extent to the other. Each sweep of the region can be used to
reconstruct a 3D data set. The look direction of the probe (i.e. location of the acoustic
window) is changed slightly between each sweep so that different views of the region are
obtained.

As in the previous chapter, spatial compounding is performed by accurately registering
the subsequent sweeps to the first baseline sweep. The results of the previous chapter also
demonstrated that the majority of registration errors in vitro could be corrected by a six
DOF rigid body registration. It is hoped that rigid body registration will also correct
the majority of registration errors in vivo. Yet instead of registering 2D B-scans to a 3D
baseline data set, here entire 3D data sets are reconstructed (again using the standard
PNN reconstruction method without hole-filling — see Section 2.2) and registered to a
baseline 3D data set. In this way, the registration problem is simplified, because only
a small number of registration procedures (the number of sweeps) are required, which
reduces the computational expense. It is assumed that the majority of registration errors
arise when the look direction is changed between sweeps, leaving relatively small errors
within the sweeps. The registration process is illustrated in Figure 5.2.

There has been considerable research into the automatic registration of CT and MR
images, but very few attempts to apply these techniques to 3D ultrasound. Comprehensive
surveys of the various registration techniques can be found in (Taylor et al., 1996; van den
Elsen et al., 1993). A number of the more popular approaches were evaluated on 3D
ultrasound data, with varying degrees of success.

The first class of techniques that were tested are those based on landmark matching,
as used for the phantom study of Chapter 4. The simplest of these is assisted point-
based landmark matching. In this paradigm, the user identifies corresponding points in
the two data sets, and then the transformation that brings one set of points into close
alignment with the other is computed. The problem with this approach is the difficulty
in finding easily distinguished points on smooth organ boundaries. Curves and surfaces
can be used instead, and are extracted by either manual or automatic methods. Given
suitable visual feedback, it is possible to perform the alignment of the curves or surfaces by

eye. Automatic surface-surface matching (Levine et al., 1988) and automatic curve-curve
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registered and
compounded

sweep i

Figure 5.2: Registration and spatial compounding of noisy 3D data. The first
sweep is called the baseline since all other sweeps are registered to it. T"® is the homo-
geneous transformation matrix describing the rigid body registration. Transformation of
sweep ¢ by T"® aligns it with the baseline data so that compounding can be performed
with minimal loss of spatial detail. Since sweep ¢ is reconstructed from B-scans taken from
different look directions to the baseline B-scans, the noise is uncorrelated. Compounding

the two registered data sets therefore reduces the level of noise.

matching (Thirion et al., 1992) are also feasible.

The main problems found with all of these landmark-based methods are accuracy and
repeatability. Fully automatic extraction of curves and surfaces from ultrasound data is
very difficult, as shown previously when segmenting the organ phantom in Chapter 4. Some
manual intervention is inevitably required (the need to use the semi-automatic live-wire
segmentation technique for the phantom study in Section 4.4.3 is a good example). With
examinations performed in vivo, the data sets are even more difficult to segment, and the
accuracy and repeatability of operator-assisted segmentation decreases. Human error also
means that alignment by eye is not sufficiently accurate to produce sharp, compounded
data.

The second broad class of registration techniques makes use of some sort of correlation
measure. In other words, no user interaction, explicit segmentation or landmark identifi-
cation is required: the measure is obtained directly from the original grey-level data. Such
techniques have been found to be robust for multimodal (MR to CT) registration (Maintz
et al., 1996; van den Elsen et al., 1995). High accuracy can be achieved at acceptable
computational expense through a coarse-to-fine search, and it is possible to register 3D
data sets that are only partially overlapping. Registering two 3D ultrasound data sets has
much in common with registering an MR data set to a CT one. In both cases, the data
sets to be aligned can appear substantially different, yet share some common features. For
this reason, correlation-based registration of each sweep onto the baseline is chosen as the

basis for this investigation.
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5.2.2 Correlation-based Registration

Two volumes of intensity data can be registered by searching the transformation param-
eter space for a peak in the correlation function. In the current application, only rigid
body transformations are considered, so the parameter space is six-dimensional (three
translations and three rotations). For two volumes L; and Lo, the correlation coefficient

is:

corr(b) = Z Li(z,y, z)La(T"(z,y, 2)) (5.1)
(a:,y,z)ELl
where b is the vector of the registration parameters, and T"® is the rigid body transfor-
mation matrix corresponding to b.

It remains to decide what features (L) of the data sets to correlate. Since different
ultrasound images of the same anatomy can appear substantially different (as explained
in Section 1.6), simple correlation of the raw intensity data is not likely to succeed. Again,
multimodal MR-CT registration provides the inspiration. Raw MR and CT data sets
cannot be compared directly, yet they share some common features that can be usefully
correlated. For example, differential operators such as “edge” and “ridge” detectors can
transform MR and CT scans of the skull into comparable data sets (Maintz et al., 1996).

In a comparative study of multimodal 3D image registration (Maintz et al., 1996),
correlation of the magnitude of the 3D gradient was found to give the best performance.
The 3D gradient magnitude is invariant under the group of orthogonal transformations
(translation, rotation, and reflection), and tends to produce better results than Laplacian
and ridgeness operators (Maintz et al., 1996). For this reason, registration of the ultra-
sound sweeps was attempted by correlating the 3D gradient magnitudes of the data sets.
The gradients were calculated by convolution of the 3D data set with the derivative of a
3D Gaussian kernel. When applied to ultrasound data, the gradient magnitude operator
produces a transformed image with local maxima near organ boundaries. The gradients
were calculated efficiently using a separable, recursive algorithm (Monga et al., 1991).

The main drawback of all correlation-based registration techniques is the significant
computational expense of the search over the six-dimensional parameter space. Yet con-
siderable savings are possible using a multi-resolution approach (van den Elsen et al.,
1995). A multi-resolution pyramid is constructed with the original data set at the base.
Each higher level is produced at half the resolution of the previous level. The pyramid
continues until the largest structures are no longer discernible. The basic idea is that wide
range searches can be performed efficiently near the top of the pyramid and narrow but
accurate searches at the bottom. Results from the searches at each level provide initial
search locations at lower levels until the bottom of the pyramid is reached.

