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Abstract

A system of computer assisted grammar construction (CAGC) is presented in this
paper. The CAGC system is designed to generate broad-coverage grammars for
large natural language corpora by utilizing both an extended inside-outside algo-
rithm [Pereira and Schabes, 1992] and an automatic phrase bracketing (AUTO) sys-
tem which is designed to provide the extended algorithm with constituent information
during learning. This paper demonstrates the capability of the CAGC system to deal
with realistic natural language problems and the usefulness of the AUTO system in
the inside-outside based grammar re-estimation. Performance results including the
proportion of sentences parsed and precision are presented for a grammar constructed

for the Wall Street Journal (WSJ) corpus.
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1 Introduction

In natural language processing (NLP), a grammar is often required for a new corpus.
The conventional way of generating a new grammar is to ask linguists to design a set
of production rules by hand parsing the text corpus. However, to develop a useful
grammar which covers the whole corpus is almost impossible, unless the size of the
corpus is small. Additionally, a grammar is usually developed under the assumption
that the sentences in the corpus are well-formed, but this is not true for most naturally-
occurring corpora. Because of these factors, only limited coverage can be achieved by
a hand-written grammar. Furthermore, as more sentences are added to the corpus,
re-tuning the grammar becomes necessary to maintain coverage. This is usually done
by asking linguists to re-write some of the production rules and probably add new
ones. Development and later modification of a grammar by these means are labour
intensive, time consuming and often introduce unwanted rule interactions.

To overcome these problems, automatic algorithms are needed to infer a gram-
mar for a given corpus. Techniques for grammar inference (GI) [Fu and Booth, 1986a]
[Fu and Booth, 1986b] [Lucas, 1993] can be used to replace or augment the conven-
tional manual grammar construction. Given a set of data (training set), the aim of
GI is to estimate or infer a grammar G such that the language L(G) generated by G
not only includes all sentences in the training set but more importantly generalises
unseen members of L(G). Several algorithms have been explored for this purpose, for
example, genetic algorithms [Wyard, 1993], the error correcting grammar inference
(ECGI) algorithm [Rulot et al., 1989] and the inside-outside algorithm [Baker, 1979].

The inside-outside algorithm was first proposed by Baker [Baker, 1979]. The algo-
rithm is a version of the Baum-Welch re-estimation algorithm [Baum, 1972] designed
to operate on stochastic context-free grammars (SCFGs) in Chomsky Normal Form
(CNF) [Chomsky, 1957]. Investigations into the properties and applications of this al-
gorithm have been published by a number of researchers [Jelinek, 1985] [Dodd, 1989]
[Lari and Young, 1990] [Carroll and Charniak, 1992]. The algorithm was further ex-
tended by [Schabes, 1992] [Kupiec, 1992] and [Waegner, 1993] in order to handle non-
CNF CFGs, which permits a more linguistically plausible representation of natural
language.

In the inside-outside algorithm, there are two approaches for GI, namely explicit
and implicit. The explicit approach is to manually produce a set of production rules for
a language corpus and then use the inside-outside algorithm to estimate the required
rule probabilities. The implicit approach starts with a grammar containing all possible
rules, given a set of non-terminals and (pre)terminals. The grammar is then trained
on a large training corpus, in the hope that the learning process will converge to a
linguistically-motivated grammar which fits the training corpus.

However, two inherent problems of the inside-outside algorithm inhibit its practical
application in NLP. Firstly, the algorithm has a high complexity of O(n®>m?), where
n is the length of sentences and m is the number of non-terminals in the grammar.
With a complexity of O(n®m?), only inference of simple toy grammars is practicable
if all the possible rules are allowed in the learning process as in the implicit approach.
Secondly, the algorithm does not guarantee convergence on a linguistically-motivated
maximum. As the number of non-terminals increases, the convergence property of the
algorithm degrades due to the insufliciency of data. It becomes clear that the raw
training text corpus from which the grammar is trained provides insufficient linguistic
information.

To overcome these two key problems, a hybrid method integrating the explicit
and implicit approaches is necessary. The hybrid method integrates a core grammar



and a set of constrained implicit rules to reduce the size of the rule set as well as
to give better bootstrapping in the learning process. Further improvement can be
obtained by utilizing phrase bracketing information during training as proposed in
[Pereira and Schabes, 1992] [Black et al., 1992]. In this approach, the inside-outside
algorithm considers only those rules whose spans are compatible with the a prior:
bracketings derived for the training set. This significantly speeds up the learning pro-
cess and also provides a tighter link between the hierarchical structure of the inferred
grammar and that of the training set, promoting to convergence onto a linguistically-
motivated set of rules.

This paper describes a complete system for computer assisted grammar construc-
tion (CAGC). It includes a new algorithm for automatic phrase bracketing and an
evaluation of its usefulness within the context of grammar inference using the inside-
outside algorithm. It also demonstrates that inside-outside based inference can be
extended to deal with realistic problems using only tagged text data for training. It
concludes with an experimental evaluation using a subset of the Wall Street Journal
(WSJ) text corpus.

2 Overview of the CAGC system

The CAGC system is designed to infer linguistically-motivated SCFGs with broad-
coverage for large corpora. The system takes advantages of both heuristic and stochas-
tic approaches. Heuristic knowledge provides powerful and important constraints to
the system, whereas stochastic information deals with situations which are too com-
plex or too trivial for heuristic rules to handle. A block diagram of the system is
shown in Figure 1. The first part of the system falls into two stages: construction of
an initial SCFG and phrase-bracketing of the raw text data. In the second part of the
system, a grammar is inferred by utilizing the inside-outside algorithm to re-estimate
the initial SCFG from the bracketed text data.

