Cambridge University Engineering Department

Trumpington Street
Cambridge CB2 1PZ

The Application of Bayesian Inference
to Linear Prediction of Speech

G.M.K. Saleh’ M. Niranjan? W.J.Fitzgerald?
CUED/F-INFENG/TR.205 1994

15th December 1994

This report is available by anonymous ftp from svr-ftp.eng.cam.ac.uk in
/pub/reports/saleh_tr205.ps.7Z

email:gs113@eng.cam.ac.uk
Zemail:niranjan@eng.cam.ac.uk

S email:wif@eng.cam.ac.uk



Abstract

The analysis of a speech segment is conventionally performed through linear prediction
and the subsequent minimisation of a data error term in the least squares sense. The
parameters derived as such maximise the likelihood of the data. In a learning problem,
the addition of penalty terms, or regularisers, to the data term facilitates the estimation
of the Maximum a Posteriori , or MAP, parameters. A direct equivalence can be drawn
between the type of regulariser used and the prior assumptions regarding the solution.
The Bayesian evidence procedure provides a framework for MAP parameter estimation
and model order selection. In this paper, the use of suitable quadratic regularisers for
the determination of linear prediction MAP parameters is addressed. The application of
continuity constraints across successive speech segments will be demonstrated to enhance
the tracking of formants for speech embedded in gaussian noise. The use of variable order
models for speech analysis-synthesis is also addressed and its apparent benefits discussed.



1 Introduction

The efficient, reliable and sufficiently accurate representation of the information held
within an acoustical speech waveform is of paramount importance in the various speech
analysis ,coding and processing applications that are currently in use. To date, the tech-
nique of linear prediction is the most widely used and easily implementable for speech
analysis purposes. [1],[2] [3],[4].

The motivation for performing linear prediction for speech analysis stems from our un-
derstanding of the speech production process. At the acoustic level, the speech waveform
is produced as a result of the excitation of the vocal tract due to the glottal waveform
emanating from the constriction of the vocal folds. The vocal tract is characterised by its
resonances, or formants, which can be considered constant over a short length of time. The
shape of the vocal tract, at any one time, and the positions of the articulators, determine
the frequencies at which the vocal tract resonates.

The speech production model proposed by Fant [5] models the speech waveform as the
convolution of excitation,glottal, vocal tract and lip radiation models. In the z-domain,
the output speech is expressed as :

S(z) = E(2)G(2)V(2)L(2) (1)

The spectral effects of the glottal and lip radiation are combined with those of the vocal
tract in order to produce the simplified all-pole model for speech production shown in
Figure (1). The main advantage of the all-pole model is that it separates the excitation
from the vocal tract , paving the way for the parametric representation of a speech segment
in terms of corresponding linear prediction parameters.
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Figure 1: All-pole model for speech production characterised by gain, G, filter A(z), and
v/u-v switch

The transfer function of the all-pole filter is written as :
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which in the time domain translates to expressing the current speech sample as a linear
combination of the past p samples and the current input:

s(n) =Y ais(n — i) + Gu(n) (3)

=1

Speech is broadly classified as belonging to one of two categories, voiced or unvoiced. The
excitation to the filter takes the form of either a series of pulses for voiced speech or ran-
dom gaussian noise for unvoiced speech.The frequency response of the filter signifies the
broad spectrum of speech whilst the variations in pitch are controlled by the excitation.
In analysing a speech segment, the aim is thus to spectrally match the spectrum of the
estimated all pole filter to that of the speech segment under consideration through op-
timising the predictor or all-pole filter parameters, a;. It can be be shown that spectral
matching is achieved by minimising the total squared error between the predicted samples
of the speech signal and their true values [6].

The parameter estimation methods conventionally used with linear prediction are based
on minimising the total squared error between the predicted speech sample and its actual
value over a short segment of speech. A review of the three most popular methods;
the covariance, autocorrelation and lattice methods will be found in [1],[3]. These least
squares methods do not computationally cater for any prior assumptions with regards to
the nature of the particular problem under consideration. As such, it is not possible for
any contextual knowledge about a specific speech segment or prior assumptions about the
nature of the parameters to be embodied within the parameter estimation process. To be
specific, the redundancies that exist between one speech frame and the next, and within
the same speech frame are not exploited in conventional least squares methods.

