SPATIAL COMPOUNDING OF
3-D ULTRASOUND IMAGES
R.N. Rohling, A.H. Gee and L. Berman
CUED/F-INFENG/TR 270
October 1996

Cambridge University Engineering Department
Trumpington Street
Cambridge CB2 1PZ
England

E-mail: rnr20Qeng.cam.ac.uk, ahg@eng.cam.ac.uk, 1b@radiol.cam.ac.uk



Abstract

One of the most promising applications of 3-D ultrasound lies in the visualisation and
volume estimation of internal 3-D structures. Unfortunately, the quality of the ultra-
sound data can be severely degraded by artifacts, especially speckle, making automatic
analysis of the 3-D data sets very difficult. In this paper we investigate the use of 3-D
spatial compounding to reduce speckle. We develop a new statistical theory to
predict the improvement in signal to noise ratio with increased levels of compounding,
and verify the predictions empirically. We also investigate how registration errors can
affect automatic volume estimation of structures within the compounded 3-D data set.
Having established the need to correct these errors, we present a novel reconstruction
algorithm which uses landmarks to accurately register each B-scan as it is inserted
into the voxel array. In a series of in-vitro and in-vivo trials, we demonstrate that
3-D spatial compounding is very effective for improving the signal to noise ratio, but
correction of registration errors is essential.

1 Introduction

Conventional diagnostic ultrasound imaging is performed with a hand-held probe which
transmits ultrasound pulses into the body and receives the echoes. The magnitude and
timing of the echoes are used to create a 2-D grey-level image (B-scan) of a cross-section
of the body in the scan plane. One of the limitations of conventional imaging is the
requirement that the physician mentally reconstruct 3-D anatomy given multiple 2-D
slices. Research is underway to overcome this limitation using 3-D free-hand ultra-
sound imaging. In this paradigm, a 3-D position sensor is attached to the probe, so
that each B-scan can be labelled with the position and orientation of the scan plane — see
Figure 1. Subsequent processing can build up a 3-D description of the imaged anatomy,
in much the same manner as is possible using CT or MRI, but with less expensive and
invasive technology. Physicians have indicated that there is significant utility in 3-D ul-
trasound imaging of a variety of anatomical structures, including the fetus [5], vascular
structure [10], gall bladder [8], breast [17], kidney [11], and heart [21].
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Figure 1: 3-D free-hand ultrasound imaging. Free-hand imaging allows the physician
to move the probe as in a normal ultrasound examination. The position sensor measures
the position and orientation of each scan plane. Note that the planes intersect each other.
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Figure 2: Spatial compounding. This is a simple illustration of 2-D spatial compound-
ing. Two scans of the same plane are accurately registered and then averaged together
to produce a compounded image with an improved SNR. The principle extends to 3-D,
where compounding can be performed wherever scan planes intersect — see Figure 1.

In a review article about 3-D ultrasound [14], the author suggests that 3-D visual-
isation and volume estimation are its most attractive capabilities. The main difficulty
in performing these tasks automatically is that the quality of the ultrasound data can
be severely degraded by artifacts, especially speckle. Speckle is an artifact common to
all ultrasound images, a product of the constructive-destructive interference of the ultra-
sound echoes. While trained ultrasonographers can occasionally infer diagnostically useful
information from speckle patterns, speckle is a nuisance when attempting automatic anal-
ysis of ultrasound data. For this reason there has been considerable research into speckle
reduction.

There are three main techniques for reducing speckle in ultrasound images [7]: com-
pounding (spatial [12, 15, 22, 24] and frequency [25, 26]), filtering [6, 7, 20], and phase-
based methods [16]. While each technique has its advantages and disadvantages, spatial
compounding is particularly attractive with 3-D ultrasound, since it can be performed
with a standard free-hand system without the need for any modifications.

The principle behind spatial compounding is to image the region of interest repeatedly,
from different look directions, and then average the values from the intersecting B-scans
when constructing the 3-D data set — see Figure 2. The speckle signal, which de-correlates
from different look directions, is suppressed by the averaging operation. Conversely, real
anatomical features (tissue boundaries, for example) will be observed in the same location
from all look directions. Provided the registration of the scan planes is accurate, the
averaging operation will highlight the real anatomical features.

There has been considerable research in the past on the spatial compounding of multi-
ple B-scans for 2-D image quality improvement. Defining the signal to noise ratio (SNR) as
the ratio of the mean grey level to the standard deviation for an image with no resolvable
structures!, it has been established that compounding multiple B-scans lying in the same
plane improves the SNR by the square root of the number of B-scans used [3, 12, 15].

The main drawback of spatial compounding is that it requires accurate registration:
registration errors will place the same anatomical feature seen from different look directions
at different positions in the reconstructed volume. This phenomenon can be seen in
Figure 12, which shows a reduction in speckle as more B-scans are averaged, accompanied
by a blurring of the imaged boundaries. While the largest sources of registration error are

!This is a commonly used figure of merit for imaging systems.
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likely to be from inaccurate B-scan position measurement and tissue motion during the
scan [19], refraction of the ultrasound beam and other imaging effects also contribute.