The initial SCFG is derived from the core grammar (explicit part) and a set of
CF rules (implicit part). The explicit part was manually developed using a grammar
development environment tool (GDE) [Briscoe et al., 1987] to form a skeleton of the
SCFG. The implicit part consists of all possible rules which do not appear in the
core grammar but which are nevertheless linguistically plausible. This is done by
filtering all possible rule forms using constraints which enforce structural features
such as headedness [Briscoe and Waegner, 1993] [Jackendoff, 1977]. The explicit and
implicit rules are then integrated into a hybrid SCFG along with an appropriate set
of initial probabilities. In order to bias the learning process towards a linguistically-
motivated optimum, the explicit rules are given higher initial probabilities whereas
the implicit rules are assigned low probabilities to start with. Details of the grammar
development and the calculation of the initial probabilities are described in Section 3.

In order to convert the raw text data into a constituent-rich training set, the
AUTO system is designed to generate phrase bracketing information. The AUTO sys-
tem utilizes heuristic knowledge to bracket the raw text data in a fashion of integrating
top-down and bottom-up approaches. The training set with derived constituent in-
formation provides the additional constraints to the grammar re-estimation process
in the second part of the CAGC system. The detailed bracketing algorithm and its
justification are given later in Section 4.

In the second part of the CAGC system, the inside-outside inference procedure,
incorporating a bottom-up chart parser [Gazdar and Mellish, 1989], iteratively re-
estimates the probabilities of the production rules. The updated probabilities are



calculated according to the weighted frequency counts of the rules used in parses li-
censed by the grammar and generated at the previous iteration. At the end of each
iteration, the rules with probabilities falling below a pre-defined threshold are dis-
carded. This reduces the size of the inferred grammar and the computational expense
of estimation. The re-estimation process continues until either the change in the total
log probability (sum of log probabilities of all possible parses generated for all the
training data) between iterations is less than a minimum or the number of iterations
reaches a maximum (set to 10). Both limiting values and the rule elimination threshold
were determined empirically in the system development. The final inferred grammar
is generated when either criteria is met.

[ Raw Text Data }

[ Core Grammar} [ Implicit Rules } \L

\L \L Automatic Phrase Bracketing System
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Hybrid SCFG with

Initial Probabilities

L Bracketed training Data }

/
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Figure 1: A Block Diagram of the CAGC System



3 Grammatical Inference

3.1 Extended Inside-Outside Algorithm

The original inside-outside algorithm was extended to take into account constituent in-
formation in a phrase-bracketed training set [Pereira and Schabes, 1992] [Black et al., 1992].
Given a series of observations (terminals) O = 01,04, ...,Or the extended learning
procedure considers only a rule i whose span Oy, ..., O; is compatible with the a prior:
bracketing of the observations. This constraint was implemented by a boolean function

A(s,t):

1 if (s,t) compatible with the a priori bracketing

A(s,t) = .
0 otherwise

The compatibility of two spans of the observations is defined as follows: given two

spans (s,t) and (p,q), where (s,t) = Oy, ...,O¢ and (p,q) = Oy, ..., Oy, (s,t) and (p,q)

are incompatible if they overlap in a situation, where either Oy, ..,0,,.., Oy, ..,O, or

Op, .., Os,..,04,..0y where p < t, s < ¢, s #t and p # ¢. For example, a bracketed
training sentence with word indices:

( (They applessz) ( (ares) (ripes) ) )

provides a set of five bracketing spans:

B = { (174)7 (172)7 (374)7 (373)7 (4a4) }

The word string ‘apples are’ whose span is (2,3) is not compatible with the brackets
(1,2) and (3,4) in S.

As a result, the normal inside probability e(s,t,i), the probability of i generating
Os, ..., Oy, and the outside probability f(s,t,i), the probability of i being generated and
not involved in the generation of Oy, ...,0s_1 and Oy41, ..., O, are modified as

e"(s,t, i) = A(s,t) e(s,t,i)
[ (syt,0) = A(s,t) f(s,t,1)

Hence, the inside probability ¢’ (s,t,17) is set to zero if the span (s,t) violates any of the
a priori brackets otherwise it is unchanged, and similarly for the outside probability

I (s,t,4).

3.2 Core Grammar Development

A grammar G3 used throughout this work is a modified version of the grammar G2 de-
fined by Briscoe and Waegner [Briscoe and Waegner, 1992]. In stead of lexical entries,
parts-of-speech (POSs) are used in these grammars in order to reduce computational
expense. (3 is a feature-based unification grammar developed using the Grammar
Development Environment (GDE) [Carroll et al., 1991]. The GDE grammars take the
Alvey Natural Language Tools Grammar formalism [Grover et al., 1993], which is sim-
ilar to that of Generalized Phrase Structure Grammar (GPSG) [Gazdar et al., 1985].
In the GPSG's feature theory, each terminal and non-terminal can be viewed as a set
of feature-value pairs. For example, NP (noun phrase) and VP (verb phrase) are two
non-terminals and their corresponding sets of feature-value pairs might be



NP : [N +, V -, PLU +]
VP :[N-, V+, PLU -].

N, V and PLU (plural) are features and their possible values are + and -. [N 4, V -
PLU +] indicates NP is a plural noun phrase such as ‘the apples (DT NNS)’, whereas
[N -, V 4, PLU -] represents a singular verb phrase such as ‘is ripe (BEZ JJ)".

This feature theory is integrated with the operations of unification and propaga-
tion, which are the processes of checking and binding features and their values. For
instance, the rule

§ — NP[PLU @x] VP[PLU @x]

embodies the principle of subject-verb agreement since it states that the values of the
PLU feature in the NP and VP are bound to be the same (@x represents a variable).
Therefore, the sentence ‘The apples is ripe (DT NNS BEZ JJ)’ will fail during the
unification process since the values of their PLU feature are not consistent. The value
of a feature in a daughter node can also be carried up to its parent node. For instance,
the rule

VP[PLU @x] — V1[PLU @x] PP

indicates that V1 passes to its parent VP whatever the value of its PLU feature is.