The modelling of a priori assumptions can be achieved through the use of standard regular-
isation, which has its roots in function approximation, or learning theory [7]. Techniques of
regularisation have been widely used for the imposition of constraints on functions which
approximate given mappings. In the case of linear prediction, a penalty functional of the
parameters, the regulariser, is added to the squared error term prior to minimising it.

The idea of regularisation is solidly grounded within Bayesian theory whereby a direct cor-
respondence between the type of regulariser used and the probability distributions which
are assumed to govern the model parameters can be drawn [8]. The regularisation of a so-
lution, or inclusion of prior information, amounts to maximising the posterior probability
of the parameters given the data under consideration. The model parameters arrived at
thus are termed the mazimum a posteriori, or MAP, parameters. Least squares estimation
amounts to prefect prior ignorance and as such maximises the likelihood of the param-
eters given the data. The linear prediction parameters arrived at through least squares
estimation techniques are termed mazimum likelihood, or ML, parameters.

Posterior < Prior x Likelihood 4)



P(w|D) o P(w) P (D|w) ()

Through our choice of a regulariser which is deemed relevant for a particular task, or
application, we can arrive at parameters which would otherwise seem less suited to our
application.

This report is divided into seven sections. Section 1 introduces least squares parameter
estimation. In Section 2, the type of regulariser that is used is given and a general expres-
sion for the MAP parameters is derived. Section 3 provides a statistical interpretation of
ML and MAP parameters. In Section 4 the bayesian evidence framework [8] which is used
for estimating the parameters and performing model comparison is briefly over-viewed. In
section 5, the use of MAP parameter estimates for tracking of formants is demonstrated for
a synthetic waveform and for speech embedded in gaussian noise. In section 6, the use of
variable order models to perform analysis-synthesis is compared and contrasted with fixed
order models . The data reduction rates and listening tests results are also given.Finally,
the last section offers a discussion of the results and explores areas for future work.

2 Least Squares Parameter Estimation

In order to derive a least squares expression for the linear predictor parameters, we consider
the following mapping, where the n-dimensional space is that of lagged inputs :

S = (x4, ¥1) ER" xR, i=1,2,..N (6)

where, with reference to equation (2), y; corresponds to the current speech sample, s(n),
and x; is a vector of the past speech samples :

Xj = [ Sp—p  Sm—p—1 ‘°* Sp—1 (7)

We wish to estimate the function f (x;) which best satisfies the mapping :

f(xi):yi7 i:1727"'7]\7 (8)
The data error between the current output, yj, and its estimated value, f(xj), is :
Ep=33 (yi—[(x)) )

Within the context of linear prediction, we consider the mapping as being performed by
a single perceptron with weight vector w and a linearly varying activation unit. The



function, f(xj), can thus be written as :

f () = whx (10)

and the data error is re-expressed as :

The gradient of the data error is given by :

VEp =Rw —q (12)

where R is the hessian matrix of the data error whose elements are given by :

N
R, = Zx?xin (13)

=1

and q is a vector of correlations whose elements are given by :

N
@ =) Vx| (14)
i=1

Setting VEp in equation (12) to zero, we obtain the predictor parameters which coincide
with the global minimum of the quadratic error surface defined by Fp :

Rwpni=q (15)

3 Imposing Continuity Constraints

We wish to further utilise the information that we have about the speech waveform in
estimating the linear prediction parameters. To this end, the techniques of standard
regularisation which exploit smoothness constraints in function approximation problems
are used [7].

In standard regularisation, the function, f (x;), is estimated after minimising a cost func-
tion consisting of two terms. The first term is a data error term, as that appearing in
equation (11). The second term, or the regulariser, is a penalty functional of f(x;) which
embodies our a priori beliefs about the characteristics of f(x;). The cost function to be



minimised is thus of the following form :

M = 52(}'1—f(><i))2+/\HPfH2 (16)

where all the relationships given in the last section still hold and ||Pf|| defines the type of
constraint to be applied.

The regularisers that are used for speech analysis in this paper are all special cases of the

following :

Ew=(w-u)®w-u)T (17)

Where @ is a diagonal matrix that holds the regularisation parameters, w is a vector
which holds the model parameters and u is a vector whose elements can take either zero
or non-zero values.

