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Summary

A 8D freehand wultrasound system augments a conventional clinical scanner with a position
sensor on the hand-held probe. Such systems are safe, cheap, portable, and allow clinicians
to scan using conventional techniques. Unfortunately the resulting freehand images are non-
parallel, sometimes self-intersecting, and retain the noisy image artefacts inherent in conven-
tional 2D ultrasound.

This dissertation proposes two model-based strategies for interpreting such images: an
organ shape model is used for geometric reconstruction of scattered organ landmarks in the
images, and the Gompertz growth model is used to register organ shape models to each other
in a coherent and biologically justified way.

Both strategies are robust to noise and inaccuracies in the organ model meshes, and are
intended to complement future work on the detection of tissue boundaries in ultrasound images.
So a model-based framework to organise sparse and noisy cues about tissue boundaries, is a key
element in any attempt at fully-automated interpretation of 3D freehand ultrasound images.

A biological model of organ growth is first developed using Oster-Murray mechanisms,
whose eigenmodes describe the organ’s modes of shape variation. An iterative procedure allows
these idealised modes to be refined from organ examples. 3D freehand ultrasound images are
then segmented by such organ models, for the purpose of organ volume estimation. However,
an organ model can only be refined from the segmented organ shape if they both share a
common shape parameterisation.

They are therefore registered to each other using their eigenmodes, which are proposed
to represent homologous (‘biologically corresponding’) landmarks. The choice of registration
solutions is restricted to biologically plausible ones using the Gompertz metric. Bayesian com-
bination of the likelihood of eigenmode homology, with the prior constraint of Gompertzian
growth, results in a posterior measure of homology which must be minimised for an optimal
registration. The minimisation is efficiently performed using a multi-resolution implementation
of the highest confidence first algorithm.

Keywords: medical imaging, 3D freehand ultrasound, volume estimation, registration
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Chapter 1

Introduction

This chapter introduces the concepts behind medical ultrasound imaging, and motivates it as
a cheap, safe, and portable imaging modality, routinely used for non-invasive monitoring and
diagnosis in many clinical applications.

During conventional 2D ultrasound scanning, the sonographer visualises anatomy by men-
tally integrating the estimated motion of the hand-held scanner probe with the sequence of
ultrasound images. These images are usually noisy and distorted, and tissue regions are not
easily discriminated from a single image, so an experienced sonographer overcomes these prob-
lems by employing prior knowledge of the expected anatomy to aid visualisation.

The aim of this dissertation is to reproduce this strategy using a 3D freehand ultrasound
system, which consists of a conventional scanner with a position sensor attached to its probe.
The simple configuration enables the sonographer to operate the scanner normally, while the
position information associated with each scan plane allows the set of ultrasound images to be
accurately located in 3D, so that an anatomical model can be applied to their interpretation.

Chapter organisation

e Section 1.1 contains a brief overview of the processes involved in producing 2D and 3D
ultrasound images.

e Section 1.2 surveys the relevant clinical and medical imaging literature, and describes
the efficacy of 3D freehand ultrasound imaging.

e Section 1.3 motivates the use of an organ shape model to constrain the interpretation
of anatomy from noisy 3D ultrasound images.

e Section 1.4 summarises the salient themes and contributions of the material presented
in this dissertation.



1.1 Ultrasound imaging 2

1.1 Ultrasound imaging
Imaging in 2D

An ultrasound probe contains a piezo-electric transducer generating short sonic pulses, which
propagate through tissue at an average speed of 1540 ms~'. Back-scattered pulses are received
at the same transducer and converted into an electrical signal, which is selectively amplified to
compensate for attenuation in back-scattered pulses emerging from deeper tissue. The signal
envelope can then be plotted against depth (determined by elapsed propagation time and
approximate propagation speed) to give a 1D scan.

In 2D scanning, an array of such transducer elements produces a signal wave front, which
is shaped by appropriately phased interference between each transducer element; the 2D im-
age is then constructed from the array of 1D scans. Chervenak et al. (ch.1-2)[25] provide a
comprehensive reference to the physics of the imaging process.

Figure 1.1: 2D ultrasound image of a balloon in a water bath, showing a reflection against the
side of the bath on the right, and speckling artefacts throughout

Three important causes of error in ultrasound imaging are: speckle, distortion, and refrac-
tion. Ultrasound image ‘textures’ can be thought of as being formed from a multitude of point
scatterers in the tissue!, and the coherent nature of back-scattered pulses causes interference
effects — speckling artefacts — throughout Figure 1.1.

As mentioned previously, depth is only approximately determined by propagation time since
the propagation speed varies with tissue type and temperature, inevitably distorting the 2D
image reconstructed by the scanner. The differing speeds of neighbouring tissue types also
cause refraction during beam propagation, which leads to the incorrect placement of structures
in the ultrasound image?.

!For example, air bubbles inside the balloon in Figure 1.1 give rise to visible texturing.
2Chapter 5.6 describes how image distortion may give rise to volume estimation errors in ultrasound imaging.
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Imaging in 3D

The acquisition rate of 3D ultrasound imaging systems is limited by the finite propagation
speed of ultrasound pulses, and real-time systems suitable for clinical use are not currently
available. For example, the experimental “Explososcan” approach uses a grid of transducers
to transmit a wide-angle pulse, but real-time 3D reconstruction is feasible only if information
from transducer elements is processed in parallel (Wells [166]).

If the requirement for real-time imaging is relaxed, then 3D ultrasound imaging is achieved
either by a special probe which mechanically sweeps over a pre-defined acquisition volume
(Merz et al. [92]), or by attaching some form of position sensor to a standard probe. Early
implementations of the latter approach utilised a mechanical arm to carry and track the probe
(Ohbuchi et al. [106]); alternatively, Trobaugh et al. [160] describe an accurate but expensive
system which uses multiple cameras to track light-emitting diodes on the probe?.

Currently the most affordable and flexible approach to 3D ultrasound imaging is to monitor
the probe’s six degrees-of-freedom (DOF) in translation and rotation, using a small electro-
magnetic sensor. Probe motion is usually defined relative to the axes of the probe’s scan plane,
and Figure 1.2 shows the common labels given to these axes.

?sound probe

— scan plane

| = lateral direction

l elevational direction

axial direction

Figure 1.2: Naming conventions for scanning directions of an ultrasound probe

Probe movement can be restricted to a single DOF for cone, fan, or prism-shaped sweeps
(see Figure 1.3), since there are advantages to each swept volume. For example, the prismatic
volume gives parallel images which are easy to render in 3D; and the fan-shaped and cone-
shaped sweeps require only a small acoustic window from which to view an anatomical volume.

If probe movement is completely unrestricted, then 3D freehand imaging allows the sono-
grapher to operate the probe conventionally while its six DOFs are continuously monitored
and recorded. This is the approach taken by the Stradivarius project (Dance et al. [37]),
whose equipment configuration is summarised in Figure 1.4. All ultrasound data used in this
dissertation is derived from this equipment.

Section 1.2 now places the problems posed by freehand imaging in the context of current
research in 3D ultrasound, after which Section 1.3 justifies this dissertation’s approach to
addressing these problems.

3This requires that the probe not be occluded from view of the cameras.
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)

2

(a) Cone-shaped sweep by rotating in axial direction
~__ 7
~_ 7

(b) Fan-shaped sweep by rotating in lateral direction

(

B —

B —

(c) Prism-shaped sweep by translating in elevational direction

Figure 1.3: Sweeping through an anatomical volume by restricting probe motion to a single
axis

object

) network
data archive

freehand probe ‘ image data ‘
position sensor ‘ position data ‘

workstation

Figure 1.4: Hardware configuration for the Stradivarius project
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1.2 Survey and motivation

We now survey relevant work by other researchers in 3D ultrasound imaging. Much of it
is currently directed at visualisation (discussed further in Chapter 5) and noise-reduction of
ultrasound images, while methods of tissue discrimination are still largely unreliable.

A number of publications describe the clinical potential of 3D ultrasound imaging for: the
urethra (Ng et al. [105]), vascular structure (Klein et al. [74]), gallbladder (Fine et al. [40]),
breast (Moskalik et al. [95]), kidney (Rankin et al. [121]), and uterus (Balen et al. [4]). Ap-
plications in obstetrics (Steiner et al. [141]) and echocardiography (Salustri & Roelandt [127])
attract particular interest, due to their clinical importance.

Specialist applications for 3D freehand ultrasound are proposed by Scott [131], who intends
to guide a biopsy needle into breast lesions by matching the needle’s (sensed) position with a
3D reconstruction of the lesion; and by Cena et al. [23, 168], who aim to monitor scar healing
in burns victims, and to reconstruct skin grafts for plastic surgery.

Ultrasound image processing

Speckle suppression is one of the most important elements of noise reduction in ultrasound
images, and adaptive filters for this purpose are described by Karaman et al. [70] for 2D
images, and by Bamber et al. [6] for 3D volume rendered images. Pasterkamp et al. [111]
average out speckle in flowing blood to increase contrast for 3D segmentation and visualisation
of the arterial lumen; and Ashton & Parker [2] subsample ultrasound images to achieve Gaussian
noise statistics, which are more easily estimated and filtered.

The frequency spectrum of speckle is similar to the scanner’s modulation transfer function,
so speckle noise is passed straight through the imaging system, potentially obscuring dia-
gnostically important information. Speckle patterns become uncorrelated if a region is viewed
from different look directions, however, and the signal-to-noise ratio is expected to increase in
proportion to the square root of the number of compounded views (Shankar [133]).

Compounding can be performed spatially or temporally, at the expense of spatial resolution.
Ohbuchi et al. [106] perform spatial compounding of 2D image planes during incremental volume
reconstruction of 3D ultrasound images; and temporal compunding is commonly implemented
by image persistence on the ultrasound system monitor.

Metcalfe & Evans [93] examine a range of ultrasound scanners and transducers, and find
that scanner parameters require different settings* to optimise image contrast when scanning
kidney, uterus, and liver. Reliable discrimination of tissues in ultrasound images therefore
requires texture features which are invariant to operator settings; it also requires the texture
features to be specialised for different tissue types. For example, Muzzolini et al. [98, 99]
discriminate textures by statistical classification, Basset et al. [7] analyse prostate images using
co-occurence matrices, and Wu et al. [169] classify liver textures using fractal features.

Nastar & Ayache [101] suggest that ultrasound image processing can be improved by ana-
lysing radial 1D scanlines directly in polar coordinates, before they are interpolated to give
the 2D Cartesian display. Unfortunately, access to pre-interpolated images is not available for
most scanners.

Rohling & Gee [122] provide an overview of technical issues in 3D freehand ultrasound
imaging, as do more general reviews by Rankin et al. [121] and Sohn [135]. Ayache [3] surveys
the problems involved in automatic interpretation of medical images, in the context of current
research in machine vision.

4Individual ultrasonographers also have different preferences for scanner parameters.
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Harris et al. [60] examine ultimate limits in the resolution of ultrasound images: higher
ultrasonic frequency and intensity increase spatial resolution, but both are limited by safety
considerations, non-linear attenuation effects, and tissue inhomogeneity. Joint optimisation of
ultrasonic frequency with probe design is proposed, to give a compact beam which achieves a
good frame rate at good spatial resolution.

Although 3D ultrasound imaging has great clinical potential, this brief survey shows that its
utility is significantly limited by image noise problems. We should therefore justify persevering
with a 3D freehand generalisation of 2D ultrasound imaging.

Motivation for 3D freehand ultrasound

3D medical imaging is primarily motivated by the fact that human anatomy is defined in
3D, since isolated 2D slices or projections cannot capture the complex relationships between
anatomical structures of clinical interest. For example, inferring 3D structure from parallel
2D image slices in magnetic resonance imaging (MRI) and computed tomography (CT) is a
routine task for clinicians, and segmented information from these modalities is very useful for
biometric and morphological studies, surgery planning, and manufacturing implants etc.

2D ultrasound imaging is cheaper, safer, and more portable than either CT and MRI, and
is also routinely used for organ examination. For example, ventricular volume and wall mo-
tion determine the degree of impairment after heart attacks, and indicate response to therapy;
similarly, changes in tumour volume determine the nature and intensity of further treatment.
Ultrasound imaging is especially useful in obstetric practice, since it is the only imaging mod-
ality safe for use in foetal monitoring (see Chapter 5.6 for a discussion of 3D foetal imaging).

3D freehand ultrasound is a straightforward extension of 2D ultrasound, which still allows
the sonographer to scan in a manner consistent with normal examination. The flexibility of
freehand scanning is important, because some parts of the anatomy are visible only from small
acoustic windows (e.g. viewing the spleen through ribs), and regions shadowed by strongly
echogenic structures (e.g. bone-tissue interfaces) need to be viewed from multiple directions.
Unfortunately, this flexibility results in non-parallel and (potentially) intersecting scan planes.

1.3 Model-based interpretation

Reconstructing 3D anatomy from a sequence of freehand images is therefore a difficult task,
particularly since the images are noisy, occluded, and distorted. A sonographer performs this
reconstruction by employing a mental model of expected anatomy to guide the interpretation of
each image, which has its position estimated by the hand controlling the probe. This suggests
that we require a similar model-based strategy for interpreting 3D freehand ultrasound images.

Figure 1.5: Model-based interpretation of a noisy image is a more reliable strategy than purely
data-driven interpretation (adapted from Cham [24])

6
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Figure 1.5 offers an instructive example: the perceptual primitives are edge elements, which
the human visual system automatically clusters together from the noisy speckle. Other cues,
such as symmetry and geometric saliency of locally-curved edges, give further indication of the
global organisation of primitives (there may be many). For simple images, such a data-driven
strategy for image interpretation should conclude with a single most probable segmentation.

However, ultrasound images are much noisier and so require additional model-based know-
ledge to be brought to bear on their visual interpretation (Chervenak et al. (ch.5)[25]). To
demonstrate: if told that Figure 1.5 shows a key with axis orientated top-right to bottom-left,
the key’s silhouette soon becomes apparent as the most probable segmentation of the image.

Unfortunately, perception of 3D shape from freehand ultrasound images is complicated by
the requirement that image features be integrated over non-parallel scan planes. The way
to organise such information over all the planes, while tolerating image noise, distortion, and
occlusion, as well as errors in frame position measurement (Gosling et al. [56]), is to incorporate
knowledge of expected shape and shape variation into an organ model.

Note that fully-automated segmentation in 3D freehand ultrasound requires proprioceptive
accuracy, solutions to imaging noise and distortion, and methods of reliable tissue discrimina-
tion. Such problems are beyond the scope of this dissertation, and are currently being addressed
by co-workers in the Stradivarius project: Scott [131]; Dance [36]; Rohling & Gee [122].

Instead, the focus of this dissertation is on applying a model-based framework to 3D free-
hand ultrasound imaging. Such a framework must incorporate knowledge of organ shape, while
allowing for an expected range of variations in shape. It must also be able to learn from new
examples of the organ, thus refining its expectation of organ shape variation.

There should be a strong geometric basis to model representation, since segmentation is
usually motivated by the analysis of organ biometry and morphology. The organ’s intrinsic
coordinate system must not be parameterised in an ad hoc fashion, however, since learning
from new examples — each sampled as a ‘shape vector’ — requires them all to be described in
a mutually consistent shape parameterisation.

1.4 Prospectus

Themes and contributions

The salient contributions in this dissertation are biological models of the mechanisms respons-
ible for organ growth and development:

e Oster-Murray mechanisms are proposed to describe an organ’s cellular growth patterns;

e the Gompertz model is proposed to describe the net energy required for organ growth.

One important theme is the use of eigenfunctions of the Oster-Murray mechanisms. These
eigenfunctions describe all possible patterns of mass flux during organ growth, while the eigen-
functions’ shapes are also strongly reflective of the underlying organ shape.

We require an organ shape model to guide the interpretation of 3D freehand ultrasound
images: a computer application makes this available through a geometric tool for operator-
assisted image segmentation. We also require organ shape models to learn from examples:
in order to compare two organ shapes (so as to learn about their differences), a method of
registration is required to describe them in a mutually consistent shape coordinate system.

Since eigenfunctions intrinsically constitute such a coordinate system, two models can be
fitted to each other by geometrically matching their eigenfunctions. The optimal match is
computed using the Gompertz metric to ensure its biological plausibility.
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Thesis organisation

An introduction to content and organisation is provided on the first page of each chapter, with
a brief summary at the end of each chapter. The chapters and appendices are as follows:

e Chapter 2: Biological Morphogenesis and Growth
Three important mechanisms from the Oster-Murray model are introduced. Patterns of
biological growth and deformation are described by the mechanisms’ eigenfunctions.

e Chapter 3: Modelling Shape
Finite element models are used to represent organ shape, since Oster-Murray eigenfunc-
tions can be approximately computed for such models to give finite element eigenmodes.

e Chapter 4: Modelling Variation in Shape
Organ shape models can therefore initialise their knowledge of shape variation using
eigenmodes. This knowledge is refined by incorporating new examples of organ shape.

e Chapter 5: Experiments: 3D Volume Estimation
A computer application is described which uses these shape models to perform operator-
assisted organ volume estimation from 3D ultrasound images.

e Chapter 6: Likelihood of Homology
Two similar organ models can be fitted to each other by comparison of their eigenmodes.
Such a fit is shown to be biologically justified.

e Chapter 7: Coherence of Homology
The map of corresponding points (homologies) between two fitted organ models can be
made globally coherent, by ensuring its consistency with Gompertzian growth.

e Chapter 8: Experiments: 3D Registration
The highest confidence first (HCF) algorithm computes an optimal homology map using
eigenmode features from Chapter 6, and the Gompertz constraint from Chapter 7.

e Chapter 9: Discussion and Conclusions
Material presented in this dissertation is reviewed and discussed, and suggestions are
made for possible future research.

e Bibliography
Citations made in this dissertation are listed in alphabetical order.

e Appendix A: Finite Element Method
Procedures are described for assembling a finite element model’s mass and stiffness

matrices.

e Appendix B: The Symmetric Eigenproblem
Techniques are described for computing finite element eigenmodes from mass and stiffness
matrices.
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Chapter 2

Biological Morphogenesis and Growth

This chapter examines three mechanisms of biological shape formation (morphogenesis):

(i) the deformation of the cellular matrix in which cells are embedded;

(ii) cell proliferation, and the resultant diffusion of cells into areas of lower concentration;
(iii) the conwvection of embedded cells when the cellular matrix deforms.

These processes form an integral part of the Oster-Murray model of pattern formation, in
which tissue boundaries are fixed so that pattern emergence can be analysed. However, the
analysis in this chapter allows tissue boundaries to change shape as a consequence of mass
flux in the organ. Variations in organ shape can, in this way, be modelled from a biological
perspective (Syn & Prager [146]).

The spatial eigenfunctions of these three mechanisms, when computed for some underlying
organ shape, form a complete description of all potential patterns of mass flux. In other words,
these eigenfunctions are a description of organ shape variation. Organ tissues have material
properties which cannot be easily established, so their spatial uniformity is assumed during
this chapter’s analysis, with the consequence that all three growth mechanisms are found to
have identical spatial eigenfunctions.

Chapter organisation

e Section 2.1 introduces the classic Turing model of biological pattern formation.

e Section 2.2 introduces the more general Oster-Murray model of biological pattern form-
ation.

e Section 2.3 provides the biological background to a proposed growth model, which ap-
plies the Oster-Murray mechanisms to biological growth (rather than pattern formation).

e Section 2.4 analyses the patterns of mass flux during cellular matrix deformation.
e Section 2.5 analyses the patterns of mass flux during cell proliferation and diffusion.

e Section 2.6 analyses the interaction between the deforming matrix and the cell popula-
tion.
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2.1 The Turing mechanism

Turing [161] studied pairs of reaction-diffusion equations, generally formulated as

% :DiVQCz‘-I-hi(Cl,...,Cn) 1= 1,...,n (2.1)
Each chemical morphogen has a concentration ¢;, a constant diffusivity D;, and a rate of
diffusion determined by the concentration gradient V2¢;. Reactions between morphogens cause
each one to change concentration by h;.

Under certain conditions, it was found that uniform solutions to these equations were un-
stable to small peturbations, resulting in stable but non-uniform patterns; such symmetry-
breaking processes are thought to underlie biological pattern formation.

For example, Figure 2.1(a) shows pattern emergence in Young’s [172] system, with (black)
areas of high concentration clustering as the system evolves; and Figure 2.1(b) shows the final
patterns achieved with different system parameters, all of which are reminiscent of animal coat
patterns. These suggest that relatively simple systems can give rise to the complex patterns
and forms seen in biological morphogenesis (Levin & Segel [80]).
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(a) Pattern evolution (b) Final patterns for different system parameters

Figure 2.1: Pattern emergence in Young’s activator-inhibitor system (Prusinkiewicz [117])

Morphogen gradients

Meinhardt & Klingler [91] advanced similar ideas to Turing, emphasising the combination
of short-range activation (reaction) and long-range inhibition (diffusion), and pointing out
that gradients of morphogens do not require pre-arranged sources and sinks. Gierer’s [48]
identification of morphogens in hydra confirmed the use of such gradients in controlling head
and foot regeneration.