Since the position sensor readings provide a fairly good initial guess at the correct
registration, only two pyramid levels were required for the gall bladder registration. The
final reconstructions of the gall bladder used 1 mm voxels, so searches started with a

resolution of 2 mm.
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The correlation coefficient was sufficiently well behaved to allow two searches, with
different step sizes, at each level of the pyramid. So two searches were performed at the
2 mm resolution, the first with large steps to cover a large part of the parameter search
space, the second with smaller steps around the first correlation peak. The maximum
of the 2 mm search was then used as the centre of the search at the 1 mm resolution,
where again two searches were performed. Because the initial guess is close to the optimal

registration, local minima were not encountered.

T"®9 was constructed from the parameter values corresponding to the maximum cor-
relation coefficient. In the same manner as in the previous chapter, the optimal transfor-

mation “T% was formed from the combination of the original “Tp and T"¢:

O = CopPx — % = “Thfx = T °Tp Fx. (5.2)

To compound the registered sweep ¢ with the baseline data, the position of each B-scan
of sweep i was calculated using CT}; then added to C. (see step 3.4.2 in Figure 4.1).
An overview of the compounded reconstruction algorithm, using the correlation-based

registration method, is given in Figure 5.3.

5.3 Method

5.3.1 Acquisition System

The acquisition system consisted of a Toshiba model SSA-270A /HG ultrasound machine, a
3.75 MHz convex curvilinear array probe, and a Polhemus Fastrak position sensor mounted
on the probe. Calibration was performed with the three-wire method described in Sec-
tion 2.3.2 1, using water at approximately 40° Celsius to match the speed of sound in
human tissue. Images were acquired with an 8-bit frame grabber and a Silicon Graph-
ics Indy workstation. Each B-scan was cropped to 490x380 pixels, with a pixel size of
0.19 mm. The cropped images were then matched to the position sensor readings and

recorded at a rate of 25 fps.

5.3.2 Simulations

Simulations were performed on the same octohedron object described in Section 4.3.2.
Instead of registering individual B-scans, here an entire octohedron was purposefully mis-
registered with respect to a baseline octohedron. The simple shell structure of the oc-
tohedron produced clearly defined gradients, so registration was easily performed by the

correlation-based registration technique — see Figure 5.4.

!Since these spatial compounding experiments were performed just as the work on calibration started,
the alternative calibration methods were not yet available.
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1. Establish the baseline from the first sweep

1.1 Create 1 mm and 2 mm resol ution data sets

L 2

1.2 Cdlculate the gradients at both resolutions

L 2

1.3 The 1mm baseline data set is compounded with the following sweeps
(the baseline gradients remain unchanged for registration of al sweeps).

Repeat steps 2 and 3 for each sweep

2. Register each sweep to the baseline

2.1 Create 1 mm and 2 mm resolution data sets

L 2

2.2 Calculate the gradients at both resolutions

L 2

2.3 Correlate the gradient magnitudes with the baseline gradient, first at 2 mm,
then at 1 mm resolution

2.4 T " js determined from the maximum of the correlation coefficient

3. Compound sweep data

3.1 Transform each B-scan in the sweep by CT; , and compound with baseline
and previous sweeps using average intensity - see step 3.4.2 of Figure 4.1

Figure 5.3: Reconstruction with registration.
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(a) Unregistered (b) Unregistered

(c) Registered (d) Registered

Figure 5.4: Registration of simulated data. A surface rendering of the compounded
octohedra before registration is shown in (a), and a cross-sectional slice in (b). The
misalignment is clearly visible. A surface rendering of the compounded octohedra after
registration is shown in (c), and a cross-sectional slice in (d). The registration has resulted

in accurate alignment of the two octohedra.



Section 5.3. Method 117

(a) Single sweep (b) Compounded

Figure 5.5: Outlines of B-scans. The volume of the reconstruction filled by the baseline
sweep 0 is shown in (a). The volume filled by sweeps 0 to 5 is shown in (b). Notice how
the volume is enlarged by compounding, since the individual sweeps only partially overlap

each other.

5.3.3 Experiments

The gall bladder of a healthy human subject was examined in this study. The gall bladder
can be scanned from a number of different look directions, each giving a slightly different
view. The variety of look directions used in this study is apparent in Figure 5.5.

The subject was requested to lie motionless on a bed and to breathe lightly to minimise
motion-induced errors during scanning. Approximately 100 B-scans were required to cover
the gall bladder from tip to tail with sufficient resolution to fill a data set with 1 mm voxels
without gaps. Since the acquisition system recorded B-scans at 25 fps, 600 B-scans could
be acquired in only 24 seconds. This allowed six sweeps of the organ during that time.
Since all six sweeps were acquired in a single examination, the B-scans were subsequently
grouped into coherent sweeps by manually reviewing the B-scans in the order of acquisition.

After grouping the B-scans into sweeps, a voxel array was reconstructed for each sweep
using the basic PNN algorithm (Figure 2.2). At this stage it is possible to appreciate
the registration errors by viewing corresponding slices through the reconstructions —
see Figure 5.6. Compounding the sweeps using the position measurements alone gave
unsatisfactory results, as can be seen in Figure 5.7. Clearly, image-based registration is
essential for accurate spatial compounding.

The first stage of registration was the calculation of the gradients. These were calcu-
lated at both 2 mm and 1 mm resolutions — see Figure 5.8. The scale of the gradient
operator (kernel standard deviation 2 2 mm) was chosen to minimise the effect of speckle,
yet retain the features of the anatomical structures. The correlation calculations were
performed on a Silicon Graphics Indigo 2 Impact 10000 workstation, taking 3.6 hours per
sweep. This included calculation of the gradients and the two searches at both resolutions.
While this is undoubtably computationally expensive, the times are comparable with those

accepted for CT and MR registration (van den Elsen et al., 1995), and the procedure can
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Figure 5.6: Slices of reconstructions of individual sweeps without registration.

Sweeps 0 to 5 are shown in two rows, starting from the top left. All slices are taken at the
same location in the reconstruction, identical to the locations used in Figures 5.7 and 5.9.
The data have not undergone any hole-filling, so gaps remain in some reconstructions where
the B-scans are widely spaced. The cross-sections of the gall bladder appear differently in

each sweep, indicating significant registration errors.
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Sweep Registration Error
T (' z a B g

(mm) (mm) (mm) (degrees) (degrees) (degrees)
1 -2.0 9.0 0.0 -6.3 -1.7 0.6
2 -3.0 16.0 -4.8 -10.9 -3.4 2.3
3 1.0 -2.0 -9.0 -5.2 -8.6 -2.3
4 0.0 8.7 -16.0 -2.8 -6.9 4.6
5 10.0 -12.0 -10.0 6.9 -8.0 -3.4

Table 5.1: Registration errors. The parameters of T"® follow the same fixed angle
representation described in Section 2.2: translation is expressed as x, y, z and rotation

about the z, y and x axes as a, 8 and ~ respectively.

be readily parallelised. The registration results for each sweep are listed in Table 5.1.

