Corpus-based dialogue simulation for automatic strategy learning
and evaluation

Konrad Scheffler and Steve Young
Department of Engineering, Cambridge University, Cambridge, UK
email: khs22 sjyQcam.ac.uk

Abstract

This paper describes a method for simulating mixed
initiative human-machine dialogues using data col-
lected by a prototype dialogue system. The be-
haviour of the user population is modelled proba-
bilistically using an explicit representation of user
state. Recognition and understanding errors are al-
so modelled. The simulation can be used for evalu-
ation of competing strategies, as well as automatic
learning of dialogue strategies.

1 Introduction

1.1 Approaches to automatic strategy
learning

Automatic design of dialogue strategy by reinforce-
ment learning has been proposed by several authors.
There are two types of model that can be used for
this purpose. The first (as used by Singh et al.
(1999; 2000) and Roy et al. (2000)) is a model of
dialogue state transitions, which can be estimated
directly from a corpus in which these transitions
have been logged. The model is then used with a
model-based reinforcement learning algorithm such
as dynamic programming to find the optimal policy.

An alternative approach (taken here, and also by
Eckert, Levin and Pieraccini (Eckert et al., 1997;
Levin et al., 1998), and Goddeau and Pineau (2000))
is to use a model of the user behaviour and sys-
tem recognition performance to generate training
episodes by simulation. The optimal policy is then
found using a simulation-based reinforcement learn-
ing algorithm such as Q-learning.

In the case of the model-based approach, the di-
alogue state transitions have to be logged (ideally
during data collection), which means that the sys-
tem state representation must be fixed at an early
stage. For the simulation-based approach, on the
other hand, the system state representation need n-
ever be fixed. Thus if the chosen system state repre-
sentation proves problematic during training, it can
be changed and the system retrained without having
to change the data set, data transcriptions or user
model. This flexibility, which allows the utilization
of general data corpora that were collected prior to

the research described here, is our main motivation
for adopting the simulation-based approach.

1.2 Dialogue simulation

User simulations previously used for this purpose
have been very simplistic (eg. dialogues are mod-
elled using an utterance bigram model (Eckert et
al., 1997; Eckert et al., 1998), without explicit er-
ror modelling or constraints to ensure user consis-
tency), making them insufficient for use with most
real applications. We therefore developed a more
sophisticated system to simulate cooperative, task
oriented human-machine dialogues, in order to serve
as a tool for automatic evaluation and reinforcement
learning design of dialogue systems (an initial ver-
sion of this work is described in (Scheffler and Young,
1999; Scheffler and Young, 2000)).

The method is based on probabilistic modelling
of both user behaviour and system errors, with the
models being constructed using data collected by a
prototype dialogue system and making use of an ex-
plicit model of user state. While the simulation sys-
tem was developed in the context of a specific ap-
plication, care was taken to ensure that it is domain
independent. The results presented in this paper
were produced on a different application from the
one on which the original version of the system was
developed.

1.3 Overview

Section 2 presents a brief summary of the most im-
portant points of the system, in particular the mod-
elling of user state, some aspects regarding the rep-
resentation of intentions, and the process by which
user utterances are simulated by traversing a lattice
of intentions. Next, section 3 discusses the train-
ing of the model. Finally, section 4 presents some
experimental results according to which the system
performance can be judged and draws some conclu-
sions.

2 Approach to simulation
2.1 Goal directed user model

Our previous work on user modelling (Scheffler and
Young, 2000) indicated that it is useful to adopt a

Goal field Value Status
Type: FILMLIST specified
Instructions: NA -

Town: NA -

Film: NA NA
Cinema: GOODCINEMA || urgent
Day: GOODDAY pending

Figure 1: Example of a user goal and associated
status variables in the cinema application.

goal directed approach, forcing simulated user ac-
tions to be consistent with one another throughout
the course of the dialogue. This is in contrast to
earlier approaches that modelled user utterances us-
ing either a deterministic rule-based approach, or an
utterance bigram with no constraints to ensure user
consistency. Here we extend our approach by mod-
elling the user state explicitly and in more detail.

A user goal can be defined as a specification of the
particular dialogue transaction that the user wants
to complete. The goal directed user model is then
built on the central assumption that the user always
attempts to act in accordance with some goal, which
remains fixed until it has been completed. Any devi-
ations from such behaviour are viewed as errors in
formulation, which are modelled probabilistically by
the error generation module.