The cost function to be minimised is thus:

M=w-u®w-u'+Ep (18)

Introducing the substitution ¥ = %,

the cost function is re-expressed as :

M= (w-u)¥(w-u)T + 8Ep (19)

where W is a diagonal matrix whose elements are the same of those of ® but are scaled
with the parameter 5.The purpose of introducing ¥ and 3 will be apparent in the next
section where a statistical interpretation of the assumptions embodied in using the type of
quadratic regulariser appearing in equation (17), 8 and of the related model parameters
will be given.

The gradient of M is given by :

VM = (R+¥)w — 3q — Pu (20)

For known 8 and W, the parameters obtained by setting VM to zero, give the minimum
of the error surface defined by M. Substituting the expression for w,,; given in equation
(15) in equation (20), and setting the gradient to zero, we get the following expression for
the model parameters:

Wmp = (/3R + ‘I’)_l (ﬂRWml + IPU-_) (21)



4 Statistical Interpretation

As briefly mentioned in the Introduction, the wy,) and wmp parameters can be viewed
as those that maximise the likelihood of the data and the posterior probability of the
parameters respectively. This nomenclature falls within the statistical interpretation of
estimating a function to learn a mapping between two data sets.

With reference to equation (9), the predicted values, f(x;), are assumed to deviate from
their actual values, yj;, according to a gaussian distribution with variance % Under such
an assumption, the probability of the data, D, given the model parameters, w, is governed
by the following proportionality :

P (D|w, 8) o exp (=BED) (22)

where Ep has appeared previously in equation (11).

In order to express the posterior probability of the parameters, P (w|D), we need to ini-
tially make assumptions about the prior probability of our model parameters. Throughout
this paper, the assumption is that the parameters of the linear prediction model are de-
rived from independent gaussian distributions. This view is compatible with the type of
quadratic regulariser that has been given in the last section. Consider the regulariser given
in equation (17) which was used to derive the expression for wyp. Assuming that each of
the model parameters, wj, is derived from a gaussian distribution of mean u; and variance
(1]¢;), the prior over all the model parameters follows the relationship :

P (w|¥) ocexp(— (Ww—u)¥(w-— u)T> (23)

Now, given the prior and likelihood, the posterior probability is expressed as :

P(w|D,¥,u,p) x P(Dlw,3)P (w|¥) (24)
P(w|D,¥,3) x exp(—M)

where M is the function to be minimised which has appeared in equation (19) and the
minimisation of M corresponds to the maximisation of the posterior probability, for known

¥ and .

The parameters ¥ and [ reflect the relative importance given to the prior with respect
respect to the data. If W is set to zero, the optimisation of the model parameters will rely
entirely on the data set under consideration and the model parameters will correspond to
Wi (see equations (21) and (24). As ¥ becomes larger, the prior plays a bigger role in
the determination of the model parameters. In the limiting case where the components of
W are too large with respect to 3, the parameter estimates will simply be the means of
the gaussian distributions given in their corresponding priors, which are the components
of u.



We wish to find the model parameters that maximise their posterior probability, P (w|D).
The interpretation given to ¥ and § so far leads to the suggestion that optimum values of
W and [ exist which, when substituted in equation (21), give an estimate of the required
MAP model parameters. The approach adopted in this paper is based on the evidence
framework [8] , the implementation of which is reviewed in the next section. The posterior
probability of the parameters, P (w|D), is written as :

Pw|D)= [ P(w|D,W,5,) P (¥,5|D)dvds (25)

The second term in the integral above, P (\I!’ ﬂ|D),ﬁis assumed to be sharply peaked around
optimum values of ¥ and 3, denoted by ¥ and . As such, the maximum of P (w|D) is

approximated by P <W|D, ‘i’,ﬁ) An outline of all the approximations and assumptions

which the evidence framework is based on will be found in [8],[9].

It is worth noting at this point that alternative approaches for the calculation of MAP
parameters can be based on marginalising ¥ out of the prior distribution P (w|¥) and
obtaining an expression for the exact posterior distribution P (w|D). The maximum of
the posterior distribution is then seeked for the MAP parameters (see [10], [11]).

5 Bayesian Evidence Framework

The Evidence framework utilises bayesian inference in order to perform parameter esti-
mation and model comparison in a unified and consistent manner. In the first level of
inference, that of parameter estimation, the values of ¥ and § are optimised by maximis-
ing their evidence, which gives a measure of their posterior probability. The second level
of inference deals with model comparison to choose the most plausible model, given the
data mapping used. Again, the evidence of a model is the criterion used to determine the
goodness of the model.

