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Abstract

Studies in the psychology of reading indicate
that reading probably involves recognising fealures
which are present in letters, such as loops, turns
and straight strokes. If this is the case it is likely
that recognising these features will be a useful
technique for the machine recognition of cursive
script. This paper describes a new method of de-
tecting the presence of these features in a cursive
handwritten word. The method uses constrained
snakes which adapt to fit the mazima in the dis-
tance transform of a word image while retaining
their basic shape. When the snake has settled into
a potential minimum, its goodness-of-fit is used to
determine whether a match has been found. The
features located by this method are passed on to a
‘neural’ network recogniser. Framples of the fea-
tures recognised are shown and results Zfor word
recognition for this method, on a single-author
database of scanned data with 825 word vocabu-
lary are presented. These are followed by a con-
clusion and pointers to further work.

1 Introduction

Examining works on the psychology of read-
ing and studies into handwriting recognition leads
us to see that people probably recognise certain
features in printeg or handwritten words, and
it is largely from these features that the words
are identified [6,11]. These features might in-
clude vertical strokes, turns, crossbars, hooks and
loops, though exactly which are used in human
perception is unknown. If the human recognition
system uses them, it is likely to be these features
which are preserved in handwriting — since the
intention is to convey information as clearly as
possible. Thus, although there is much random
and personal variation in handwriting, we could
expect the features which are important to recog-
nition to be well preserved in writing and thus to

rovide useful invariants for a machine to use for
andwriting recognition.

Several researchers have written computer
handwriting readers which recognise such fea-
tures [1,2], but the problem of identifying them
off-line has not been satisfactorily solved. This
paper describes an alternative process for finding
these features in cursive script so that they can

be passed on to a recogniser in the form of an er-
ror propagation network which has already been
developed to recognise handwriting coded as line
segment information [12]. This line segment in-
formation might be considered to correspond to
the information available from Hubel and Wiesel
cells in the visual cortex since it codes rough po-
sition and angle information for short line fléa—
tures in the image and this new method might be
thought of as a higher-level, less local representa-
tion.

The method chosen for identifying the higher-
level features in this paper is ‘snakes’ — the ac-
tive contour models proposed by Kass, Witkin
and Terzopoulos [8]. These are described in the
next section, followed by a description of the Prin-
cipal Component Analysis method used to con-
strain the snakes to match particular features and
an introduction to the overall recognition system
which is described in more detail elsewhere [12].
Some examples of the features recognised by this
method are shown, and future developments of
the method are discussed. The complete system
is able to identify features of a variety of types,
despite distortions and a controlled amount of
translation. Each feature is defined by the pre-
sentation of a small number of training examples
and avoids the need to write rules describing fea-
ture appearances.

2 Snakes

Snakes are deformable splines (smooth curves)

laced in a potential field which translate and de-
orm to reduce their potential energy. Tradition-
ally they have been used to find edges in grey
level images, by according low potentials to ar-
eas of high contrast so that the snake seeks to
match its contours to high contrast edges. We
now describe in more detail the working of the
snake models.

The shapes of the snakes are governed by cubic
B-splines [10] like those of Cipolla and Blake [3].
A series of control points {p,: 1=0,...,N — 1}
is in a two-dimensional plane and the actual
spline path generated is an interpolation of these
points, each point x(s), s € [0,N — 1] on the
path being a weighted sum of the nearest control



points’ positions. B(s) is a polynomial function
which determines how much weight is given to
each control point.
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The spline shown in figure 1 has the minimum
four control points. For more complex shapes,
more control points can be added, but each point
on the curve is only determined by the four near-
est control points. The weighting polynomials
ensure continuity and smoothness (C*). The B-
spline is forced to terminate at the end control
points by generatin(f; a ‘I])hantom’ control point
P_1 = 2p, — Py, and similarly for py.

Given the positions of the control points we
can now place the snake on an image and must
determine how it moves upon that image. Typi-
cally we will define a potential function — f(z,y)
on the pixels {(z, y) } where we want to match the
snake to curves of high values in f. f might be
intensity I, contrast | VI |? or, as in our case,
the distance transform D(z,y) where D is the
distance of any pixel to the nearest background
pixel in the image, zero if the pixel is itself part
of the background. Here the city-block metric
D =| Az | + | Ay | has been used for simplicity
of computation.