Wolpert [167] proposed that cells react to threshold levels of morphogen concentration. This
allows control of cell differentiation at desired locations, and was demonstrated in experiments
on embryo chicken wings.

More recently, Hunding & Engelhardt [67] used Turing’s mechanism to model stripe pre-
patterning and head formation in insect embryogenesis; morphogen gradients were again the
source of positional information. They argued that a control system which is able to extract
reliable positional information from a morphogenetic gradient, is also prone to yield pattern
formation by symmetry-breaking processes.

10
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2.2 The Oster-Murray model

Turing-type models show that a chemical pre-pattern can be established, which then activates
the differentiation and growth of biological structures. Thus morphogenesis is treated as a slave
process which gives a pre-determined result once the chemical pre-pattern has been established.

Oster & Murray [107] contend instead, that the pattern formation process is mainly de-
termined by mechanical forces which arise during shape changes in growing tissue. The Oster-
Murray approach differs from the chemical pre-pattern approach, in that pattern formation and
morphogenesis proceed simultaneously using an array of biological mechanisms.

One important benefit of simultaneous development is that the mechanisms can be self-
correcting, whereas Turing’s process is effectively an open-loop system (Murray et al. [97]). In
addition, Goodwin et al. [53] show that the close coupling of different mechanisms drastically
reduces the number of degrees-of-freedom the coupled system has, when converging to a stable
state. This results in a morphogenetic process which is robust to noisy parameters.

Mechano-chemical processes

The Oster-Murray approach considers the coordinated patterning of mesenchymal and epi-
thelial cells, which are two types of early embryonic cells (Moore [94]; Trinkhaus [159]). Where
standard Turing-type models involve the interaction of hypothetical morphogens, the Oster-
Murray model is centred on the cell as the fundamental unit of biological growth. The model
incorporates the effects of:

(i
(i

cell convection;
short and long range diffusion of cells;

(iii) cell proliferation rate;

haptotaxis (cell movement up an adhesive gradient);

(v

(vi

)
)
)
(iv) contact inhibition and guidance by neighbouring cells;
)
) galvanotaxis (cell movement influenced by electric potentials);
)

(vii) chemotaxis (cell movement influenced by chemical concentration gradients).

In other words, the cell flux term J in the general cell-conservation equation!

ac cell

5 —VJ+h (2.2)
is no longer merely the localised diffusion in equation (2.1), but includes the mechano-chemical
processes itemised above. Note that ¢ now refers to cell rather than morphogen concentration;
and that h°" is a function describing cell proliferation, rather than a reaction expression as
before in equation (2.1).

Murray et al. [97] and Murray (ch.17.3)[96] analyse a linearised model of these processes,
and find a large class of spatially inhomogeneous solutions similar to Turing-type patterns. A
numerical simulation by Savic [128] of animal coat patterning using a mechanical model, also
gives very similar results to Meinhardt [90] who uses a reaction-diffusion model.

See equations (2.9)—(2.11) for the derivation of the cell-conservation equation.

11
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2.3 The model of biological growth

Murray [96] analyses the interaction of the Oster-Murray mechanisms during the formation of
feathers, scales, and teeth, by fixing tissue boundary conditions so that temporally unstable
waves within the boundaries can settle into stable patterned solutions.

However, we are interested in modelling growth and not merely pattern formation. There-
fore, in our proposed growth model the tissue boundaries are no longer fixed, so that the
Oster-Murray mechanisms can be analysed for their effects on tissue growth.

In the model, cell proliferation causes an increase in organ mass, which is primarily redis-
tributed by three mechanisms: cell diffusion, matrix deformation, and matrix convection of
attached cells; these mechanisms are analysed in Sections 2.4-2.6.

The significance of our growth model is that cells are recognised as the fundamental units
of biological growth and shape change. Only the extra-cellular matrix and mesenchymal cells
participate in the model; epithelial cells are important in shaping organ boundaries, but are
not modelled explicitly.

The extra-cellular matrix

The extra-cellular matrix (ECM) forms part of the tissue within which cells move, and is ap-
proximately linear elastic for small strains. Murray (ch.17.2)[96] assumes ECM to be isotropic
in its elastic properties, but presents a possible mechanism for inclusion of anisotropic effects.
Figure 2.2 plots the stress-strain behaviour of ECM.

T (stress)

€ (strain)

small-strain approximation
to linear elasticity for ECM

Figure 2.2: Stress-strain behaviour of extra-cellular matrix (ECM) (adapted from Murray [96])

Inertial effects in celllECM interaction can be ignored because it occurs in a very low
Reynolds number? regime (Murray (ch.17.2)[96]; Purcell [118]).

The time scale of incremental organ development is very long (hours) and the spatial scale
is very small (millimetres), so viscous effects within the ECM can also be neglected, since the
viscous component of stress® is proportional to %—f.

ECM is formed from the secretions of fibroblast cells, which are of mesenchymal origin. It
is implicitly assumed in our growth model that these secretions act to relieve elastic strain in
the ECM as growth progresses.

2The Reynolds number indicates the relative importance of inertial and viscous effects, with the latter highly
dominant at cellular level.
3Stress 7 and strain € are defined in Appendix A.

12
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Mesenchymal cells

Mesenchymal cells move by exerting traction forces on the (fibrous) ECM, and on the surface
of other cells. These traction forces cause ECM deformation, which in turn causes convection
of other cells embedded in the ECM.

Cells proliferate by subdivision, and the resulting growth in cell numbers disturbs local cell
concentrations, to form concentration gradients which are equalised by cell diffusion.

Epithelial cells

Epithelial cells are not mobile, but spread or thicken in response to forces exerted by mesen-
chymal cells. They can be thought of as enforcing shape control over the growing mesenchymal
cell population.

2.4 Analysis of ECM deformation

The wave equation governs the ECM’s elastic behaviour, and on the assumption of uniform
mass and stiffness properties* (hence constant D) it is
0%u

5z = ~DV(V-u) (2.3)

which has a separation of variables solution for ECM displacement u
u = £(x)g"(t) (2.4)

In the absence of damping effects®, g°'(¢) is a sinusoidal modulation, and the elastic eigen-
functions £°'(x) are approximated on an organ mesh by FEM eigenmodes (as will be shown in
Chapter 4). So the spatial behaviour of any ECM deformation is a sum of vector displacement
fields f¢(x).

Appendix A.7 shows that ECM deformation u gives rise to a pressure distribution p, gov-
erned by a scalar analogy to the wave equation (2.3)

0?p

w = —D61V2p (25)

which also has a separation of variables solution

p=f'(x)g"(t) (2.6)

In other words, there is a scalar eigenfunction f¢(x) associated with every vector eigen-
function f¢(x); the latter describes the ECM’s deformation, while the former describes the
associated change in ECM pressure.

This association is important in Section 2.5, when a comparison is made between (scalar)
cell-concentration displacement and (vector) ECM displacement.

4 Appendix A.2 shows that D®' is proportional to stiffness over mass.

5Section 2.3 notes that viscous damping can be ignored for the ECM, but a Rayleigh damping model is
used if such effects need to be incorporated. Rayleigh damping assumes the damping matrix to be a linear
combination of the mass and stiffness matrices (see Appendix A).

13



2.5 Analysis of cell proliferation and redistribution 14

2.5 Analysis of cell proliferation and redistribution

The model used for cell proliferation is the Gompertz function y# from equation (7.1) in
Chapter 7. We require the rate of cell proliferation h&

) = ()

= %(a(;be*’“) (2.7)

where superscripts are omitted from a8”, b%°, and k# for clarity.
Cell proliferation causes local gradients in cell concentration ¢, and such gradients give rise
to local cell diffusion
Ji = —D"Vc (2.8)

where D" is the diffusion coefficient, and J¢* is the cell flux due to diffusion.
These expressions for diffusive flux J and cell proliferation h8*(t) can now be incorporated
into the general cell-conservation® equation (2.2)

% = h#(t) + D"V (2.12)

Equation (2.12) governs cell proliferation and diffusive redistribution, and has the solutions

c=y¥(t) + f* (x)g™ (¢) (2.13)
Here g?*(t) is a modulation function describing exponential decay, and the diffusion eigen-
functions f(x) are scalar fields describing the spatial behaviour of cell-concentration c.
Comparing elastic and diffusion eigenfunctions

We wish to compare the spatial behaviour of the diffusing cells with the spatial behaviour of
ECM deformation, but:

e cell-concentration c is a scalar field which has diffusion eigenfunctions f(x);
e ECM deformation u is a vector field which has elastic eigenfunctions £ (x).

However, we know from Section 2.4 that ECM deformation u is associated with a scalar
pressure field p which has the eigenfunctions f¢(x); we can therefore compare pressure (‘mass-
concentration’) directly with cell-concentration.

SLet the organ volume V be bounded by its surface S. Conservation of cell mass implies that the rate of
change of cell mass in V is equal to the rate of flow of cell mass across S into V, including the rate of cell mass
production in V'

9 [ cav=—-[3as+ IR O1% (2.9)
ot
v s v
Applying the divergence theorem to the surface integral and assuming c is continuous, equation (2.9) becomes
/ (@ +V.J - h““(t)) dv =0 (2.10)
v \0ot

The integrand must be zero since organ volume V is arbitrary, which gives the general cell-conservation

expression from equation (2.2)

ac __ pcell
o T VI =) (2.11)

14
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Substituting for p from equation (2.6) to equation (2.5) gives

F(x)g(t) = DIV f(x)g° (t) (2.14)

and separating the spatial and temporal components gives

V2 fel gel
Dd?(x) = E(t) = —k° (k*' arbitrary constant) (2.15)
Doing the same with cell growth and redistribution in equations (2.12) and (2.13) gives
V2 dn sdn )
D f{n (x) = zdn (t) = —k" (k% arbitrary constant) (2.16)

Principal modes of ECM mass flux and cellular mass flux

Kreysig (ch.11.3)[77] shows that the same boundary conditions will constrain k* and k% to
give the same spatial eigenvectors, albeit with different eigenvalues”. Since both ECM and
cellular distributions are constrained by the same epithelial boundaries, this means that f¢ in

equation (2.15) and f9" in equation (2.16) are identical scalar eigenfunctions. Morever:
e ECM pressure (scalar field) is associated with ECM deformation (vector field);
o cell-concentration (scalar field) is similarly associated with cell diffusion (vector field);

so the vector eigenfunctions of both are also identical. In other words, the elastic eigenfunctions
fe'(x) can be used to describe the principal spatial modes of both ECM mass flux and cellular
mass flux.

2.6 Analysis of cell-ECM interaction

The Oster-Murray model considers convection of cells by the deforming ECM to be a major
mode of cell transport. Convection occurs concurrently with the mechanisms described in the
Sections 2.4-2.5, but inertial effects in cell-ECM interaction are ignored for reasons mentioned
in Section 2.3.
A model is now developed of interaction between the deforming ECM and the passively
transported cell population, using the mass flux due to convection
Ou

Jov = =2 2.1
cé)t (2.17)

Incorporate this into the general cell-conservation equation (2.11) to give

Oc Ju

= V- (e— 2.1

5 = V(g (2.18)
and again postulating a separation of variables solution for ¢

¢ = (x)g" (1) (2.19)

"The respective eigenvalues determine the temporal scaling of the sinusoidal modulation g*, and the expo-
nentially decaying modulation g9®.

15
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As before, the objective is to analyse the convection eigenfunctions f<(x), which de-
scribe the principal spatial modes of mass flux due to cell-ECM interaction. Substituting
equation (2.19) into equation (2.18) gives

cv@ _ cvaiel cv el
[ =g atv(f f) (2.20)

and rearranging to put temporal terms on the left and spatial terms on the right

1 g 1
. — _ v fcvfel
gcv gel fcv ( )
= kv (k°v arbitrary constant) (2.21)

The temporal solution is found by separation of variables

agcv agel
= kgl 2.22
ot I "ot (2:22)
= g% () = ek e () (a® arbitrary constant) (2.23)

The spatial solution® is given by
V . (fcvfel) — _kcvfcv (228)

Principal modes of convective mass flux

Inspection of equation (2.17) shows that convective mass flux J° is directed along 66—;‘. But

au __ gpel agel(t)
Fri o b

(2.29)

so we can see that J° must be parallel to ECM deformation, i.e. the principal modes of
convection are identical to the principal modes of ECM deformation f(x). In fact, we have
now shown that the elastic eigenfunctions f*(x) describe the:

(i) principal spatial modes of ECM mass flux due to ECM deformation;
(ii) principal spatial modes of cellular mass flux due to cell diffusion;

(ili) principal spatial modes of cellular mass flux due to ECM convection of cells.

8 Analytically, the convection eigenfunctions f°'(x) are found by utilising the standard identity
V- (£ = £ (V) + (F7V) (2.24)
so from equation (2.28)
(fel_v) FUo= - (v_fel + kcv) £ (2.25)

The left hand side of this is just ||f¢!]| times the spatial derivative of f', projected along eigenmodes f¢.
Using a change of variable to s, the arc-length along each convection path,

fel
0x = ———=0s (2.26)
[I£<!]l
and applying it in equation (2.25) gives
d V£ kO
—lnf"=——— 2.27
! [ 220

which can be solved to give the spatial distribution of f¢'(x) along each convection path.

16
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2.7 Summary

A model of biological growth is developed, which incorporates the effects of ECM deformation,
cell-ECM interaction, and cell diffusion resulting from cell proliferation. This growth model is
general enough to apply across organs of interest in ultrasound imaging, almost all of which
are of mesenchymal origin. It is also specific enough to incorporate the cell as the fundamental
unit of biological growth.

Material properties of organs are assumed to be spatially uniform, and under this assump-
tion it is shown that the elastic eigenfunctions of the organ describe the principal modes of
mass flux due to all three growth mechanisms.

The next two chapters show how these eigenfunctions can be approximated as FEM eigen-
modes by using finite element organ models; the eigenmodes are also shown to have appealing
properties in characterising organ shape.

17
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Chapter 3

Modelling Shape

Chapter 2 shows that elastic eigenfunctions describe the patterns of organ shape variation.
However, there are few organ geometries that can be described in a coordinate system for
which eigenfunctions can be analytically derived.

The finite element method (FEM) is a technique for solving such problems numerically.
The organ model is divided into geometric elements so that the eigenfunction problem consists
of elemental problems, each of which is then soluble in its own coordinate system. Such finite
element approximations to elastic eigenfunctions are known as FEM eigenmodes.

This chapter is concerned with the problem of shape representation, since the choice of
representation determines the efficiency with which organ models can be manipulated. Eigen-
modes are shown to characterise the shape and symmetry of the underlying organ model at
different spatial scales; and these properties of shape representation are shown to be resilient to
the choice of finite element mesh, which is important when comparing different organ models.

Chapter organisation

e Section 3.1 reviews the problem of shape representation, and surveys approaches taken
by other researchers.

e Section 3.2 introduces finite element models and their finite element eigenmodes.

e Section 3.3 examines the eigenproblem associated with finite element equilibrium. Ei-
genmodes derived from this eigenproblem are shown to have desirable properties in shape

representation.

e Section 3.4 demonstrates these properties with eigenmode examples, which are repeated
for six different model meshes to show eigenmode resilience to noisy meshing.

e Section 3.5 concludes that eigenmodes are well suited to the task of shape represent-
ation, due to their symmetry, scale-ordering, stability, and object-centred description.
In comparison to other representations, eigenmodes characterise model symmetries in a
very general way.

18
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3.1 Shape representation

Blum [13] recognised three aspects to the problem of biological shape representation:

(i) the morphological and tazonomic problem of formally describing cell, organ, or organism
shape;

(i1) the meuro-physiological and psychological problem of how an organism describes and
characterises other organisms’ shapes;

(iii) the developmental problem of how organisms encode shape information during morpho-
genesis and growth.

D’Arcy Thompson [156] explained biological form in terms of mechanical processes and
constraints, producing a detailed comparison of related forms using Cartesian transformations.
Under his theory of transformations, deformation is defined to be the mapping between related
forms.

Cartesian transformations found few applications due to their analytical unwieldiness, but
gave rise to simpler methods of allometric growth analysis (Huxley [68]), culminating in Book-
stein’s [16] development of morphometrics as a statistical method for analysing the “covariances
of biological form”.

Morphometrics applies multivariate statistical methods to 2D biological landmarks'. Land-
mark triplets are converted to shape coordinate pairs, which are manipulated and visualised
on a geometric plane; deformations between sets of shape coordinates are then interpolated us-
ing a thin-plate spline underlying the shape coordinate plane. The spline’s closed-form elastic
eigenfunctions are known as principal warps, and these are used to quantify anatomical shape
differences.

Bookstein suggests extending landmark sets by searching on ridge curves of locally-maximal
surface curvature, while Bookstein & Green [17] augment landmarks by incorporating local
edge information. Landmark data is suited to biometric analysis, but only partially fulfills
the function of taxonomic representation, and barely addresses the other aspects of shape
representation enumerated by Blum.

skeleton boundary

radius value associated
with each point

Figure 3.1: Example of the symmetric axis transform

Blum’s proposed solution was the symmetric azis, derived by a reversible shape transform
to give a skeleton and a radius value associated with each point on the skeleton. As a repres-
entation of biological development and morphology, the symmetric axis transform (SAT) is a
simple model of growth by isotropic mass accretion around the skeleton. Figure 3.1 shows an
example of an object’s boundary and skeleton.

"Bookstein (ch.3)[16] discusses the difficult question of landmark identification: “landmarks are the points
at which one’s explanations of biological processes are grounded”.
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Figure 3.2: The Mach illusion: the choice of object-centred coordinate system affects local
shape perception

Marr & Nishihara [87] use the Mach illusion in Figure 3.2 to demonstrate the visual im-
portance of the skeleton: local shapes are perceived either as diamonds or squares relative to
the global axis. They examine the psychology of 3D shape representation and recognition, and
find that the SAT is an appropriate representation when used in generalised cones, which are
defined in an object-centred coordinate system, and allow a modular organisation of volumetric
primitives. Brady & Scott [19] extend the SAT to represent rotational and mirror symmetries,

using smoothed local symmetries (SLS).

Scale-space representations

One important aspect of shape representation is the characterisation of shape at different spatial
scales. A scale-space adds an extra dimension to a shape representation by spanning a range of
spatial scales (Koenderink [75]; Lindeberg [83]). For example, Kimia et al. [72, 73] model the
evolution of boundary curves using a reaction-diffusion equation, which allows shocks (shape
singularities) to subdivide a shape hierarchically as scale-space is traversed.

Gaussian scale-space is computed by propagating the linear diffusion equation over an initial
image or curve, using a Gaussian kernel convolution?. Alternatively, Boomgaard & Smeulders [164]
propose propagation by a set of non-linear morphological operators, and conclude that both
shocks and SAT skeletons can be computed in morphological scale-space.

Deformable representations

Another important aspect of shape representation, especially in medical imaging, is the ability
to deform to fit a range of variations. For example, Amit et al. [1] employ deformable tem-
plates which model local probabilities of deformation under diffusion processes. Kass et al. [71]
introduce active contours which search for boundary fragments, and interpolate them by minim-
ising the contour’s bending energy. Fourier harmonic surfaces (Ballard & Brown (ch.9.2.3)[5];
Staib & Duncan [139]) and superquadrics (Solina & Bajcsy [136]; Terzopoulos & Metaxas [154])
are similarly used as deformable shape models in 3D shape recovery and boundary finding.

Cohen & Cohen [30] apply the active contour to 3D problems by tracking dynamic equilib-
rium using a FEM model, which allows arbitrary shape parameterisation (unlike a sphere or
superquadric). Nastar & Ayache [100, 101] present similar work in medical imaging.

Pentland et al. [112, 113, 114] use superquadrics and elastic FEM shape models in shape
recovery for 3D and 3D time-series data. FEM eigenmodes are used to deform FEM shape
models, in the same way that Fourier harmonics deform harmonic surfaces.

*Koenderink & van Doorn [76] note that receptive field families derived from the diffusion equation bear
great resemblance to (mammalian) receptive fields observed in neuro-physiological experiments.
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3.2 Finite element elastic model

The growth model in Chapter 2 shows that elastic eigenfunctions describe the principal modes
of mass flux during organ growth. These eigenfunctions are the spatial solutions of the wave
equation (2.3) describing the ECM’s elastic behaviour, so any ECM deformation can be de-
scribed as an eigenfunction expansion, because of the important properties of eigenfunction
orthogonality and completeness (Kreysig (ch.4.8)[77]).