5.4 Results

Slices of the registered and compounded data set are shown in Figure 5.9. The borders
of the gall bladder are all well aligned compared with the unregistered case in Figure 5.7.
The level of speckle noise is also reduced compared with the single sweep reconstructions
of Figure 5.6. Furthermore, the organ boundaries of the registered and compounded recon-
struction have better contrast and are more uniform than in the single sweep reconstruc-
tions (this could not have been achieved by filtering). While all of these improvements are
benefits of spatial compounding, it has to be admitted that, on close inspection, a slight
loss of spatial detail is apparent. The residual registration errors that are not corrected
(such as non-rigid motion of the organ and local refraction of the ultrasound beam) re-
sult in a slight blurring of small features. The main benefits of spatial compounding are
therefore improved segmentation and visualisation of larger structures.

In order to objectively compare the quality of the compounded reconstruction with
the single sweep reconstructions, automatic segmentation by intensity thresholding was
attempted. Figures 5.10 and 5.11 show how spatial compounding improves the ability
to segment by thresholding. Essentially, spatial compounding has the ability to fill in
regions that are not well defined in some sweeps, but are clearer in others. Note that this
improvement is not achievable by filtering, which introduces no new information.

The reduction of speckle noise by spatial compounding is difficult to see in the recon-
struction slices. It is more clearly evident in 3D surface renderings of original (unprocessed)
3D data sets. Figure 5.12 shows a certain amount of speckle reduction by spatial com-
pounding. The compounding allows a significant fraction of the gall bladder surface to be
viewed without any filtering.

Further improvements are possible with a small amount of data processing before

segmentation and rendering. A typical ultrasound visualisation procedure involves filtering
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Figure 5.7: Slices of compounded reconstructions without registration. Slices

of reconstructions compounded incrementally with sweeps 0 to 5 are shown in two rows
starting from the top left. All slices are taken at the same location in the reconstruction
volume, identical to the locations used in Figures 5.6 and 5.9. As more and more sweeps are
compounded together using the position sensor data alone, the gall bladder becomes more
blurred and eventually indistinguishable. Image-based registration is therefore required

for accurate spatial compounding.
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(a) 2 mm resolution

(b) 1 mm resolution

Figure 5.8: Differential geometric features used for registration. The left images
are slices of the original data and the right are the magnitudes of the 3D gradient. The
features used for correlation at 2 mm resolution are shown in (a), and the features used

for correlation at 1 mm resolution are shown in (b).
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Figure 5.9: Slices of compounded reconstructions with registration. Slices of

reconstructions compounded incrementally with sweeps 0 to 5 are shown in two rows,
starting from the top left. All slices are taken at the same location in the reconstruction
volume, identical to the locations used in Figures 5.6 and 5.7. The registration has aligned
the organ boundaries in the individual sweeps, so the fully compounded data set retains
the original organ shape. Compounding has also reduced speckle noise and made the gall

bladder more distinct.
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Figure 5.10: Threshold segmentation of reconstruction of a single sweep. A slice
of the reconstruction from sweep 1 is shown on the left, identical to the location used in
Figure 5.11. The slice’s grey-level histogram is shown in the middle. The data set has
not undergone any processing. The segmentation by thresholding the intensities within
the range [20, 40] is shown on the right. The problem with segmentation of ultrasound
data by thresholding is that the organ is not easily isolated from the surrounding noise
and artifacts. In this case, the image has a dark region from signal drop-out near the gall
bladder, which affects the segmentation. A narrower threshold range reduces the volume
outside the gall bladder that falls within the range, but also creates gaps within the gall
bladder. The range of [20, 40] represents the best trade-off between the two throughout

the reconstruction.

Figure 5.11: Threshold segmentation of compounded reconstruction. The segmen-

tation has been performed in an identical manner to Figure 5.10, yet is more accurate.
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(a) Single sweep (b) Compounded

Figure 5.12: 3D segmentation of unprocessed data. The renderings were created
using the semiboundary approach described in Section 1.4. Surfaces were extracted by
thresholding, similar to the method illustrated in Figures 5.10 and 5.11. No other data
processing was performed. Spatial compounding clearly suppresses the noise, making the
surface easier to detect.

the data before surface detection is attempted (Nelson and Elvins, 1993; Sakas et al., 1995).
To investigate this, the single sweep reconstructions are processed in the following manner.
First, any holes in the reconstructed 3D data sets are filled with the median value of filled
voxels in a local neighbourhood. The data set is then filtered with a Gaussian kernel to
remove speckle. Finally, segmentation is performed by thresholding the processed data.
Figure 5.13 shows that applying these processing steps to single sweep reconstructions
does improve visualisation, but problems still remain. The main problem is that ill-
defined boundaries (like the ones in Figure 5.10) are not improved by filtering. The
segmentation procedure does not isolate the gall bladder from the surrounding noise and
artifacts in single sweep reconstructions. Yet performing the same data processing before
segmentation of the registered and compounded data does isolate the gall bladder, as
shown in Figure 5.14. Removal of the unwanted, disconnected regions becomes a trivial
task, with the results shown in Figure 5.15.

Volume estimation follows a similar trend to surface visualisation, since both rely upon
accurate segmentation. Since the true volume of the gall bladder is unknown, live-wire
semi-automatic segmentation (Barrett and Mortensen, 1997) of the baseline sweep is cho-
sen as a “gold standard”. See Section 4.4.3 for a description of the live-wire segmentation
technique.

In addition to the live-wire estimate, volumes for individual sweeps and the com-
pounded reconstruction are calculated using the same process (hole-filling, filtering and

thresholding) used for the visualisation results in Figures 5.13 and 5.14. In order to cal-
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(a) Sweep 0 (b) Sweep 1

(c) Sweep 2 (d) Sweep 3

(e) Sweep 4 (f) Sweep 5

Figure 5.13: 3D segmentation of individual sweeps after data processing. All
images are produced with identical hole-filling methods, filter sizes and threshold ranges.
Compared with Figure 5.12 (a), a considerable amount of noise has been removed by pro-
cessing. In each sweep, however, the gall bladder is not disconnected from the surrounding

noise and artifacts.
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Figure 5.14: 3D segmentation of compounded reconstruction after data process-
ing. This image is produced in the same manner as in Figure 5.13. Spatial compounding
improves the organ segmentation. Compared to the segmentation of the individual sweeps,
the compounded data set is the only one in which the gall bladder is completely discon-
nected from surrounding noise and artifacts. Complete isolation of the gall bladder is now

easily performed — see Figure 5.15.