For a given model, M, the posterior probability of the parameters, w, given ¥, 3, is written
fully as :

P DW, 7M P W‘II’M
P(w|D, ¥, 3, M) = ( |P(ﬂD|\Il)ﬂ 5\4|) |

(26)

where the denominator, P(D|¥, 3, M), is the evidence for ¥ and §.

We wish to find ¥ and ﬁ, which maximise the posterior probability P (w|D, ¥, 8, M). To
this end, and with reference to equation (25), the values of ¥ and f, that maximise their
posterior probability, P(¥, 3,|D), are obtained.

The posterior probability of ¥ and § is given by :

D|¥, 3, M) P (¥, 5|M)
P(DIM)

P(¥,8|D, M) = il (27)



Within the first level of inference, P (D|M) is constant.P (¥, 3, M) is assumed to be
a uniform non-informative prior.As such, the evidence for ¥ and 3, P (D|¥, 3, M) is
evaluated as a measure of their posterior probability. The maximum of the evidence is
used to denote ¥ and ﬁ, which will maximise the posterior probability of w.

Now, P (D|¥, 3, M) is the normalising constant in equation (26) :

PDI%,B,M) = [P (Dlw,5, M)P (w]¥, Mydw
_ Zu
- ZwZp
where
Tar = /ﬂED +(w—-w)¥(w - u)Tdw (28)

N
2

- (%)

Zw =[] (ZT)E (30)

J

Zr is evaluated in closed form after performing a second order Taylor expansion on M
around the wpyp parameters and evaluating the resulting expression as a gaussian integral.

eap (— M) (27)7

Vdet¥ + SR

Iy = (31)

The log evidence for ¥ and 3 is thus written as :

logP (D|¥,3) = - (ﬂED + (Wmp — 0) ¥ (Wmp — u)T) (32)

1 k
—§logdet (¥ + 6R) + 510g (27)
N 2T 1

The derivatives of the log evidence, ﬁlogP (D|W, 8, M) and %logP (D|V, 8, M), when

set to zero yield the following expressions:



29 Ew; = 7 (33)
28Ep = 1 —Zw (34)
vi = 1=yt ((‘I’+ﬂR)_11j) (35)

where Ew; = 1 (w; —u;)*, I; (j,j) = 1 and all other elements of I; are zero.

For the case when a single regularisation parameter, ¥, is used , equations (33)-(35) are
rewritten as :

20Fkw = v (36)
20Ep = N -« (37)
v = k—¢tr(¢I+ BR)™ (38)

where T is the identity matrix and Ew = 33 (w; — u;)?

The above expressions (33),(34) and (35), coupled with equation (21), can be solved
recursively in order to arrive at ‘if, ﬁ and the corresponding MAP model parameters.
The flowchart in figure (2), depicts the stages involved in computing the MAP parameters
for a linear predictor with multiple regularisation constants. For cases when a single
regularisation constant is used for all the parameters, the search for maximum takes the
same form as in the flow-chart, taking into account the changes in equations (36) to (38).

The second level of inference is concerned with model comparison. The evidence for a
model, P (D|M), is used to assign preferences to different models. This follows from the
following relationship, where the posterior probability of a model is expressed as :

P (M) P(DIM)
P(D)

P (M|D) = (39)

The evidence, P (D| M), is evaluated by marginalising ¥ and 8 from P (D|¥, 8, M) which
appeared in equation (27) :

P(DIM) = [ P(DIW, 5, M) P (¥, 5lM)d%d5 (40)

P(¥, 3| M) is assumed to be a uniform non-informative prior. The evidence for a model
is thus obtained after evaluating error bars on log; and log 3 :

Ology; = {/=- (41)



: (42)
Olo = _
o8 N =27

(43)

The log evidence expression, used to assign preference to different models, log P (D|M),
is written in terms of logP (D|‘i’, ﬁ) as :