The spline curves are sampled at points s; and
from each sample point, the normal to the curve
is searched for the minimum of the potential func-
tion — f within a certain distance on either side.
The displacement of the minimum is recorded for
each sampling point, and these displacements are
then added to the control points to move the
snake towards the local maxima. Since each sam-
ple point is a weighted sum of the nearest four
control points:

z(sk) = B(sk +2)p; + B(sk + 1)piyy + B(sk)Piys
+ B(sk — 1)pjy3 when 1 <5, <2, (3)

the displacement d(s) is distributed among these
control points:

P+ 1) = pu0) + - 3" Blss +2 - )d(ss) (4)

where there are M samples per unit in s. The new
control points define a spline which lies closer to
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Figure 1: A snake with four control points and
the distance transform along a normal.

the lines of local maxima, and by a few iterations,
a good match will be found if one is present in the
search area around the snake’s initial position.
As defined above, these snakes do not serve our
ﬁurpose of feature recognition. They are very
exible, so any snake can adapt to fit a wide
range of feature shapes, even collapsing to a point
in some potential wells. To compensate for this,
Kass, Witkin and Terzopoulos define an internal
energy based on the integral of first and second
derivatives along the sna%(es length, to penalise
high curvature. Also, they are only able to find
local features, whereas we need to find all occur-
rences of a feature in each word image. These two
problems are tackled in the next two sections.

3 Point distribution models & con-

straints
Cootes & Taylor [4] describe ‘Point Distribu-
tion Models’ which they use as shape descriptors
for various objects such as hearts in magnetic res-
onance images and resistors on images of circuit
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Figure 2: Snake models for u and o features showing the major mode of variation.

boards. A PDM is the covariance matrix of vari-
ation in the x and y coordinates of vertices of
straight-line, snake-like models. In the examples
they give, these points were placed by hand. If
we place a fixed number n of points at important
points (say inflections or points of high curvature)
on a set of images of a particular object which we
wish to model, after normalisation (subtracting
the centroid and perhaps transforming to a fixed
orientation and scale) we can calculate the covari-
ance of the points in a 2n X 2n matrix and accu-
mulate these covariances across a series of images.
With these statistics, we can perform Principal
Component Analysis to determine the modes of
variation in the system. This is carried out b
diagonalisation of the covariance matrix. Eac
eigenvector shows a correlation in the variation of
the point coordinates — a ‘mode’ of variation in
which the points concerned have linearly related
displacements. The eigenvalues give the extent
of variation in the direction of the corresponding
eigenvector, so the largest eigenvalue’s eigenvec-
tor captures most of the variation in the model
shape. These modes are strikingly demonstrated
in Cootes, Taylor, Cooper & (%raham’s resistor
model [5] where the first few modes correspond
to natural physical parameters such as the posi-
tion of the resistor on its wire, the bend of the
wire, and the shape of the resistor body. Figure 2
shows the major modes of variation of two feature
models.

Having determined these modes of variation,
we can use them to constrain the variation of a
snake. Having worked out the new position of
a snake with no constraints, by the techniques
of section 2, we can subtract the centroid of the
model from the new control point coordinate vec-
tor. Transforming this difference into the coordi-
nate {rame of the principal components gives the
deviation from the mean in each direction. Us-

ing the Mahalanobis distance d*(v) = 3, 3+ we
can work out how much the snake deviates from
the model. This distance scales down variation
along the principal axes, giving a measure of how
many standard deviations the snake lies from the
mean, assuming that deviations of snakes from
the mean are distributed as a Gaussian ellipsoid.
If the distance is too great, we can reduce it by
scaling down all components, and discarding com-
ponents in the directions of little variance. We
then transform back to the original coordinates,
add the centroid on again and have a new snake

which is constrained to have a shape similar to
those observed in the training set.

Work by Lanitis [9] has investigated the use
of these models for whole character recognition
for postcode reading. Here a model 1s pro-
duced for each of 36 alphanumeric characters and
these models are matched to presegmented im-
ages of handwritten characters from a postcode
database. FEach model is compared with each
image, and the best match is chosen. Lanitis
achieved a 80.7% recognition rate on a database
of postcode characters.

4 Combining snakes and PDMs for

feature identification

In this work the ideas of splines and principal
component analysis in the form of point distri-
bution models have been linked together to form
constrained B-spline models of features of hand-
written letters.

We construct a model for each feature which we
wish to recognise. In initial studies these features
have been: ‘n’ hump; ‘u’ trough, which also mod-
els ligatures; ‘7’ stroke (as found in ‘w’ and ‘n’);
‘t’ cross-stroke; ascender; descender and ‘o’ shape.
Each of these features can be modelled by a sin-
%le spline, though other models such as ‘2’ may

e constructed from more than one. The model
contains the mean position of each of the spline
control points, and the permitted relative varia-
tions in these point positions. The preprocessor
determines character size, so the coordinates are
normalised to be independent of the size of writ-
ing.
Initially a seed model is generated by hand
to describe the general characteristics of the fea-
ture:

e the number of points needed to model the

feature;

e its topology (loop or line) and the intercon-
nection of the points (whether they form an
‘x’, whether a loop has a tail or not);

e the position of the feature in a character —
whether the feature is in an ascender or de-
scender or the middle section of lower case
letters.