Table 1 shows the broad characteristics of the G3 grammar. There are a total of
114 feature-based explicit rules using 6 non-terminals(NT) V2, V1, N2, N1, P1 and
Al. There are also 12 pre-terminals(PT) whose main function is to bring the POSs
into the grammar’s formalism. Finally, there are 18 features whose number of values
vary from 2 to 7, but the average number of values per feature is 3.

| Rules | NT | PT | POS | Features | (Average) Values/Feature |
| 114 | 6 | 12 | 62 18 3 |

Table 1: Broad Characteristics of the G3 Grammar

3.3 Implicit Rules Generation

The implicit extension to the G3 grammar was generated by the technique used in
[Briscoe and Waegner, 1993] [Waegner, 1993]. This technique employed four tem-
plates to generate a set of context-free (CF) binary rules

NT — NT NT
NT — PT PT
NT — PT NT
NT — NT PT

where NT € {V2,V1,N2,N1,P1,Al,H2, H1}

and PT € {V0,N0, A0, PO, HO, DET,CSS, PT,CJ,1J,NG,PDET}.

These four templates would generate 3200 CF rules if all possible combinations of NT
and PT were allowed. However, a large proportion of these rules are linguistically
implausible because they violate the constraint that a phrase must have a head, that
is, a NP must contain a noun and a VP must contain a verb, and so forth. These



headedness constraints are therefore used to filter the rules generated by the above
templates.

The full set of headedness constraints are derived from X-Bar Theory [Jackendoff, 1977].
In the theory, most phrasal contituents have heads on which elements of the contituents
are dependent and certain elements of a contituent are more closely related to the head
than the others. This can be explained using the diagram in Figure 2. X is any of the

X2 V2

Modifier X1 Adverb Vi1
T S
X Arguments \% N2

(drop) (the cup)

Figure 2: A Diagram of X-Bar Theory and an Example of Its Use

categories in the grammar, X1 (Bar 1) and X2 (Bar 2) are the phrasal categories. X1
is the mother of X (head) and X’s argument(s); X2 is the mother of X1 (head) and
X1’s modifier(s). In the example, a verb ‘drop” and its N2 argument ‘the cup’ form
the V1, which takes the adverb ‘suddenly’as a modifier to form the V2, a verb phrase.
The headedness constraints ensure that at least one daughter on the right-hand side
of the rule has the same category as its mother and its Bar number is one less than
that of the mother.

After applying the headedness constraints, 234 implicit CF rules remained. In
order to be consistent with the core grammar, this set of the implicit CF rules was
converted to the feature-based formalism by attaching the default features and values
to each rule symbol. The two sets of rules, 114 explicit and 234 implicit, were then
combined to form a hybrid feature-based grammar.

3.4 Hybrid SCFG

To convert the hybrid feature-based grammar into an SCFG, it was necessary to ex-
pand all possible values of every feature in the grammar. The size of the grammar after
expansion depends on the number of features and the number of their corresponding
values. However, in our grammar this expansion makes the size too large to handle
and also reintroduces problems of data insufficiency. Instead, this expansion process
was simplified by not utilizing the NTYPE (types of nouns) feature, which is relatively
less important but tends to have a larger value set than other features. Although this
increases the number of spurious analyses, the reduced size of the grammar makes the
inside-outside re-estimation technique practical. After expansion on the 348 feature-
based rules, a set of 14736 CF rules is generated, which is about 42 times more than
the original set. This expended grammar includes 5949 explicit rules and 8787 implicit
rules. A comparison between the feature-based core grammar and the hybrid SCFG
is shown in Table 2, in terms of the number of rules, non-terminals, pre-terminals and
parts-of-speech.

The initial probabilities of the rules in the SCFG are then calculated in the follow-
ing manner: given a rule subset A, where the rules have the same non-terminals on
the left-hand side (the same parent), the initial probability of each explicit rule (F.)
and implicit rule (P;) is calculated as



Rules | NT | PT | POS
Feature-Based Core Grammar 114 6 12 62
Hybrid SCFG 14736 | 280 | 128 62

Table 2: A Comparison between Feature-Based Core Grammar and Hybrid SCFG

P = (}\#9 and P = (])\71,
where N and M are a total of explicit and implicit rules in A respectively. The weighting
parameters for the explicit and implicit rules were empirically chosen in the grammar
development. The above calculations ensure that the explicit rules get a better start
during training, and also that the initial probabilities of all the rules with the same
parent sum to 1.

4 Automatic Phrase Bracketing System (AUTO)

In the inside-outside based GI, constituent information of the training data pro-
vides a good constraint during the re-estimation process as stated in the introduc-
tion. However, generating a hand-parsed training corpus such as the Penn treebank
[Santorini, 1991] used in [Pereira and Schabes, 1992] is very labour-expensive and this
manual work must be repeated each time a new training corpus is required. In order
to overcome this problem, an automatic algorithm is needed to derive the constituent
information for the training corpus. The AUTO system has been designed for this
purpose. The output of the AUTO bracketing of the corpus is used to assist the
inside-outside based grammar re-estimation in the CAGC system.

The AUTO system is a surface-bracketing technique, which employs heuristic
knowledge about phrase structures of sentences in a language, to group various kinds
of constituents along a tagged sentence. The system applies the heuristic knowledge in
a manner that combines both the top-down and bottom-up approaches. It is observed
that some of the constituent information is easier to capture from a global view (the
top-down approach) such as the subject and predicate relation, whereas other infor-
mation can be identified locally (bottom-up approach) such as a noun phrase starting
with a determiner or a verb phrase beginning with an auxiliary. Because of this, the
AUTO system applies heuristic rules in both a top-down and a bottom-up fashion,
whichever is more appropriate to deal with each type of constituent.