In this paper we take a fresh look at spatial compounding, this time from the per-
spective of 3-D free-hand ultrasound. Though our main focus is on speckle reduction,
spatial compounding can also improve image quality by reducing several other kinds of
artifacts, such as shadowing. Every free-hand system has to deal with compounding in
some manner, since it is almost inevitable that the scan planes will intersect. Here we
propose deliberate, extensive compounding, with the aim of producing high quality 3-D
data sets which lend themselves to automatic segmentation for visualisation and volume
measurement. The key to effective spatial compounding is to achieve a sufficiently high
registration accuracy. Relying on the position sensor alone is usually not sufficient: there
may be small errors in its calibration, and it does not take into account motion of the tar-
get or within-plane imaging artifacts. It is therefore necessary to improve the registration
using image-based techniques.

Little work on the registration of 3-D ultrasound data sets is evident in the literature.
In one exception [17], two separate data sets were retrospectively registered using manual
landmark matching. This constitutes a one-off, labour intensive solution to a specific
registration problem. Here we propose an automatic, incremental registration algorithm
for use with generic free-hand ultrasound imaging. Similarly, little work on 3-D ultrasound
compounding has been performed. Only one brief article [18] has cited the improvements
possible by 3-D compounding, but it simply stated the need for accurate registration
without providing further detail.

In this paper we tackle three major objectives. The first is to demonstrate how accu-
rate 3-D registration can be achieved. We describe a technique that takes sensor-based
measurements of B-scans positions and applies small adjustments to align anatomical land-
marks in the reconstructed volume. The second objective is to demonstrate how spatial
compounding, coupled with accurate registration, can dramatically improve the SNR of
the reconstructed data. Our final objective is to develop a statistical theory of 3-D spatial
compounding and establish agreement between the observed and predicted improvements
in SNR. In the course of the investigation we perform two empirical studies: an in-vitro
phantom study and an in-vivo study. The phantom study allows the 3-D reconstruction
process to be evaluated and verified before proceeding to the in-vivo study.

2 Acquisition system and test subjects

The acquisition system comprises a Toshiba model SSA-270A/HG ultrasound scanner,
a standard 2-D probe, and a position sensor. The phantom study used a 7 MHz linear
array probe and the in-vivo study used a 3.75 MHz convex curvilinear array probe. The
position and orientation of each scan plane, relative to a fixed transmitter, are measured
by an AC magnetic field receiver (Polhemus FASTRAK) mounted on the probe. Images
from the video output of the scanner are recorded by an 8 bit frame grabber at a rate of
5-7 frames per second. The images and the position data are stored in the memory of a
Sun SparcStation 10 workstation.

Laboratory tests were first performed on a phantom comprising a latex balloon filled
with a combination of water, ultrasound coupling gel and talcum powder. This type of
phantom was used because B-scans of its cross-section produce images of a uniformly
speckled interior, a sharp boundary, and a uniformly speckled exterior with a lower mean
grey level. Grey level statistics can be easily measured for the interior and exterior regions.
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Figure 9 shows a typical B-scan of the phantom. The phantom was mounted in a bath of
water at an elevated temperature so that the propagation speed of ultrasound in the water
approximated the speed in human tissue. An in-vivo examination was also performed
on the gall bladder of a healthy human subject. The examination was performed by
an experienced ultrasonographer in a manner fairly consistent with a normal ultrasound
examination.

3 3-D reconstruction

3.1 Reconstruction without registration

Most 3-D freehand systems use similar algorithms to construct a 3-D data set from the
individual B-scans. An example of a typical reconstruction algorithm can be found in
Figure 3, with a detailed description following below.

1. acquire 2-D image P and associated position data 7Ty
2. insert image P into reconstruction volume C
2.1 determine location of pixel p,,, with respect to C
CX — CTTTTRRTPPK s CK — TPK
2.2 if nearest voxel ¢;j; in C is empty, set to pmn
2.3 else set c;j;, to weighted average of existing c;;r and pmn
NXCijk + Pmn

Cijk = n+1 n+1
where n is incremented after each calculation of c¢;ji

3. repeat from step 1.

Figure 3: Reconstruction algorithm without registration.

Each B-scan is represented as a 2-D array P of intensity values py,- The reconstruction
volume takes the form of a 3-D voxel array (or cuberille) C. Each element c;j, of C repre-
sents a voxel in space. The voxel size is chosen a-priori: small voxels (though no smaller
than the pixel dimensions) produce high resolution reconstructions, larger voxels produce
lower resolution reconstructions. While high resolution reconstructions reveal more detail,
they also require considerable computational resources to generate and manipulate. There
is a fundamental tradeoff between ease of data manipulation and resolution.

Figure 4 depicts the four coordinate systems used for reconstruction. The position
sensor measures the relative position and orientation of the receiver with respect to the
transmitter. These measurements are converted into a 4 x 4 homogeneous transformation
matrix 7 Tg. A standard notation is used to describe T as the transformation from the
coordinate system at the receiver (R) to the coordinate system at the transmitter (7).

The position of a pixel p,,, with respect to its plane (P) is expressed as a homogeneous
vector Px. The pixel position, with respect to the cuberille coordinate system (C), can be
determined by transformation to the receiver coordinate system, then to the transmitter
and finally to the reconstruction volume via ®Tp, TTg, and “Tr respectively. £Tp
describes the transformation between the corner of the scan plane and the coordinate
system of the receiver. It is determined by calibration and remains constant throughout
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Figure 4: Coordinate systems used for reconstruction.

the reconstruction. “T7 describes the transformation from the transmitter to the corner
of the cuberille. It is set to the limits of the reconstruction volume that the physician
scans and also remains constant throughout the reconstruction. The cumulative matrix
multiplication of ¢Tp TTp BTp is abbreviated to T.