With a seed model for each of the features, we
now match these models to instances of the fea-
tures in images of handwritten words. Initially
this can be by pointing out feature instances man-
ually, and allowing the seed model to deform from
the mean to match the stroke. When a good



model has been found, this procedure can be au-
tomated so that the features in a word are found
automatically. The automatic feature spotting is
used both to train the models and subsequently
to spot the features used in the recogniser.

In any word, a snake, whose shape is initially
the mean shape for the model, is placed at the
left edge of the word, and permitted to deform to
match the distance transform potential, but with
any deformation being constrained by the meth-
ods of section 3 to lie within & standard deviations
of the mean shape — so the shape will always be
similar to shapes already taken by that feature
before. (For k, a value of 1 has been used here.)
A best match given the constraints is found by it-
erating for a limited number of times or until the
snake ceases to move. Then the degree of match
between the snake and the image is determined.
Should the snake move above or below the band
where it is normally found (for instance ‘¢’ stroke
feature matching the top of an ‘r’) then it is re-
jected automatically.

The degree of match is defined as the sum of
three components — the amount of deformation
measured as before and the sum of the distance
transform along the snake’s length (sampled at a
fixed number of points) plus an extra weight for
all points which lie on the image (have a non-zero
distance transform). The latter weights are di-
vided by the curve length, and matches greater
than a threshold are accepted as valid matches.
(Values for the extra weight and threshold were
empirically determined and are 7 and 10 respec-
tively. The difference is dependent on the values
of the distance transform and hence on the thick-
ness of strokes and scan resolution.) This is in
contrast to the measure of fit used by Lanitis,
who adds two components — one the amount of
data modelled by the snake and a penalty for the
amount of data which the snake fails to model.
This is to prevent, for example, an ‘L’ model
being matched to a ‘B’. If the unmodelled data
were not taken into account, the ‘L’ model might
appear to match the ‘B’ along its whole length.
Since we are only trying to match a small part of
each image at a time, such a measure would be
inappropriate here.

When training, the snake corresponding to any
valid match is allowed to deform without con-
straint so that it conforms exactly to the im-
age shape, and then the point positions are nor-
malised and the covariances are added into that
feature’s model. After each match, the snake is
re-initialised to the mean and displaced to the
right where the procedure is repeated until the
whole word has Eeen searched for that feature.
In this way each feature is matched across the
whole of each word in the training set. Figure 3
shows all the matches for the features used in a
variety of words.

Having built up a library of feature models,
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Figure 3: Different features found automatically
in several words.

with their permitted variations, any word can be
processed to mark the features by the above pro-
cedure. The preprocessing system already used
for our handwriting recogniser (described in [13],
see figure 4) is based on the position of line seg-
ments in the skeletonised word image, so tends to
underplay larger and more complex features such
as loops or strokes which seem to be significant
in rea(ﬁ)ing. The extra information determined by
the snake method is incorporated by flagging the
presence of the particular feature in the frame® in
which it is found, providing an additional set of

arameters at the input to the recurrent network
in figure 4.

The recognition system used for this work is

a recurrent network which estimates character

robabilities for each of the input frames and a
%iterbi decoder which integrates these probabili-
ties across frames to determine the maximum like-
lihood word. This has already proved successful
on a small vocabulary task [12,13], but it is with
the aim of improving performance on a larger vo-
cabulary and with more than one writer that this
feature-spotting technique has been added.

All the data is part of a single-author cursive
script database collected by the authors. The
database consists of 2000 word-images from an
825 word vocabulary, divided into training, vali-

LA frame is a vertical section through a word and is used to
generate the inputs to the recogniser for one time-step.
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Figure 4: Schematic of the recognition system described in [12] showing the snake fitting modules.

dation and test sets. The original text is from the
LOB [7] corpus of texts from newspapers. The
images are scanned at 300dpi in 8 bits.

5 Results

The recogniser has been tested with the orig-
inal preprocessing scheme, containing just skele-
ton information, and then again with the addi-
tional, snake-based feature spotting. This was
found to reduce the errors by ten percent, giving
a final accuracy of 78.7% words correct.

6 Conclusion

This paper has described work carried out on
the appﬁcation of constrained snake models to
feature extraction for handwriting recognition,
and has shown that snakes can be used to locate
features which are useful to a recognition system
identifying words. Most occurrences of the fea-
tures are found, with few false alarms and the
need for writing complex rules which may be scale
dependent have been avoided. The feature spot-
ting can be seen from the results to give improved
recognition with an existing recogniser. Further
work will investigate the use of whole-character
models, both as part of the existing recogniser
and as a separate technique, and app%y the tech-
niques discussed here to a multi-author database.
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