A numerical solution to the wave equation is achieved by a finite element sampling of the
organ model. The model is treated as an elastic body whose displacements at n sample points
are described by a displacement vector u. The elastic equilibrium implied by the wave equation
then takes the form of a discretely sampled equilibrium system (see Appendix A.2)

Mii +Ku =0 (3.1)

which is of order 3n, since there are 3 displacement components at each sample point. Ap-
pendix A shows how the body’s mass matrix M and stiffness matrix K are assembled for FEM
equilibrium?.

Just as the wave equation can be expanded into eigenfunctions, the equilibrium equa-
tion (3.1) can be expanded into orthogonal FEM eigenmodes ¢;, which are sampled and lin-
earised approximations to the wave equation’s eigenfunctions f¢'. Equation (2.4) suggests a

separation of variables solution to equation (3.1)
u = ¢;elit (3.2)

where w; is the natural-frequency of vibration associated with ¢; (note that j = y/—1 here).
Applying this simple harmonic solution to equation (3.1) results in the eigenproblem

K¢; = M, (3.3)

Given the mass matrix M and stiffness matrix K of an organ model, this eigenproblem is
solved to give the eigenmodes ¢; and eigenvalues w?. Eigenpairs (¢;,w?) are usually collected
into the matrices (®, Q?) and ranked in increasing order of eigenvalue?

® = (¢1a¢2a"'7¢3n) (36)
wi
2
Q2 = “2 . (3.7)
Wiy

M >0 and K >0 are both symmetric. K is positive semi-definite because an unsupported body can freely
undergo rigid-body rotation and translation.
*Eigenmodes are conventionally M-orthonormalised

"M® =1 (3.4)
so that
'Ke = T (MY
= (@)Te"™Ms)"
= 0 (3-5)
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3.3 Finite element eigenmodes

By collecting eigenpairs into the eigenmode matrix ® and the eigenvalue matrix Q2 equa-
tion (3.3) can be rewritten as
K® = M®Q? (3.8)

This is the generalised eigenproblem for the matrix pair (M, K). It occurs frequently in finite
element analysis of structures, and there are powerful numerical techniques for computing ®
and Q2. Appendix B introduces some of these techniques.

The transition has now been made from a continuous elastic model defined by the wave
equation (2.3), to a finite element elastic model defined by the FEM equilibrium equation (3.1).
This equilibrium equation is described in terms of the model’s deformation u, but can also be
described by projecting u onto the complete set of eigenmodes ®. This latter approach is
known as modal analysis, and is the natural approach to analysing structural deformation, e.g.
Chapter 4.4 uses modal analysis to determine a model’s response to random excitation.

The eigenmodes are an approximation to the elastic eigenfunctions, which were previously
shown to describe the organ’s shape variation; Chapter 4 will examine eigenmodes in this
context. However, eigenmodes also have a number of properties that make them useful in shape
representation, which is the concern of this chapter. These properties are now characterised
by closer examination of the generalised eigenproblem in equation (3.8).

Rayleigh quotient characterisation

The Rayleigh quotient R(u) is defined for symmetric M and K

ul'Ku

R(u) = uT’Mu

(3.9)
where u#0 can also be a matrix. For an undamped and unforced vibrating body®, R(u) is
physically interpreted as the ratio of the body’s elastic potential energy to kinetic energy.

The minimaz (Parlett (ch.10.2)[109]) or Rayleigh quotient characterisation (Bathe (ch.2.8)[8])
uses R(u) in an alternative definition of the generalised eigenproblem®

w? = min max R(u) (3.10)
St ues?
This characterisation is useful because it avoids explicit reliance on previously extracted ei-
genmodes, so allowing us to concentrate on eigenvalue properties.
Certain modes of vibration are locally maximum in the Rayleigh quotient, i.e. they have

high elastic energy and low kinetic energy. Out of these maxima, the one with the lowest

Rayleigh quotient is the eigenmode ¢; required by equation (3.10), whose eigenvalue w? is
simply R(¢;). Successive eigenvalues are non-decreasing (Bathe (ch.2.8)[8]), and all are non-
negative since M >0 and K>0.

There is also a graphical interpretation using a matrix A with eigenvalues (w?,w3,w3),
which has the Rayleigh quotient R(u) = (u” Au)/(u”u). The unit sphere is mapped by A3
to an ellipsoid with axes of radius (w1, ws,ws); the aim is to search the ellipsoid for these axes,

whose radii give us the eigenvalues. The first eigenvalue is simply found by searching the entire

SFrom equation (3.2), the natural-frequency of vibration for each eigenmode is w;.
6See Appendix B for the definition of an i-dimensional subspace S°.
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ellipsoid for the smallest radius
. 1
w1 = min ||A2ul| (Ju|l =1) (3.11)
ues3

In order to find the next axis ws, we examine the intersection of the ellipsoid with all
planes (notated by S?) passing through its origin. Each intersection locus is an ellipsoid with
a maximum radius on its major axis, and out of all possible intersection loci the major axis is
smallest at the desired plane, as shown in Figure 3.3.

intersection locus

Figure 3.3: Graphical interpretation of the Rayleigh quotient characterisation

In this plane, the major axis has radius wo
1
wg = min max ||A2u ul| =1 3.12
» = min max [[A¥u] (hull = 1) (312
whence the minimax characterisation, which generalises to higher dimensional examples.

Repeated eigenmodes

It follows from the Rayleigh quotient characterisation that structures which possess mirror and
rotational symmetries, will also have local minima of R(u) with identical values. Such repeated
eigenmodes have identical eigenvalues, and identical eigenmode shapes about their respective
planes or axes of symmetry.

Repeated eigenmodes’ span an eigenspace uniquely defined with respect to other eigen-
modes. Within this eigenspace they are mutually orthogonal and uniquely determined with
respect to each other. However, they are not individually uniquely determined with respect to
eigenmodes outside the eigenspace.

We intend to use the eigenmode representation to characterise organ symmetry, so the
representation must cope with potential mirror and rotational symmetries. Such symmetries
are very unlikely in multiplicity 3 (e.g. sphere or cube), so we need only consider how to
deal with 2D eigenspaces. Where an eigenmode defines a vector component at each finite
element node, a pair of repeated eigenmodes (a 2D eigenspace) defines a plane with a unique
normal component. By employing these components, repeated or single eigenmodes can both

be treated in the same way when used as shape features®.

"The block Lanczos algorithm is specifically designed to detect repeated eigenmodes (see Appendix B).
8In practice, errors in eigenmode computation make it difficult to distinguish between repeated eigenmodes
slightly separated in natural-frequency, and genuinely separate eigenmodes.
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You cannot hear the shape of a drum

Having established that eigenmodes can be used as shape features, even with mirror or rota-
tionally symmetric organ models, we now discuss the properties of eigenvalues and eigenmodes
in shape representation.

Kac [69] examined the problem of determining an elastic membrane’s shape from its ei-
genvalue spectrum: area, circumference, and connectivity (for polygonal boundaries) were
established. However, Gordon et al. [54] showed that two differently shaped domains can in
fact have the same eigenvalue spectrum, which suggests that elastic eigenvalues are probably
not the shape representation we require®.

In general, however, even if an eigenvalue representation is augmented with eigenmodes,
the geometry of the underlying elastic body cannot be uniquely characterised by the eigenpairs.
This is simply because the generalised eigenproblem in equation (3.8) is posed in (M, K); the
resulting eigenpairs are therefore determined by the body’s mass and stiffness distribution,
rather than the body’s geometry. Also, the eigenmode transform (®,2?) is only invertible to
the single matrix M~1K, and not to the matrix pair (M, K).

It should be recognised that this reduction in dimensionality is, in fact, a desirable property
for shape features, since their purpose is to distill shape information into more representative
quantities. We now show that eigenmodes are ideal shape features in this respect.

Symmetry of eigenmodes

Eigenmode shapes tend to emphasise the various symmetries of the underlying organ shape;
such behaviour is highly desirable in a shape representation, and the consequences are discussed
later in Section 3.5. We first examine why elastic eigenmodes might generally be symmetric.

The first six eigenmodes of a freely vibrating structure are those of rigid-body motion, since
there is no elastic deformation involved, and hence no cost in elastic energy. These rigid-body
modes account for the translational or rotational motion of the body about its centre of mass.

There are no supports or physical boundary conditions in our equilibrium analysis, so after
an initial impulse acts upon the body, there are no external forces acting upon the freely
vibrating body. Therefore, non-rigid eigenmodes cannot result in any net translation of the
centre of mass, nor can they exert any net rotational moment.

This does not, in itself, necessitate any symmetry in the body’s choice of deformation during
free vibration. If the deformation is an eigenmode, however, it is also a local minimum in the
Rayleigh quotient, and symmetric deformations allow for a minimal penalty in elastic energy,

while obeying the physical constraints set out above!?

. Each eigenmode therefore tends to
emphasise symmetries in the organ, where the dominant symmetry in each eigenmode depends
on the spatial scale of the eigenmode.

Eigenmode features require global support!! and cannot easily cope with occluded part
structures. This is irrelevant in model-based imaging since organ shape models must always
be fully constructed. In cases where partially occluded models require shape analysis, however,

wavelet modes in Chapter 6.4 are a possible solution, since they have localised support.

9Elastic eigenvalues have properties similar to moment invariants when used in shape representation. Al-
though both are invariant to linear transformation and scaling, they are global features and their representation
of actual geometry is weak. Even so, moment invariants are found to be useful in shape discrimination (Hu [64]).

10A less persuasive argument is that most simply-connected biological structures map conformally from
an ellipsoid volume, and the ellipsoid’s eigenmodes should retain their symmetric features (see examples in
Figure 3.4) under such a mapping (Kreysig (ch.16.1)[77]).

"1n other words, the shape of each eigenmode is dependent on the global shape of the organ.
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Scale-ordering of eigenmodes

The eigenmodes of a spherical membrane are not only harmonic in time, but also harmonic in
spatial distribution'? (Ballard & Brown (ch.9.2.3)[5]). The latter implies a spatial scaling of
eigenmodes, which can also be seen in other elastic models such as the volumetric ellipsoid in
Figure 3.4.
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(a) ¢ (b) ¢11

Figure 3.4: Eigenmodes of an ellipsoid volume are ordered in spatial scale

The Rayleigh quotient characterisation predicts that higher eigenmodes have higher elastic
energies'®, which accords with the scale-ordering in Figure 3.4, since deformations of high
spatial-frequency (i.e. smaller spatial scale) are more energetically expensive.

Also, Appendix A.8 shows that each eigenmode’s elastic energy is determined by its modal
amplitude and modal stiffness. Since higher eigenmodes are of smaller spatial scale, they require
a larger amplitude for the same physical displacement; and equation (3.5) shows that modal

2

7, which again increases with higher eigenmodes.

stiffness is equal to the natural-frequency w
In other words, both modal amplitude and modal stiffness increase for successive eigenmodes,
which must therefore have successively higher elastic energies.

Figure 3.5 shows two eigenmodes of a uniform elastic string, which in this case are also
Fourier harmonics. In fact, elastic eigenmodes can be thought of as analogous harmonics
for finite element shape models, and it is the harmonic nature of eigenmodes which explains
their increasing spatial-frequency'#. This natural ordering in spatial scale is another desirable

property of eigenmodes as shape features.

higher harmonic .
fundamental harmonic
a

/f \pnode of zero

spatial resolution increases \ displacement
for higher harmonics

Figure 3.5: Fourier harmonics of a uniform elastic string are ordered in spatial scale

Higher spatial-frequency modes are unimportant in determining a structure’s dynamic re-
sponse (Bathe [8]). There is also an increased possibility of (spatial) aliasing in eigenmodes of
high spatial-frequency, due to Nyquist sampling considerations for the model’s mesh. Organ
deformations described using an eigenmode expansion can therefore be truncated in principled
order of eigenmode importance and accuracy.

12The nth spherical harmonic is temporally modulated by e’“»?, and spatially modulated by e’™%* and e/™%2,
where (61, 62) are the spherical coordinates.

3Recall that the Rayleigh quotient is the ratio of elastic potential energy to kinetic energy.

4 Chapter 6 utilises this analogy in eigenmode spectrum analysis (cf. Fourier spectrum analysis).
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3.4 Eigenmodes as shape features

We have shown that eigenmodes are shape features with excellent properties in symmetry
and spatial scaling; morever, eigenmodes of large spatial scale are better sampled than other
eigenmodes of smaller spatial scale.

These properties are now demonstrated in Figures 3.7-3.12, which show eigenmodes ¢; to
¢, of the six ellipsoid models in Figure 3.6. Each ellipsoid model has a different finite element
mesh, to show that eigenmodes of large spatial scale are relatively resilient to the choice of
mesh (Syn & Prager [147]).

e Figure 3.6(a) is a uniform volumetric mesh.

Figure 3.6(b) is a randomly sampled volumetric mesh.

Figure 3.6(c) is a randomly sampled volumetric mesh, with global bending.

Figure 3.6(d) is a sparsely sampled volumetric mesh.

Figure 3.6(e) is a uniform ellipsoid mesh with added Gaussian noise of small variance.

Figure 3.6(f) is a uniform ellipsoid mesh with added Gaussian noise of large variance.

(a) Uniform mesh (b) Random mesh
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(d) Sparse mesh (e) Noise of high spatial-frequency (f) Noise of low spatial-frequency

Figure 3.6: Six ellipsoid shape models

Note that ¢, to ¢4 are the rigid-body modes of translation and rotation; the first non-rigid
mode shown in Figures 3.7-3.12 is therefore ¢;. Four snapshots are shown of each eigenmode,
to capture its shape as it ranges over positive and negative amplitudes.

It should be clear from comparing equivalent eigenmodes between each figure, that the
eigenmode shapes are relatively unaffected by the choice of mesh. As mentioned before, this
is a consequence of the eigenmode’s spatial scale being much larger than the spacing of the
underlying mesh.

Eigenmode features are seen to be ordered in spatial scale: ¢, has fundamental spatial-
wavelength, so its bending shape spans the entire ellipsoid; ¢, has half the fundamental spatial-
wavelength, so it describes an S-shaped bending.
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3.4 Eigenmodes as shape features
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(f) Snapshots of 12th eigenmode
Figure 3.7: Eigenmodes of uniformly tessellated ellipsoid

Figure 3.7 shows the eigenmodes of an ellipsoidal volume tessellated uniformly with tet-

s symmetry gives rise to pairs of repeated eigenmodes in

Y

The ellipsoid

rahedral elements.

).

Figures 3.7(a,b) and 3.7(e,f
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Figure 3.8: Eigenmodes of non-
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3.4 Eigenmodes as shape features

d volume with non-uniform tessellat

ipsoi

Ell

Figure 3.8 shows the eigenmodes of an ellipsoid volume sampled randomly both internally

and on the surface

typical of manual sampling, or automated sampling algorithms operating on segmented MRI

volume images.
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3.4 Eigenmodes as shape features
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Figure 3.9: Eigenmodes of non-uniformly tessellated ellipsoid with bending

Figure 3.9 shows the eigenmodes of a bent version of the ellipsoid shown in Figure 3.8.

This demonstrates the stability of eigenmodes features to large-scale shape changes, e.g. due

to ultrasound image distortion from refraction effects (see Chapter 5.6).
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Ellipsoid volume with sparse tessellation
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Figure 3.10: Eigenmodes of sparsely tessellated ellipsoid

Figure 3.10 shows the eigenmodes of a sparsely sampled ellipsoid. Eigenmode features
are stable for models with different sampling densities, e.g. when comparing and validating
segmented models derived from ultrasound and MRI.
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Ellipsoid volume with noise of high spatial-frequency
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(f) Snapshots of 12th eigenmode

Figure 3.11: Eigenmodes of ellipsoid with noise of high spatial-frequency

Figure 3.11 shows the eigenmodes of a noisily sampled ellipsoid, where additional Gaussian
noise with a standard deviation of one element width is added to each element node. This

demonstrates that eigenmodes are relatively resilient to noise of high spatial-frequency, e.g.
errors in manual landmark sampling.
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Figure 3.12: Eigenmodes of ellipsoid with noise of low spatial
Such noise simulates the (normal

3.4 Eigenmodes as shape features

Ellipsoid volume with noise of low spatial-frequency

Figure 3.12 shows the eigenmodes of an ellipsoid with noise of large spatial correlation

added to each node.

structures being scanned.
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3.5 Generalised symmetries

We have demonstrated the eigenmode properties of symmetry, scale-ordering and stability.
Eigenmodes of large spatial scale are ideal for shape representation because of these properties.
Morever, eigenmodes are sensitive to the global shape of the organ model because of their global
support.

Scale-ordering is a consequence of the harmonic nature of eigenmodes. Each eigenmode
has an associated vector field describing its spatial wavelength (discussed below), and this
spatial wavelength defines the spatial scale at which the eigenmode’s symmetries are dominant.
Eigenmode stability is in turn a consequence of scale-ordering, since eigenmodes of large spatial
scale are relatively unaffected by an underlying mesh of small spatial scale.

It is worth noting that Sclaroff & Pentland [130] suggest elastic eigenmodes to be the gener-
alised symmetries of a 2D boundary model, although no particular characterisation is provided
to justify such a sweeping label. Still, the idea of generalised symmetry seems appropriate
because of the harmonic behaviour mentioned above.

Let us now compare the eigenmode representation to others previously reviewed in Sec-
tion 3.1, in order to show that eigenmodes are indeed more generalised symmetries than either
the SAT or SLS.

Comparison with other shape representations

Marr & Nishihara’s [87] requirements of an object-centred coordinate system are fulfilled, since
the eigenmode fields ¢; are always defined relative to the underlying organ shape, independent
of pose and location. In addition, eigenmodes are ranked in order of accuracy, significance and
spatial localisation, so that shape symmetries are exhibited in global-to-local order. Eigenmode
symmetries also cope naturally with mirror and rotational symmetries in the organ shape.

The SAT (and variant) representations suffer in comparison because of possible skeletal
branching in the presence of incremental shape changes, as shown in Figure 3.13. However,
both eigenmode and SAT representations are susceptible to occlusion effects, since both are
computed with global support. The wavelet modes developed in Chapter 6.4 may be a solution
to this, since they are shape features with localised support.

Figure 3.13: Example of SAT sensitivity to boundary shape change (adapted from Blum [13])

Pizer et al. [115, 116] examine SAT behaviour at different spatial resolutions in order to
sensitise the computed skeleton to shape symmetries at different spatial scales. The resulting
representation is the multi-resolution core, computed directly from intensity images; cores
therefore have the significant advantage of not requiring prior segmentation of shapes in the
image. However, appropriate techniques have not been developed to analyse and manipulate
the resulting 3D skeletons in the core.

33



3.5 Generalised symmetries 34

Blum [13] computes the SAT using the grassfire algorithm!®, which solves Laplace’s equa-
tion within the shape, defined with appropriate boundary conditions. Pizer et al. [116] and
Brady & Scott [19] note that the SAT and SLS can also be computed as the solution to other
partial differential equations (PDESs), again given appropriate boundary conditions.

In fact, Brady & Scott speculate that eigenfunctions of these PDEs represent more general-
ised symmetries than the SLS, because the SLS imposes a rigid distinction between rotational
and mirror symmetries. This is illustrated in Figure 3.14(a), which compares mirror and
rotational symmetries highlighted by elastic eigenfunctions, with the SLS in Figure 3.14(Db).

(a) Elastic eigenfunctions (b) SLS

Figure 3.14: Comparing elastic eigenfunctions and smoothed local symmetries (SLS) for an
unclamped plate (adapted from Brady & Scott [19])

We therefore conclude that elastic eigenmodes represent an organ model’s symmetries in
a more general way than either the SAT or SLS. In comparison with other representations
surveyed in Section 3.1: eigenmodes span a range of spatial scales (cf. scale-space representa-
tions), and describe modes of organ deformation (cf. deformable representations). Eigenmodes
can also be computed for any shape model, and are relatively invariant to the choice of shape
meshing.

In the context of Blum'’s [13] classification of the shape representation problem:

(i) The morphological and tazonomic aspect:
Chapter 6 shows that eigenfunction extrema fulfill the function of biological landmarks,
and can in fact be used to compute biological fits between organ models.

(i1) The neuro-physiological and psychological aspect:
Bruce & Green [20] suggest that psychological representations of shape exist at multiple
spatial scales, and depend strongly on symmetric cues. Eigenmodes fulfill both criteria
by characterising model symmetries in a scale-ordered fashion'®.

(iii) The developmental aspect:
Chapter 2 shows that elastic eigenfunctions are a description of principal modes of mass
flux in our model of biological growth.