Before the start of the examination, the voxels in the reconstruction volume are all set
to zero. As each B-scan is acquired, each voxel c¢;j, is adjusted according to the pixels py,,
which intersect it. A single voxel will envelop many pixels if the voxel size is larger than
the B-scan pixel size. Each voxel may also be intersected again by future B-scans. These
possibilities are dealt with by step 2.3 of the reconstruction algorithm, which describes a
compounding operation to average all pixels that intersect a voxel.

After a substantial portion of C is filled, it can be displayed on a computer monitor
by several different methods, including volume rendering, surface rendering and any-plane
slicing. Examples of any-plane slicing can be found in Figures 11, 12, 13, 16, and 17,
while surface rendering is used in Figure 14. Hereafter, the term slice is used to indicate
an image produced by any-plane slicing.



3.2 Reconstruction with registration
3.2.1 Overview

While the standard reconstruction algorithm is adequate for many tasks, it is not ideal
when acquiring heavily compounded data sets, where voxels are intersected many times
by B-scans acquired from a variety of look directions in the course of a relatively lengthy
examination. Such reconstructions tend to be plagued by registration errors, caused by
inaccurate B-scan position measurement, motion of the target and other imaging artifacts:
see, for example, Figure 12. To acquire high quality, spatially compounded data sets we
have to correct these registration errors.

A variety of image registration techniques are available [2]. Correlation-based tech-
niques are the simplest but do not work well with 3-D ultrasound, since they are sensitive
to the average grey level which tends to vary through an ultrasound scan. Correlation
techniques are also very inefficient when applied to 3-D (as opposed to 2-D) registration
problems. For these reasons we prefer to attempt registration via landmarks.

Landmarks are anatomical features which are prominent in the B-scan images. When
a newly acquired B-scan is compounded into a filled (or partially filled) voxel array, any
landmarks in the B-scan should align with existing landmarks in the voxel array. Registra-
tion errors can be corrected by searching for corresponding landmarks and re-positioning
the new B-scan plane so that the landmarks are brought closer together.

Registration has to be performed with respect to a reliable baseline. If all the B-
scans are re-positioned, it is possible to construct a voxel array where all landmarks are
in perfect alignment, but the reconstruction bears little resemblance to the underlying
anatomy (for instance, the voxel array could contain a sheared image of the anatomy).
For this reason, the ultrasound examination must commence with a quick pass over the
region of interest, so that most if not all of the voxels are filled. No attempt is made to
register these initial B-scans: they act as the baseline. At this stage the 3-D data set will
be noisy (due to speckle) but relatively free from registration errors. Subsequent passes
over the region of interest, from different look directions, are compounded into the voxel
array to reduce the noise. The inevitable registration errors are automatically corrected
by landmark alignment as each new B-scan is acquired.

Figure 5 describes a reconstruction algorithm with landmark-based registration. The
main difference between this algorithm and the algorithm without registration (Figure 3)
is that the image transformation T is replaced with T*, the optimal transformation that
registers the landmarks in the image P with those already present in the voxel array
C. In this study, T* is constrained to a rigid 6 DOF transformation, consistent with the
expected sources of registration error (motion of the target and inaccurate B-scan position
measurements).

3.2.2 Detection of landmarks

The landmarks used in this study are edge elements (edgels) automatically extracted by
the Canny edge detection algorithm [4] operating on a thresholded image. The edgels
are produced at the resolution corresponding to the voxel size. The edgel set is further
pruned by chaining neighbouring edgels together and eliminating chains with fewer than
three edgels. This reduces the number of edgels produced by speckle. Figure 6 illustrates
the landmark detection procedure.



1. acquire 2-D image P and associated position data T Tg
2. find landmarks [,,, in image - see Figure 6
3. if the scan plane does not intersect existing data (previous B-scans) in C

3.1 insert image P into reconstruction volume C

3.1.1 determine location of pixel p,,, with respect to C
Cx = CT, TT, RTp Px «— Cx = T Px
3.1.2 if nearest voxel ¢;j in C is empty, set to pmn
3.1.3 else set c;j;, to weighted average of existing c;;r and pmn
3.2 insert [,,, into volume of landmarks L

3.2.1 determine location of l,,,, (at ©x) with respect to C
x = TPx
3.2.2 assign nearest vector in L to [,

3.3 repeat from step 1.
4. if scan plane intersects existing data in C, registration is performed
4.1 optimise T to align l,,, with existing landmarks in V
T — T

4.2 insert image P into reconstruction volume C via T*

4.2.1 determine location of pixel p,,, with respect to C
CK — T* PK
4.2.2 if nearest voxel ¢;; in C is empty, set to pmn
4.2.3 else set c;;; to weighted average of existing c;;x and py.n

4.3 repeat at step 1.

Figure 5: Reconstruction algorithm with registration.




(a) High resolution image of gall (b) Low resolution image of gall

bladder. bladder.

(c) Edgels extracted from (b). (d) Chains of edgels from (c).

(e) High res- (f) Chains
olution image of edgels of
of phantom. phantom.