The various types of constituent cannot all be processed independently. Some
larger constituents such as clauses rely on smaller constituents to be formed in ad-
vance. Also, interaction between two different constituents sometimes happen. As a
consequence, the rules used in the AUTO system are applied in a prescribed order
which has been determined empirically. The algorithm of the AUTO system is given
in detail with an example in Section 4.1 and its performance is given in Section 4.2.

Alternative approaches to surface bracketing are based on the statistical proper-
ties of constituent information in sentences . An example of this kind is a constituent
boundary parsing algorithm proposed in [Magerman and Marcus, 1990]. In this algo-
rithm, generalized mutual information (GMI) was used to extract boundary informa-
tion within a limiting window along a tagged sentence.



4.1 Bracketing Algorithm of the AUTO System

The bracketing algorithm of the AUTO system falls into stages: to begin with, the
input (a tagged sentence in the WSJ corpus) is segmented into basic constituents of
sentence structures. The linking of conjuncts is then introduced to construct conjunc-
tion. This bottom-up process creates subtrees on top of the input tags and gives a
better view of the structure of the whole sentence than that which is provided by a
bare input tag sequence. A top-down procedure starts with the whole sentence S and
then finds the key constituents to form the clauses from which a subject and a predi-
cate are bracketed. The flowchart shown in Figure 3 illustrates the processing stages
in this bracketing system. Each stage is described in detail in the following sections.

Input Tagged Sentence

Basic Constituents Basic Constituents o ]
with Distituent Information
Optional & Key Elements Segmentation

Conjunct Linking

Clause Forming

Subject-Predicate
Nomination

Subject
Re-bracketing

Output Bracketed Sentence

Figure 3: Flowchart of the AUTO System

4.1.1 Segmentation of Basic Constituents

As shown in the flowchart, there are two kinds of information needed in order to
segment the input tag sequence into basic constituents. One is the list of labels of



basic constituents and their associated optional and key elements. Basic constituents
are phrases or tags that are the foundation of the sentence phrase structures defined
in the AUTO system. An optional element of a basic constituent is a tag that is not
essential to the basic constituent such as a determiner in a NP, and a key element is
a vital tag (the head) of the basic constituent such a noun in a NP. The second kind
of information is a list of distituents (a pair of tags that cannot be adjacent within a
constituent as defined in [Magerman and Marcus, 1990]). This distituent list provides
information about potential phrase boundaries.

The segmentation starts by matching each adjacent tag pair with the distituent
list along the input sequence. When a potential phrase boundary is detected, the
longest phrase is looked for among the processed tags. The longest phrase would be
the constituent whose vital element(s) is in the proper position (usually at the right
end, but not for all the cases.) For example, in the following NP

thispr childyy discardedypn byrn hisppg parentsyns

there are two distituents, (VBN,IN) and (IN PP$) found in the distituent list. When
the first distituent (VBN,IN) is found, we look for a longest phrase among the data
‘this child discarded’. The word ‘this’ can be a NP itself but ‘this child’is a longer NP.
The tag sequence ‘the child discarded’ cannot be a NP because the tag VBN is not
vital but optional to NPs as in a phrase ‘a discarded child’ and therefore it violates
the principle that the head of NPs should be at the right end. As a result, ‘this child’
is nominated as a NP at this stage.

Once the phrase is selected, the segmentation process resumes at the tag VBN
which is right adjacent to the phrase found. By following this procedure, an input
sentence ‘She told the parents the child discarded by them was adopted by a couple who
lost their son and daughter in a car accident.’ is bracketed as follows:

(S (She) (told) (the parents) (the child) (discarded) (by) (them) (was adopted) (by)
(a couple) (who) (lost) (their son) (and) (daughter) (in) (a car accident) ).

4.1.2 Conjunct Linking

After segmenting the input sentence into basic constituents, the next step is to join the
conjuncts. Conjunction is a long-standing problem in parsing because of the variety of
possible forms. In this system, the following two patterns are employed to deal with
some well-formed conjunction structures:

XX
and
Y.cjY...¢jY...

where X and Y are any basic constituents except for cj, a conjunction.
Pattern matching starts from right to left and finishes when no more patterns can
be found. As a result, the latter half of the example sentence is further bracketed as

(S ..... (a couple) (who) (lost) [ (their son) (and) (daughter) ] (in) (a car accident) ).

10



In order to emphasize the current step in the running example, the newly introduced
constituent(s) at each stage are square-bracketed and in italics. Also, the brackets
generated from the former stages may be omitted in the later stages.

Note that the phrase ‘their son and daughter’ should be precisely bracketed as
(their (son and daughter)) . In other words, the step of conjunct linking in this case
should be taken before the segmentation of basic constituents. However, there is not
sufficient information in a tag sequence to decide which step should be taken first. The
order of rule applications in the current system covers the majority of the cases and
minor errors such as these are ignored.

4.1.3 Clause Forming

To process clauses, the leading constituents of the clauses, namely subordinating con-
junctions (CSs) such as because, wh-adverbs (WHRBs) such as when, and wh-nouns
(WHNPs) such as who, are searched from right to left along the output from the previ-
ous stage. When one of the clause leading constituents is found, the end of the clause
is located in the following manner. For CS-clauses the ending is defined as the end of
the sentence; for WH-clauses the ending is at the constituent just before the second
verb counted from the leading constituent, otherwise it is at the end of the sentence.
This way of finding the ends of the clauses correctly brackets the majority of the cases.
In the running example, a WH-clause starts from the word ‘who’ and ends at the end
of the sentence since there is no second verb.