!5 An analogy is that of placing a uniform distribution of electric charge along the boundary, so that ridges
of stationary potential describe the skeleton.

16 Although eigenmodes can only be computed for shape models, Pizer et al.’s [115, 116] core representation
is a variant which is computed directly from intensity images.

34



3.5 Generalised symmetries 35

Spatial scale of eigenfunctions

It was suggested earlier that spatial wavelength decreases with successive eigenfunctions. This
was explained to be a consequence of the harmonic nature of elastic eigenfunctions, which have
a non-decreasing number of node points'?. Recall that eigenfunction nodes are points with
zero displacement.

We are interested in defining spatial wavelength, since this is precisely what we mean when
we speak of an eigenfunction’s “spatial scale”. However, spatial wavelength is not a simple
scalar quantity when dealing with 2D or 3D models, particularly those with complex geometry.
For example, an eigenfunction may have a small spatial wavelength along one axis of a plate,
but a very large spatial wavelength along the other; in this case, it is clear that spatial scale
has two components.

In the worst case of an arbitrary eigenfunction shape, spatial wavelength has to be specified
everywhere on the model. For example, if we choose our model to be a square plate of side T,

then one possible set of eigenfunctions for the scalar wave equation (2.15) is'8

¢, = sin2ixsiny+ psinzsin2iy (3.13)

The eigenfunction ¢4 shown in Figure 3.15 is confusing, because it has a single nodal curve
(i-e. it should have fundamental wavelength), although its spatial wavelength appears to be §.

(a) Eigenfunction ¢y (b) Nodal curve of zero displacement

Figure 3.15: Example of eigenfunction which has only a single nodal curve (u = 0.9)

We therefore need to salvage the notion of an eigenfunction’s spatial scale being a simple
quantity derived from spatial wavelength. Fortunately Chapter 6.4 shows that, for the elastic
eigenfunctions of uniform elastic models, spatial wavelength is a vector field which exists only
at a single magnitude, although its vector components may point in many directions. An elastic
eigenfunction’s spatial scale should therefore be defined as being this magnitude.

'"This is predicted by Sturm-Liouville theory, which studies the behaviour of scalar eigenfunctions occurring
in many physical problems (Courant & Hilbert (ch.6)[35]).

18Equation (3.13) describes incomplete sets of eigenfunctions, whereas the elastic eigenfunctions are the only
complete set. In fact, the eigenfunctions in equation (3.13) turn out to be linearly assembled from elastic
eigenfunctions (Courant & Hilbert (ch.6.7)[35]).

35



3.6 Summary 36

3.6 Summary

The finite element procedure allows the elastic eigenfunctions from Chapter 2 to be approxim-
ately computed for any organ model. These approximations are the finite element eigenmodes,
which are used to model organ shape variation in Chapter 4. Eigenmodes form a complete and
orthogonal basis set, and are useful for modal analysis of organ deformations.

This chapter shows that eigenmodes are also ideal for shape representation. They can be
thought of as the generalised symmetries of the organ model, being symmetric at multiple spa-
tial scales. Eigenmodes of large spatial-scale are particularly useful, because they are relatively
invariant to noise in the underlying organ mesh.
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Chapter 4

Modelling Variation in Shape

Chapter 2 introduces a biological growth model in which organ shape variation is described by
elastic eigenfunctions, and Chapter 3 shows that these eigenfunctions can be linearly approx-
imated by finite element eigenmodes.

Eigenmodes are model-based modes of shape variation, since they are dependent only on
the shape and material properties of the underlying finite element organ model. This chapter
discusses the use of these modes, and introduces a non-linear representation for cases where
shape variation cannot be adequately described by linearised modes.

Another common approach to modelling organ shape variation, is the statistical analysis of
organ shape examples. This analysis gives rise to the principal components of shape variation,
which are data-driven modes of shape variation.

A common framework is developed to combine model-based and data-driven modes of shape
variation. The result is a shape model whose knowledge of organ shape variation is initialised
with eigenmodes, but can be refined from new organ examples.

Before this common framework can be applied, however, new organ examples must be
scaled to the correct size relative to previous examples. There is an inevitable covariation
between an organ’s size and its shape, so an incorrect change in its size will distort its shape.
The centroid size metric attempts unbiased estimation of size differences in the presence of this

covariation.

Chapter organisation

e Section 4.1 introduces a centroid size metric for size-normalisation of finite element
organ models. This removes an undesired source of variation in datasets of organ shape.

e Section 4.2 discusses the use of model-based modes of shape variation, and introduces
a non-linear extension to these model-based modes.

e Section 4.3 discusses data-driven modes of shape variation, which are derived by stat-
istical analysis of a training set of organ shapes. Data-driven modes have the advantage
of being specific to the training data, but lack the descriptive and analytic framework
afforded by model-based modes.

e Section 4.4 examines the statistical distribution of model-based modes under noisy
excitation of eigenmodes; data-driven analysis is applied to this distribution.

e Section 4.5 uses this analysis to implement a model-based framework, which incorpor-
ates data-driven analysis by iteratively updating itself with new organ shape data.
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4.1 Covariances between size and shape

The aim of this chapter is a model of organ shape variation which can learn from new examples
of organ shape. These new examples must be normalised in size, because examples which vary
in size will also seem to vary in shape (see Figure 4.4). Size normalisation is also important in
Chapter 5 when fitting an organ shape model to 3D ultrasound data, and in Chapter 8 when
fitting organ shape models to each other.

Bookstein (ch.5.5)[16] shows the centroid size metric to be the only size variable invariant
to independent, identical, and isotropic noise in landmark positions; these noise assumptions
are reasonable, although somewhat idealised. There are a number of equivalent definitions of
centroid size, and the one used below is the sum of all inter-landmark squared-distances.

Although it is possible to apply this metric directly to the finite element nodes of organ
models, it is more accurate to generalise the metric so that it applies to finite element faces!.
This generalisation is important in finite element models which have unevenly positioned nodes.

Assuming that the model’s surface is composed of triangular elements, an expression is
first found for the centroid size of a pair of triangles. This expression involves integration over
the triangle pair, so an appropriate triangular coordinate system is required.

Coordinates in a triangle

Figure 4.1 shows a triangle with node positions (a, b, c). Consider a small strip (p, q) parallel
to the baseline (a,b), and let r denote a position in this strip. Then

q-p = (I1-p)(b-a) (4.1)
r = p+A(Qq—p) 4.2
dA = (hdp)(lla—plldr)
C
dA
/V
e ITLLLITIIIIIIIIIIT [T 7] Vhdp h
p € [0,1] P q
a b
A€ [0,1]

Figure 4.1: Coordinate parameters of triangle in 3D space

Centroid size integrated over two triangles

The metric can now be integrated over two triangles 717 and 75, respectively defined by their
nodal coordinates (a,b,c) and (d,e,f). If r is a point within 77 and s is a point within 75,

!Surface meshing is almost always of higher quality than internal sampling, so integrating over surface faces
gives a very good measure of the model’s size, for both volumetric and surface model meshes.
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then integration over the triangle pair gives?

1 r1 1 pl
[ [r=sizanat, = [ 7" [“hilar - palliollaz = pal 1 = 5| ddmdradps
T JTs 0 Jo Jo JO

3 3c0 — 4
- (a-bxc)(d-exf)(cl*+82c3> (4.4)
where
e = a® +[bll*+ [lcl* + [|d]* + [le]* + [I£]? (4.5)

¢ = ab+bc+cat+detef+f.d
c3 = (a+b+c)(d+e+f)

Centroid size generalised to model surface

Summing equation (4.4) over all triangle pairs (7;,7}) on the model surface, gives the centroid

cs = ZZ/T_ /T e — s||? dA1dAs (4.8)

i j>i

size metric cs

Size-normalisation is achieved by forcing models to have the same centroid size, i.e. scaling
all coordinates in proportion to y/cs. This should only be done in cases where the models are
expected to have similar centroid sizes, e.g. fitting a model to 3D ultrasound data in Chapter 5;
another example in Chapter 5 is sizing organ models for computer display in a graphics window.

There should be no need for size normalisation in cases where organ models are defined
in true coordinates, e.g. meshes directly segmented from MRI. However, size normalisation is
performed in Chapter 8 before fitting two organ models to each other using their eigenmodes.
This is because the assumption of eigenmode similarity implies that the two organs are proximal
in ‘growth space’ (see Chapter 6.1), so that they should have similar centroid sizes.

Growth eigenfunctions are used to traverse the ‘growth space’ from one organ to the other.
However, if the two models are significantly different in size, then eigenmodes —i.e. linearised
eigenfunctions — can no longer be used in traversal. A centroid size normalisation is therefore
forced, so that a fit can be approximated even for organs of different size.

Figure 4.2 shows twelve liver models with normalised centroid sizes; these models are
segmented from MRI scans of foetal cadavers at different stages of growth (Pasapula [110]).

4.2 Model-based modes of variation

Chapter 3 shows that the principal modes of shape variation for an organ model are approxim-
ated by finite element eigenmodes. The eigenmodes depend only on the geometry and material
properties of the organ model, and are therefore model-based modes of variation.

Note that there is a distinction between shape variation and shape deformation, terms
sometimes used interchangeably in the literature.

2Equation (4.4) was algebraically integrated by computer, but it can be verified to have some expected
properties:

(i) symmetric under permutations of (a, b, c) or (d, e, f) and their components;

(ii) symmetric under swapping (a, b, ¢) with (d, e, f).
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Figure 4.2: Size-normalised volumetric liver models

e In our growth model, cell proliferation causes patterns of mass redistribution and ECM
deformation. Eigenmodes describe these patterns, so they are the modes of organ shape
variation, with each eigenmode describing a pattern at a particular spatial scale.

e Organ shape deformation occurs when external forces act upon the organ3, whose re-
sponse is approximated by the ECM’s elastic properties. In this case, the deformation
can be divided into constituent eigenmodes, where each eigenmode again exists at a
particular spatial scale.

Model-based modes of variation are intended to aid in interpretation of 3D ultrasound
images. This is done by comparing the interpretation of organ shape in the image, to the
expected organ shape. The plausibility of the interpretation is then determined by the shape
difference between the two, where the difference should be made up of the model-based modes.

There are bound to be many sources of shape difference, however. Model-based modes
can account for differences due to organ shape variation and organ shape deformation; and
Section 4.3 shows how other differences can be included by statistical examination of organ
shape data.

There is a modal stiffness associated with each eigenmode during organ shape deformation,
therefore eigenmodes are ranked by the probability that each participates in a deformation.
However, there is no such ranking for eigenmodes in organ shape variation; their relative
probabilities are not easily deducible from our growth model.

In order to incorporate both shape variation and shape deformation into model-based modes,
the assumption is made that both are ranked by modal stiffness. In other words, eigenmodes are

3Deformation is a factor in ultrasound imaging, because organs are supported and shaped by neighbouring
structures and gravitational forces.
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weighted by the elastic energy each requires for a given amplitude of variation or deformation.
Sections 4.3-4.5 show how this assumption can be iteratively refined.

Relative weighting is important because shape differences can be accounted for by many
combinations of eigenmodes, and the appropriate combination can only be chosen by knowing
the relative likelihood of each eigenmode in the combination.

Size of modal subspace

Another issue to be examined is the number of model-based modes of variation to be used.
Model-based modes are computed as elastic eigenmodes, and every additional eigenmode re-
quired increases computational expense. ‘Higher’ eigenmodes are also computed with less
accuracy (see Appendix B), and are less well represented on the finite element mesh due to
their smaller spatial wavelength. ‘Lower’ eigenmodes should therefore be used in preference to
‘higher’ ones.

A set of selected eigenmodes can be thought of as forming a subspace of shape variation.
Since eigenmodes are ordered in decreasing order of spatial scale, the subspace size is de-
termined by the ‘highest’ eigenmode, which has the smallest desired spatial wavelength; the
choice of this wavelength is dictated by the resolution to which the expected shape variations
are defined. The two important determinants of this resolution are therefore the quantity and
quality of information about the expected shape variation.

For example, Chapter 5.2 performs volume estimation by fitting an organ shape model to
landmarks selected in a 3D ultrasound image. If very few landmarks are selected, then the
subspace used in fitting should be kept small, since landmark information is insufficient for
fitting to a high spatial resolution. Similarly, if landmarks are badly selected, then fitting
should only proceed at low spatial resolution.

This is demonstrated in Figure 4.3, which shows an ellipsoid model deforming to fit a box*.
The size of the modal subspace used determines the spatial resolution at which the box is
reconstructed.

(a) Using 21 modes (b) Using 60 modes (c) Using 180 modes

Figure 4.3: Deformation from ellipsoid to box using different numbers of eigenmodes

Since a modal subspace consists of all eigenmodes below a certain spatial-frequency, it can
be thought of as a form of ‘low-pass’ filter during reconstruction. Section 4.4 shows that this
low-pass subspace is also the most significant in a statistical model of organ shape variation.

Elastic eigenmodes are linearised approximations to elastic eigenfunctions, i.e. they are
derived under the assumption that eigenmode amplitudes will be kept small. Eigenmode de-
formations must therefore be kept within some linearisation limit, for a given approximation
error. Low-pass eigenmodes have large spatial scale, so their linearisation limits are correspond-
ingly large; a low-pass subspace therefore maximises the range of (linearised) shape variations
that can be represented by model-based modes of variation.

*Note the Gibbs phenomenon in Figure 4.3(b), where the deformed ellipsoid ‘overshoots’ the box’s edges.
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Non-linear eigenmodes

The range of shape variation in some complex structures (e.g. in foetal imaging), is too large
to be accurately described by eigenmodes which are linearised under a small-amplitude as-
sumption. Non-linearities in shape variation, such as articulated motion in foetal limbs, are
particularly difficult to model.

Biomechanical models of such structures can be solved using numerical methods, but com-
putational expense scales unreasonably for large systems with many degrees-of-freedom (Se-
tio et al. [132]). Szemplinkska-Stupnicka [152] generalises modal analysis to such situations
using non-linear eigenmodes, and Setio et al. [132] show that non-linear eigenmodes can be
used to estimate solutions for large systems with non-linear stiffness.

Non-linear modal analysis allows complex shape variations to be decoupled into independ-
ent non-linear eigenmodes, where each eigenmode describes a component of non-linear shape
variation at a certain spatial scale. The cost and spatial resolution of the analysis is then
determined by the number of eigenmodes used.

Consider the equilibrium of a non-linearly elastic body, whose response is dictated by non-
linear restoring forces f(u)

Mi+Ku+f(u)=0 (4.9)

The behaviour of non-linear elastic elements depends on relative displacements between
node points, so a coordinate transformation Z is used to map from nodal displacements u to (a
vector of) relative displacements z. Components of z are assembled from differences between
nodal displacement components uj and u} to give z = Z lu.

The relative mass matrix M and relative stiffness matrix K are then given by

M = zZ"MZ (4.10)
K = 72'Kz (4.11)
f(z) = Zarzr (4.12)

The relative restoring forces vector f(z) is a polynomial model, where a, weights the desired
polynomial components. The equilibrium system (4.9) is now in relative coordinates

Mz + Kz + f(z) = 0 (4.13)

Non-linear modal analysis of equation (4.13) is performed by projection onto non-linear
eigenmodes (Zz-(qi), each defined as a function of modal amplitude g;

(K +K"(q)) ¢; = w?M, (4.14)

Equation (4.14) is a non-linear eigenproblem and is not, in general, soluble using standard
linear methods. Setio et al. [132] introduce a Newton-Raphson procedure for approximating

2

#) as a function of modal amplitude g;.

non-linear relative eigenmodes and eigenvalues (&)i,w
The iteration is initialised with linearised eigenmodes and eigenvalues, and non-linear stiffness
parameters K* are estimated from the non-linear system’s forced harmonic response.

The intention of this basic analysis is to show one method (there may be many) for extending
modal analysis to non-linear shape variation. Non-linear modal analysis is not commonly used,

however, due to the difficulties involved in determining non-linear material properties.
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4.3 Data-driven modes of variation

An alternative approach to deriving modes of shape variation from a growth model, is to
compute them from a dataset of organ shapes. These are data-driven modes of variation.

If a dataset is available wherein each shape is sampled by the same landmark configuration,
then principal component analysis (PCA) is an attractive method for analysing shape variation
in the dataset (Cootes et al. [33]). Each sampled shape is a vector x;, and the mean shape

vector is X; a sample covariance matriz S is then assembled from n such samples in the dataset
Y i —X)(xi—%)" (4.15)

The covariance matrix is very useful for shape analysis, because it contains information
about the variability of landmarks; it also contains information about the extent to which
variation in one landmark is related to variation in others. All these variations and covariations
constitute a ‘shape space’, within which all samples in the dataset range.

PCA extracts principal component vectors ¢, from this shape space, and the aim is to
have most of the shape space represented using a small number of vectors. This is achieved by
having each principal component vector ¢; maximise its projected variance ¢Z~TS¢,~, subject to
the magnitude normalisation ¢7 ¢; = 1.

The first principal component ¢ is found using a Lagrange multiplier A\; to perform the
maximisation (Therrien [155])

d
dg, (#1Se —Milglei-1) = 25¢1-2x¢e, (4.16)
=0

which gives a standard eigenproblem for ¢,

S¢; = My (4.17)

The second principal component ¢, is found in a similar fashion, with the additional con-
straint of mutual orthogonality ¢! ¢ = 0. It turns out that the principal components are
identically the eigenvectors of S, so the required data-driven modes of variation are given by

S¢b; = Aiep; (4.18)

The projected variance of each principal component is given by its eigenvalue

! Shb; = & N,
— (4.19)

A modal subspace of data-driven modes can therefore be chosen to account for any desired
proportion of variation in the shape space.
Point distribution model

The mean shape vector and its principal components of variation constitute a point distribution
model (PDM), which Cootes et al. [33] apply in an active contour framework for segmenting 2D
and 3D images. Grenander et al. [58] describe a similar statistical model of boundary shape,

43



4.3 Data-driven modes of variation 44

which changes position and shape to conform to image data. Sozou et al. [137, 138] describe
non-linear implementations of the PDM.

The advantage of the PDM is that its data-driven modes of variation are specific to the train-
ing set. Some classes of object are more obviously suited to this approach, e.g. in manufactured
objects Gaussian distributions of landmark positions are expected to result from cumulative
errors in the manufacturing process. However, Cootes & Taylor [33] also demonstrate that
PDMs (of hands and heart ventricles) can be used in segmenting biological structures which
may have non-uniform (and non-linear) distributions of landmark variation.

In the PDM, the sample covariance matrix S in equation (4.15) is assembled from land-
marked shapes which have been normalised for translation, rotation, and scaling®. Section 4.1
has already remarked on the danger of size-normalisation corrupting shape information, so
training sets for a PDM must be assembled with care in this respect.

The danger of inappropriate size normalisation is illustrated in Figure 4.4(b) which shows
that the size-normalised modes of variation are no longer entirely vertical, as was the case
before normalisation in Figure 4.4(a).

(a) Original training set (b) Size-normalised training set

Figure 4.4: Shape and size are not trivially separable: size normalisation can corrupt shape
information in training sets

Training sets

PDMs can be constructed more easily than other application specific models, such as Yuille
et al.’s [173] deformable templates for face recognition. Assumptions implicit in PDM training
are that landmark covariances can be accounted for by a small number of significant principal
components, and that shape statistics are stationary.

The training set must be large enough to ensure a statistically significant sampling of
landmark variations, and landmarks have to be chosen accurately, consistently, and in homo-
logous (‘biologically corresponding’) locations across training examples. Although the training
framework is easily extensible to 3D, obtaining training examples and choosing landmarks is
significantly more difficult, particularly for 3D freehand ultrasound images.

One is faced with a ‘bootstrap’ problem:

(i) how to segment a 3D ultrasound image without a constraining model;

(ii) and how to obtain training examples to build the model, without first segmenting the 3D
ultrasound image.

This problem is important, because a sufficiently large and representative 3D training set is
required for each organ being modelled.

Another problem with PDMs is that the landmark configuration for a training set is defined
a priori. Information from new (or degenerate) landmark configurations cannot be incorpor-
ated, without updating the configurations of all other training examples.

5The weighted sum of landmark square distances is minimised; see Bookstein (ch.7.1)[16] for an analysis of
why this Procrustes metric may be systematically misleading cf. the centroid size metric.
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Representation of prior knowledge

All models of shape variation (e.g. PDM or deformable templates) incorporate implicit as-
sumptions about the range of allowed shapes, which are manifested in the parameterisation or
representation of the model’s shape and shape variation. For example, the PDM limits shape
variation to a small number of standard deviations for each principal component. It is im-
portant, however, that these assumptions do not unduly distort the space of permitted shape
variation.