Figure 6: Landmark detection. Image (a) is the original high resolution (490 x 380)
image of a human gall bladder. Notice the speckling throughout the image, shadow-like
artifacts and non-uniform intensity of the organ boundary. Image (b) is image (a) at the
reduced resolution (99 x 77) required for the reconstruction volume. Image (c) depicts
the 1409 edgels extracted from image (b). Image (d) depicts the chains that are formed
from the edgels in (c). Notice the reduced number of edgels (854) in image (d) — the
edgels forming small lines and circles are eliminated. As well as the organ boundary, the
detector also finds edges which do not correspond to real physical structures: these must
be tolerated by the registration algorithm. Images (e) and (f) show the same detection
procedure applied to the phantom.
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Figure 7: Landmark-based registration. In (a), B-scan n is inserted into the voxel
array at the location indicated by the position sensor. Significant registration errors are
evident (exaggerated here for clarity). After applying the rigid body correction found
from registering B-scan n — 1, only small residual errors remain (b). These are corrected
by landmark-based registration. A small ellipsoidal search volume is defined around each
re-positioned landmark (edgel) in P: any landmarks in L found within this volume are
marked as candidate correspondences for the landmark in P. RANSAC regression is used to
find the optimal rigid body transformation T* which aligns as many of the corresponding
landmarks as possible — see Figure 8. Finally, the B-scan is inserted into its optimal
position in the voxel array using T* (c).

3.2.3 Selection of correspondences

As the B-scans are acquired, landmarks are stored in a 3-D vector array L which is aligned
with C. When a B-scan intersects non-empty voxels in C, T* is determined by finding
correspondences between landmarks in the new B-scan and landmarks in L.

A minimum number of intersections between pixels in the scan plane and non-empty
voxels in C is needed for accurate registration. In the phantom study, landmark registra-
tion was attempted only when more than 25% of the pixels in the B-scan intersected filled
voxels in C. In practise, after the first sweep in the ultrasound examination, all subsequent
B-scans have almost 100% levels of intersections.

Potential correspondences between landmarks in the B-scan and landmarks in L are
found by searching an ellipsoidal volume in L for each landmark in the B-scan. Since the
B-scans are acquired in rapid succession, any registration error will vary slowly from one
B-scan to the next: we can use this observation to place the ellipsoidal search volume at
an appropriate location in the voxel array, and also limit its size — see Figure 7. We are
effectively tracking the registration error, which is far more efficient than performing an
unconstrained search for T* for each B-scan.

3.2.4 Determination of transformation matrix and compounding

The set of correspondences produces more constraints than are required to determine
T*. For example, each B-scan of the phantom generated approximately 1200 candidate
correspondences, but only three are needed to determine T*. A least squares estimation
of T* is inappropriate, since many of the candidate correspondences are outliers. Instead,



the RANSAC regression technique [9] is used to determine T* and reject the erroneous
correspondences. Details of RANSAC regression can be found in Figure 8. RANSAC is
sufficiently robust to tolerate a significant proportion of erroneous correspondences.

1. Randomly pick three pairs of corresponding landmarks from the full set of
correspondences.

2. Reject these correspondences if they are not consistent with a rigid body trans-
formation.

3. Reject these correspondences if the landmarks in P are too close together or
colinear (otherwise the calculation of T in step 4 is ill-conditioned).

4. Calculate a linear affine transformation T which brings the three landmarks
in P into precise registration with the corresponding landmarks in L. The
pruning in step 2 ensures that T represents a rigid body transformation.

5. Transform all the remaining landmarks in P by T.

6. Count how many of the transformed landmarks in P register with their coun-
terparts in L. Those landmarks that do register contribute to the consensus
set for T. The remaining landmarks are deemed outliers.

7. Repeat from 1 until a T is found with a consensus set larger than a preset
threshold: this T becomes the estimate of the optimal transformation T*.

Figure 8: RANSAC regression for determining T*.

T* is used to transform the new B-scan image P into the coordinates of C. The
pixels of the registered image can now be added to C. Where the registered scan plane
intersects already-filled voxels, weighted averaging is used to compound the new image
with the existing data (see step 2.3 in Figure 3). Figure 13 shows slices through a volume
reconstructed in this manner.

4 Results

4.1 Phantom study
4.1.1 3-D spatial compounding and its effect on the SNR

The main purpose of the phantom study is to investigate the effect of compounding on
the SNR of the 3-D reconstructions. The B-scans of the phantom cross-sections contain
two regions with almost homogeneous statistical features: the inside of the latex balloon
and the outside. Figure 9 shows the two regions on a typical B-scan of the phantom.

The phantom was scanned in a continuous series of sweeps from one end of the balloon
to the other, producing a large number of overlapping B-scans. Each sweep was carried
out with the probe at a look direction slightly displaced from the previous sweep. About
4-5 sweeps were performed, giving 400 B-scans in total. The first 100 B-scans correspond
to the first complete sweep, so they do not overlap each other.
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(a) Example B-scan (b) Regions

Figure 9: Regions of the phantom B-scans. To investigate the effect of compounding
on the image statistics, two regions are defined: region 1 and region 2. Region 1 lies
completely inside the latex balloon and region 2 on the outside. Similar volumetric regions
are defined for the 3-D reconstruction volume.

Volumes were reconstructed from the 400 B-scans at both high and low resolution.
The high resolution reconstructions featured cubic voxels with the same edge dimension
as one pixel in the original B-scan (0.14mm). The low resolution reconstructions contained
voxels with an edge dimension 7 times the size of a pixel (1mm). While the high resolution
reconstructions preserve the full resolution of the B-scans, they require a large amount of
memory (181 MBytes) and contain many unfilled voxels in regions between B-scans. Low
resolution reconstructions (0.5 MBytes with 1 mm voxels) can be generated and visualised
in significantly less time. For each resolution, two reconstruction volumes were created,
one with registration (using the novel reconstruction algorithm in Figure 5), the other
without (using the standard reconstruction algorithm in Figure 3). Four volumes were
therefore reconstructed in total?.