The goal is a simple attribute-value structure con-
sisting of a number of goal fields, each of which
can either be uninstantiated, or take one of a field-
specific set of values. In addition to these values,
which remain fixed until completion of the goal, each
attribute may be associated with a status variable
that tracks the state of each goal field from the user’s
point of view. A goal field may be pending (the val-
ue has yet to be specified), specified (the value has
already been specified and should not be repeated),
urgent (the value has high priority to be specified,
usually because the dialogue system is believed to
have made an error on this field) or not applicable
(not to be specified at any point in the current trans-
action).

Figure 1 shows an example of a goal structure for
a cinema information system. In this example, the
user is trying to accomplish a “Film listing” goal, to
find out which films are showing at a particular cine-
ma on a particular day. The “Instructions”, “Town”,
and “Film” fields are used for other goal types, but
are not applicable for this type, while the values
of the “Type”, “Cinema” and “Day” fields need to
be specified. Field values prefixed by “GOOD” or
“BAD” denote respectively the correctly and incor-
rectly recognised versions of content intentions (see
section 2.2). The “Instructions” and “Town” fields
are not associated with status variables, since in this

application they are always prompted for explicitly
and in isolation. The other status variables indi-
cate that, at this point in the dialogue, the user has
already specified the goal type (and believes the sys-
tem to have understood it correctly), needs to speci-
fy the cinema name with increased urgency (possibly
it has been detected from a system prompt that the
system has misrecognised the cinema name), and has
yet to specify the day.

The full description of user state used in the model
comprises the following:

e The current contents of the user goal

e The status variables associated with the goal
fields.

e Secondary goal structures representing the user
beliefs on the current system goal and the newly
completed goal (if any).

e Any necessary application specific variables de-
scribing items such as the type (eg. direct ques-
tion) of the previous prompt.

2.2 Intention language

An intention can be defined as the minimum piece
of information that can be conveyed independently
within a given application, and represents the lowest
level of information we deal with in our simulations.
Apart from intentions that correspond directly to
specific semantic tags in the application, the follow-
ing are often useful to define:

2.2.1

Many semantic tags such as “Monday” contain some
information (the particular day referred to) that,
while necessary to be communicated correctly, is not
conceptually relevant to the action of the dialogue
system. Thus, while it is important whether or not
the content of the tag is recognised correctly, it may
not be relevant for the purpose of simulation whether
a correctly recognised day is Monday or Tuesday.

For cases such as this, it makes sense to replace the
full set of possible tags (a different one for each day
of the week) with only two intentions: one for the
correct and one for some incorrect value. We refer
to these as “content intentions”, to indicate that the
intention implies some further information content
that is known but not encoded.

2.2.2 Null intentions

A null intention is one that indicates the absence
of some intention that might have been specified in
an utterance. For example, it may be of interest
whether, after specifying a cinema name, the user
goes on to specify a day in the same utterance. The
absence of a day intention in an utterance can be
detected and marked by adding a “day-null” inten-
tion to the representation of the utterance. Using

Content intentions

) Probabilistic choice point

) Deter ministic choice point

O Intention

D Statusvariable

Figure 2: Example of a lattice segment used for ut-
terance generation.

such null intentions removes the need to model inser-
tion and deletion errors during recognition explicitly,
since these just become special cases of substitution
errors, where the substitution involves a null inten-
tion.

2.2.3 Mumble intention

One of the most common types of utterance in
human-machine dialogue is (unfortunately) the case
where the user says something that is completely
unintelligible to the machine, often because it is not
part of the system vocabulary. This case is repre-
sented by the “mumble” intention: it is useful to
model explicitly because of the large number of sub-
stitutions in which it plays a role.

2.3 Utterance generation lattices

A dialogue simulation is performed by simply run-
ning a modified version of the dialogue system soft-
ware, with the input/output functions overridden by
user modelling software. The process of generat-
ing a user utterance is similar to that described in
(Scheffler and Young, 2000). The main structural
component of the user model is a set of lattices used
for utterance generation. These are derived from
the grammars used by the recognition engine, with
the difference that the lattice edges are associated
with intentions rather than words. Figure 2 illus-
trates a segment of one of the lattices used for the
cinema application, which might generate the utter-
ance “FILMTIME GOODFILM”. This is an inten-
tion level representation of sentences like “Could you
tell me when Star Wars is on?” or “I need the times
for The Matrix”.