(S ..... (a couple) [ (who) (lost) (their son and daughter) (in) (a car accident) | ).

There is one auxiliary procedure to further process WH-clauses. WH-clauses are
one type of NP modifiers and are usually referred as relative clauses. A WH-clause
and its associated NP need to be bracketed as a constituent. As a result, the sentence
is further bracketed as

(S ... [ (a couple) (who lost their son and daughter in a car accident) | )

4.1.4 Subject-Predicate Nomination

Nomination of a subject (SUB) and a predicate (PRD) is done within each clause and
the sentence itself. The boundary between them is set at a verb group (VG), one
of the basic constituents. Any constituents before a VG are bracketed as a subject;
constituents starting from the VG to the end of the clause/sentence are bracketed as
a predicate. Within the predicate, an object (OBJ) is formed from the constituent
adjacent to the VG to the end of the clause/sentence. The same procedure recursively
applies to each object until no further VG is found in an object.

In order to make the following example clearer, the labels of SUB, PRD and OBJ
constituents are shown, Also, to distinguish SUBs/PRDs/OBJs at different levels of
the phrase structures, they are indexed according to the depth of the levels at which
they are located. Following the principle of Subject-Predicate nomination, the running
example is first bracketed as

(S [SUBy She] [PRD1 told [OBJy (the parents) (the child) (discarded) (by) (them)
(was adopted) (by) (a couple who ..... in a car accident) | | ).

11



and then the OBJ is recursively bracketed as

(S ... (OB.Jy [SUB; (the parents) (the child) (discarded) (by) (them) | [PRD, (was
adopted) [OB.Jy (by) (a couple who ..... in a car accident) | ) ).

The same principle applies to the WH-clause, which is then bracketed as follows:

S ... (a couple ( [SUBs3 who | [PRDs lost [OB.Js (their son and daughter) (in) (a
car accident) ] ) ) ...).

Once the SUBs, PRD and OBJs are formed, one auxiliary function at this stage is
evoked to process the constituents within the SUBs and OBJs. This function searches
for four categories: gerunds, participles, infinitives and prepositions, from right to left
within a SUB or OBJ. When one of the four categories is found, the category and the
rest of the elements on its right-hand side are bracketed as a constituent. The search
carries on until no more categories are found in the SUB/OBJ.

In the example sentence, the SU By and SU B3 remain unchanged since they do not
contain any of the four categories. In the SUBjy, (the parents) (the child) (discarded)
(by) (them), the preposition by is first found and a preposition phrase is formed as

(S ... (SUB; (the parents) (the child) (discarded) [ (by) (them) ])... ).

Then, the participle discarded is found afterwards and a participle phrase bracketed
as

(S ... (SUB, (the parents) (the child) [ (discarded) (by them) ])... ).

As for the OBJs, the OBJ; remains intact, while OBJ,; and O BJs have preposition
phrases ( (by) (a couple ... ) ) and ( (in) (a car accident) ) respectively.

In order to accommodate certain possible ambiguities, the bracket of an OBJ which
does not contain any VG is undone at the end of this stage. This allows the PRD to
have more than one possible constituent structures later on in the training process. In
the running example, the bracket for O BJ3 is undone and the new PRDs3 is formed
as

(S ...[PRDs lost (their son and daughter) (in (a car accident)) ] ).

Note that the NP (the parents) in the SUB; is in fact another object at the level
1, and should be excluded from the SUB; and moved to the upper level as the other
OBJy. For this kind of situation, the process of re-bracketing the subjects become
necessary.

4.1.5 Subject Re-Bracketing

The procedure of re-bracketing subjects is to locate the most probable subject con-
stituents within a SUB, and nominate the rest of the constituents as an object and
move this object to the upper level. The most probable subject is defined as the last
NP in a SUB. Any constituents before the last NP are bracketed as an OBJ and moved
to the upper level. The NP and whatever follows in the SUB remain as the subject.
According to this principle, (the parents)is moved from SU B; to the level 1 as another
OB.Jy; whereas (SUBy (the child) (discarded by them) ) remains at the level 2.

At the end of this stage, the complete bracketed sentence is generated as follows:
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(S (She)
((told)
(the parents)
(((the child)
((discarded) ((by) (them))))
((was adopted)
((by) ((a couple)
((who)
((lost)
((their son) (and) (daughter))
((in) (a car accident)))))))))).

4.2 Performance

The advantage of using the AUTO system in the CAGC task is that it is automatic
and therefore there is no manual work in bracketing the training data for the extended
inside-outside based grammar learning. Nevertheless, the system has a disadvantage:
because it employs general heuristic rules, it cannot cope with sentences with unusual
structures and which are relatively rare. As a result of this, high bracketing error rates
occasionally occur in some sentences.

To evaluate the accuracy of the AUTO system, both the training and test data
(2021 sentences in total), which were used respectively for the inside-outside learning
process and later for the evaluations of the CAGC system, were bracketed by the
AUTO system and the results were compared with their Penn tree bank counterparts.
The details of these sentences including the average length and their distributions
against the length are given in Section 5.1. Table 3 shows a performance evaluation

of the AUTO system.