. 1 1
logP (D|M) = logP (D|¥, 3) + log2 - 5log (N - Z%) -3 logy;  (44)
J

6 Order Selection for Linear Prediction

One important factor which is concerned with the representation of a speech segment is
the order of the linear predictor model used in analysing it. The model order should be
large enough to cater for all the formants that were used in the production of the original
speech sequence, together with the source excitation and lip radiation effects. Ideally,the
smallest possible adequate model order should be used in the analysis stage. Various
empirical order selection methods have been suggested for selecting the order of a linear
predictor. Commonly, a density of 2 poles per KHz is assumed to represent the vocal tract
contribution. A further 3 to 4 poles are added in order to cater for the source excitation
spectrum and radiation load [1]. We note that , in the estimation process, not all the poles
are in complex conjugate pairs. As such, they would not have all necessarily contributed
to the resonances of the vocal tract, or formants.

Some of the popular model selection techniques are Akaike’s Information Criterion, (AIC),
and Akaike’s Final Prediction error, (FPE) ,[12],[13],[14]. The derivation of AIC for a
model order k, AIC (k), relies on the Taylor expansion of the log likelihood of a model
around the maximum likelihood estimate of its parameters. For a model of order k, the
relationship can be written as :

AIC(k) = —2(maximum log likelihood of the model)

+2( number of free parameters).

The maximum likelihood of the model can be regarded as a biased estimator of the mean
expected likelihood of the model with bias equal to &, the number of free parameters. The
mean expected log likelihood is used to give a measure of the goodness of the parameters
of a model.

If the noise in the model is assumed to follow a gaussian distribution, AIC(k) can be
written

11
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Figure 2: Flow chart depicting stages involved in the calculation of MAP parameters for
a linear predictor using the evidence procedure.
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as

AIC(k) = nlogo? + 2k (45)

where 0?2 is the mean squared error incurred in prediction, which is performed over n
samples.

FPE is a special case of AIC [12]. The final prediction error is given by :

n+k
¢ 46
p— (46)

FPE(k) =

Both AIC and FPE aim to achieve a trade-off between the residual error and the model
size . This is clearly apparent in equation (45), which is composed of a data error term
and a term referring to model size, or complexity.

For large n, AIC (k) and FPE(k) are asymptotically equivalent :

AIC (k) = nlog FPE(k) (47)

In contrast to AIC and FPE, Bayesian methods for order selection make provision
for prior assumptions about the solution within the parameter estimation process.The
plots shown in Figure (3), depict the variation in AIC, FPE and log evidence for a linear
predictor vs model order. The three criteria provide the same cue as to the model order
to be used. The AIC and FPE plots are over identical parameters ML, whilst log evidence
was evaluated for the equivalent MAP parameters.

7 Formant Tracking

Conventionally, the automatic tracking of formants in continuous speech is achieved through
performing peak-picking on linear prediction spectra [15], [16].

Other methods that have been used include analysis-by-synthesis methods [17] , filter-
bank analysis [18], log cepstra analysis [19], auditory modelling methods [20] and Kalman
filtering techniques [21].

Regardless of the method used in extracting the necessary features for formant picking , it
is sometimes necessary to impose a smoothness constraint in going from one speech frame
to the next one. The imposition of such a constraint should be such that a closer picture of
the true variation of formants is achieved . The simplest such constraint is the widely used
overlap between successive speech segments, where an inherent correlation between the
parameters representing successive speech segments is achieved. A successful technique
that is utilised in the xwaves speech analysis package relies on Viterbi alignment as a

13
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means of imposing continuity constraints across candidate formants [22]. The candidate
formants are derived after solving the relevant all-pole filter equations.

In this section, the use of suitable MAP parameters for formant picking on linear prediction
spectra is illustrated. The results are also compared with those based on ML parameter
estimation. We consider the following 3 cases, with reference to the general form of the
regulariser given in equation (17) :

Speech Segment

“To s0 100 150 =YeYe) =250 300

ML Linear Prediction Parameters

o s 10 i1as =20 =25 30
MAP Linear Prediction Parameters

o =3 10 =Yl =2s 30

15
coefficent

Figure 4: ML and MAP parameter estimates for a linear predictor.

(a) u=0 and the components of ¥ are distinct ( zero mean gaussian priors with
multiple variances).

(b) u= w1 where w™~! are the parameters estimated in the last speech segment

and ¥ = ¢ (non-zero mean gaussian priors with a single variance, i)

(¢) u= w1 where w™~! are the parameters estimated in the last speech segment

and the components of ¥ are distinct (non-zero mean gaussians with distinct
variances).