With this warning in mind, a model is desired which can cope with new shape examples,
the space of which can be constrained a priori either:

(i) by a PDM training set, which includes all likely organ shape variations;
(ii) or by a model of biological growth, which predicts the likely types of shape variations.

An analogy to this choice is the use of Gaussian lookup tables, versus the Gaussian expressed
as a function of mean and variance. The former is efficient for reference purposes, but the latter
model lends itself to analysis and (ultimately) an explanation of form®. After all, the gathering
of experimental data is almost always motivated by the desire to explain the form of the data
using an analytic model”.

For example, our organ growth model in Chapter 2 allows an analytic prediction of modes
of organ shape variation; if it is a complete and accurate model, it should accommodate the
organ shape variations seen in experimental datasets.

Model refinement

Unfortunately, the growth model is far from complete; although it has proved useful in predict-
ing modes of shape variation, it also needs to refine itself from training data®. This suggests a
solution to the ‘bootstrap’ problem for 3D ultrasound images:

(1) model-based modes of variation constrain the fitting of an organ model to the 3D ultra-
sound image, resulting in an organ segmentation;

(ii) each segmented example allows the organ model to refine its mean shape and its modes

of variation (which are now data-driven)?.

The mean shape is initialised, or ‘bootstrapped’, in (i) using a finite element organ model, and
its modes of variation are similarly bootstrapped using eigenmodes. The linear form of the
mean shape vector and modes of shape variation allows efficient refinement from data in (ii).

Section 4.4 develops a common framework for combining model-based and data-driven
modes of variation. Once this framework is established, Section 4.5 derives the iterative for-
mulae for model refinement.

5The central limit theorem for Gaussian distributions (Kreysig (ch.24.6)[77]).

"Bookstein & Green [18] also suggest that organ data can be examined in the inverse sense using an analytic
growth model, for the causes of deformation and variation.

8Pentland & Horowitz [113] use a Kalman filter to track 3D time-series model deformation: this can poten-
tially be extended to estimate and refine model parameters.

9The FEM interpolation functions (see Appendix A) of an organ shape model allow integration of landmark
information at arbitrary locations cf. previous criticism of the PDM.
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4.4 Statistical distribution of eigenmodes

The aim now is to develop a common framework for model-based and data-driven modes
of shape variation. Such a framework allows an organ model’s (data-driven) modes of vari-
ation to be bootstrapped using (model-based) eigenmodes, and then refined iteratively. Mar-
tin et al. [88] and Cootes & Taylor [32] have previously examined a more limited fusion of the
advantages of a priori physical models with statistical models.

The strategy is to derive the statistical distribution of the organ model’s modes of variation,
under the assumption that each of its eigenmodes are excited to the same amplitude. This
statistical distribution has a covariance matrix whose principal components can be found as
shown in Section 4.3. A direct relationship can then be established between the principal
components and the organ model’s eigenmodes.

Uniform eigenmode excitation

The statistical distribution of ¢; under uniform excitation of all eigenmodes is first examined.
Consider a peturbation f to the elastic system in equation (3.1), which results in a steady-state
displacement of the system

u=K!f (4.20)

Let f' = ®7f be the projection of the peturbation vector f onto the eigenmode bases ®. The
components of f' give the individual peturbations of each eigenmode.

Eigenmodes are conventionally M-orthonormal, so from equations (3.4)-(3.5) in Chapter 3.2,
the mass matrix M and the stiffness matrix K obey the following identities

o'Me® = 1 (4.21)
'K = Q? (4.22)

Equation (4.22) shows that w? is the modal stiffness, therefore the elastic strain energy W'
for an eigenmode ¢; of amplitude ¢; (cf. Appendix A.8) is

Wi o« w?q? (4.23)

If each eigenmode is peturbed to the same overall amplitude g¢;||@;||, then each modal energy
will be

We o 2 (4.24)
b [l '

Excitation covariance
From equation (4.24), modal variance is of the form

2
L (4.25)

Clleall?

but since the eigenmodes in ® are independent and orthogonal, their (diagonal) covariance
matrix due to f’ is simply
e = (@T®)7102 (4.26)

From the identities in equations (4.21)—(4.22)

¥ = (®7®)(@TK®)
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= (@ 'K®)
= (®"M®)(® 'K®)
= ®'MK® (4.27)

Since f' = ®T'f

Y =0T ®
= dTMK®
= ¥ =MK (4.28)

Finally from equation (4.20) the covariance of the system’s displacement u is

¥, = K3 T
= K'M (4.29)

Equivalence of statistical and model-based systems

Recall that FEM equilibrium in (3.1) leads to the generalised eigenproblem
K® = M®Q? (4.30)

where ® is the matrix of eigenmodes, which are model-based modes of variation.

If ® is interpreted as a matrix of principal component vectors, or data-driven modes of
variation, then from equation (4.18) the principal components have a covariance matrix X
given by

3P =PA (4.31)

where A is the matrix of principal variances.
By comparing equation (4.31) with equation (4.30), and using ¥ = K~'M from equa-
tion (4.29), it can be seen that!°
Q2=A"! (4.32)

Therefore the principal variances in A are inversely proportional to the squares of the natural

frequencies of the elastic system
1

A = w_f (4.33)

We have now shown that there is a simple relationship in equation (4.29), between the
elastic system governed by (M, K) and the statistical system governed by ¥. The modes of
variation for both systems are in fact identical, i.e. the model-based eigenmodes of (M, K) are
identical to the data-driven principal components of 3.

In addition, the low-pass modal subspace discussed in Section 4.2 is now seen to be the
most significant statistical subspace, since eigenmodes of low spatial-frequency (low w;) are
also principal components with significant variance (high \;).

The result is that the elastic eigenmodes and eigenvalues can be used to bootstrap a set of
principal components and principal variances, which can then be iteratively refined from data
using the formulae derived next in Section 4.5.

07n this case it is assumed that the matrix system (M, K) has been deflated (see Appendix B.3) to exclude
the rigid-body nullspace; or equivalently that principal component analysis is performed after translation and
rotation-normalisation of samples. This means that K is full-rank and hence invertible.
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4.5 Refining models of shape variation

It remains now to derive formulae for updating a data-driven model of shape variation using
new shape examples. An organ model is first bootstrapped using a finite element shape model
and its elastic eigenmodes, with an initial weighting of (say) n = 10.

Having been updated n times, the organ model is described by its mean shape X,,, and its
sample covariance matrix Sp; its modes of variation are simply the principal components of
Sn.

Updating X,

From the definition of X,

=X, = ((n—1)Xp—1 + xp) (4.34)

the iterative rule for updating the mean shape vector from a new example x,,41 is given by

1
Xnt+1 = m—— (nXp + Xp+41) (4.35)

Updating S,,11
From the definition of S,,

n
2
n—1 1 [ 1
= = - = ; 4.
= ——Sn - (Zx n(ﬂ Z) ) (4.36)
and from the definition of Sy 41

Sn—|—1 =

1 n+1 ) 1 n+1 2
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Subtracting equation (4.36) from equation (4.37) gives

S, = —x2, |, ———%_ | +%
n n n+1 n n+1 n

Sn+1 -
(4.38)
whence the iterative rule for updating the sample covariance matrix from a new example X, 41

n—1 1 n+1_ _
Snt1 = o Sn+ﬁxi+1 - TX%_H +% (4.39)

4.6 Summary

Elastic eigenmodes describe an organ’s modes of shape variation, according to the growth
model developed in Chapter 2. These modes are used for volume estimation by fitting organ
models to 3D ultrasound images in Chapter 5, so it is important that they are able to improve
their representation of shape variation from training data.

The framework developed in this chapter allows an organ model to be ‘bootstrapped’ using
elastic eigenmodes, so that it can immediately be used to segment 3D ultrasound images.
After each segmentation is completed, the organ model iteratively refines its modes of variation
using the newly segmented examples. These refined modes should converge to being the best
statistical estimate of linear shape variation in the training data.

This chapter also develops a metric for normalising the size of the organ model relative to
(landmarks in) the 3D ultrasound image. This minimises the risk that modes of variation will
be forced beyond their linearisation limits, when fitting the model to the 3D image. The size
metric also finds other applications in Chapter 8, when fitting two organ models to each other.
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Chapter 5

Experiments: 3D Volume Estimation

Chapter 4 proposes a framework for organising knowledge of expected organ shape and expec-
ted variation in shape, where the prior expectations can be refined by incorporating new organ
shape examples.

This framework of iterative refinement is applied in this chapter to volume estimation from
3D ultrasound images. A computer application ‘bootstraps’ itself from a finite element organ
model and its eigenmodes, and volume is estimated by fitting the organ model to operator-
selected landmarks in the 3D ultrasound image. The organ model then refines its expectations
of typical organ shape using the segmented example, so that it can perform future fitting more
accurately (Syn et al. [148, 150]). The clinical utility of this operator-assisted approach is
validated by examining the accuracy of the volume estimates.

Segmented ultrasound images are useful for diagnostic or monitoring purposes, such as
volume estimation and visualisation of 3D anatomy. However, automated segmentation is not
usually possible, because tissue boundaries in the images cannot be reliably detected. As more
reliable tissue segmentation techniques are developed, an organ shape model can be used to
integrate segmentation cues from multiple freehand images, each with a different orientation
and quality of information. The ultimate aim is to complement our model-based framework
with data-driven techniques of tissue segmentation.

Chapter organisation

e Section 5.1 describes the stradview application, which comprises the geomwish inter-
face for manipulating organ shape models, and the stradwish interface for manipulating
3D ultrasound image sequences. These interfaces allow an operator to select correspond-
ing landmarks between a model and an image.

e Section 5.2 shows how these corresponding landmarks cause the organ shape model to
deform to fit the 3D ultrasound image. The volume of the fitted model is then estimated.

e Section 5.3 discusses the facilities available in stradview for operator-assisted and
automated refinement of an organ segmentation.

e Section 5.4 presents results which validate this method of volume estimation against
measured and MRI-estimated volumes.

e Section 5.5 shows segmented livers which have been refined using active contour searches.

e Section 5.6 discusses volume rendering and volume estimation in 3D ultrasound imaging.
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5.1 The stradview user interface

The stradview user interface for display and manipulation of 3D ultrasound images consists
of the geomwish and stradwish components (described below). It is portable to a wide range
of workstation platforms, and can be operated remotely across a computer network.
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Figure 5.1: Typical screen display of stradview user interface for 3D ultrasound images

The geomwish interface for model manipulation

The geomwish application shown on the left of Figure 5.1 consists of a camera window (top
left) for display and manipulation of mesh models, and a command window (bottom left) for
controlling various model parameters.

The Geomview [47] graphics engine drives the camera window using the X Window Sys-
tem [119] for remote display management across computer networks, and has specific support
for hardware graphics acceleration on Silicon Graphics workstations, as well as provision for
stereo viewing displays.

The tcl/tk graphics toolkit and scripting language (Ousterhout [108]) is used to construct
the command window, and to control the behaviour of the camera window.
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The stradwish interface for image manipulation

The stradwish application, shown on the right of Figure 5.1, controls the acquisition of 3D
ultrasound image sequences, and provides browsing and editing facilities for the image sequence.
It has an internal window showing 3D outlines of ultrasound image frames (the current frame is
highlighted as shown), which allows 3D visualisation and manipulation of the frame sequence.

The tcl/tk graphical scripting language is used to construct the stradwish window, and
also to control and interrogate the 3D ultrasound imaging hardware.

5.2 Volume estimation

Chapter 1.2 notes that ultrasound imaging is routinely used for volume estimation. For example,
ventricular volume determines the degree of impairment after heart attacks, and indicates re-
sponse to therapy. Similarly, changes in tumour volume after radiotherapy or chemotherapy
determine the nature and intensity of further treatment.

Volume estimation can be achieved by interaction between the geomwish and stradwish
applications: the operator locates an anatomical landmark by browsing through the ultrasound
images in stradwish, and the corresponding location is located by directly manipulation of an
organ model in the geomwish camera window.

The organ model first estimates its appropriate size and orientation; it then fits itself to the
3D ultrasound image, where the required shape change is determined by the operator’s choice
of corresponding landmarks. The volume of the fitted shape is reported by geomwish.

Pose and size normalisation

Three correspondences between the model and the 3D image are required to size and orientate
the model correctly. If both landmark triplets form exactly similar triangles, then centroid size
normalisation (described in Section 4.1) will correctly scale the triangles, so that a rigid-body
transformation can be found between them.

The two landmark triplets are never exactly similar, however, since the user will not be
able to pick three correspondences in exactly similar configuration, nor will the mesh model be
an exactly scaled version of the 3D organ shape.

Nevertheless, a rotation transformation can be estimated by first scaling two landmarks
in each triplet to have the same length baseline. The third landmark in one triplet is then
temporarily scaled to force both triangles to be similar, from which a rigid-body rotation can
be computed. Figure 5.2 illustrates this.

relative rotation is estimated by scaling height of right triangle @
to height of left triangle K ne\®

height e

v a‘se\\

/

<— baseline———=

triangles are scaled to give same length baselines

Figure 5.2: Relative rotation is estimated by approximating the triangles to be exactly similar
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Given the two 3 x 3 matrices of triangle coordinates, L1 and Lo, we wish to estimate the
rotation matrix Q which maps Lo = L1 Q. Accumulated round-off errors make computing the
rotation using Q = Ly 'Ly unsafe, so Golub & van Loan (ch.12.4.1)[51] describe a more robust
approach using the error measure® ||Ls — L1 Q||F.

The singular value decomposition is computed for L1 Lo

UT(Li1,) V=D (5.1)

where D is the diagonal matrix of singular values, and U and V are orthogonal matrices. The
rotation transformation which minimises ||Lz — L1 Q|| is then given by Q = UV?,

If the singular value decomposition is ill-conditioned, Q describes a reflection transformation
with negative determinant, rather than a rotation transformation with positive determinant; in
such cases the triangle landmarks are peturbed with some noise and a rotation estimated again.
This gives rise, overall, to a reliable method for size and pose estimation requiring only the
first three correspondences.

Model fitting

Figure 5.3(a) shows an ellipsoid model with three correspondences, after size and rotation
normalisation. Each red line connects a landmark on the surface of the ellipsoid, to a red dot
indicating its corresponding landmark.

This represents a situation typical in 3D ultrasound segmentation: some few anatomical
landmarks are recognised in the ultrasound images, from which one wishes to estimate the
shape (and hence volume) of the entire organ. Since an organ shape model incorporates prior
knowledge of the organ’s expected shape, it is used to interpolate the segmentation boundary
between the landmarks.

Sonographers visualise 3D anatomical structure in a similar way: knowledge of anatomical
variation (i.e. modes of shape variation?) allows the sonographer to choose the appropriate fit
of a prototypical shape model to the ultrasound images. In other words, top-down (model-
based) knowledge of organ shape is used to frame bottom-up (data-driven) information about
anatomical landmarks.

The fitting process involves deforming the organ model, so that its landmarks approach the
corresponding landmarks in the image as closely as possible. The appropriate deformation is
computed by employing (three times) as many modes of variation as there are landmarks.

This deformation describes an ezactly-constrained least-squares problem, which is solved
using the QR factorisation (Golub & van Loan (ch.5.3.4)[51]). The problem is posed as

mein ||(L1 — Lz) — <I>e|| (52)

where Ly and Lo are column vectors stacked with landmark positions, and e is the vector of
modal amplitudes to be found. Each column of ® contains a mode of shape variation between
the landmark positions.

In cases where there is noise in landmark specification, however, a more reliable approach
is used which employs all available modes of shape variation. This gives rise to an under-
constrained least-squares problem, for which an additional global constraint of minimal de-

!The Frobenius norm ||A||% is defined as the sum of squares of the elements of A.
2As described in Chapter 4, modes of shape variation are initialised with elastic eigenmodes, and sub-
sequently refined from each new segmentation example.
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Figure 5.3: Fitting a model to 3D landmark data with 3 corre
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formation energy ||Qe||? is required (see Appendix A.8)
min [|(Ly — Lz) — @el|* + n]|e]* (5.3)

The relative weighting 7 between constraints is specified a priori®. Differentiating to find the
minimum in equation (5.3) gives

(@@ +nQ?)e = ®T(L; — Ly) (5.4)

whence e by inversion, or more safely by least-squares. So the deformation required is described
by the modes of shape variation in ®, whose amplitudes are the components of e.

The smoothness or stiffness parameter 7 is determined* by the accuracy with which corres-
ponding landmarks are located:

e A high stiffness value implies less confidence in landmark positions, resulting in a more
reluctant fit. This is illustrated in Figure 5.3(b) .

e A low stiffness value implies high confidence in landmark positions, resulting in a more
confident fit. This is illustrated in Figure 5.3(c).
Volume computation

Once the organ model is fitted to the ultrasound image, its volume is computed using the
divergence theorem® (Kreysig (ch.9.6)[77])

///VV-FdV://SI‘-ndS (5.5)

where n is the unit outward normal on the organ model’s surface S.
By using I' = (/3,y/3,2/3)" to set V.I' = 1, the organ volume enclosed in V is given
by the right-hand surface integral. This surface integral can be broken into a sum over surface

///VdV:;//SjF-nde (5.6)

Fach jth elemental integral is evaluated numerically via Gaussian quadrature sampling of

elements of the organ model

the element’s interpolation functions (see Appendix A.5).

5.3 Editing facilities

An approximate organ segmentation can be made either by model fitting in 3D as described
above, or by an operator sketching outlines in each 2D ultrasound image. The segmentation
can be improved using automated search techniques, which are limited to a search space close
to the initial segmentation; such techniques usually seek intensity edges, and require operator
intervention if incorrect edges are found.

31f uniform Gaussian uncertainty in landmarks is assumed, then 7 is inversely proportional to the Gaussian’s
standard deviation (Blake & Zisserman [12]).

“The geomwish command window has a sliding bar for interactive adjustment of the stiffness n; this single
parameter can, in principle, be experimentally established for a certain user segmenting a certain organ type.

5If the organ model consists of tetrahedral elements, its volume can also summed by computing elemental
volumes using the scalar triple product (Kreysig (ch.6.9)[77]).
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Intensity-based segmentation algorithms assume that different tissues are differentiated by
their ultrasound image intensities. Although tissue interfaces do produce large ultrasound
echoes, there are various sources of signal loss and distortion as described in Chapter 1.1.
These noise sources can obscure tissue boundaries in the image.

More robust automated segmentation algorithms require 2D and 3D texture features com-
puted with regional support at multiple spatial scales, which can accurately discriminate
between tissues in the image (Muzzolini et al. [98]). However, there is currently no consensus
on the appropriate computational characterisation of tissue ‘texture’ in ultrasound images.

Editing facilities in stradview allow improvements in approximate organ segmentations to
be either computed automatically using these intensity-based algorithms, or specified by the
operator.

2D image segmentation

Figure 5.4: Rendered view of a manually segmented thyroid (with portion of carotid artery)

Figure 5.4 shows an early experiment by Gosling et al. [57] in thyroid volume estimation,
where the ultrasound images were manually segmented, and the selected landmark points trian-
gulated into an alpha hull. This approach is extremely laborious since a few hundred landmarks
need to be located in order to achieve a clinically acceptable volume estimate.

Figure 5.5: Two views of an automated simulated annealing segmentation of a pig’s heart

Figure 5.5 shows another early result by Syn et al. [142], computed using an intensity-
based segmentation of a pig’s heart in a water bath. 2D segmented contours are propagated
and connected between nearby frames to construct the 3D hull, with each 2D contour optimised
using a computationally expensive simulated annealing search.
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Manual segmentation in Figure 5.4 is labour intensive but supervised, and automatic seg-
mentation in Figure 5.5 is computationally intensive but completely unsupervised. Semi-
automatic segmentation is a popular compromise, whereby images are manually initialised,
then automatically refined by active contours. This is illustrated in Figure 5.6 using facilities

from Dance’s [36] abcwish application.
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(b) Refined segmentation using active contour

Figure 5.6: Typical screen displays of abcwish user interface for 2D segmentation

The particular difficulty in freehand imaging is that consecutive image frames are not con-
strained to be parallel; in fact, standard scanning practice for many organs is to acquire images
along at least two orthogonal axes. The stradwish window in Figure 5.1 gives a good idea of
typical scan trajectory.

Figure 5.7: A set of 2D segmentation contours produced by abcwish

Figure 5.7 shows the set of contours resulting from refined segmentation by abcwish of the
images in a 3D gallbladder scan; each frame is manually initialised as shown in Figure 5.6(a).
Even though gallbladder images have very good intensity contrast, some frames suffer signal
loss, leading to contour ‘leakage’ at the top right of Figure 5.7. Such leakage can potentially
be alleviated by imposing gallbladder shape information on the active contours, which merely
minimise bending energy in the abcwish implementation (i.e. they prefer circular shapes).
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A 3D gallbladder segmentation is achieved by connecting the non-parallel gallbladder sec-
tions in Figure 5.7 together. Methods for connecting parallel MR and CT segmentations are well
established; these methods make certain assumptions about how segmented contours branch
and merge between the parallel frames, then apply (some variant of) Delaunay triangulation
to link contours between frames (Boissonat & Geiger [15]).