Figure 5.15: 3D segmentation of high resolution compounded reconstruction.
This image is produced from a high resolution reconstruction compounded with sweeps
0 to 5. The data set is first hole filled, then filtered, threshold segmented and manually

trimmed of extraneous regions.
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Sweep Volume (ml)
0 13.494
1 16.662
2 15.758
3 14.945
4
5

15.117
14.166
compounded 13.039
live-wire 12.507

Table 5.2: Volume of gall bladder. The compounded data set provides the volume

estimate closest to the “gold standard” live-wire segmentation.

culate only the gall bladder volume, any segmented part of the data that is not connected
to the gall bladder is removed manually. The volume is then calculated by summing the
remaining filled voxels that contain the segmented gall bladder.

The calculated volume of the compounded data is closer to the live-wire estimate than
any of the individual sweeps — see Table 5.2. The volumes for each of the individual sweeps
are higher than the live-wire volume because the segmentation of the gall bladder typically
exceeds the gall bladder boundary (as evident in Figure 5.10). This again shows that

segmentation of spatially compounded data sets gives better results than single sweeps.

5.5 Conclusions

The benefits of spatial compounding were demonstrated in an examination of a human
gall bladder. The level of registration errors was significant, so image-based registration
was required. The registration was performed in a fully automatic manner, eliminating
user subjectivity. Registration was based on the correlation of features obtained by cal-
culation of the 3D gradient, so neither explicit segmentation nor landmark identification
was required. Implementation of the registration technique showed it to be robust and
accurate. The efficiency of the algorithm was also improved by using a multi-resolution
search for the correlation peak.

Rigid body registration was shown to correct a sufficiently large proportion of the reg-
istration errors. Since these errors were known to be small, registration by correlation
was feasible by searching a small portion of the six-dimensional parameter space. The re-
sulting registered and compounded 3D data sets offered improved segmentation for better
visualisation and volume estimation. Application of conventional visualisation techniques
to the compounded data produced dramatically clear and accurate images of the gall
bladder. Although visualisation of larger structures was improved, some slight blurring
was produced by the residual registration errors. The small loss of detail means spatial

compounding has greater advantage in visualisation of larger structures.
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Figure 5.16: Extended volume of interest. Several small, partially overlapping volumes

can be combined to encompass a larger organ.

Registration of ultrasound data can also be used for purposes other than spatial com-
pounding. For example, the correlation-based registration technique is capable of aligning
data sets that are only partially overlapping. An examination volume can therefore be
extended so that a large organ is reconstructed from a number of smaller, overlapping

examinations — see Figure 5.16.



Feliz qui potuit rerum cognoscere caucus.
‘Happy is he who gets to know the reasons for things’
[Motto of Churchill College, Cambridge.]

—Virgil, Georgics II, 29 B.C.

Chapter 6

Summary and Conclusions

6.1 Calibration

Four different calibration techniques were reviewed and put into a common mathematical
framework. Although each technique uses a different type of phantom, they were all
expressed with the same basic set of equations. These equations were used to show which
parameters are identifiable by each calibration technique. Calculation of the condition
number from the equations quantified the identifiability of the parameters, and helped to
verify that a sufficiently large range of probe motions was used. Having established a well-
conditioned problem, the four calibration techniques were compared in a series of tests.
These tests measured the repeatability of calibration, the precision of point reconstruction
and the accuracy of distance measurements.

The cross-wire technique demonstrated good repeatability, point precision and distance
accuracy. Unfortunately, the technique was the most difficult to use: careful, steady
positioning of the probe was required, and the resulting images of the wires needed to be
labelled by hand. These factors contributed to the time required for cross-wire calibration
— the longest of all techniques.

The three-wire technique was slightly easier to use, but also took a long time to cal-
ibrate. Unfortunately, the performance was relatively poor in all three tests. The main
problems with the three-wire technique were that the wires in the image still needed to
be labelled by hand, and the phantom was difficult to construct accurately.

The single-wall phantom, in contrast, was especially simple to construct, and easy to
use. With lines instead of dots to detect in the images, labelling was considerably easier.
In fact, automatic line detection was possible. The main problems with the single-wall
technique were the limited range of motion and the effect of the beam width. The limited
range of motion made identification of the calibration parameters more difficult, as shown
by the relatively large condition number of the Jacobian. Substantial errors were also
introduced by the beam width at oblique angles of incidence to the phantom wall, as
verified in a series of simulations. Overall performance was therefore relatively poor.

The newest calibration phantom, the Cambridge phantom, was shown to use the same

principles as the single-wall technique, but the phantom design eliminated the deleterious
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effect of beam width. The quality of the images was also better over a wider range of angles
of incidence. Good performance of the Cambridge technique was demonstrated in all three
tests, and was comparable to the cross-wire technique. Yet with automatic line detection,
and greater flexibility when scanning, the Cambridge technique was considerably easier to
use than the cross-wire technique. The main disadvantages were the need to construct the
apparatus of the Cambridge phantom with a high degree of precision, and the the time
required to correctly clamp the ultrasound probe to the phantom.

In summary, both the cross-wire and Cambridge calibration techniques produced good
results. A large proportion of the remaining errors came from the position sensor itself.
The Polhemus Fastrak sensor used in these experiments is rated at about 1 mm accuracy,
and additional errors arise from the influence of nearby metal objects and interfering fields.
This is consistent with the level of errors found in the comparisons of the calibration
techniques. As more accurate sensors are adopted for freehand ultrasound, a point will

soon be reached where other errors, such as refraction and tissue movement, will dominate.

6.2 RBF Interpolation

The RBF method was shown to be at least as good as the traditional 3D freehand re-
construction methods for two representative examinations. The RBF method performed
particularly well with small gaps, but lost some of its advantage when larger gaps were
present. This is because the RBF method alone made use of the underlying shape of the
data to interpolate across the gaps. Yet with large gaps, this shape could no longer be
followed and the RBF produced smoothed averages of the nearby B-scans.