Training set | Testing set | Total

Recall 84.51% 85.65% 85.08%

Precision 77.55% 78.33% 77.94%
Crossings 1.12 1.05 1.09

Table 3: Bracketing Accuracy of the AUTO system

Parseval, an evaluation method used in this paper, was developed by the Grammar
Evaluation Interest Group (GEIG) [Black et al., 1991] [Thompson, 1992]. In order to
create a basis for comparison between standard Penn treebank and evaluated parses,
they suggest three preprocessing steps: firstly, erase auxiliaries, “not”, pre-infinitival
“t0”, null categories, possessive endings (’s and ’) and punctuation; secondly, delete
bracket labels such as NP and VP; thirdly, remove all bracketings containing only one
constituent. Parseval uses three metrics to evaluate the accuracy of a parse, namely,
Recall, Precision and Crossing. Recall is the percentage of standard bracketings (in the
Penn treebank) that are present in the evaluated parses. Precision is the percentage
of bracketings in the evaluated parses that are present in the Penn treebank. Partial
overlapping between a pair of standard:evaluated bracketings is called “cross” and
Crossings is the average number of bracketings in the evaluated parses that cross the
standard bracketings.

It can be seen from Table 3 that total Recall is over 85% which shows the high
degree of closeness bwteen the Penn treebank and AUTO generated parses. Precision
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is about 78% which is lower than Recall due to the fact that the Penn treebank is
only partially parsed and therefore the parses tend to be flatter than AUTO generated
parses. On average there is only slightly more than two crossing errors in each sentence.
Since the AUTO system derives constituent information for the training data from
which a SCFG is trained later on in the CAGC task, the quality of the inferred
grammar will depend on the extent to which crossing errors affect the subsequent
re-estimation process.

5 Experimental Evaluation

5.1 Training and Testing Sets

Training and Testing data were randomly chosen from the Wall Street Journal(WSJ)
text corpus. Since our current system cannot handle punctuation and brackets, sen-
tences containing them were put aside for future work. In addition, quotation marks
in sentences were ignored. In the final set, there were 1521 training sentences and 500
testing sentences in our WSJ subset.

There is no explicit limit on sentence length imposed by our system. Figure 4
shows the distributions of sentence length in the training and the test sets. The peak
of the sentence length is around 12 and 13, and average length of the sentences is 16
words.

Distribution of Sentence Length
100 T T T T T

80 Training Set (1521) b
60

401

Number of Sentences

1 1 1

1 1 1
0 5 10 15 20 25 30 35 40 45 50
Sentence Length(words)

o

Testing Set (500) b

Number of Sentences

L

L L L
0 5 10 15 20 25 30 35 40 45 50
Sentence Length(words)

Figure 4: Distribution of Sentence Length

5.2 Modified Parts-of-Speech Set

In order to capture more detailed syntactic information, some of the POS used in the
WSJ text corpus were subcategorized. This increased the number of POS from 48 to
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62. Table 4 shows the original POSs which were modified and their new corresponding
subcategorizations. It also shows examples of words for the new POS.

Old Part-of-speech | New Part-of-speech
CC CC CC2(both,either,neither)
DT DT AT(a,an)
IN IN CS(although,etc) CSIN(until,etc) INA(than,as) INO(of)
NN NN TMP (today,Monday,etc)
PP PP PPI(she,he,it)
RB RB NT(not)
TO TO IN
VB VB HV(have) DO(do) BE(be)
VBP VBP BEP(are,am)
VBZ VBZ HVZ(has) DOZ(does) BEZ(is)
VBD VBD HVD(had) DOD(did) BED(were) BEDZ(was)
VBG VBG BEG(being)
VBN VBN BEN(been)

Table 4: Modified set of Parts-of-Speech

5.3 Training Grammars with/without Constituent Information

Three experiments were carried out to investigate the extent to which bracketing
information is utilized during the inside-outside re-estimation process and its effect
on the final trained grammar. In the first two experiments, the explicit and hybrid
grammars were trained from the raw corpus (NULL_BC i.e. no bracketing constraint).

In the third experiment,

corpus (AUTO_BC).

the hybrid grammar was trained from the AUTO bracketed

Grammar Types Explicit hybrid + NULL_BC | hybrid + AUTO_BC
Rules Remaining 33.99% 40.91% 18.54%
After Training | (2022/5949) (6029,/14736) (2733/14736)
Exp:Imp rules 2022:0 3290:2739 1316:1417
Sents. Parsed | 89.30% (449) 98.60% (493) 97.20% (486)
Recall 76.02% 70.76% 84.66%
Precision 58.56% 54.55% 62.50%
Crossings 2.86 3.49 2.14
Sents. All Parsed | 89.20% (446) 89.20% (446) 89.20% (446)
Recall 76.11% 71.35% 85.58%
Precision 58.59% 55.23% 63.43%
Crossing 2.87 3.35 2.00

Table 5: Performance of the Explicit and Hybrid Grammars Trained From

Raw/Bracketed Corpus

Table 5 shows the results for these three trained grammars. It records the number
of SCF rules which survived after training, the ratio of explicit and implicit trained
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rules, the coverage of each grammar (the number of test sentences that each grammar
successfully parsed), and their individual Recall, Precision and Crossings. The second
section of the table records the number of test sentences successfully parsed by all
three grammars and Recall, Precision and Crossings for these sentences only.

From Table 5, it can be seen that both the hybrid grammars achieved significantly
greater coverage than the explicit grammar. After training, the AUTO BC grammar
has less than half the number of rules of the NULL BC grammar and its only dis-
advantage is a slightly reduced coverage. Although the NULL BC grammar has the
best coverage among three, its performance is much worse than either the explicit
or AUTO BC grammars. It can be seen in the second section of the table that the
AUTO_BC grammar has considerable improvement by about 14% and 9% in Recall,
8% and 5% in Precision, and 40% and 30% reduction in Crossings, compared to the
NULL_BC and explicit grammars respectively.

5.4 Convergence of the Training Schemes

Figure 5 shows the convergence of the training process for the hybrid NULL BC and
AUTO BC grammars, where the cross entropy is calculated as follows:

Z logP°

_ ceC

> el

ceC

Cross Entropy H=

where C is the training corpus, logP°¢ is the total log probability of a sentence ¢ and
|c| is its length.