To investigate the improvement in SNR with spatial compounding, we analysed grey
level statistics in each of the four reconstruction volumes at various stages of reconstruc-
tion: after 100 B-scans (initial sweep, no compounding), then 150, 200, 250, 300, 350 and
finally 400 B-scans (heavy compounding). For each case we segmented volumetric regions
1 and 2 by hand, and then calculated the mean, standard deviation, and SNR for filled
voxels in each region: these are tabulated in Tables 1, 2, 3, and 4.

It is immediately apparent that the SNR increases with the amount of compounding.
Furthermore, the SNR improves almost identically for both the registered and unregistered
cases. This is because regions 1 and 2 do not include the area where the phantom boundary
is blurred by the registration errors.

The improvement in SNR can be predicted by statistical theory. Previous papers [3, 12,
15] have demonstrated a y/n improvement in SNR for 2-D compounding of n uncorrelated
B-scans. This theory is not directly applicable to the 3-D case, since the voxels are not

2In fact, registration was only performed at low resolution, with the results applied to the high resolution
reconstructions. Registration at high resolution is infeasible because of the large number of unfilled voxels
and the considerable memory requirements of the reconstruction algorithm.
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Number Region 1 Region 2
of B-scans | mean | std. dev. | SNR | mean | std. dev. | SNR
100 103.76 18.37 5.65 | 33.68 5.76 5.85
150 102.45 18.02 5.68 | 33.60 5.49 6.12
200 103.09 17.65 5.84 | 33.39 5.14 6.50
250 103.33 17.03 6.07 | 32.23 4.77 6.97
300 102.80 16.55 6.21 | 33.17 4.66 7.12
350 102.30 16.00 6.39 | 33.07 4.45 7.43
400 101.41 15.74 6.44 | 33.01 4.34 7.61

Table 1: High resolution reconstruction without registration.

Number Region 1 Region 2
of B-scans | mean | std. dev. | SNR | mean | std. dev. | SNR
100 103.76 18.37 5.65 | 33.68 5.76 5.85
150 102.45 18.02 5.68 | 33.60 5.49 6.12
200 103.09 17.65 5.84 | 33.39 5.14 6.50
250 102.99 16.77 6.14 | 33.24 4.77 6.97
300 103.28 16.19 6.38 | 33.16 4.62 7.18
350 103.37 15.73 6.57 | 33.06 4.39 7.53
400 103.24 15.35 6.72 | 32.99 4.26 7.74

Table 2: High resolution reconstruction with registration.

Number Region 1 Region 2 Volume
of B-scans | mean | std. dev. | SNR | mean | std. dev. | SNR | (ml)
100 100.39 11.07 9.07 | 33.22 3.78 8.79 7.20
150 100.09 10.63 9.42 | 33.15 3.41 9.72 7.17
200 99.94 9.77 10.23 | 33.07 3.07 10.77 7.19
250 100.05 9.27 10.79 | 33.00 2.88 11.46 7.27
300 99.93 8.67 11.53 | 32.97 2.86 11.53 7.31
350 99.71 8.16 12.22 | 32.93 2.82 11.68 7.43
400 99.44 7.81 12.73 | 32.90 2.80 11.75 7.56

number of B-scans.

12

Table 3: Low resolution reconstruction without registration. The volume of the
phantom, as estimated by a semi-automatic segmentation technique, increases with the
This is because the registration errors blur the boundary of the
phantom, affecting the semi-automatic segmentation.




Number Region 1 Region 2 Volume
of B-scans | mean | std. dev. | SNR | mean | std. dev. | SNR | (ml)
100 100.39 11.07 9.07 | 33.22 3.78 8.79 7.20
150 100.09 10.63 9.42 | 33.15 3.41 9.72 7.16
200 99.94 9.77 10.23 | 33.07 3.07 10.77 7.19
250 99.91 9.09 10.99 | 33.00 2.84 11.62 7.20
300 100.02 8.13 12.30 | 32.96 2.78 11.86 7.14
350 100.06 7.76 12.89 | 32.91 2.68 12.28 7.20
400 100.17 7.27 13.78 | 32.86 2.57 12.79 7.18

Table 4: Low resolution reconstruction with registration. The volume of the phan-
tom, as estimated by a semi-automatic segmentation technique, remains almost constant
with higher levels of compounding.

all compounded the same number of times. The arbitrary positions and orientations of
the B-scans result in some voxels being intersected more than others. Furthermore, the
statistical theory for low resolution compounding must account for both the compounding
due to the intersections of multiple B-scans as well as the reduction in resolution . For
these reasons we have developed a full theory of 3-D spatial compounding, which can be
found in the appendix.

The measured SNR of both the low and high resolution registered reconstructions is
plotted against the theoretical increase in SNR in Figure 10. As the theory predicts,
the SNR increases with an increasing level of compounding. Yet there are a number
of differences between the idealised theory and the actual empirical study. The first is
that no attempt was made to obtain completely uncorrelated B-scans for different sweeps.
It has been shown that the look directions for different sweeps must be greater than 0.4
transducer widths apart to obtain completely uncorrelated speckle patterns [24]. To verify
this, we deliberately performed the first few sweeps from similar look directions, saving
large variations in the look direction for the last few sweeps. The results in Figure 10
confirm the theory: the SNR improves most dramatically for the last few sweeps, when
the speckle patterns are less correlated. For this reason, we have highlighted the last
four data points in Figure 10 to compare with the predicted values, which were derived
assuming completely uncorrelated speckle (see the appendix).