The RBF method was capable of reconstructing areas with densely overlapping B-scans
and areas with large gaps, while making a smooth transition between them. The resulting
quality of the interpolated data was good, with no visible reconstruction artifacts produced
in any of the tests. Unfortunately, the RBF method was the slowest reconstruction method
and is not yet practical in its current form. Yet it is easily parallelised and, given more
efficient coding techniques, a practical implementation is feasible.

There is considerable scope for future development of the RBF method. First, the
tension should be adjusted to accommodate the nature of the freehand ultrasound data.
Since the pixel data all lie in planes, and are usually separated by gaps larger than the
pixel size, the tension should be higher within the B-scan and lower perpendicular to the
B-scan. It is also possible to introduce weights on the pixels (Mit4dSova et al., 1995) when,
for example, estimates of registration error or signal fall-out are available. Finally, it is
possible to find the optimal combination of tension and smoothing by statistical techniques
such as cross-validation (Mit4sova et al., 1995).

Since the RBF method alone uses a functional approach, it also offers a number of
unique opportunities. For example, derivatives of any order can be computed directly
from the interpolating function. This may be useful for visualisation, registration and

segmentation. Also, because the function usually misses the data points (when a non-zero
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smoothing parameter is used), the distance from the interpolating function to the data
points can be considered the predictive error. Determining which regions have a high
predictive error can be useful for investigations into registration errors.

In summary, the comparisons show the importance of interpolation. The traditional
methods were designed to accommodate limited computational resources, but artifacts
can be introduced and information lost. With increasingly powerful modern workstations,

more sophisticated interpolation methods are feasible, and should be used.

6.3 Spatial Compounding

The main advantages of 3D spatial compounding were shown to be increased SNR, im-
proved visualisation and more accurate volume estimation. These improvements came
from a reduction in speckle and other artifacts, as well as more uniform organ boundaries.
The main disadvantage of 3D spatial compounding, a loss in image detail, was caused by
slight blurring of the features. The key to minimising blurring was accurate registration
of the images before compounding. Registration using image features was possible and
accurate alignment was achieved with only a small loss of resolution.

The benefits of spatial compounding are not new. Compound scanning was popular in
the past (before the widespread arrival of real-time machines), and the quality of the 2D
images was remarkably good. With the advent of real-time imaging, there was no time
to compound data taken from different look directions, so spatial compounding became
a lost art. But now, 3D ultrasound brings new requirements that are not encountered
in 2D ultrasound. Two important requirements are 3D visualisation and volume estima-
tion, and spatial compounding is especially useful for meeting these requirements. Here
the slight loss of detail is less important than the improvement in boundary uniformity
and the reduction of speckle. In light of these trade-offs, it makes sense to use heavily
compounded data for visualisation and volume estimation, and uncompounded data for
any-plane slicing, where greater detail is desired.

The dramatic improvement in computing power in recent years has had a profound
effect on the development of modern ultrasound machines. The latest generation of ma-
chines use parallel processing and dedicated digital signal processing hardware. It is now
possible to perform rapid feature recognition as the images are created. Since registration
depends on accurate alignment of features, improvements in feature recognition result in
improvement in the accuracy of registration. This, in turn, decreases the level of blurring
in spatial compounding. This trend has led to renewed interest in spatial compound-
ing (Whittingham, 1997).

6.4 Future Directions

Although the first commercial 3D ultrasound machine by Kretztechnik used a mechanical

swept volume approach, several commercial 3D freehand systems have recently become
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available. Research on both techniques is active, and image quality has improved over
the past few years. Unfortunately, both techniques require examination times of 5 to 30
seconds, and reconstruction is performed off-line. Since conventional 2D B-scan imaging is
real-time, 3D ultrasound is currently used alongside 2D ultrasound, not as a replacement.
When 3D ultrasound achieves real-time data acquisition rates (more than 30 volumes per
second), it will replace 2D ultrasound, because slices of 3D volumes can be used instead
of B-scans. Real-time 3D ultrasound has been the subject of research for many years, and
eventually new techniques (such as 2D array transducers) will attain a level of performance
acceptable for clinical use.

Future 3D ultrasound techniques will still encounter the same problems found today:
images will be dependent on the look direction, and artifacts will be present. The artifacts
will still include speckle, shadowing, refraction, speed of sound estimates, among others,
because the physics of the interaction between coherent sound pulses and human tissue
remains unchanged. Spatial compounding will also still be a useful way of reducing these
artifacts, and system calibration, image registration and interpolation will continue to be
the main issues. The questions of how to align data and how to cope with the combination

of overlapping data and large gaps will remain active subjects of investigation.

The trends in other medical imaging modalities, such as CT and MR, suggest what lies
ahead for ultrasound. In particular, new registration techniques that take an information
theoretic approach have been developed (Viola and Wells, 1997; Wells et al., 1996). These
may offer improved accuracy and robustness for registration of ultrasound data. As feature
detection and registration techniques improve, registration by image warping may also
become feasible (Brown, 1992; Maintz and Viergever, 1998).

RBEF’s have also been used with other imaging modalities. In this thesis, knowledge of
the basic acquisition process was used to model the data with smooth functions. In the fu-
ture, knowledge of the point spread function (the axial, lateral and elevational dimensions

of an ultrasound pulse) may also benefit interpolation.

Ideally, the interpolation should make use of all available information from the acqui-
sition system. The complex interaction of the ultrasound pulse with living tissue produces
a wealth of information, as evidenced by the complex signals of the returning echoes.
Some information is discarded by the ultrasound machine, but efforts are being made to
understand and utilise this information (Whittingham, 1997). Progress is being made
mainly with the help of new digital techniques. Digital representation of the original, un-
processed echo signals means the phase and frequency information of the echoes can now
be analysed, whereas it was previously lost during amplification, demodulation, filtering
and compression. The interpolation process would also certainly benefit by incorporating

as much of this information as possible.

Many conventional ultrasound machines are also capable of producing Doppler ultra-
sound images. In Doppler ultrasound, pulse-echo information can be used to calculate
the speed of fluids passing through blood vessels, providing important vascular flow in-

formation (Kremkau, 1993). While Doppler ultrasound can provide information no other
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imaging modality can, it suffers from considerable signal drop-out and noise. The same
comments on spatial compounding and interpolation also apply to Doppler ultrasound

data, making it another promising direction for future research.