7.5 ....Raw Data T

Ut __ Bracketed Data b

(2]
T

Cross Entropy
[$)]
[
T

1 1

2 3 4 5 6 7 8 9 10
Iterations

3.5
1

Figure 5: Convergence of the Re-estimation process for the NULL_BC and AUTO _BC
hybrid grammars

16



As can be seen, both grammars had similar convergence properties. The cross
entropies decreased rapidly for the first three iterations and moved slowly afterwards.
However, with the constituent information, the AUTO _BC training process achieved a
lower cross entropy at each iteration. The results of the experiment in Section 5.3 sug-
gest that this lower cross entropy resulted in a superior convergence of the AUTO _BC
training process.

5.5 Complexity of the Original and Extended Inside-Outside Algo-
rithm

The complexities of the original and extended inside-outside algorithms were recorded
and a comparison was made in Table 6. The NULL _BC hybrid grammar was used for
calculating the CPU time of the original algorithm and the AUTO _BC grammar for
that of the extended algorithm. Both were trained on an HP series 735 machine.

Modified
17.37

Algorithm
CPU Time
in Minutes

Original
507.34

Table 6: Complexities of Original and Extended Inside-Outside Algorithm

As shown in the table, the original algorithm spent 8 hour and 27 minutes CPU
time whereas the extended algorithm took less then 18 minutes. This significant im-
provement indicates that the modified algorithm overcomes the main inherent weak-
ness of the inside-outside algorithm by making it computationally tractable for use in
grammatical inference.

5.6 Training the Hybrid Grammar from Hand-Parsed Corpus

In this experiment, the hybrid grammar was trained using the hand-parsed Penn tree
bank (PENN_BC) training corpus. The purpose of this experiment was to compare
the effectiveness of the AUTO generated brackets with the Penn tree bank brackets.
Table 7 shows the performance comparison between these two approaches.

Types of Training Corpora | AUTO BC | PENN BC
Rules Remaining 18.54% 21.29%
After Training (2733/14736) | (3137/14736)
Exp:Imp rules 1316:1417 1482:1655
Sent. Parsed 97.20% (486) | 97.80% (489)
Recall 84.66% 84.65%
Precision 62.50% 64.06%
Crossings 2.14 1.92
Sent. Both Parsed 96.20% (481) | 96.20% (481)
Recall 84.76% 84.76%
Precision 62.67% 63.98%
Crossings 2.13 1.93

Table 7: A Performance Comparison between AUTO _BC and PENN BC Grammars
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As can be seen, the performances of these two grammars are very competitive. The
coverage of the PENN _BC grammar is only 0.6% ahead of the AUTO _BC grammar
and their Recall and Crossings are only marginally different. The second section of
the table shows that PENN_BC grammar has only 1.3% ahead of AUTO _BC grammar
in Precision, 0.2 reduction in Crossings and there is no difference in terms of Recall.
These results illustrate that although the AUTO system makes mistakes as shown in
Table 3, they do not seem to undermine the learning process significantly.

5.7 Effects of Unique Rules in AUTO BC/PENN _BC Hybrid Gram-
mars

The inferred AUTO BC and PENN _BC grammars contained rules which only existed
in one but not the other. These rules are referred to here as unique rules. It was
observed that the existence of the unique rules in the grammars arose because of the
differences between the two bracketing systems. In the AUTO system, the unique rules
were encouraged by the system’s inherent errors (see Table 3). In the hand-parsed Penn
tree bank, the unique rules emerged probably from two sources: one was sentences
whose structures were rare and therefore required special rules during training, the
other was partially-parsed phrases which allowed spurious rules to participate in re-
estimation process.

To investigate the effects of these unique rules, they were separated from the
AUTO BC and PENN BC grammars. Test sentences whose Viterbi parse involved
at least one of the AUTO_BC unique rules were then extracted as the first set, and
similarly the sentences involving the PENN BC unique rules were extracted as the
second set. Table 8 shows the performance metrics for these two sets of extracted
sentences.

Types of Hybrid Grammars | AUTO_BC | PENN_BC
The Percentage of 20.20% 30.47%
Unique Rules (552/2733) (956/3137)
Exp:Imp rules 179:373 345:611
Sent. Involved 19.80% (99) | 44.20% (221)
Recall 73.63% 78.78%
Precision 52.22% 58.23%
Crossing/Sent. 3.97 2.86
Sent. Both Involved 11.40% (57) | 11.40% (57)
Recall 72.52% 75.94%
Precision 50.51% 54.26%
Crossing/Sent. 4.54 3.65

Table 8: Results from Unique Rules

As shown in the table, about 20% of rules in AUTO _BC grammar were unique
(ie. they do not exist in the PENN_BC grammar ) and similarly 30% of rules in
the PENN BC grammar were unique. It can also be observed that there were more
than twice as many test sentences that needed PENN_BC unique rules than sentences
that needed AUTO_BC unique rules. However, this might be expected since the
PENN_BC grammar contains a 10% greater proportion of unique rules. In addition,
the PENN_BC’s “custom tailored” unique rule set seemed to be more specific to certain
types of uncommon syntactic structures than the AUTO _BC set. This feature can also
explain why the PENN _BC set involved more test sentences.
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Putting aside their individual performance, the second section of table 8 shows a
comparison of the sentence parses which contain respective unique rules for both the
grammars. It can be seen that the sentence parses which include PENN _BC unique
rules performed better than the AUTO _BC set in all three metrics. It is believed
that PENN_BC unique rules were more accurate models of some particular syntactic
structures. This would help explain why the PENN _BC grammar performed 3.4%
better than the AUTO_BC grammar in Recall, 3.8% in Precision, and 1.1 reduction
in Crossings,

It is worth noting that the figures for unique sets shown in Table 8 are much worse
than those given in Table 7 for the full rule sets. It was mentioned in previous section
that the performances of the two grammars were very competitive in terms of the full
rule sets. Therefore, there must be a subset of test sentences where the AUTO _BC
grammar performed better than the PENN_BC grammar to compensate the figures in
Table 8.