The aim of using regulariser in (a) is to exploit the redundancies within a waveform
segment in order to set the unwanted linear predictor parameters to zero. An example of
the use of multiple variance zero mean gaussian priors for estimating the linear predictor
parameters is shown in Figure (4).

The values of MAP and ML coefficients are plotted against their indices for a section of a
vowel of speech, sampled at 10 KHz. In this particular example, a time-delay threshold of

15
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Figure 5: Plots depicting formant tracks obtained by performing peak-picking on linear
prediction spectra. The two cases are for ML model parameters and MAP parameters
where the priors are zero-mean gaussians with distinct variances.

15 exists beyond which all parameters are set to zero. The order of the linear predictor is
thus effectively reduced to 15, instead of 30 as would have been the case under maximum
likelihood analysis techniques.

A further demonstration of the ability to set unwanted parameters to zero was illustrated
through the tracking of formants in a synthetic waveform simulating a variable order
autoregressive process. As the waveform is purely autoregressive, the effects of glottal
shaping, lip radiation and nasalisation that are assumed in analysing real speech segments
are not present here. The order of the model used in generating the waveform is thus
exactly twice the number of resonances that is shown in solid lines. The parameters of
the generating system were updated on a block-by-block basis after 100 samples. Figure
(5), depicts the frequency values estimated for the generating system after using ML esti-
mates and MAP estimates for linear prediction. The frequency values were obtained after
performing peak-picking on the linear prediction spectra.The prior for each of the model
parameters was a zero mean gaussian distribution whose variance, 1/%, is set indepen-
dently of the others (case a above).

The use of regularisation in order to encourage inter-frame smoothness can be utilised to
enhance the tracking of formants in noisy speech. This can be achieved by using regularis-
ers of type (b) or (¢). The priors for the parameters assume gaussians which are centred
on the corresponding parameter estimates from the previous analysis segment. Figure (6)
shows the utterance “tell me more”, embedded in gaussian noise, together with the spec-
trogram of its original clean version and the formant tracks derived after using regularisers
(b), (¢) and ML estimates. As can be seen, the use of MAP parameters facilitated the

16
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Figure 6: Plots of the noisy speech waveform, the spectrogram before adding the noise,

and formant tracks produced using different prior configurations and a fixed model order
of 16.
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derivation of smoother tracks in comparison to the ML parameters. The tracks produced
with multiple variance priors are closest to those shown in the spectrogram. With ML
estimates, the absence of a smoothness constraint results in scattered tracks which are
harder to trace through the speech waveform. The use of single variance non-zero mean
priors, on the other hand, produced over-smoothed tracks which do not exhibit adequate
variation from one frame to the next one. This can be intuitively attributed to the fact
that different coefficients are forced to take the same variance value although their cor-
responding distributions are assumed to posses different means. As such, their variation
becomes more restricted than case (b), which affects the mapping to their corresponding
frequency values accordingly.

8 Analysis-synthesis Demonstrations

As mentioned in the last section, the order of a linear predictor used in analysing a speech
segment is essential in ensuring its accurate representation. For cases where speech is
re-constructed from its linear predictor parameters, the use of a linear predictor whose
order varies according to the segment under investigation could lead to an increase in the
overall efficiency when parameterising the waveform.

The following analyses of the speech utterance: “France became the first decimal country
in Europe. Germany followed eight years later and the Scandinavian states and Russia
changed in 1875, sampled at 16KHz, were performed :

i. Maximum Likelihood with 20th order models.

ii. Maximum a Posteriori with model order selection. For each frame, a search
over models varying in order from 2 to 20 was performed and the model
with the highest evidence was picked. Prior is a single variance zero mean
gaussian distribution (regulariser (a)).

iii. Maximum Likelihood with 8th order models.

With reference to case (ii), Figure (7) shows the variation in the model order with speech
frame for the utterance “France became the first decimal country in Furope”.The model
orders which are chosen are low for unvoiced and silenced speech segments and higher
for voiced speech segments. For each continuous speech segment, the average number
of parameters per frame was calculated and rounded up to the nearest whole number.
The average number of parameters per frame was then calculated over all the continuous
speech segments and was found to be 8. In contrast, the average number of parameters
per frame, including silence speech is 6.05.