However, freehand ultrasound scans have non-parallel and self-intersecting planes, and
sometimes contain outlying frame positions due to proprioceptive errors. It is therefore diffi-
cult to make reasonable yet reliable assumptions about the way contours link between frames.
Dance [36] addresses this issue using a sophisticated triangulation algorithm, which considers
the probable ways in which contours can be connected, given their relative spatial positions.

In summary, the abcwish approach is driven bottom-up by intensity data, and constrained
top-down using a simple elastic spline (i.e. the active contour). Each spline separately performs
a 2D segmentation, and the set of segmented contours is connected in 3D by making further
assumptions about the proximity and distribution of the contours.

Operator refinement of 3D model-based segmentation

Although such methods are in common currency in MR and CT imaging, they are too ad hoc for
routine use in 3D freehand sequences, particularly since intensity-based boundary estimation
is unreliable in ultrasound imaging.

The 3D model-based framework described in Section 5.2 offers stronger and more spe-
cific guidance during segmentation. It directly applies knowledge of typical organ shape and
expected shape variation, and also offers the ability to iteratively refine its expectations by
incorporating each new segmentation example

Working in 3D removes the artificial separation of first constraining an active contour seg-
mentation within each frame, then constraining the connection of segmentations between frames
using some best-fitting 3D triangulation. An added bonus of 3D model-based segmentation
is that fewer landmarks need to be selected; many of the boundary landmarks in 2D-to-3D
segmentation are required primarily to drive the triangulation.
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(a) Model fitted to 5 landmarks (b) Intersection of model with current scan frame

Figure 5.8: Model-based gallbladder segmentation using 5 landmark correspondences
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Figure 5.8 shows the gallbladder segmentation achieved in stradview, after adding a further
2 correspondences to the 3 required for initial pose and size normalisation (recall Section 5.2).
Note that the tripod marker on the top left of the intersection plane in Figure 5.8(a) corresponds
to the top left of the image frame in Figure 5.8(b).

(a) Position of new scan frame (b) Intersection contour gives segmentation

Figure 5.9: Gallbladder segmentation seen in another scan frame

Figure 5.9 shows the gallbladder segmentation in another frame, scanned across the longit-
udinal axis; this segmentation contour is formed by intersecting the new scan plane with the
deformed gallbladder model. The overall quality of the segmentation depends on the choice of
landmark correspondences, and the accuracy of the organ shape model. However, it can be
seen that with only 5 correspondences in this example, a good estimate of boundary shape is
achieved, even in a cross-section very different to the one in Figure 5.8.

(a) Rendered view of gallbladder segmentation (b) Intersection contour refined further

Figure 5.10: Further refinement of gallbladder segmentation with 6th correspondence

Figure 5.10 shows an improved segmentation, achieved by selecting a 6th landmark in the
new cross-section.
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Automated refinement of 3D model-based segmentation

The model-based segmentation can still be refined further by adding more landmarks, or by
allowing the operator to ‘drag’ segmentation contours in the stradwish window. An automated
method of refining the 3D segmentation is preferred, however, since the search space in which
refinement occurs can be easily controlled by restricting the energy of deformation during
search.

One possible refinement algorithm applies simulated annealing to solve the optimisation
problem of minimising the model’s energy of deformation, while at the same time maximising
the fit of the 3D model to intensity edges in each 2D ultrasound image. This algorithm has
the benefit of finding the globally optimal fit over the search space, but is computationally
expensive. Another unattractive feature is that additional parameters need to be specified for
the annealing schedule (Syn et al. [142]).

Figure 5.11 shows the result of applying simulated annealing search to a 3D ultrasound
image of a liver.

Figure 5.11: Automated refinement of liver segmentation using simulated annealing search

Figure 5.12 shows the result of applying a 3D active contour search to a 3D ultrasound
scan of a liver. More results are shown in Section 5.5 of this chapter.

Figure 5.12: Automated refinement of liver segmentation using active contour search
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Both refinement algorithms improve the accuracy of volume estimates achieved using the
stradview paradigm of operator-selection of landmark correspondences. They also enable the
model to incorporate new shape variations with greater accuracy.

However, the refined 3D contours can be significantly deformed compared to the organ
model’s original mesh, and it is usually desirable to resample a deformed contour with a better
distributed mesh. Such a resampling can potentially be achieved with the non-rigid registration
algorithm described in Chapter 8, further improving the accuracy of the refined modes of shape
variation®.

The segmentation algorithms described in this section are motivated by the need to meas-
ure organ volumes to clinically reliable accuracies; they are not intended for strict geometric
reconstruction of organ shape’.

5.4 Results: validation of volume estimates

The accuracy of organ volume estimates is now examined. Estimation is performed using
only operator-selection of landmarks, since the segmentation refinement algorithms described
previously are not yet reliable enough for routine clinical use,

Model-based volume estimation is first validated by comparing stradview estimates to
‘gold standard’ voxel count estimates. These volume estimates are performed on MRI scans,
for which the gold standard can be achieved; the use of MR images also excludes errors due to
ultrasound image distortion.

The second validation test is performed on 3D ultrasound images, which include (as yet
unquantified) errors in probe proprioception and image distortion (Rohling & Gee [122]). This
test compares stradview estimates for a balloon in a water bath, to the amount of water
actually decanted from the balloon.

Validation using MR liver images

Volumes of foetal livers in 3D MR scans were estimated using stradview (Syn et al. [151]),
then compared to volumes previously determined by voxel count (Pasapula [110]).

Image | Actual Estimated FError
(cm®)  (em?®) (%)

Liver-1 | 13.2 14.4 9
Liver-2 | 20.2 21.7 7
Liver-3 | 24.9 26.2 5
Liver-4 | 28.3 31.1 10
Liver-5 | 28.1 29.5 5
Liver-6 | 16.8 19.0 13

Table 5.1: Volume estimation of foetal livers using ellipsoid model

Table 5.1 shows volume estimates from fitting a simple ellipsoid model to each 3D scan using
5-8 landmarks. There is a small but consistent over-estimate due to the use of an ellipsoid

A deformed 3D contour has a deformed parameterisation imposed on its geometry, and hence on the ‘shape
vector’ which the organ model learns from.

"Section 5.6 discusses sources of distortion in ultrasound imaging, which need to be addressed if geometric-
ally faithful reconstruction from 3D freehand ultrasound is to be achieved.
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shape model, but estimates can be made arbitrarily accurate (compared to the gold standard)
by using a better shape model, and by selecting more landmarks to improve the model’s fit.

Figure 5.13 shows one of the MR liver image sequences used. The liver models in Figure 4.2
in Chapter 4 are manually segmented from these sequences.

Figure 5.13: MR image sequence of foetal liver (top-left to bottom-right)

Validation using water-filled balloons in ultrasound

Given that model-fitting results in acceptably accurate volume estimates, the next step is to
validate the volume estimates achieved with 3D ultrasound images. It should be noted that
volume estimation using 2D ultrasound is routinely performed to clinically acceptable accuracy,
and a number of publications report that 3D ultrasound also gives accurate volume estimates.

Gilja et al. [49] validate the accuracy of 3D ultrasound volume estimations in vivo by
comparing 18 human kidney volumes with MRI estimates. Ultrasound volumes are computed
by manual segmentation of 81 kidney sections, and a good correlation is reported between
the two. A mean underestimate of 10% of average kidney volume is noted in the ultrasound
estimates, compared to the MRI estimates.
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Hodges et al. [63] validate blood conduit volumes using 3D ultrasound reconstructions of
phantoms in vitro, and vein bypass grafts in vivo. Hughes et al. [65] similarly validate volume
measurements of balloons, kidneys, and livers in vitro using manual segmentation of freehand
ultrasound images.

Factors absent in the above validations are: the use of model-fitting in stradview, and
freehand reconstructive errors due to probe proprioception and image distortion. The latter
errors are also absent from the MR liver volume test performed previously. The importance of
these factors in volume estimates from 3D ultrasound images are now examined.

Figure 5.14 is a rendered view of a balloon in a water bath, whose volume was computed
by fitting to an ellipsoid model, then compared to the volume of water actually decanted from
the balloon.

Figure 5.14: Intensity thresholded and volume rendered image of a balloon in a water bath

As mentioned previously, a model-based estimate can be made arbitrarily accurate depend-
ing on the number of correspondences specified, and on how awkwardly the balloon is shaped
(due to being pinched in the middle by an anchoring strap) compared to the ellipsoid model.
For three balloons of approximately 19 cm® volume each, volume estimates within 10% were
achieved using fewer than 8 landmarks.

Model deformation could not be well controlled beyond that number of landmarks, because
of the resolution of the ellipsoid mesh, and the fact that only 75 eigenmodes were used to
compute the deformation. In any case, it is unrealistic to expect ultrasound volume estimates
of greater accuracy, since errors due to distortion in image formation are probably in the order
of 5%; this issue is discussed in Section 5.6.

The validation tests in this section suggest that model fitting in 3D freehand ultrasound
gives volume estimates of clinically acceptable accuracy, even in the presence of image distortion
and position measurement errors.
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5.5 Results: segmented livers

Section 5.3 shows that model-based segmentations can be improved using active contour
searches. Such searches are suited to echocardiographic images which, like gallbladder im-
ages, tend to give good intensity contrast at the organ walls. For example, Neveu et al. [104]
use a deformable superquadric with non-parallel image frames, and Coppini et al. [34] use a
deformable spherical surface; neither superquadric nor spherical models are specifically heart
shape models, however.

A specific organ shape model allows more accurate initial segmentation using stradview.
It also allows a search space to be more accurately defined around the initial segmentation,
thus improving active contour searches.

To demonstrate this, a liver model was constructed from MR images (recall Section 5.4),
and initial segmentations performed on 3D ultrasound images using stradview. Figures 5.15—
5.18 show four results of active contour refinements to these initial segmentations. These liver
models are used later in Chapter 8 for experiments in non-rigid registration.

(a) First view (b) Second view

Figure 5.15: Two views of the Liver-A model

(a) First view (b) Second view

Figure 5.16: Two views of the Liver-B model
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(a) First view (b) Second view

Figure 5.17: Two views of the Liver-C model

(a) First view (b) Second view

Figure 5.18: Two views of the Liver-D model

5.6 Discussion

User interface

The initial intention for stradview was a proof-of-concept interface for visualising and exper-
imenting with shape models and modes of shape variation. Although volume estimation using
this interface has been validated to clinically acceptable accuracy, its ease-of-use can be further
improved.

One weakness is its two-stage visualisation process: the sonographer visualises 3D struc-
ture during freehand scanning, but is then required to do it again when utilising stradview.
Visualisation in ultrasonography depends very much on active perception (Blake & Yuille [11])
of organ structure, i.e. image information is continually integrated with feedback from the
probe’s position and orientation, and areas with ambiguous information are actively reinforced
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with additional images.

Unfortunately, the interactivity of clinical sonography is restricted to a less intuitive win-
dowing interface when using stradview. The ideal situation would be for the workstation to
take a ‘live’ feed of video images from the scanner®, and display this on a touch-sensitive screen
in front of the sonographer.

The geomwish application would then allow touch-manipulation of the organ model on
this screen and, most importantly, touch-selection of landmarks between the model and the
‘live’ ultrasound image. This would provide a real-time volume estimation facility, which also
quantifies the segmented organ shape for biometric analysis and archiving purposes.

Volume estimation

Fitting 3D organ shape models is undoubtedly more accurate than conventional techniques
of volume estimation in ultrasound imaging. Typically, the sonographer attempts to find the
central plane of a thyroid lobe (say), then estimates volume from the long axis by assuming
an ellipsoidal lobe. In fact, Rahmouni et al. [120] find that prostate volume estimation by
ellipsoid fitting in trans-rectal ultrasonography, gives significantly worse results than contour
segmentation in MRI, when compared to the wet weight of the excised specimen.

Fitting a shape model is similar in many ways to fitting 2D splines; as for a spline, accur-
acy in shape reproduction is determined by the control points. The number and accuracy of
control points required depends on the initial shape of the model, and on whether the required
deformation is expected by the model’s ‘database’ of typical shape variation.

The most significant source of error in these control points comes from distortions in the
ultrasound image. Ultrasound scanners reconstruct images using an assumed average speed of
sound (in human tissue) of 1540 ms™!, whereas in reality the ultrasound beam passes through
multiple tissues, each with different propagation speeds. The reconstructed image will therefore
be a distorted representation of true tissue geometry.

Figure 5.19 depicts a standard example of distortion, in which the ultrasound image recon-
struction of a (spherical) ball in a water bath gives an ellipsoidal cross-section.

reconstruction of ball's cross-section
will be distorted because the ball
propagates sound waves at a different

“ speed to the surrounding water

\J\sound waves may also be refracted
at the ball's boundary

Figure 5.19: Sphere in a water bath gives an ellipsoidal cross-section in ultrasound imaging,
for differing propagation speeds of water and ball material

8This is technically feasible with the use of a radio frequency (RF) output board provided for the Stradivarius
project. The board allows full access to the ultrasound image stream during scanning.
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The speed of sound in water also varies with temperature, from 1535 ms~! at 40°C to
1450 ms~! at 10°C (Cho et al. (ch.15)[26]), although this is only significant when performing
validation tests in a water bath, using an ultrasound scanner meant for human tissue. The
difference between the scanner’s assumed speed, and the speed in water at 15°C, can account
for the 5-10% volume error in the balloon validation test in Section 5.4.

Volume estimates may also be distorted by a number of other errors inherent in ultrasound
image reconstruction (Rohling & Gee[122]), such as non-uniform beams from transducers, fre-
quency and amplitude shifts, multi-path reflections etc. In particular, ‘smearing’ in ultrasound
images due to beam width, finite pulse length, and multi-path phenomena, causes uncertain-
ties when placing landmarks on tissue boundaries. There are also a number of unquantified
factors, regarding systematic and random proprioceptive errors in the Stradivarius 3D ultra-
sound equipment (Gosling et al.[56]).

Volume rendering of 3D ultrasound data

Given that 2D and 3D segmentation of ultrasound images faces many obstacles, the most
popular approach to clinical utilisation of 3D ultrasound scans is to render the set of 2D planar
images as a single 3D volume image.

Belohlavel et al. [9] suggest that, for 3D trans-oesophageal echocardiography using a fan or
cone-shaped acquisition geometry, 3D visualisation of filtered and segmented colour Doppler
flow images improves comprehension of anatomic relationships. However, Fuchs et al. [42]
review current techniques for interactive visualisation of 3D medical data, and suggest that
they cannot yet replace slice-by-slice presentation in routine clinical practice.

(a) Original view (b) Reconstructed view

Figure 5.20: Reconstruction of orthogonal view from 3D volume rendering of a pig’s heart

Figure 5.20(a) shows an image from a 3D ultrasound scan of a pig’s heart in a water bath.
A 3D volume rendering was performed, and Figure 5.20(b) shows an image reconstructed from
an orthogonal cross-section in the 3D volume. The internal structure of the heart’s chambers
can be clearly seen, but the overall clarity of the 3D volume image is degraded because of the
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rendering process, which involves resampling, interpolating, and spatial compounding of 2D
images from different views.

The important characteristics of a good ultrasound image are: clear detail, obvious tissue
texture, visualisation of detail at depth, and low noise (Chervenak et al. (ch.1)[25]). As the qual-
ity and resolution of acquisition hardware improves, clinicians may be able to perform diagnoses
directly using 3D ultrasound data, given appropriate visualisation tools (Nelson & Elvins [103]).

Figure 5.21 shows an early experiment in assessing femoral anteversion from a rendered
view of a manually segmented femur (Gosling et al. [55]). Bone cross-sections can also be
automatically segmented using the techniques described in Section 5.3.

Figure 5.21: 3D rendered view of femur outline

The most important application of 3D rendering and visualisation is expected to be in the
field of obstetrics?(Sohn [135]), which uniquely offers the possibility of validating measures
made in vivo during pregnancy, with those after delivery. These measures include: foetal
volume, uterine volume, placental volume, and placental position. Ultrasound is also the only
imaging modality which is safe, cost-effective, and portable enough for routine use in foetal
monitoring.

The tissue masses involved in obstetric imaging are relatively large, and the weakly echo-
genic amniotic fluid gives a clear delineation to foetal images. This makes volume estimation
more accurate, since foetal images are more likely to be accurately segmentated and rendered.

Sakas et al. [125, 126] review the state of the art in volume rendering for visualisation of 3D
foetal ultrasound images, and find that morphological and filtering operations can aid surface
segmentation for clinical visualisation. Nelson et al. [102] introduce an electronic paintbrush
tool which facilitates the segmentation of the foetus from the amniotic background.

The smoothing effects of 2D filtering then 3D rendering will lose vital textural information,
but 3D visualisation is potentially useful for viewing large-scale geometric properties. In fact,
Steen & Oldstad [140] suggest that direct 3D volume rendering of 2D image features can give
useful structural detail not available in conventional ultrasound imaging.

®Conventional ultrasound imaging has already revolutionised the practice of obstetric medicine.
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5.7 Summary

Volume estimation is one of the most important clinical applications envisaged for 3D freehand
ultrasound, and is conventionally performed by fitting simple geometric models to landmarks
in 2D ultrasound images. This chapter presents the stradview interface, which generalises the
conventional approach by employing 3D models of actual organ shape.

Current techniques for discriminating between ultrasound tissues are unreliable, so tissue
segmentation is performed by an operator, who selects landmarks in the 3D ultrasound image
using stradview. A 3D segmentation of the image is then achieved by fitting an organ shape
model to the landmarks.

This chapter shows that model-based segmentation is a convenient and accurate method of
volume estimation. The initial segmentation can be refined either manually or automatically
in stradview; future methods for reliable tissue discrimination can also be integrated into the
model-based framework for fully-automated segmentation.
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Chapter 6

Likelihood of Homology

Chapter 3 shows that elastic eigenmodes are ideal shape features for organ models, because the
set of eigenmodes emphasises a model’s (global) symmetries at multiple spatial scales. These
properties of shape representation are relatively invariant to the choice of model mesh, which
is an important consideration when comparing organ models.

Similar organ models have similar sets of eigenmodes, and shape differences between the
organ models are more pronounced at smaller spatial scales. Since eigenmodes are ordered in
decreasing spatial scale, the corresponding eigenmodes of two organ models are also ordered
in decreasing similarity.

Two organ models can therefore be fitted (registered) to each other by matching their
eigenmodes. Eigenmodes of large spatial scale are used first, because they are the most similar
and the most accurately computed.

Such a registration must be biologically accurate; for example, the anatomical landmarks
(e.g. fingertips and knuckles) of two hand shapes must be matched to each other. This chapter
argues that eigenmode displacement extrema are landmarks suitable for determining registra-
tions, where such ‘biologically corresponding’ landmarks are known as homologous landmarks.

Eigenmodes are global features, and cannot be used to match partially constructed shape
models. This chapter suggests a wavelet representation for eigenmodes, which is less sensitive
to missing shape information in the organ model.

Chapter organisation

e Section 6.1 examines biological morphogenesis in a parameter space traversed by growth
eigenfunctions. Similar organ shapes lie close together in parameter space, so their ei-
genmodes (linearised eigenfunctions) are also similar.

e Section 6.2 discusses methods of normalising eigenmodes, which may have arbitrary
magnitude and direction.

e Section 6.3 proposes that eigenmodes of fundamental spatial wavelength can be approx-
imated by a set of axes. These axes are used to estimate the organ model’s orientation.

e Section 6.4 shows that eigenmodes can be summed in such a way that their displace-
ments are localised in space. This localisation makes wavelet modes less sensitive to
missing shape information in the rest of the organ model.
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6.1 Homologous eigenmodes

Chapter 5.3 notes that a biologically correct registration is required for an organ model and
an organ example to share a common shape parameterisation, in which the former can learn
about new shape information in the latter. The aim of this section is to show that eigenmodes
can be used to perform this registration in a manner justified by our biological growth model
in Chapter 2.

Organ models have eigenmodes which are ordered in decreasing spatial scale. Since the
shape differences between two organ models are accentuated at small spatial scales, their ei-
genmodes are also ranked in decreasing order of similarity to each other.

Eigenmodes are particularly useful for registration because they are global features, i.e. a
single eigenmode characterises the entire shape of the model. So for each spatial scale, only
a single pair of eigenmode features needs to be matched during registration. The matching
criteria are difficult to establish, however, since the problem of matching eigenmodes is little
different from that of matching the shape models themselves. Conventional criteria for the
latter include the matching of curvature extrema, axes of inertia, or ridge curves (Ayache [3]).