2.3.1 Lattice structure

The nodes of the lattice correspond to choice points
(either probabilistic or deterministic) where the user
chooses among the available options. The distinc-
tion between the two types of choice point is anoth-
er difference between the recognition and generation
lattices. This separation between choices that are
deterministic decisions based on the user state and
those that are to be modelled probabilistically, is the
core of the goal-directed user model.

When the lattice is constructed, nodes that have
similar structure (i.e. nodes that give the user the
same options) are grouped together and assigned to
backoff groups. During parameter estimation, nodes
for which data is sparse are backed off to parameters
estimated for the entire backoff group. For example,
the first node in Figure 2 is a probabilistic choice be-
tween specifying the transaction type and omitting
it for the moment. The same choice also occurs in
other lattices (used in different dialogue contexts),
so that multiple instances of it can be grouped to-
gether. If data for this particular choice point is
sparse, we can then use the data collected for the
entire group to find out how users resolved the same
choice in different dialogue contexts.

Some lattice edges are linked to goal field status
variables. This causes the edges to be disallowed or
assigned a priority according to the current status,
and the status to be updated when the edges are
traversed.

2.3.2 Utterance generation

During utterance generation, the lattice is traversed,
with the following steps being carried out for each
node visited:

1. The allowable options (edges) are identified by
consulting the status of associated goal fields.

2. The choice is resolved by selecting one of the
options, either deterministically or probabilis-
tically depending on the type of choice point.
The outcome of a deterministic choice depends
on the current user state (often the action tak-
en is simply to specify the value of a particular
goal field, but sometimes a more complex ap-
plication dependent procedure may be invoked),
while probabilistic choices are resolved using the
probabilities associated with the allowable op-
tions.

3. If the selected option has an intention connected
to it, it is subjected to error generation, during
which the effect of recognition/understanding
errors is modelled by performing a probabilis-
tic substitution on the selected intention. This
may involve jumping to an edge elsewhere in
the lattice.

4. The destination of the edge (possibly changed
by the substitution) is identified as the next
choice point.

Traversal of the lattice continues by processing
each successive node until an exit node is reached.

2.3.3 Example

In the example of Figure 2, we start at the proba-
bilistic choice point on the left. The first option is
associated with the status of the “type” goal field.
Assume that this variable is currently set to “pend-
ing”: in this case all options are allowed and a proba-
bilistic choice is made based on how often users spec-
ified the goal type in this situation in the training
data. Suppose the first option is taken: we set the
“type” status to “specified” and proceed to the next
choice point. This is a deterministic choice governed
by the value of the “type” field in the goal. If this
value is “FILMLIST”, the second option is chosen.
However, this edge has an intention connected to it
which can be misrecognised. Another probabilistic
choice is made based on how often, in this context,
the “FILMLIST” intention is misrecognised as each
of the possible intentions that could have followed
the first choice point (including the “TYPE-NULL”
intention). Suppose we get a misrecognition by gen-
erating a substitution of “FILMTIME” for “FILM-
LIST”. We append the “FILMTIME” intention to
the generated utterance, jump to the choice point
following the “FILMTIME” intention, and continue
from there until the end of the lattice is reached.

3 Training

We now discuss the problem of estimating the vari-
ous parameters from data (the data set used in our
experiments is discussed in section 4.1.2). This is
non-trivial, since we do not have direct knowledge of
either the user or the system state when analysing
dialogue transcriptions. It is important, however, to
model the fact that the user’s actions depend on the
particular circumstances s/he is faced with, which
include not only the system actions, but also the in-
ternal user state. Thus inferring the user state is
essential before parameters describing user actions
can be estimated.

3.1 User state inference
3.1.1 TUser goal

Since the user goal is assumed to be constant until
it is completed, it need only be estimated once for
each subdialogue, where the end of a subdialogue
is marked by the completion of some transaction. It
can then be used while tracking other aspects of user
state from utterance to utterance. Goal inference
is performed by scanning each user utterance in the
subdialogue and finding, for each goal field, the most
recently specified value for that field.

3.1.2 Other user state parameters

The remaining user state variables change through-
out the course of the transaction, and must be kept
updated as the dialogue progresses during parame-
ter estimation. The necessary steps include extract-
ing information from system prompts that have an
impact on user state, adjusting the status variables
as the user specifies goal field values, and running
any application specific procedures that would have
been run during simulation, since these may have
the ability to change the user state.