The grey-level variations in the B-scans are also not due entirely to speckle. The echo
amplitudes reflected by a homogeneous medium have an expected Raleigh distribution
when there is a large number of scatterers per resolution cell. The SNR of a Raleigh dis-
tribution is constant and equal to 1.91 [3]. The logarithmic compression of echo amplitude
in B-scan formation changes the Raleigh distribution to a Gaussian one, with an SNR of
approximately 7.64 [23]. The measured SNR of a typical B-scan in this study is 5.6 for
region 1 and 5.4 for region 2. The lower SNR means that the observed grey-level variations
are greater than the variations due only to speckle. If some of the variation is due to real
physical structure (such as the fine structure of the talcum powder suspension), then it
will be correlated across different sweeps and cannot be reduced by compounding. Despite
these differences from the assumptions underpinning the statistical theory, the slopes of
the curves in Figure 10 are in remarkably close agreement with the theoretical predictions.
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200, 250, 300, 350, and 400 B-scans. The x-axis indices, Npigh_res and Njow_res, are defined
in the appendix. A log-log plot is used because a slope of 0.5 indicates agreement with
the theory. In all cases, the final four data points are in remarkably good agreement with

the theory.
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(a) Unregistered (b) Registered

Figure 11: High resolution reconstruction. A slice of the reconstruction volume is
shown for both the unregistered and registered cases. All 400 B-scans are used in both
reconstructions, but gaps still remain where voxels are not intersected by any of the B-
scans. In (a), the registration errors substantially distort the circular cross-section of the
phantom. The circular shape is restored in (b) by landmark registration.

4.1.2 Registration errors and their effect on volume estimation

Cross-sectional slices of the high resolution reconstructions are shown in Figure 11, both
with and without registration. It is evident that the registration errors are large enough to
significantly distort the reconstruction, but are dramatically reduced by landmark-based
registration. The effect of compounding is not pronounced at high resolution, because
each voxel is intersected only a small number of times.

Figures 12 and 13 show the effects of registration and compounding at low resolution.
In both figures the speckle (and other artifacts) are greatly reduced by compounding.
However, the shape of the phantom in the unregistered case departs significantly from
the original shape. The registered reconstruction maintains the original shape. Figure 14
shows how compounding improves a surface rendering of the reconstruction volume.

A measure is required to quantify the effect of registration errors on the reconstruction.
We chose to focus on the volume of the phantom, as estimated by “live-wire” segmenta-
tion [1] of slices through the reconstructed volume®. This is also a measure that is often
sought after by physicians when scanning internal organs. Furthermore, it can be com-
pared to the real volume of the phantom, which was measured with a graduated cylinder
at 7.0 ml & 0.2 ml.

3Live-wire segmentation is a powerful tool for extracting boundaries in noisy images. It offers a good
compromise between accuracy and amount of user intervention. The technique involves laying an active
wire around the object (on a slice by slice basis) that is attracted automatically to the object’s boundary.
The operator assists the live wire by depositing small sections at a time near the boundary, so that the
wire does not enclose nearby speckle. For these tests, four sections of wire were sufficient to enclose the
phantom cross-section accurately.
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(a) 100 B-scans used (b) 200 B-scans used

(c) 300 B-scans used (d) 400 B-scans used

Figure 12: Low resolution reconstruction without registration. Figures (a) through
(d) are of slices taken at the same location in the reconstruction volume at increasing levels
of compounding. Speckle is reduced both inside and outside the object, but registration
errors result in substantial blurring of the object boundary.
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(a) 100 B-scans used (b) 200 B-scans used

(c) 300 B-scans used (d) 400 B-scans used

Figure 13: Low resolution reconstruction with registration. Figures (a) through
(d) are of slices taken at the same location in the reconstruction volume at increasing
levels of compounding. Speckle is reduced both inside and outside the object and blurring
of the object boundary is minimal.
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(a) 100 B-scans used (b) 200 B-scans used

(c) 300 B-scans used (d) 400 B-scans used

Figure 14: Low resolution reconstruction with registration. The 3-D surface ren-
derings show how the speckle outside the object is reduced with increasing levels of com-
pounding. (a) shows the reconstruction after a single sweep. The object is less obscured
by speckle when the reconstruction volume is heavily compounded in (d).
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Figure 15: Histogram of grey-levels in the reconstruction volume with regis-
tration. The two regions are described by individual distributions. As compounding
increases, the mean grey level remains constant but the standard deviation decreases.
This effect is particularly visible for the distribution of region 1.

The volume of the phantom was calculated by live-wire segmentation at 7 levels of
compounding: after 100, 150, 200, 250, 300, 350, and 400 B-scans. The resulting volume
estimates are given in Tables 3 and 4 for the low resolution reconstructions. Live-wire
segmentation is not feasible at high resolution, where there are too many gaps around the
boundary.