Appendix A

Ultrasound Machine Controls

The quality of the B-scans is highly dependent on the settings of the ultrasound machine.
Some of the parameters that a physician must adjust to suit each examination are listed in
Table A.1. Normally the physician adjusts the controls to obtain the best looking B-scans
for the organ of interest, then keeps them constant during the freehand examination. This
helps to produce a consistent 3D data set.

Although the large number of controls means that an inevitable amount of trial and
error is involved in obtaining the best possible image, a basic procedure can be followed.
The following procedure is compiled from lists of suggested clinical practice (Cosgrove
et al., 1993; Chervenak et al., 1993):

A probe with a suitable frequency and focal point must first be selected.
High frequency probes and short focal points are used for superficial structures
and lower frequency probes with deeper focal points for deep lying structures.
The probe is then placed over the region of interest using a sufficient amount
of coupling gel to ensure a good interface with the skin’s surface. The first
adjustments are usually made to the TGC and overall amplifier gain. Both of
these adjustments control the level of amplification of the echo signals immedi-
ately after they are received by the transducer. TGC differs from overall gain
adjustment by allowing the user to create an arbitrary gain curve. The shape
of the gain curve is controlled by a number of sliders, each corresponding to
gain at a particular depth.

A quick scan of the region is made and the TGC and overall gain are
adjusted to put the image intensities in the range most easily perceived, and
achieve an even balance in the near and far fields. It is also suggested that the
pulse amplitude (output power) be set as low as possible. This can be done
by setting a high overall gain, then decreasing the pulse amplitude until the
desired image intensities are achieved.

Next, the correct pan and zoom settings are made to enlarge the region
of interest to the extents of the display monitor. The focal point (or points

for multiple focus machines) is set to the centre of the region of interest for
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probe used focus parameters
time-gain compensation scan line density
overall gain scan angular range
pulse amplitude image post-processing
pan and zoom display persistence
echo enhancement display monitor controls

Table A.1: Parameters than can be controlled by the physician during an ex-

amination.

optimal resolution. Other controls such as echo enhancement are also adjusted
for best image quality.

Finally the post-processing curve is adjusted to obtain the desired con-
trast resolution or enhance outlines of anatomical structures. Other optional
controls that may enhance the image are the display persistence ! (for frame
averaging and some speckle reduction) and frame rate. On some machines, the
frame rate is chosen as a trade-off between capturing organ motion (such as
the heart) and resolution, since a slower sweep of the beam gives higher scan
line density.

The contrast, brightness and focusing of the display monitor should also be
checked. These are often set to obtain uniformity of images among the different
machines in a clinic, so comparisons can be made more easily. These controls
do not have an impact on the video signal recorded by the frame grabber of a

3D freehand ultrasound system.

!Display persistence was not used in any of the examinations in this thesis.



Appendix B

Numerical Issues in Calibration

The accuracy of calibration depends to some extent on the numerical methods employed.
In the literature of robot kinematic calibration (a problem very similar to freehand ultra-
sound calibration) there are guidelines for establishing a well-conditioned problem (Holler-
bach and Wampler, 1996). The two key issues are rank determination and scaling.

To ensure that all the parameters of ® are identifiable, the Jacobian matrix J is
evaluated (near the solution) to check that it is of full rank. To do this, SVD (singular

value decomposition) is performed:
J=Uxv"

where U and V are unitary matrices and ¥ = diag(pi, ..., pq) is the matrix of ordered
singular values. Here, ¢ = 11 for the cross-wire, single-wall and Cambridge phantoms, and
q = 14 for the three-wire phantom.

The smallest singular value p, will be near zero if there is an unidentifiable parameter.
If all p are non-zero, then the Jacobian is said to have full rank. A convenient measure of
identifiability is the condition number x, which is simply the ratio of the largest to smallest
singular values. A large condition number indicates that the problem is ill-conditioned,
and at least one parameter cannot be accurately identified.

The condition number may be large for one of three main reasons. The first is that a
parameter may not be intrinsically identifiable using the particular calibration technique.
For example, when using the single-wall or Cambridge phantoms, three parameters of
CTr are not identifiable because they do not affect the height or orientation of the plane.
Removing these unidentifiable parameters from ® reduces k. The second reason is that the
motion of the probe may not have covered all the necessary degrees of freedom to identify
the parameters in ®. Extending the range of scanning directions will help to reduce
k. The third reason concerns degeneracy in the fixed-axis representation of rotation. If
B = +90°, then there exist multiple triples («, 3,) that produce the same transformation
RTp (Craig, 1989). In effect, one of the angles becomes unidentifiable. This situation can
be avoided by mounting the position sensor at a skew angle to the ultrasound probe, so
that 3 is not close to 90°.1

!Note that although degeneracy in the representation of rotation increases &, it has no bearing on the
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K
14 parameters 6.97x10'% (— o00)
11 identifiable parameters 4867
11 scaled parameters 87.5

Table B.1: Condition numbers for calibration with the Cambridge phantom.
The condition number approaches infinity when ® includes the full set of 14 parameters.
By removing the three unidentifiable parameters z, y, and « (see Table 2.1), the condition
number is considerably reduced. Column scaling of the remaining 11 parameters reduces

the condition number to below 100.

The second important issue is scaling. Task variable scaling is the process of scaling
the errors produced by equation (2.4) so they contribute equally to the optimisation.
Since each of the equations has the same units and describes a deviation from zero, they
are directly comparable. Yet this is not true for the parameters to be identified. The
different parameters have different units (mm, radians, mm/pixel) and different effects on
the residual of equation (2.4). This issue can be addressed by parameter scaling, which

involves modifying equation (2.5) as follows:
Af =JA® = JHH )A® = (JH)(H1AD).

H is a scaling matrix chosen in such a way that JH is better conditioned than J alone.
Equation (2.6) is then evaluated using JH and H 1® in place of J and ®. After conver-
gence, ® is determined by unscaling the solution H™'®.

The simplest way of selecting H is by column scaling (Lawson and Hanson, 1974),
whereby H = diag(hy, ..., hq) and

h,_{ 3l i [l5il] # 0
(A . .
1 if [[j]] = 0

ji is the ith column of J, evaluated at a reasonable guess of the solution. This scaling
ensures that each parameter has the same effect on Af.