An 8th order system was thus used in order to re-synthesise the speech waveform and to
compare the output with that from a variable-order synthesiser based on the parameter-
isation given in (ii). Although the total number of parameters used is the same in both
cases, the distribution of parameters per frame is non-uniform in the variable synthesiser
case. The aim was to gain an insight into the effect of the non-uniform distribution of
parameters and assess its usefulness in improving the performance of a synthesis system.

The system used for the synthesis of speech here is based on the speech production model
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Variation of order with frame number
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Figure 7: Variation in linear predictor order with frame for a speech segment.

that was shown in Figure (1), [23]. The waveforms representing the glottal excitation were
used for the extraction of pitch and voicing decisions. The filter parameters and the gain,
G, were then updated at the start of every pitch period for voiced speech and every frame
length for unvoiced speech. For each synthesised speech segment, the gain of the system,
G, was determined by equalising the mean squared energy in the speech signal with that
in the synthesised signal [2]. No pre-emphasis was performed on the input speech and the
output synthesised speech was not filtered.

A total of 5 subjects were asked to listen to speech synthesised using 8th order models and
variable order models. The synthesised speech was sectioned into 5 utterances and the
subjects were asked to rank the synthesised utterances according to their naturalness and
closeness to their original versions. For each utterance, the original segment was played,
followed by it’s two synthesised versions. The synthesised segments were not played in the
same order for the different utterances. Table (1), shows the preferences that were made
by the subjects. Overall, the variable-order synthesiser was preferred 90 % of the times,
the ML 8th order synthesiser in one occasion (5 %) and no preference could be made in
one occasion.

Utterance | 8th order ML | Variable order MAP | No preference
I - 5 -
11 - 5 -
I - 4 1
VI 1 4 -

Table 1. Ranking of synthesised speech quality made by 5 subjects on 4 different speech
utterances. The numbers I-IV stand for :

I : France became the first decimal country in Europe.

IT : Germany’s decision followed eight years later.

IIT: and the Scandinavian States and Russia.

IV : Changed in 1875.
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9 Conclusions

This report dealt with the usage of MAP parameter estimates within the linear prediction
paradigm. The viability of their usage, in comparison to conventional ML parameters,
was also assessed.

The Bayesian evidence framework was utilised in deriving MAP parameters and perform-
ing model order selection. Depending on the particular application, suitable gaussian
priors were utilised with the aim of achieving a better parameterisation of speech. The
linear prediction estimates were subsequently used in two applications, formant tracking
and analysis-synthesis.

Formant tracking was performed by peak-picking on the linear prediction spectra. The
usage of gaussian priors, with distinct variances, on the parameters, was found to result
in spectra which are more representative of the speech segments under consideration. As
such, the formant estimates depicted a more accurate representation of the true variation
of formants in the signals that were investigated. Zero mean gaussian priors were used
in order to exploit the redundancies that are present within a synthetic autoregressive
waveform. On the other hand, non-zero mean gaussians were used in order to encourage
parameter smoothness in going from one frame to the next.

For the analysis-synthesis application, zero mean gaussians with a single variance were
used in the parameter estimation process. For each speech frame, an ensemble of linear
prediction models were evaluated and the model with highest evidence was utilised in the
synthesis stage. The performance of the resulting variable-order synthesiser was compared
to a fixed order synthesiser which uses ML parameter estimates. The total number of
parameters for the fixed order synthesiser was kept the same as for the variable order
synthesiser. The quality of synthesised speech, in comparison to original versions was
assessed by subjects whose judgements preferred the variable rate synthesiser on 90 %
of the occasions. This result should pave the way to the use of MAP parameters in the
design of low bit-rate variable speech coders.

In general, it was found that the choice of priors is a critical factor in the derivation
of suitable MAP parameters. The parameter estimation process used achieves a proper
balance in determining the relative importance of the prior with respect to the data. To
this end, a useful insight into the relevance of the priors was gained as a result of the
optimisation of the hyper-parameters, (¥). Future work will explore the marginalisation
of the hyper-parameters, as opposed to their optimisation, and the effect on the MAP
parameter estimates. This should also allow the freedom of using priors which are other
than gaussian in the parameter estimation process. The direct application of continuity
constraints in the frequency domain will also be investigated, and the effect on formant
tracking assessed.
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