Without registration, the blurring of the phantom boundary results in an increase
in the segmented volume (range = [7.17-7.56]) that does not reflect the true volume.
Conversely, the volume calculated from the registered reconstructions is stable (range =
[7.14-7.20]). The increase in volume by blurring is less dramatic than would be expected
from looking at slices through the reconstruction (Figure 12). This is because the live wire
is attracted to the location with the highest intensity gradient, which is sometimes near
the true boundary and not the edge of the blurred region. It is fair to say that considerably
worse volume estimates can be expected under less favourable circumstances.

The grey level histograms of regions 1 and 2, shown in Figure 15, change as the level of
compounding increases. As expected, the histograms become narrower with higher levels
of compounding. If the histograms of the different regions are non-overlapping, then fully
automatic segmentation can be achieved by thresholding the reconstruction at the appro-
priate grey level. Figure 16 shows several examples of fully automatic segmentation by
grey level thresholding. One of the motivations for improving SNR is to allow more accu-
rate automatic segmentation. It is evident that compounding with registration improves
the accuracy of automatic grey level segmentation.
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(a) Reconstruction using 100 B-scans. The area of the thresholded image on the

right is 243.9 mm?. Live wire semi-automatic segmentation of the image produces
an area estimate of 256.5 mm?. The difference arises mainly from speckle in the
interior that falls outside the threshold range.

k_uj hildl.l.lWh

(b) Unregistered reconstruction using 400 B-scans. The area of the thresholded

image on the right is 217.7 mm?. The area is lower than in (a) because the blurred
regions near the phantom boundary fall outside the threshold range.

,A] kwummﬁuh

(c) Registered reconstruction using 400 B-scans. The area of the thresholded

image on the right is 250.9 mm?. This is close to the area calculated by live-wire
segmentation in (a).

Figure 16: Low resolution reconstruction. Corresponding slices through the recon-
struction volumes are shown on the left of each figure. For each slice, the histogram of the
grey levels is shown in the middle. The images on the right show the regions segmented
by thresholding the grey levels falling into the range [78-122]. The compounding in (c)
ensures that the entire object falls within the threshold range and the registration retains
the original circular shape of the cross-section.
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(b) Existing B-scans at (c) Superposition of (a)
measured location of (a) and (b)

'iie_gisxered%ouﬁagry _

o

(d) Original B-scan: (e) Existing B-scans at reg- (f) Superposition of (d)
identical to (a) istered location and (e)

Figure 17: Registration of an in-vivo transverse and longitudinal gall bladder
examination. The bottom row shows the elimination of a double boundary, evident in the
top row, that is produced by mis-registered B-scans. This figure is produced with 1 mm?
voxels to enhance clarity, but registration was performed with 2 x 2 X 2 mm voxels. The
level of compounding is not high: 35% of filled 2 x 2 x 2 voxels are intersected by 1 B-scan,
33% are intersected by 2, 16% by 3, and 16% by 4 or more. The high intensity cloud-like
artifact to the right and below the gall bladder is slightly suppressed by compounding.
The effect is small because only a few B-scans are compounded in that region.

4.2 In-vivo study

To demonstrate that the registered reconstruction algorithm (Figure 5) can be applied to
in-vivo images, we performed an ultrasound examination of the gall bladder of a healthy
human subject. Reconstructions were performed at low resolution. Figure 17 shows that
in-vivo registration errors are significant but can be minimised by landmark-based regis-
tration. A more subtle effect is that the high intensity cloud-like artifact is slightly reduced
by compounding. Hardware limitations restricted this study to only 60 B-scans. With
higher numbers of compounded B-scans, the artifacts should be further reduced, as in the
phantom study.
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5 Conclusions

We have shown how spatial compounding can improve the SNR of 3-D ultrasound im-
ages in agreement with theoretical predictions. The inevitable registration errors which
come with higher levels of compounding can be corrected using an automatic, incremental
landmark-based registration algorithm. The resulting high quality 3-D reconstructions are
particularly well suited to automatic segmentation for visualisation and volume measure-
ment.

Future work will investigate higher levels of compounding in in-vivo scans. We have
recently installed a new data acquisition system which can acquire more than 1000 B-
scans at 25 frames per second in a single examination. It is likely that the speed and
robustness of the registration algorithm will have to be improved to handle the higher
levels of compounding. We anticipate that the key to efficient registration will lie with
more reliable landmark detection at larger scales, allowing registration of contours in the
B-scans onto surfaces in the voxel array.
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A Statistical theory of 3-D spatial compounding

Simple statistical theory can be used to predict the increase in SNR with greater levels
of 3-D spatial compounding. In this appendix we consider three distinct cases: 2-D com-
pounding, 3-D high resolution compounding and 3-D low resolution compounding. First,
however, we review some simple results from statistical theory.

Linear functions of random variables [13]: Consider the random variable Y as a linear
function of independent random variables X;:

Y = Z aiXZ-
=1

where {aj...an} are constant coefficients. Then the expectation (or mean) p, of Y,
expressed in terms of the expectation of X; (uy,), is

n
Ky = Zaiﬂxi (1)
i=1

and the variance of Y (0%), in terms of the variance of X; (0%,), is
n
2 2 2
i=1

Sets of samples of random variables: Consider Z as a set of samples Y; drawn
randomly from a number of independent distributions:

Z={%,....,Y;....Yn}
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The expected mean of the samples in Z, expressed in terms of the expectation (,uyj ) of
the distribution from which each Y; is drawn, is

1
Kz = Zl Elﬁyj (3)
]:

Provided all py, are equal, the expected variance of the samples in Z, expressed in terms
of the variances (o%/j ) of the distributions from which each Y} is drawn, is
m
1
2 2
Oz = —O'YJ. (4)

=

Equations (3) and (4) are readily derived from the definitions of expectancy and variance.