We establish appropriate criteria for eigenmode matching, using our growth model from
Chapter 2. Biological growth is first assumed to occur in a low-dimensional parameter space,
which is traversed by a small number of growth eigenfunctions. Homologous points between
two organs are then defined by tracking points on one organ, as parameter space is traversed
to the other organ.

The map of all homologous points defines the biologically correct registration of the two
organs, where such a map is usually approximated by interpolation between a number of ho-
mologous landmarks. 1t is argued that eigenfunction extrema — i.e. points of locally maximal
and minimal shape change during traversal — should be employed as homologous landmarks.

Biological morphogenesis is a robust process

Chapter 2.2 notes that closely-interacting growth mechanisms result in robust morphogenesis.
Goodwin et al. [53] explain that close interaction significantly reduces the degrees-of-freedom
of the growth system, so that it reaches equilibrium in a very stable way; and Gell-Mann [46]
and Lewin [81] observe this to be an important emergent property of biological systems which
consist of simple but closely coupled mechanisms.

Goodwin et al. [53] illustrate this emergence of robust morphogenesis using a thought
experiment, which involves populations of red and white cells in a sphere which has two mech-
anisms of cell growth. Recall from Chapter 3.3 that spherical symmetry requires each growth
mechanism to have eigenfunctions which are also spherically symmetric.

Mechanism-A encourages red cells to the surface, and white cells to the interior; and the first
eigenfunction of mechanism-B encourages red cells to the north, and white cells to the south. If
the cell population remains constant, then the interaction of the combined mechanisms results
in a circular flow of white cells from the interior southwards.

If the sphere grows large enough, the second eigenfunction of mechanism-B becomes active.
This second eigenfunction has two possible symmetries: red poles and a white interior, or
white poles and a red interior. There is already an interior core of white cells present, however,
which biases the second eigenfunction towards the former symmetry.

This is the symmetry breaking behaviour essential for biological pattern formation (recall
Chapter 2.1). The overall growth system on the sphere therefore only gives rise to a restricted
set of stable growth patterns.
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Morphogenesis in parameter space

The progress of robust morphogenesis can be visualised in a low-dimensional parameter space’,
where the number of parameters reflects the low number of degrees-of-freedom in robust
morphogenesis. There is a large basin of attraction in this space, so a wide range of growth
trajectories will settle in the vicinity of the basin. Figure 6.1 depicts this basin of attraction as

the domain of stable adult forms?2.

progress of
morphogenesis

morphogenetic system has

embryo-1 large basin of attraction

embryo-2

Figure 6.1: Progress of morphogenesis in parameter space

An adult organ is an instantiation in this space of possible adult shapes, where the range
of normal organ shapes is caused by noise during morphogenesis®. Such noise is manifested in
the initial embryonic conditions, and in genetic shape and control parameters. Shape models of
adult organs also suffer from noise in the shape modelling process, and from ultrasound image
distortions.

Biological homology

Coordinates in parameter space are transformed to physical space under the action of the
growth system; Figure 6.2 illustrates the growth system acting as a ‘transfer function’ from
adult-1 and adult-2, to body-1 and body-2 respectively.

When moving a cursor between adult-1 to adult-2 in parameter space, body-1 transforms
(‘morphs’) into body-2 in physical space. Any markers placed on body-1 will shift to new
positions on body-2, and such corresponding positions are defined to be biologically homologous
under the given growth system.

Eigenfunctions (taken about some origin) of the growth system form local axes in parameter
space. Any transformation path from adult-1 to adult-2 in Figure 6.2, can therefore be described
by the same (linear) sum of independent (non-linear) eigenfunctions*. This implies that a point
on body-1 always transforms to the same homologous point on body-2 and vice-versa, regardless
of transformation path.

!Such parameter spaces are generally useful for visualising non-linear system dynamics (Drazin [39]).

2Chapter 7.3 develops a statistical control model for adult growth in organs.

3Cootes et al.’s [33] point distribution model in Chapter 4.3 basically estimates the axes of parameter space
centred on some mean shape, using a training set which is distributed about the basin of attraction.

*In physical space, one body transforms to another by superposition of eigenfunction displacement fields.
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growth system
translates from
parameter space

to physical form body-1
adult-% - -
traversing points on a body which
adult-2*, parameter points on a body which

.. Space other body are defined as
B biologically homologous

A’

body-2

Figure 6.2: Biological homology is defined by traversing parameter space (‘morphing’)

Eigenmodes indicate homologies

Eigenmodes are approximations to the eigenfunctions of shape change, linearised about a par-
ticular instantiation of shape. Figure 6.3 shows two similar (i.e. proximal in parameter space)
organ shapes, which lie within the linearisation distance® of some of each other’s eigenmodes.
A pair of eigenfunction axes are also shown for each organ.

eigenfunction-1 taken
adult-1 about adult-1

eigenmode displacements

lie within linearisation distance

of each eigenfunction-1 eigenfunction-1 taken
about adult-2

Bl
K

Figure 6.3: Component of shape change along eigenfunction-1 of each adult

Eigenfunction-1 is drawn nearly parallel for adult-1 and adult-2, to illustrate that their
eigenfunctions are very similar. Eigenmodes with large linearisation distance (i.e. those of
large spatial scale) are more likely to be similar than eigenmodes with smaller linearisation
distance, so the eigenmodes of the two adults are ranked in decreasing order of similarity, as
mentioned at the beginning of this section.

SEigenmodes of larger spatial scale have larger linearisation distances. Linearisation limits occur (in physical
space) where the linearly amplified eigenmode no longer approximates the non-linear eigenfunction well.
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Eigenmodes are also harmonic fields with nodes and anti-nodes of minimal and maximal
displacement. Given that “landmarks are the points at which one’s explanations of biological
processes are grounded” (Bookstein (ch.3.3)[16]), these eigenmode extrema are proposed as
ideal biological landmarks. Bookstein defines three principal types of biological landmarks:

(i) discrete juxtapositions of tissues;
(ii) maxima of curvature or other local morphogenetic processes;
(iii) extremal points.

Eigenmode displacement extrema fall into (i) and (iii) in Bookstein’s classification. In
a hand, for example, the important landmarks are the finger-tips and inter-digital gaps; the
elastic eigenmodes of each hand also have local displacement extrema at these locations®.

Morever, each hand has eigenmodes at different spatial scales, which give rise to displace-
ment extrema at multiple spatial wavelengths; therefore, eigenmode extrema form biological
landmarks at multiple spatial scales. The more similar the two hands are, the more eigenmodes
fall within their linearisation distance, and the higher the spatial resolution at which homologies

can be defined.

6.2 Eigenmode normalisation

We have shown that organ models can be registered to each other using their eigenmodes.
However, eigenmode vectors must first be normalised in magnitude and direction, since they
are computed with arbitrary scaling from the generalised eigenproblem in equation (3.8).

The organ models being compared may have finite element meshes of different density
and distribution, so the conventional procedure of scaling the eigenmode vector’s 2-norm is
inapplicable. Normalising the mean displacement component at surface sample points is also
inappropriate, because eigenmode fields have near-zero net displacement (see Chapter 3.3 for
a discussion on eigenmode symmetry and net moments).

One possible procedure is to scale the largest single component at any mesh node, to
some fraction (normally 10%) of the model’s (centroid) size, where this fraction is a functional
definition of the eigenmode’s linearisation limit”. Eigenmode sign is then chosen by constraining
the net volume change associated with the normalised eigenmode to be the larger positive one.

Eigenmodes of large spatial-frequency (preferentially used as shape features) are vector dis-
placement fields with a small number (1-3) of phase changes and local displacement maxima.
The largest single component, on which normalisation depends, therefore lies in a smoothly
varying displacement maximum of large spatial span. This means that the proposed normal-
isation is fairly reliable, even with noise in spatial sampling and eigenmode computation.

Section 6.3 shows that normalised eigenmodes are used to compute model pose; the pro-
cedure described here avoids the circular problem of having to normalise eigenmodes by first
assuming model pose.

5A more complete and accurate growth model could potentially give eigenmode extrema at the knuckles,
i.e. landmarks of type (i).

"For a simple pendulum, the 10% eigenmode linearisation limit is equivalent to an angular peturbation of
0 = 6°, which is safely within the bounds of the sin § =8 linearisation approximation.
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Volume change in non-rigid eigenmodes

The sign of volume change is a macroscopic property of the eigenmode displacement field,
which has been found to be robust enough for use in direction normalisation. However, it is
possible, when comparing two noisy organ models, for a sparsely sampled eigenmode to give
volume changes of contradictory signs. This is the case, for instance, in higher eigenmodes
of the foetal liver models in Figure 4.2, because their sparsely sampled meshes fall below the
minimum Nyquist spatial-frequency needed to specify eigenmodes without aliasing effects.

Note that non-rigid eigenmodes always cause a change in model volume; displacement fields
which do not do so for any eigenmode amplitude are, by definition, rigid-body displacements.
Note also that symmetric eigenmodes acting on symmetric models will give the same volume
change for positive and negative eigenmode displacement.

An eigenmode’s displacement field has a ‘shape’, which is visualised by varying modal amp-
litude between its positive and negative linearisation limits®. Therefore, an ideal registration
algorithm would not require direction normalisation, since it should fit eigenmode ‘shapes’ (i.e.
the range of displacements) to each other, rather than fitting absolute eigenmode displacements.
However, it is found that where reliable direction normalisation is achievable (i.e. with well
sampled organ models), the quality of fitting is better with absolute displacements, because
fitting ‘shape’ is less discriminating®.

Normalising higher eigenmodes

A standard constraint used in finite element modelling, is to ensure that the largest single nodal
component has a positive z-direction (Hitchens (ch.8)[62]). This is pointless when the initial
pose is undetermined, although higher eigenmodes can be direction-normalised after initial
pose is estimated using the (normalised) fundamental modal axes (see Section 6.3).

An organ model’s higher eigenmodes are defined on the same mesh as its lower eigenmodes,
so the former can also be normalised with respect to the latter using their 2-norms. This is
a preferable normalisation scheme for higher eigenmodes, since it does not depend on reliably
choosing a largest component.

Modal projection

Syn & Prager [143] use modal projection to derive an object-centred set of projected coordin-
ates. Figure 6.4 illustrates how eigenmode components at each node are projected onto funda-
mental eigenmodes!'?, to give a coordinate set which is invariant to translation and rotation in
the organ model.

At each of the organ model’s nodes, components of the three fundamental eigenmodes
form local 3D axes. The component of the third fundamental eigenmode is chosen to form a
right-handed trio, with respect to the components of the first two fundamental eigenmodes.

Components of higher (than fundamental) eigenmodes are projected onto these axes, to give
projection coordinates at each node. These components are also chosen to be right-handed with
respect to the components of first two fundamental eigenmodes.

8Figure 3.6 shows snapshots of ellipsoid eigenmodes at different modal amplitudes.

9Take a simple example of two sine waves of fundamental frequency: fitting ‘shape’ means that a lobe on
one can fit to either lobe on the other; fitting absolute displacements matches positive lobe with positive lobe,
and negative lobe with negative lobe.

108ection 6.3 defines fundamental eigenmodes as having fundamental spatial-wavelength. They are the most
stable when compared between organ models, and provide local coordinate axes which change most slowly (at
fundamental spatial-frequency) across the body’s span.
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eigenmode component is also
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b two fundamental eigenmodes
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eigenmode component body B
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hree (right-handed) fundamental
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Figure 6.4: Modal projection of eigenmode components

The local axes at each node define object-centred coordinate systems, so projection co-
ordinates can be compared directly between organ models, since they are invariant to rotation
in either model.

The major disadvantage of modal projection — and the reason it is not used comprehensively
in this dissertation — is that it requires dense sampling of the body mesh to work effectively.
It also requires a larger number of eigenmodes, since the three fundamental eigenmodes are
reserved for use as coordinate axes. Morever, modal projection leads to an increased search
space, since an initial pose estimation is not required.

Without modal projection, eigenmodes require normalisation in both magnitude and dir-
ection, so that they can be used to compute organ model registrations. A method of pose
estimation is also required, since registration algorithms have large search spaces, and work
more efficiently if both models are initialised in approximately the same pose.

6.3 Pose estimation using fundamental eigenmodes

The first three non-rigid eigenmodes of an organ shape model are of fundamental spatial-
frequency: they are the fundamental eigenmodes. Each fundamental eigenmode has a funda-
mental symmetry'!, and three fundamental symmetries define the model’s intrinsic rigid-body
coordinate system.

This section suggests that each fundamental symmetry can be approximated by a funda-
mental modal axis, which is approximately given by the bending axis of the eigenmode field.
Three such axes approximately define the model’s pose, and rigid-body registration between
organ models is achieved by matching these axes (Syn et al. [149]).

Fundamental eigenmodes of gallbladder models

Figure 6.5 shows two gallbladder models in the same pose. The fundamental eigenmodes give
almost identical displacement fields for both models, and there is a single axis about which
each eigenmode bends or twists. Figures 6.7-6.9 indicate these bending axes more clearly.

Fundamental eigenmodes of liver models

Figure 6.6 shows the fundamental eigenmodes of the (worst case) Liver-1 and Liver-11 models,
originally shown in Figure 4.2. Arrows indicate the gross modal action, from which each
bending axis can be estimated. Figures 6.10-6.12 indicate these bending axes more clearly.

"'The eigenmodes of an organ model reflect its generalised symmetries (see Chapter 3.5).
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(a) Gallbladder (b) First eigenmode (c) Second eigenmode (d) Third eigenmode

(e) Bent gallbladder (f) First eigenmode (g) Second eigenmode (h) Third eigenmode

Figure 6.5: Fundamental eigenmodes of two volumetric gallbladder models in the same pose

(e) Liver-11 (f) First eigenmode (g) Second eigenmode (h) Third eigenmode

Figure 6.6: Fundamental eigenmodes of Liver-1 and Liver-11 models
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Fundamental modal axes

Figures 6.5—6.6 illustrate that each fundamental eigenmode has a bending axis which defines
an approximate plane of fundamental symmetry. Unfortunately, a bending axis cannot be
computed by taking moments of each eigenmode component, because eigenmode displacement
fields have zero net rotational moment (see Section 3.3).

This is somewhat dependent on the organ model’s mesh, since a sparsely sampled mesh
may not accurately sample the eigenmode field, thus resulting in a non-zero residual moment; a
residual moment can also be computing by using only boundary components of the eigenmode
field. Nevertheless, residual moments are an unreliable indicator of the eigenmode’s bending
axis.

Instead, vector moments are taken of each eigenmode component, at its point of action
on each element node. The bending axis maximises the projection of the moment vector
distribution, so it is the primary eigenvector of the covariance matrix of moment vectors.
Bending axes are computed from the first two fundamental eigenmodes, and then mutually
orthogonalised to give a right-handed trio, which forms the set of fundamental modal axes for
the organ model.

Figures 6.7-6.9 show each of the first three fundamental eigenmodes of a gallbladder model,
superposed at a range of amplitudes. Surface normals track local displacement directions and
magnitudes over the range of modal amplitudes; the approximate position is also indicated of
the bending axis of each fundamental eigenmode.

Figures 6.10-6.12 show the surface normals and bending axes for the Liver-9 model. Again,
the colours of the surface normals range between red and green, to track movement of the
Liver-9 model’s surface with changing modal amplitude.

Fundamental symmetries

The order of fundamental eigenmodes reflects the dominant fundamental symmetries of the
gallbladder and Liver-9 models.

In Figures 6.7-6.9 (cf. Figure 6.5), the first two gallbladder eigenmodes have bending axes
which are mutually perpendicular, defining the two dominant planes of mirror symmetry along
the major axis. The third gallbladder eigenmode has a plane of minor symmetry which is
perpendicular to the long axis.

In Figures 6.10-6.12 (cf. Figure 6.6), the first liver eigenmode is perpendicular to the
long axis and is the dominant plane of symmetry. The two other eigenmodes reveal planes of
fundamental symmetry which are less immediately apparent.

Accuracy of modal axes

As mentioned above, the directional accuracy of a bending axis is dependent to some extent
upon the sampling distribution of the finite element nodes, irrespective of the accuracy of
the eigenvector computation routine. In the worst case of the liver models in Figure 6.6, for
example, there is an error of approximately 30°, which is barely accurate enough for estimating
initial rigid-body registration.

When viewing animated eigenmodes on a computer screen, we find that the human eye does
a very good job of estimating the orientation of bending axes, because the displacement field is
visually integrated continuously over the organ model’s surface. A dense eigenmode field can
similarly be achieved using finite element interpolation of nodal components, but at the cost
of increased computation.
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Figure 6.7: Surface normals of gallbladder model at range of amplitudes of first eigenmode
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Figure 6.8: Surface normals of gallbladder model at range of amplitudes of second eigenmode
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Figure 6.9: Surface normals of gallbladder model at range of amplitudes of third eigenmode
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Figure 6.10: Surface normals of Liver-9 model at range of amplitudes of first eigenmode
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Figure 6.11: Surface normals of Liver-9 model at range of amplitudes of second eigenmode
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Figure 6.12: Surface normals of Liver-9 model at range of amplitudes of third eigenmode
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6.4 Wavelet modes

Eigenmodes are computed with global support, so they are sensitive to shape changes anywhere
on the organ model. Although global sensitivity can amplify the effects of irregularities in shape
meshing'?, mass lumping is an effective remedy to this problem (see Appendix B.5).

A more important concern is that occlusion or signal loss in ultrasound imaging may lead
to a highly uncertain segmentation at certain parts of the organ boundary. In such cases, a
more suitable shape feature would be localised in sensitivity.

Unfortunately, localised support means that multiple local features are required to char-
acterise organ shape. During registration, for example, additional work needs to be done to
ensure that the correct local feature on one organ is matched to the correct local feature on
another. The advantage of global sensitivity, in comparison, is that only a single eigenmode
from one organ needs to be matched to a single eigenmode from another.

This section develops a wavelet mode representation for finite element models, in which
wavelet displacements are localised in spatial support, while retaining some desirable shape
properties of elastic eigenmodes. Since elastic eigenmodes span space globally but exist only
at isolated natural-frequencies, any attempt to reduce the former must have consequences on
the latter. The starting point is therefore to quantify the relationships between spatial position,
spatial-frequency, and natural-frequency.

Joint localisation in space and frequency

Gabor [44] showed that the uncertainty principle in information theory limits a signal’s spe-
cificity simultaneously in time and frequency. The theoretical lower limit on the time-bandwidth
product is achieved by Gaussian-modulated sinusoids, also known as Gabor wavelets.

Daugman [38] extends this treatment to 2D signals, and shows that there is a more general
definition of joint uncertainty (or joint localisation) in 2D spatial position and 2D spatial-
frequency. Again Gabor wavelets give the best joint localisation, and are defined in this case
as the product of an elliptical Gaussian with a 2D sinusoid.

These uncertainty relations show that the localised representation we require must suffer in-
creased spread in spatial-frequency, in order to achieve a localisation of signal extent. Morever,
the optimal tradeoff in joint localisation for this representation, can be achieved by employing
design principles analogous to those used for Gabor wavelets.

Eigenmodes (‘generalised harmonics’) are analogous to sinusoidal signals in that both are
completely localised at a single spatial-frequency (see next), and both have global extent. The
strategy is for an envelope function to localise (by modulation) the harmonic signal in space,
while increasing uncertainty (by convolution) in spectral locality'®. An envelope function is
desired which can achieve the optimal tradeoff between the former and the latter.

Gabor wavelets employ a Gaussian envelope because it decays smoothly and rapidly away
from the central lobe, while retaining the same form in both spatial and spectral domains.
Figure 6.13 shows how this modulation localises signal extent by dampening the sinusoid away
from the Gaussian’s main lobe while, at the same time, smearing the spectral peak.

This modulation can be thought of as the design procedure for Gabor wavelets. In gen-
eralising this procedure to eigenmodes, however, it is unclear whether spatial-frequency or
natural-frequency should be used in the uncertainty tradeoff. The spectral localisation of ei-
genmodes is first examined, so as to clarify this matter.

2See Figures 3.7- 3.12 for examples of noisy meshing.
13Multiplication in the spatial domain is equivalent to convolution in the Fourier domain.
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Figure 6.13: Gabor wavelets achieve optimal joint localisation in position and frequency

Spatial frequency

(d) Gaussian modulation causes spectral smearing
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Spectral localisation of eigenmodes

The wave equation (2.3) for uniform elastic bodies

0%u
— = —-D¥V(V. 1

has the variable-separable solutions (see equation (2.15))
u = f;(x)elvit (6.2)

where ff' (superscript omitted for clarity) is the ith elastic eigenfunction, and w; is its natural-
frequency. Note that 7 = v/—1 here.