The combination of removing unidentifiable parameters and scaling the remaining pa-
rameters should reduce k to an acceptable level. For robot kinematic calibration, a com-
mon rule of thumb is that the condition number should be less than 100 for accurate pa-
rameter identification (Schroer, 1993). Table B.1 shows how to establish a well-conditioned
calibration problem.

There are, however, several different values of & which can achieve the same, well-
conditioned global minimum. These are called “mirror” solutions. This is not the same
as the singularity problem discussed earlier, where an infinite number of solutions exist
and the problem is ill-conditioned. A mirror solution can be constructed, for example, by

adding a multiple of 27 to any of the angles. Even though mirror solutions represent the

calibration matrix #Tp, and any of the multiple solutions for (o, 3,7) are equally valid.
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same calibration, they need to be expressed in a canonical form to allow straightforward

comparisons of results?. The requirements are as follows:
e s, and sy are positive;
e o and v are in the range [—7, 7];
e (3 is in the range [, T].
These constraints can be enforced using the following procedure (Prager et al., 1998b):
1. Limit all the angles to £7 by adding or subtracting 2.
2. If B is outside +7/2, add (or subtract) 7 to correct it, and add = to both o and ~.
3. If sy <0 then v — v+ mand sy — —sy.
4. If s <0 thena —wa+n, 8 — —06,7v— 7m—y and s, = —$;.
5. Check that a and ~y are still within +7: if not, repeat step 1.

Note the order of the corrections for negative scales. If both scales require correction, the

composite transformation for v must be v — —~.

2Other researchers parameterise rotation using different schemes, such as raw rotation matrices (Detmer
et al., 1994; Leotta et al., 1997) and unit quaternions. Although such schemes avoid singularities and mirror
solutions, the redundancy in the representation means that the optimisation has to be constrained.






Appendix C

Calibration Simulations

By simulating the effects of the finite beam thickness, we can understand why the Cam-
bridge phantom performs better than the single-wall phantom. As mentioned in Sec-
tion 1.5.2, the width of the beam (w) at the focal point can be estimated from the focal
length (F'), wavelength (A) and the radius (a) of the effective aperture (equation (1.1)).
For a Toshiba 7 MHz linear array probe the beam width is:

FA 20mm x 0.2mm
w = —=

. Tom = 0.6 mm.

F and a are obtained from the manufacturer’s technical specifications, and A is calculated

from the speed of sound in water v and the frequency f:

v 1.48 x 10° mm/sec

A=Y
f 7 x 106 sec1

= 0.2mm.

The width of the beam increases away from the focal point, so 0.6 mm is a lower bound.

The simulations were performed using the same set of probe motions as one of the
trials of the Cambridge phantom. This allows the simulated and observed results to be
directly compared. For each probe position, given a set of calibration parameters ¢,
it is straightforward to calculate where the scan plane intersects the floor, and hence the
position of the line in the B-scan. The parameters used in the simulations are the ones that
resulted from the actual calibration of the Cambridge phantom. Solving equation (2.4)
using the simulated set of B-scan lines and the real position sensor readings returns the
same ¢ used to create the simulation. These values are listed in the left hand column of
Table C.1.

If a non-zero beam thickness is introduced, the expected change in position of the
lines in the B-scans can be calculated. Solving the calibration equations will result in
a different ¢. For the purposes of simulation, the beam was approximated as having a
constant thickness. Since the lower bound on the beam width is 0.6 mm, simulations
were performed using several widths in the range 1 mm to 3 mm: the results are listed in
Table C.1.

We observe that the RMS error and condition number are relatively insensitive to

beam thickness. But compared with the Cambridge phantom (see Table 2.5), calibration
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repeatability ‘ARz‘is greatly reduced, even for beam widths as low as 1 mm. So the
Cambridge phantom’s superior repeatability is a result of its suppression of beam width
effects.

Beam thickness accounts for only some of the errors in real calibration. Errors also
arise from random noise and latency in the position sensor measurements, the influence of
nearby metal objects on the position sensor’s performance, flexibility of the mount used to
attach the receiver to the probe, tolerances of the phantom’s construction, B-scan image
resolution and detection of the lines in the B-scans.

Some of these errors can be confidently neglected. The latency of the position sensor
was measured and subtracted from the readings by the Stradx acquisition software (Prager
et al., 1998a). The sensitivity of the position sensor to metal has been addressed by
mounting the receiver some distance from the probe and removing all nearby metal objects.
The receiver mount was rigid and the phantoms were constructed to small tolerances. The
effect of finite lateral image resolution is negligible when detecting a near horizontal line.

This leaves random position sensor noise, the accuracy of line detection and axial im-
age resolution. The extent of these errors can be estimated and incorporated into the
simulations. Uniform random fluctuations of 0.76 mm in distance and 0.15° in orienta-
tion were added to the position measurements: these are taken from the manufacturer’s
specifications of the Polhemus Fastrak sensor. A reasonable estimate of the image’s axial
resolution is one wavelength A (0.2 mm). The accuracy of line detection was estimated as
the standard deviation of the Gaussian kernel (0.7 mm) used to smooth the image before
edge detection (Prager et al., 1998b). Combining this with the resolution error, a uniform
random noise of amplitude 0.9 mm was added to the end points of the lines in the B-scans.

The simulations were then repeated with the noisy measurements. The results are
listed in Table C.1. The RMS error increases significantly to levels similar to those found
in real trials, giving confidence that the noise estimates are reasonable. Yet the noise has
little effect on the condition number or repeatability. This is because the effect of random
errors is reduced when a large number of equations is used to determine ¢. This justifies

the decision to calibrate using many more than the minimal number of B-scans.
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Ideal Noisy
Beam Width 0 mm 1 mm 2 mm 3 mm 0 mm 1 mm 2 mm 3 mm
Sz (mm/pixel) 0.137 0.137 0.137 0.137 0.136 0.137 0.137 0.138
sy (mm/pixel) 0.138 0.138 0.138 0.138 0.138 0.138 0.138 0.138
x (mm) -270.86 -269.37 -267.88 -266.39 | -270.45 -268.83 -267.54 -266.22
y (mm) 4.86 4.87 4.87 4.88 4.48 4.44 5.04 4.91
z (mm) -65.08 -63.62 -62.15 -60.69 | -65.04 -63.54 -61.81 -60.68
a (deg.) -0.55 -0.55 -0.54 -0.54 -0.69 -0.67 -0.56 -0.65
B (deg.) 44.22 44.22 44.22 44.22 44.27 44.29 44.23 44.19
v (deg.) -90.37  -90.42 -90.47 -90.53 | -89.38 -89.15 -90.97 -90.60
B-scans used 699 699 699 699 699 699 699 699
K 87.5 87.15 86.85 86.57 87.50 87.26 86.92 86.58
RMS error (mm) 0.000 0.020 0.039 0.059 0.346 0.360 0.363 0.368
|APx| (mm) - 2.09 4.18 6.28 | 0.819 2.68 4.74 6.54

Table C.1: Simulations of single-wall calibration. Only beam thickness errors were

simulated to obtain the “ideal” calibration results. For the “noisy” results, position sensor

errors, accuracy of line detection and finite image resolution were also considered. The

repeatability is measured relative to the ideal calibration with zero beam width.