A.1 Case 1: 2-D compounding

The simplest form of compounding creates a 2-D image of m pixels by averaging n coplanar
B-scans. To predict the improvement in SNR, we need to make two key assumptions:

Assumption 1: The subject of the ultrasound examination exhibits no resolvable struc-
ture, so any grey level variations in the B-scans are due entirely to speckle.

Assumption 2: Separate B-scans are taken from look directions spaced sufficiently far
apart, so that the speckle across B-scans is uncorrelated.

Now consider an image Z, which is a set of pixels Y}, each compounded from pixels X; of

the individual B-scans. Each X; comes from a distribution with mean o and variance o3.

The X; averaged for a particular Y; are independent, because the speckle is uncorrelated

across B-scans.

n
1
Z:{Yl,...,Y},...,Ym} where Y}:E ~X;
. n

From (1),
n
1
Ky, = Z ﬁuo = Ho
i=1
From(2), . , ,
1 o
2 2 0
y; = > (g) oy = —
=1
From (3),
1
Kz = —Ho = Ho
j=1
From (4), ) ,
"1 (o o
2 _ L% ) _ %
w=3 o (F)-1

Comparison of the SNR of Z to the SNR of an original B-scan Zy, with u, = py and
0%0 = 02, gives the familiar result quoted in several papers [3, 12, 15]:

SNR(Z) _ pigloy _ .
SNR(Z,) B MZO/UZO =vn
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A.2 Case 2: 3-D high resolution compounding

The simplest 3-D compounding case occurs when the voxel size is the same as the pixel
size. This means that each voxel is intersected no more than once per B-scan (discounting
the voxels that can occasionally contain two pixels if intersected obliquely). Now consider
Z to be the set of voxels in a 3-D voxel array. There are m voxels in the set Z, and voxel j
is intersected n; times. The maximum possible value of n; is the total number of B-scans
used in the reconstruction.

1
Z={M,...,Y;,....Yn} where Y]:Z_Xz
N
i=1""J
From (1) and (2),
1 " g2
Py, =), —Hg=po  and oy =) -3
" i—1 Y
From (3) and (4),
2 LA P ‘78
Mz—z uo—uo and O'Z:Z_ -0
j=1m =1y

Combining these results gives

SNR(Z) iyl
SNR’(ZO) MZO/O-ZO

To abbreviate references to this result in the main text, let us define the quantity npigh_res
as follows:

1 SNR(Z)
= - = o/~ v — VDhigh_res
i 11 SNR(Zo) it
m

=1 =1

(%

Note that the result of case 1 can be derived by setting n; = n for all j.

A.3 Case 3: 3-D low resolution compounding

Most 3-D reconstructions involve cuberilles with voxels considerably larger than the pixels
in the B-scans. Again, the set of voxels in the reconstruction can be written as

1
Z:{Yl,...,Y}',...,Ym} where Y]:Z_)(z

but in this case the X; are not all independent. This becomes clear if we consider each

voxel Y; as follows:
k Pj.k

YZZX,

klpl
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where k; is the number of B-scans that intersect voxel j, and p;; is the number of pixels

that intersect voxel j for B-scan k: i.e. Zﬁ; 1 Pj,k = nj. We have labelled the individual
pixels X, ; according to B-scan k and pixel p. Rearranging gives

kj Dik Pik
L — I . L —
Y; = Z : O, where O, = Z : Xp k

Oy ; is the mean of the pixels that intersect voxel j for B-scan k. The expected mean
(ne) of ©f ; can be determined using lemma (1), which is still valid for non-independent
Xp,k [13]
Pjk
fe =Y —Hg = [0
p=1Pik

Since the size of the speckle is larger than one pixel, the grey level value of a pixel is not
independent of its close neighbours. Thus the expected variance (c3) of ©y ; cannot be
determined using (2), which is not valid if the X, ; are not independent. The variance
of the sum of several neighbouring pixels does decrease as the number of summed pixels
increases, but Ué > o2/ Djk- 0(29 depends on the spatial structure of the speckle and can
be expressed as follows:

o6 = 05b%(pjk)

where b(p;x) is estimated empirically from the B-scans themselves. Returning now to
the expression for Y;, the summation over k can be considered as a sum of independent
variables, since each element in the sum comes from a different B-scan. Hence

kj kj 2
Pjk 2 Djk 272
/’LYJ = Z ;L—'uo = Ly and O'Yj = Z (TJL—> UOb (pjyk)

From (3) and (4),

m 1 m kj p'k: 2
Kz = Z EMO = Ko and U% = Z (n]—> Ung(pj,k)
Jj=1 j

Combining these results gives

SNR(Z) _ pyloy, _ L

SNR’(ZO) /’LZo/O-Zo o1 ki Pjk 2 9
Z =) 0 (pjik)
=M=\

Again, to abbreviate references to this result in the main text, let us define the quantity
Now_res as Tollows:

1 SNR(Z)
ow_res — = Y ow_res
l m o kN2 SNR(Z,) V™
Pj.k 2
> = ( _ ) b"(pjik)
=M=\

Note that the result of case 2 can be derived by setting p; = 1, b*(pj ) = 1 (because o
= 0?), and k; = n;.
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