To take account of the continuity of the user state
in real dialogues, the state is reset only at the s-
tart of a new dialogue and not between successive
transactions in a dialogue. This has the effect of re-
taining contextual information so that the user can
refer to something stated in an earlier transaction of
the same dialogue without explicitly stating it again.

3.2 Parameter estimation

The parameters for the model are in the form of
probabilities or frequency counts from which prob-
abilities can be obtained. In all cases, probabilities
are obtained using simple maximum likelihood:

ent(Event, Context)
ent(Context)

P(Event|Context) = (1)

where cnt(Event, Context) is the counted number
of occurrences of the event in question in a specific
context and cnt(Context) is the counted number of
occurrences of the context irrespective of whether
or not the event occurred. Counts are obtained for
both the exact context and a wider backoff context,
so that the backoff context can be used where data
sparsity occurs.

In order to establish which parameters are to be
updated, both the reference (i.e. actually spoken)
and recognised (i.e. with recognition errors) versions
of each training utterance must be parsed so that the
exact sequence of choice points is known. The path
followed by the reference utterance is then used to
estimate parameters for the user model, while the
error model is obtained from a comparison of the
reference and recognised versions.

3.2.1

Once the required lattice paths have been found,
the lattice is traversed along the reference path, and
the following model updating steps are performed at
each node:

Modelling user actions

e Find out which options had “pending” and “ur-
gent” status.

o If there was an “urgent” option, update the
counts for the urgent probability according to
whether or not the chosen option was urgent.

e Identify the context as the specific node in the
lattice, with the backoff context being the set
of all nodes in the same backoff group.

o If the chosen option was either “pending” or
“urgent”, and at least one alternative was open
to the user (i.e. an unchosen option marked
“urgent” or “pending”), increment the context
occurrence count for all available options and
the event occurrence count for the chosen op-
tion.

Note that if the chosen option was not “urgent”
or “pending”, the user action was not goal directed.
No parameters are updated in this case. Also, auto-
matic choices where the user had no valid alternative
are not counted and context occurrence counts are
not incremented for options that had status settings
making them unavailable.

3.2.2 Error modelling

In addition, the following updating steps are per-
formed at each node where an intention was pro-
duced:

e Find the identical context in the recognition
path through the lattice. Updating is only done
if this context was actually visited in the recog-
nised utterance.

o Content intentions are treated by using separate
intentions for correct and incorrect recognition.
The reference intention is always assumed to be
correct.

o Identify the context choice point: this is the
point in the lattice immediately after the last in-
tention was produced, or the initial choice point
in the lattice if no intentions have yet been pro-
duced. The full context consists of both this
context choice point and the reference intention.
The backoff context is just the reference inten-
tion, with the point in the lattice being ignored.

e Increment the context and event occurrence
counts for intentions as appropriate.

By processing the entire data set in this way,
counts are obtained from which, during simulation,
relative probabilities can be computed for the op-
tions that are available at any particular time. Since
counts have been obtained for both specific and more
general contexts, it is possible to back off to the gen-
eral case whenever the number of training examples
falls below a preset threshold.

4 Experiments
4.1 Experimental setup

The purpose of the experiments reported here is to
ascertain to what extent the simulated dialogues give

an accurate picture of the dialogues produced by re-
al users using the system in the task domain. We
therefore trained a user model on data collected us-
ing an existing dialogue system, and compared the
resulting simulations with real dialogues from the
same system. Unfortunately, comparing the simu-
lation results to real dialogues is problematic due
to the fact that the user goals in spontaneous real
dialogues are unknown.! For this reason, accurate
goal achievement rates cannot be calculated for the
real data, so we cannot therefore evaluate the accu-
racy of the goal achievement rates estimated by the
simulation. Instead, we restrict ourselves to compa-
risons between goal completion times for test data
and simulations.

4.1.1 Application and user goals

The application used for these experiments is a sys-
tem providing cinema information over the tele-
phone. It allows the user a large amount of free-
dom in the way s/he can set about requesting infor-
mation: a large range of syntactical constructs can
be used, giving the user the option of stringing in-
tentions together almost arbitrarily in an utterance.
Also, the options available to the user are not con-
strained severely by the dialogue state, so that user
actions depend more on the state of the user than
that of the system.