In Table 9, the results from four subsets of test sentences were calculated and
compared. These four partitions were made according to properties of the rules
(unique/common) used in Viterbi parses. For example, Set A contained 57 test
sentences whose Viterbi parse involved at least one unique rule in the case of the
AUTO_BC and also in the case of the PENN BC (as in Table 8); whereas Set B
was composed of sentences whose Viterbi parse involved only common rules in the
AUTO _BC but at least one unique rule in the PENN BC.

Types of Rules No. of Recall Precision Crossings
Involved Sents. | auto ‘ penn | auto ‘ penn | auto | penn
Unique AUTO and 57 72.52 | 75.94 | 50.51 | 54.26 | 4.54 | 3.65
Unique PENN (A) 11.9%
Common AUTO and 156 81.98 | 79.85 | 57.17 | 59.16 | 2.65 2.64
Unique PENN (B) 32.4%
Unique AUTO and 37 75.15 | 75.67 | 55.69 | 55.37 | 3.16 | 2.78
Common PENN (C) 7.7%
Common AUTO and 231 91.20 | 91.71 | 70.51 | 71.02 | 1.01 0.89
Common PENN (D) 48.0%
TOTAL (A+B+C+D) 481 84.76 | 84.76 | 62.67 | 63.98 | 2.13 1.93

Table 9: Results from Four Combinations of rule types

From table 9 it can be seen that to varying extents the PENN _BC grammar per-
forms better than the AUTO BC grammar for all subsets except Precision in Set B. .
This shows that the unique PENN rules somehow were misused and adversely affected
performance in Set B. The performance of the grammars is comparable for Sets C
and D; so an important difference between the grammars is the observation that the
negative effects of unique rules are distributed in a larger proportion (32.4%) of the

sentences for the PENN_BC grammar than the AUTO BC grammar.

5.8 Performance vs. Sentence Length

It was stated previously that there was no limit on the length of sentences used
in this work. Figure 6 shows the effect of the length of the test sentences on the
performance of both the AUTO BC and PENN BC grammars. As can be seen, for
the sentences of 15 words or less Recall is as high as almost 90%, Precision 70% and
Crossings is below 1 for both grammars. However, the three performance metrics
degraded as the length of the sentences increased.
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Figure 6: Performance vs. Sentence Length

5.9 Number of Parses Generated from Trained Grammars

The number of parses generated for a sentence varies for the differently trained
grammars. This experiment was carried out to compare the differences among the
four trained grammars and the results are shown in Figure 7.

The top part of Figure 7 shows a comparison of the three grammars trained as
described in Section 5.3. The explicit grammar had far fewer parses simply because it
did not contain any implicit rules. However, the AUTO_BC hybrid grammar generated
more ambiguous parses than the NULL BC hybrid grammar, although the size of the
AUTO_BC grammar was less than that of the NULL_BC grammar. A similar result
can be observed in the bottom part of Figure 7, where a comparison is made between
the AUTO BC and PENN _BC grammars. Hence, the AUTO_BC grammar generated
more ambiguous parses than the NULL BC grammar and the PENN_BC grammar,
although both of these contained more rules than the AUTO _BC grammar.

This can be explained by our belief that the number of parses generated from a
grammar for a sentence not only depends on the size of the grammar but also on
the type of rules the grammar has. The AUTO _BC grammar contained more general
rules than the other two, because the grammar was trained from a corpus whose
bracketing information was provided by the heuristic-based AUTO system. However,
the important point is that among the large set of ambiguous parses generated by the
AUTO _BC grammar, the Viterbi algorithm still successfully chose parses that lead to
good overall performance.

6 Conclusions

A system for computer assisted grammar construction has been presented in this
paper. The aim in developing this system was to efficiently infer a broad-coverage
and linguistically-motivated grammar for a large corpus without relying on significant
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Figure 7: Number of Parses vs. Sentence Length in Differently Trained Grammars

manual labour. The experimental results demonstrate that the CAGC system can
successfully infer a grammar for a subset of the WSJ corpus which has acceptable
coverage and precision. Two techniques employed in the system contributed to this
success.

Firstly, the method of generating an initial SCFG ensures broad-coverage of the
inferred grammar and provides good bootstrapping for the learning process. The initial
SCFG includes a set of explicit rules (the core grammar), which is hand-produced, and
a set of implicit rules that compensates for the limiting coverage of the core grammar.
Additionally, giving high initial probabilities for the explicit rules and low probabilities
for the implicit rules means that the system is biased towards a linguistically-motivated
grammar.

Secondly, the extended inside-outside algorithm used for the grammar re-estimation
utilizes constituent information derived by the AUTO bracketing system to constrain
the training process. The bracketed training data not only provides essential infor-
mation for the extended algorithm to consider only the set of rules whose spans are
compatible with the a priori bracketings, but also establishes similar constituent struc-
tures in the inferred grammar.

A variety of experimental results have been presented which show that, although
the AUTO bracketing system does make errors, these errors do not appear to signif-
icantly degrade the inference procedure compared to the use of manually bracketed
data. The use of automatically generated implicit rules allows coverage to increase
substantially. The introduction of bracketing constraints generated from the AUTO
system significantly improves the measured performance metrics and maintains this
increased coverage. Finally, unlike the standard inside-outside inference procedure,
the system described here is computationally tractable when applied to realistic tasks.
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