Appendix D

Statistical Theory of 3D Spatial

Compounding

Simple statistical theory can be used to predict the increase in SNR from 3D spatial
compounding. In this appendix two distinct cases are considered: 3D high resolution
compounding and 3D low resolution compounding. First, however, some simple results

from statistical theory are reviewed.

(1) Linear functions of random variables (Hogg and Ledolter, 1987): Consider
the random variable Y as a linear function of independent random variables X;: Y =
YoieqaiX; where {ay...a,} are constant coefficients. Then the expectation (or mean)
py of Y, expressed in terms of the expectation of X; (,uXi), is py =it aipy,. The

variance of Y (0%), in terms of the variance of X; (0%,), is oy = Yiu; a0k, -

(2) Sets of samples of random variables: Consider Z as a set of samples Y; drawn
randomly from a number of independent distributions: Z = {Y3,...,Y},...,Y,}. The
expected mean of the samples in Z, expressed in terms of the expectation (,uyj ) of the
distribution from which each Y; is drawn, is pu, = % Py Iy - Provided all pry, are
equal, the expected variance of the samples in Z, expressed in terms of the variances (a%,j )
of the distributions from which each Y; is drawn, is 0% = % 1 0%_ . These equations

are readily derived from the definitions of expectancy and variance.

D.1 3D High Resolution Compounding

The simplest 3D compounding case occurs when the voxel size in the reconstruction is the
same as the pixel size of the B-scan. This means that each voxel is intersected no more
than once per B-scan (discounting the voxels that can occasionally contain two pixels
if intersected obliquely). To predict the improvement in SNR, two key assumptions are

made:

Assumption 1: The subject of the ultrasound examination exhibits no resolvable struc-

ture, so any grey-level variations in the B-scans are caused entirely by speckle.
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Assumption 2: Separate B-scans are taken from look directions spaced sufficiently far

apart, so that the speckle across B-scans is uncorrelated.

Now consider Z to be the 3D array of voxels Yj, each compounded from pixels X; of the
individual B-scans. Each X; comes from a distribution with mean u¢ and variance ag.
The X; averaged for a particular Y; are independent, because the speckle is uncorrelated
across B-scans. There are m voxels in the set Z, and voxel j is intersected n; times. The

maximum possible value of n; is the total number of B-scans used in the reconstruction.

1
Z={M,....Y;,....Yn} where Y]:Zn—Xz
i=1""J
From (1), N N
~ 1 2 ~ o5 _ 9%
by, = — g = Mo and oy, = — = —.
J ; n; J 1:21 n? n;
From (2),

1 m
HZ:—ZNOZNO and U%:
m =

Combining these results gives

SNR(Z) _ pyloy
SNR(Z0)  hz,/oz,

To abbreviate references to this result in the main text, let the quantity np;gn_res be defined

as follows:
1 SNR(Z)
Nhigh_res = @ = W(ZO) = v/ Mhigh_res-
m g

Note that the y/n result of the 2D case can be derived by setting n; = n for all j.

D.2 3D Low Resolution Compounding

Many 3D reconstructions involve cuberilles with voxels considerably larger than the pixels

in the B-scans. Again, the set of voxels in the reconstruction can be written as

1
Z={M,...,Y},...,Y,} where Y]-:Z;Xi.
i=1 Y
but in this case the X; are not all independent, since some are from the same neighbour-
hood in the same B-scan (from the reduction in resolution). This becomes clear if each

voxel Y is considered as follows:

ki pjk 1
_Xp,k

szzzn—

k=1p=1""7
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where k; is the number of B-scans that intersect voxel j, and p;; is the number of pixels
that intersect voxel j for B-scan k: i.e. szz 1Pjk = nj. The individual pixels X, ; are

labelled according to B-scan k and pixel p. Rearranging gives

kj Dik Pj.k 1
Y; = Z —]" O, where Ok = Z — Xp k-
k=1 n] p=1 p]vk

©p,j is the mean of the pixels that intersect voxel j for B-scan k. The expected mean (ug)
of O ; can be determined using the result for the expectation in (1), which is still valid
for non-independent X, , (Hogg and Ledolter, 1987):

Pj.k

Ko = Z —Ho = Ho-
p:]_ .77k

Since the size of the speckle is larger than one pixel, the grey-level value of a pixel is
not independent of its close neighbours. Thus the expected variance (03) of ©y,; cannot
be determined using the result for the variance in (1), which is not valid if the X, ; are
not independent. The variance of the sum of several neighbouring pixels does decrease
as the number of summed pixels increases, but 0'% > 02/ Dj k- 0(29 depends on the spatial

structure of the speckle and can be expressed as follows:

oo = 03b*(pj)

where b(p; 1) is estimated empirically from the B-scans themselves. Returning now to
the expression for Y}, the summation over k can be considered as a sum of independent

variables, since each element in the sum comes from a different B-scan. Hence

kj kj 2
Djik Pk
Hy; = E , TJL = po and U%’j = E , (J—> C’gbz(f’j,k)-

k=1 "V k=1 \ "
From (2),
1 18
= E ZIJ,O = U and 0'% = E Z ( 2k (2)b2(pj,k).
j:l ]:1 k=1
Combining these results gives
SNR(Z) _ wylo, _ i
SNR(Z0)  hzlom |
Djk
ZZ< . ) b (pj,k)
j=1k=1 nj

Again, to abbreviate references to this result in the main text, let us define the quantity

Niow_res as Tollows:

1 SNR(Z)

— (pjk

]1k1 T

= VNow_res-

Niow_res =

Note that the result of the high resolution case can be derived by setting p; = 1, b? (Pjk)

= 1 (because 2 = 02), and k; = n..
(C] 0/ 7 7
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