The following user goals were defined according to
the functionality offered to the user:

e Instructions: Obtain instructions for using the
system on entering the dialogue.

o Town: Specify the town about which informa-
tion is desired.

e Film times: Find out at what times a specific
film is being shown at a specific cinema on a
specific day.

e Film listing: Find out which films are being
shown at a specific cinema on a specific day.

e Film distribution: Find out at which cinemas a
specific film is being shown on a specific day.

e Cinema address: Find out the address and
booking number for a specific cinema.

e Exit: Close the dialogue by eliciting the exit
message from the system. This involves com-
municating that the user has no further goals.
(All goal fields are uninstantiated). The exit
goal fails if the user fails to communicate this

In general, it is impossible to ascertain which of the
achieved goals in real dialogues are in fact what the user-
s intended and which are the results of misunderstandings.
While this problem can be addressed during data collection
by asking callers to act out specific scenarios, such an ap-
proach has also been found to present problems, particularly
lack of naturalness in the resulting dialogues (Sturm et al.,
1999).

and is forced to hang up without concluding the
conversation politely.

These goals can be combined in sequences to cre-
ate specific scenarios to be simulated. Unfortunate-
ly, the choice of scenario can have a large effect on
goal completion times, and it is not always clear
which scenarios should be chosen.? For instance, the
cinema address goal will usually only be attempted
after the desired cinema name has been mentioned
by either the user or the system while pursuing one
of the other main goal types. This means that the
cinema name need not be respecified by the user,
which shortens the goal completion time. In the ex-
periments reported here, this goal was attempted af-
ter a film listing goal. Other goals were attempted in
isolation, except for the film times goal, for which we
defined two variants: “Film times (1)” attempts the
goal in isolation, while “Film times (2)” attempts it
after successful conclusion of a film listing goal. The
same test data was used for both variants.

4.1.2 Data corpus

The data used for these experiments was collected
by recording trial runs of the cinema information
system, with real users calling in to use the system.
The corpus consists of 911 dialogues with a total of
7409 utterances. Of these dialogues, 134 were failed
conversations where the user did not accomplish any
goals.

The training data are in the form of dialogue tran-
scriptions in the tag-level language of the dialogue
system. Both a hand-transcribed reference version
and the machine-recognised version are available for
each conversation in the data set. The reference
transcriptions have been recognised and parsed by
humans according to the lattice used by the recog-
nition engine.

Because of the high variance of the various goal
completion times over the corpus, it is undesirable
to use a small proportion of the data as a test set.
To overcome this problem, the data was partitioned
into 10 sections, each of which was used as a test set
while the remaining 9 were used for training. The
results over all 10 such runs are combined to obtain
a better picture of system performance.

4.1.3 Discussion

There are a number of reasons why the results of
such comparisons can only be expected to give a
rough indication of the system performance. The
most important of these is the low level of reliability
of the figures obtained by analysis of the real data.
This analysis assumes, for instance, that goal com-
pletion times are independent of whether the goal is

2Since the corresponding scenarios for real users in the test
data are unknown, we are forced to assume that the trans-
action performance in the scenarios chosen for simulation is
representative of that in the entire set of possible scenarios.

achieved correctly or not. It also neglects the effect
of goals being attempted in different dialogue con-
texts (different scenarios), while the proper scenar-
ios to be used for simulation purposes are unknown.
Further, since the corpus is limited in size, it is also
very sensitive to outliers in the data caused by in-
dividual callers who may be experimenting with or
testing the system rather than using it in the normal
fashion. It is important, therefore, that the mea-
sured goal completion times should not be expect-
ed to give more than a relative indication of how
the times for different goal types compare with each
other.

4.2 Simulation results and conclusions

6
Hl Simulated dialogues
[] Test dialogues

5 |-

Al - -

12}
£
2
= 3r
5]
z
2F 5 §
- N = —_
%] 1] 'g % 2
- c
o o = = < o
1+ E E Kz 2 © 5
+ + - [a) e S
o =
= A B W R
ir [[[(@] £
0
Goal Type

Figure 3: Average goal completion times (number of
turns) for different goal types in simulated and test
dialogues.

The simulation system implemented for the cin-
ema application has 135 probabilistic choice points
and 653 substitution contexts for which a total of 326
choice probabilities and 3069 substitution probabili-
ties (many of them backed off to more general cases)
are estimated respectively. The system was trained
on each of the training sets, and used to simulate
1000 dialogues. The average goal completion times
for both the simulation system and the test data are
shown in figure 3, for the various goal types.

From these results it is clear that there is some a-
greement between the simulations and the test data,
but the simulations fail to predict the actual dura-
tions accurately. A very good agreement is observed
for the simple goals: each of “Instructions”, “Town”
and “Exit” involve communicating the contents of
only one goal field to the system (for the “Town”
goal a confirmation is done, which accounts for the
extra transaction length). The other goals are more

complex, involving communication of various com-
binations of goal fields, with the time taken to com-
plete the goal in both the simulations and the real
data roughly correlating with the amount of infor-
mation that needs to be communicated. These goals
prove considerably more difficult to simulate accu-
rately. We observe that they take consistently longer
to accomplish in the simulations than in the real di-
alogues. Perhaps the most important factor influ-
encing this is the fact that goals can be attempted
in different contexts. The effect of varying the con-
text is illustrated by the difference in performance
for the two film times goals: the version where an
arbitrary context is assumed (Film times (2)) agrees
substantially better with the test data than the ini-
tial version where no context is used. In general, the
effect of discarding inter-goal context in this appli-
cation is to increase the predicted goal achievement
time.

The fact that the model is sensitive to variationsin
the input data encourages the use of different model-
s for different user populations (such as experienced
users and complete novices) where separate data is
available. This would allow a dialogue system to be
optimised for different types of users, or user pop-
ulations consisting of combinations of the different
user types. It also opens the possibility for designing
adaptive systems that estimate user expertise online
and adapt their strategy accordingly.

It is important to note that, in spite of the discrep-
ancies between the real and simulated dialogues, the
simulations do manage to recognise the relative dif-
ferences between the different goal complexities and
thus predict their relative completion times. For the
purpose of relative evaluation of dialogue strategies,
the simulations should thus be sufficient even if it is
not advisable to rely on the prediction of dialogue
duration as an absolute measure.

5 Summary

The problem addressed in this paper is the devel-
opment of a simulation system for human-machine
dialogues, and in particular the modelling of user
actions and speech recognition performance.

Our approach to the problem of user modelling
is based on the assumption that the user acts in
a consistent and goal directed fashion, and a de-
tailed model of the internal user state. In addition,
we incorporate a context specific model of recogni-
tion and understanding errors, leading to a system
that is capable of producing realistic looking simu-
lations of dialogues with complex structure. The
performance of the simulation system was evaluated
by means of comparative experiments on real data,
which demonstrated that it simulates different sce-
narios well enough to perform relative predictions of
their durations.

The system can be used for automatic design or
evaluation of dialogue strategies. We are currently
investigating its application to training a real dia-
logue application using reinforcement learning.

References

W. Eckert, E. Levin, and R. Pieraccini. 1997. User
modelling for spoken dialogue system evaluation.
Proc. IEEE ASR Workshop.

W. Eckert, E. Levin, and R. Pieraccini. 1998.
Automatic evaluation of spoken dialogue sys-
tems. Technical Report TR98.9.1, AT&T Labs
Research.

D. Goddeau and J. Pineau. 2000. Fast reinforce-
ment learning of dialog strategies. Proc. I[CASSP.

E. Levin, R. Pieraccini, and W. Eckert. 1998. Us-
ing markov decision process for learning dialogue
strategies. Proc. ICASSP.

N. Roy, J. Pineau, and S. Thrun. 2000. Spoken di-
alogue management using probabilistic reasoning.
Proc. Association for Computational Linguistics.

K. Scheffler and S.J. Young. 1999. Simulation
of human-machine dialogues. Technical Report
CUED/F-INFENG/TR 355, Cambridge Univer-
sity Engineering Dept.

K. Scheffler and S.J. Young. 2000. Probabilistic
simulation of human-machine dialogues. Proc.
ICASSP, pages 1217-1220.

S. Singh, M. Kearns, D. Litman, and M. Walker.
1999. Reinforcement learning for spoken dialogue
systems. Proc. NIPS.

S. Singh, M. Kearns, D. Litman, and M. Walk-
er. 2000. Empirical evaluation of a reinforcement
learning spoken dialogue system. Proc. AAAL

J. Sturm, E. den Os, and L. Boves. 1999. Issues
in spoken dialogue systems: Experiences with the
dutch arise system. ESCA Workshop on Interac-
tive Dialogue in Multi-Modal Systems, pages 1-4.