We wish to examine the eigenfunctions in the spatial-frequency domain 7, so applying the
Fourier transform to equation (6.1) gives (Kreysig (ch.11.14)[77])

kel N
(i) (6.3)

28
wlf, = —E

where the substitution V(V-f;) = —g—:fi is made from equation (2.15).

This shows that the Fourier spectrum of an eigenfunction f;(w), is parallel to r;

kel

Ha lmilllfill: (6.4)

23

which also means that the spatial-frequency vector m; has a constant amplitude proportional
to natural frequency w;. In other words, each elastic eigenfunction f; is localised at a spatial-
frequency of constant three-dimensional magnitude, so we expect its Fourier spectrum to show
a spherical shell centred at the origin.

Fourier spectrum of eigenmodes

Let us now examine the Fourier spectra of the 7th and 12th eigenmodes of a volumetric ellipsoid
(first shown in Figure 3.7).

Figure 6.14(a) shows the eigenmode’s displacement field, which is resampled onto a regular
grid using FEM interpolation functions. The (z,y,z)-axes are shown in (red,green,blue) re-
spectively to highlight the orientation of the displacement field. In this case, the displacement
components are predominantly green, since they act primarily along the y-axis.

Figure 6.14(b) shows the discrete Fourier transform (DFT) of Figure 6.14(a). Equation (6.4)
implies that the 7th eigenmode’s spectrum should be localised at a constant radial magnitude
of fundamental frequency, with frequency components acting radially. This localisation is
obscured by the ‘windowing’ effect' | however, even on the relatively fine 64x64x64 grid used
in Figure 6.14.

Figure 6.14(c) shows the 12th eigenmode, which is of higher (than fundamental) spatial-
frequency and has displacement components along both z and y-axes. The eigenmode spectrum
in Figure 6.14(d) is localised at a higher (than fundamental) magnitude of spatial-frequency,
and also has components acting along both x and y-axes. However, this localisation is again
difficult to see due to spectral smearing.

4The DFT inevitably spans a grid which is defined beyond the boundary of the displacement field, giv-
ing rise to artefacts at the DFT grid’s high-frequency corners. This can be interpreted as a ‘windowing’
effect (Candy (ch.3.4)[21]), in which the eigenmode’s displacement field is masked by the ellipsoid’s boundary
function, which transforms to a ‘smearing’ convolution of the eigenmode spectrum.
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(a) Displacement field for 7th eigenmode (b) Spectrum of 7th eigenmode

(c) Displacement field for 12th eigenmode (d) Spectrum of 12th eigenmode

Figure 6.14: Fourier spectrum for eigenmode displacement fields of volumetric ellipsoid
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Fourier spectrum of Gaussian-modulated eigenmodes

Figure 6.14 is intended to demonstrate that elastic eigenmodes are localised in spatial-frequency,
as predicted by equation (6.4). We now proceed to localise an eigenmode’s spatial extent by
Gaussian modulation, and to examine the effect on its Fourier spectrum.

Figure 6.15(a) shows the displacement field for the 7th eigenmode, after modulation by a
3D Gaussian envelope centred on one end of the major axis. As expected, the displacement
field is localised to the unmasked (right-hand) half of the ellipsoid. Also expected is the loss

of spectral localisation observed in Figure 6.15(b) (cf. Figure 6.14(b)) near the fundamental
frequency; however, this may again be the result of DFT windowing.

(a) Displacement field

(b) Fourier spectrum

Figure 6.15: Fourier spectrum for Gaussian-modulated displacement field of 7th eigenmode

These results are frustrating, because they do not show clearly that Gaussian modulation
generalises the Gabor wavelet design procedure to eigenmode harmonics. The resolution of the
DFT grid cannot be increased much further than 64 x64x 64, and it is not clear if this would
result in clearer DF'T spectra anyway.

Fortunately, this turns out to be a flawed approach to generalised wavelet design, because
the eigenmode field is defined in the model’s intrinsic coordinate system, whereas the Gaussian
is still defined in 3D Cartesian coordinates.

Figure 6.16 illustrates that this inconsistency in coordinate systems does not correctly
localise spatial support. If the Gaussian envelope is centred on the left pole of the discus, it
dampens eigenmode displacements at the equator, while only partially doing so for the right
pole. However, if the Gaussian is defined in the discus’ intrinsic coordinate system, instead of
in Cartesian space, the region of the right pole would be considered furthest from the left pole.

\‘\\

N
N
KN
VA}‘
RN
AN
V)

N
70

\/)
!

N
}AVA

OV
oo

7!
NAVAVAVA!

2
VAV

2O
I\

/
v
o

W/

4
V]

2]
4%
&

7

1
N

7
o
i

(a) Discus model (b) 7th eigenmode

Figure 6.16: Gaussian modulation does not correctly localise spatial support in (b) to left pole
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Eigenmode spectrum of Gaussian-modulated eigenmodes

Since the revised aim is now to use a body-centric Gaussian envelope, we should also recon-
sider the use of the (Cartesian) Fourier transform to examine spectral behaviour. After all,
the windowing artefacts observed in Figures 6.14—6.15 are due to resampling from a sparse ei-
genmode field defined only at element nodes, to a densely arrayed Cartesian grid which spans
beyond the model. The consequent loss of sparsity also imposes computational limits on DFT
resolution.

Elastic eigenmodes form a unique transform basis and are, by definition, localised in
natural-frequency; Fourier analysis in equation (6.4) also shows that each eigenmode is localised
in 3D spatial-frequency, at a magnitude directly related to its natural-frequency'®. Therefore,
the elastic eigenmodes form a natural and body-centred transform basis for spectral analysis,
and displacement fields can be projected onto eigenmodes to give an eigenmode spectrumS.

Figure 6.17 shows the distribution of natural-frequencies for an ellipsoidal model. The
boundary conditions and material properties of the model’s wave equation determine the spec-
trum’s discrete and unevenly distributed sampling. The high-frequency components of the

17

spectrum are more sensitive to the finite element model’s tessellation'’, as previously discussed

in Section 3.3 on eigenmode accuracy.

Spectrum for eigenmodes of uniform volumetric ellipsoid
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Natural-frequency (normalised by fundamental)

Figure 6.17: Eigenmode spectrum of uniform volumetric ellipsoid

The Gaussian-modulated 7th and 12th eigenmodes are now projected onto their eigen-
mode spectra, as shown in Figures 6.18-6.19. These projections are instructive, because Fig-
ure 6.18(b) shows the spectral envelope to be approximately Gaussian in shape, and centred on
the 7th (fundamental) eigenmode. Figure 6.19(b) similarly shows an approximately Gaussian
envelope, this time centred on the 12th eigenmode.

5Recall that this holds true only if uniform elasticity is assumed.
180n a uniform Cartesian grid, the elastic eigenmode bases are identically the Fourier transform bases.
"Mass lumping is a partial remedy to this, as mentioned at the very beginning at this section.
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Spectrum for Gaussian-modulated 7th eigenmode of volumetric ellipsoid Spectrum for Gaussian-modulated 7th eigenmode of volumetric ellipsoid
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Figure 6.19: Eigenmode spectrum of Gaussian-modulated 12th eigenmode

Gabor wavelet modes

Figure 6.18(b) and Figure 6.19(b) suggest that wavelet modes should be designed directly
by Gaussian modulation in the eigenmode spectrum. This is the generalisation of the Gabor
wavelet design procedure we are seeking, since the Fourier transform used to characterise joint
uncertainty in space and frequency for regular Cartesian arrays, is a particular case of the
eigenmode transform for arbitrary finite element meshes.

In other words, Cartesian coordinates and frequency in regular wavelets, generalise to
model-centred coordinates and natural-frequency in finite element models. This means that
wavelet design is dependent on the number of eigenmodes available, and is thus limited by
computational resources and the Nyquist sampling resolution of the finite element mesh.
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The design procedure for a Gabor wavelet mode is therefore to perform Gaussian modulation
in the eigenmode spectrum. However, this only determines the magnitude of each constituent
eigenmode, and not its sign, i.e. eigenmodes can interfere constructively or destructively
depending on their relative phase, although their relative magnitudes are fixed.

Daugman [38] addresses this in the design of 2D Gabor wavelets, by minimising the “ef-
fective spread” of each wavelet’s energy distribution. Since we are designing in the eigenmode
spectral domain, an overall constraint of minimal effective spread is imposed in the spatial do-
main, where spatial spread is quantified by the mean-square displacement of the wavelet mode.
Fortunately, eigenmodes are mutually orthogonal and linearly separable, so each eigenmode’s
sign can be individually determined in consecutive order.

Figure 6.20 shows the eigenmode spectrum of a Gabor wavelet mode. Figure 6.21 shows
the associated wavelet displacement field, which has a large spatial spread due to the nar-
row Gaussian spectrum, and large spatial-wavelength because the spectrum is centred on the
fundamental natural-frequency.

Gaussian spectrum centred on fundamental frequency Gaussian spectrum centred on fundamental frequency
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Figure 6.20: Gabor wavelet mode with a narrow Gaussian as its eigenmode spectrum

(a) Gabor wavelet mode (b) A similar 2D Gabor wavelet

Figure 6.21: Gabor wavelet mode has wider spatial spread
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6.4 Wavelet modes 89

Figure 6.22 shows the eigenmode spectrum of another Gabor wavelet mode. Figure 6.23
shows the associated wavelet displacement field, which has a narrow spatial spread due to the
wide Gaussian spectrum, and smaller spatial-wavelength because the Gaussian spectrum is
centred on a higher natural-frequency.

Gaussian spectrum centred on 100th eigenmode Gaussian spectrum centred on 100th eigenmode
0.1 T T T T 0.1 T T T T

0.081 4

0.06 - T

0.04 ° |
k<]
2
) =

g 0.02- 5 1
£ £
©

g oo 3 ]
g £
Q

2-0.02 E 1
@
a

-0.04 < B

-0.06- T

I |H|| |

0.1 . . . . mm ??Wmm)m\ @
0 10 15 20 25 0 5 10 15 20 25
Natural-frequency (normalised by fundamental) Natural-frequency (normalised by fundamental)
(a) Signed magnitudes (b) Absolute magnitudes)

Figure 6.22: Gabor wavelet mode with a wide Gaussian as its eigenmode spectrum
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(a) Gabor wavelet mode (b) A similar 2D Gabor wavelet

Figure 6.23: Gabor wavelet mode has higher spatial-frequency and narrower spatial spread

Figure 6.24: Gabor wavelet mode for truncated ellipsoid
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Figure 6.24 shows a sharply truncated ellipsoid with an equivalent Gabor wavelet mode to
Figure 6.23. It can be seen that both Gabor wavelet modes have similar displacement fields,
and this is as expected, since the localised spatial support of the wavelet leaves it relatively
unaffected by the truncation of the ellipsoid.

The set of Gabor wavelet modes is vastly overcomplete, since there is a wide choice for both
the Gaussian spectrum’s position and extent. In practical terms, however, this choice is limited
by the number of eigenmodes available. Recall also that the high-frequency eigenmodes are
less accurately computed, and require greater computational expense due to more problematic
convergence!S.

The width of the Gaussian should be large enough that it is adequately sampled by the
eigenmode spectrum'®, but not so large that it relies heavily on high-frequency eigenpairs.
There is also a tradeoff with the position of the Gaussian spectrum, since it is undesirable to
have either tail prematurely truncated by the lowest and highest natural-frequencies, or to have
a displacement field at higher spatial-frequency than the Nyquist sampling limit of the finite
element mesh.

6.5 Summary

Chapter 2 shows the elastic eigenfunctions to be the principal patterns of growth. This chapter
argues further that the displacement extrema of eigenfunctions are biological landmarks, so
that organ models can be registered to each other by matching these landmarks.
Registrations can be computed more efficiently if the organ models are approximately
aligned beforehand. This chapter shows that alignment can be performed using each organ
model’s fundamental eigenmodes, which describe a set of axes defining the model’s pose.
Eigenmodes are sensitive to the global shape of the organ model, which may be problematic
when the boundary of the organ is uncertain, e.g. from segmenting occluded ultrasound images.
This chapter proposes Gabor wavelet modes as a novel solution. These wavelet modes are com-
puted from eigenmodes, so they have desirable properties as shape features; more importantly,
wavelet modes are only locally sensitive to organ shape. Unfortunately the method proposed
here requires significant computation for Gabor wavelet modes to be accurately represented.

18The resolution of the Gabor wavelet modes shown in Figures 6.20-6.24 is fundamentally limited by the
sampling density of the underlying (434 node) finite element mesh, which requires 1302 eigenpairs to be com-
puted to tolerable accuracy. Larger meshes were attempted, but the noisiness of the higher eigenmodes gives
rise to significant high-frequency artefacts in the wavelet displacement field. See Appendix B for issues involved
in solving large eigenproblems.

91t remains unclear how the discrete and uneven spacing of eigenmode natural-frequencies affects the wavelet
displacement field.
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Chapter 7

Coherence of Homology

Chapter 2 employs Oster-Murray mechanisms in a model of biological growth, where the ei-
genfunctions of these mechanisms describe the modes of organ shape change. Other chapters
in this dissertation explore the eigenfunctions’ properties in representing organ shape and or-
gan shape variation. Chapter 6, in particular, shows that eigenfunction extrema are biological
landmarks which can be matched between organ models to find their registration.

The task remains of finding an appropriate metric for the ‘cost’ of biological growth. Such
a metric is useful during registration, when it can be employed in deciding the plausibility of
a suggested landmark fit. It is also useful for interpolating the registration between landmarks
in a coherent and biologically justified way, by choosing the pattern of interpolations with least
‘cost’.

This chapter develops a suitable metric using the Gompertz model of organ growth. This
energy metric interprets the cost of Gompertzian growth by its associated mass change, and
is derived from a function describing cell proliferation, which can be incorporated into equa-
tion (2.7) of our growth model in Chapter 2.5.

Chapter organisation

e Section 7.1 introduces the Gompertz model of cell proliferation during organ growth.

e Section 7.2 introduces the Gompertz energy metric, which describes the cost of organ
growth. This metric has a simple and intuitively appealing interpretation; it also has
linear form when describing small growth changes near adult mass.

e Section 7.3 justifies the use of Gompertzian growth, and shows that it results from a
simple statistical model of biological growth control.

e Section 7.4 proposes that the Gompertz energy metric can be used to coherently inter-
polate registrations between landmarks. A simple Bayesian model combines the likelihood
of landmark similarity, with the prior constraint that Gompertz energy is minimised. The
resulting posterior measure of biological homology can then be used to register organ
models at all points on and between landmarks.
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7.1 Gompertz growth function

Medawar [89] measured the growth of the embryo chicken heart, which was found to follow the
Gompertz growth function
Y& = et (7.1)

where a®”, b%* and k®* are constants (superscripts omitted for clarity) and ¢ is the time variable.
The time derivative of y# is

. _ _he—Fkt
7 = akbe kt g—be

= y¥kbe ¥ (7.2)
Equation (7.1) and equation (7.2) are used to define the specific growth rate R%”

v
yE

= kbe ¥ (7.3)
InR* = Inkb— kt

R* =

It is useful to employ equation (7.1) again
be * =Inag —Iny* (7.5)
for substitution into equation (7.3)

R¥* =klna — klny®* (7.6)

7.2 Gompertz growth energy

Medawar [89] determined growth emergy W#* for the embryo chicken heart!, by examining
the specific amount of growth inhibitor required to cause tissue growth to cease. Growth was
inhibited at a series of different ages, and making the assumption that growth energy is directly
proportional to the amount of inhibitor applied, Medawar found a linear trend when plotting
the logarithm of W#* against time ¢

InWe =1nkb— kt (7.7)
Medawar also found a linear relationship between W#* and the logarithm of tissue mass m
W& =klna — klnm (7.8)

Comparing equation (7.7) with equation (7.4), and also equation (7.8) with equation (7.6),
it can be seen that:

(i) Gompertz growth energy W#* is a measure of specific growth rate R5*;

(i) the growth of tissue mass m must conform to the Gompertz function.

!Medawar collected growth energy data over a range of 6-18 days, which is equivalent in ‘physiological time’
to a high proportion of the growth period. Meaningful physical interpretation of equations (7.7)—(7.8) starts to
fail near the origin of the time and mass axes.
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Growth energy as a function of mass

Equation (7.8) can be rewritten, using a =m™> to represent the adult mass at which the growth
rate slows to a halt

max

We =kln

(7.9)

m

Figure 7.1 illustrates the form of Gompertz growth energy in equation (7.9). The growth
rate slows to zero when the organ reaches adult mass, and the adult growth rate can be linearly
approximated as shown.

W9 (growth energy)

linearisation about mmax

‘ m (mass)
mmax

Figure 7.1: Plot of Gompertz growth energy against organ mass

Interpretation of growth energy metric

In Medawar’s experiments W8” represents the the growth potential the organ has left to resist
the applied growth inhibitor, which acts by stopping mesenchymal cells (fibroblasts) from
redistributing themselves after proliferation (cf. Chapter 2.5). Medawar suggests that this
prevents further cell proliferation, hence halting tissue differentiation and growth?.

Now consider the change in W# due to a small change in tissue mass dm, linearised about
adult mass m™ as shown in Figure 7.1

AW ok
dm ymmax a mmax
k

sWe = - sm (7.10)
mmax

Equation (7.10) is a metric quantifying the change in growth energy which results from
small changes dm in the tissue mass of fully-formed organs; energetic change is negative since
it describes the work done against inhibitory mechanisms. Its linear form? is particularly useful,
since the energy required for any pattern of (adult) growth can be easily computed from the
associated mass change.

7.3 Justification of Gompertzian growth

The Gompertz energy metric developed in Sections 7.1-7.2 derives from Medawar’s [89] ex-
periments on organ growth. It is more commonly applied in population and mortality studies
(Lestienne [79]); in fact, Gompertz [52] originally formulated equation (7.1) in an actuarial
context (see also Causton [22]).

?Recall that 45 is employed as the cell proliferation model for equation (2.7) in Chapter 2.5.
3Using the non-linear §W8* = —%5177, would incur significant computational cost for numerical integration.
In any case, the important thing to note about the metric is that energetic cost increases with dm.
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The Gompertz growth function is also used in modelling organ growth. For example,
Fujita [43] uses 60 Gompertzian growth segments to model the anatomical growth of mammalian
brains; and Luecke & Wosilait [85] model the growth of human foetuses and 16 foetal organs
using the Gompertz function.

The logistic, Bertalanffy, and Gompertz functions are widely used in modelling biolo-
gical growth, since they all approximately sigmoidal in shape. All three have been justified
as biologically plausible tumour growth models (Xu [170]; Vaidya & Alexandro [163]), but
Xu & Ling [171] and Ling & He [84] find the Gompertz function to be the expectational model
for all three, given a uniform distribution of parameters for a generalised model encompassing
all three*.

Statistical model of growth control

To complement these experimental reports of Gompertzian organ growth, we also develop a
statistical interpretation of Gompertz energy using a simple model of organ growth control.
Recall that Medawar calculated growth energy W& by the amount of chemical inhibitor
used. Although each chemical molecule represents a constant amount of inhibitory energy,
the probability of inhibition P is determined by the kinetic energy of the inhibitory molecules,
which can be shown to follow a Boltzmann distribution (van Laarhoven & Aarts (ch.2.1)[165])

. 1 i
P(W™) = fe—W"/T (7.11)
where W' is the inhibition energy (cf. Medawar’s growth energy W#*). T is a temperature
parameter which reflects the hostility of the inhibitory control system.
The cell proliferation rate y& is directly determined (up to some constant a) by inhibitory
challenges (Shymko & Glass [134]), which meet or exceed the cellular growth energy W&
m . .
ygz — 0,/ P(Wnb) dWlb
Wwes

a [ _yib .
_ - e w? /T dW1b
T Jwe=

_ ge WEIT (7.12)
In comparison, the Gompertz growth energy in equation (7.7)

InW# = Inkb—kt
W& = kbekt (7.13)
can be substituted into the Gompertz function in equation (7.1) to give
ygz — ae—be_kt
= ae_%wgz (7.14)

Comparing this to equation (7.12), it can be seen that the Gompertz growth energy metric
is justified by our simple statistical model of growth control.

*Xu & Ling [171] incorporate the effects of spatial organisation, surface roughness, and competition for
nutrition. This results in a self-limiting growth model which can reasonably be used as a simple approximation
to other forms of tissue growth. Morever, it is a simple model of spheroidal growth in wvitro which is more
relevant to general organ growth, since there are no complicating mechanisms of nutrition or proliferation as
would be the case for tumour growth in vivo.
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7.4 Local coherence of homology

Sections 7.1-7.3 show that the Gompertz energy metric quantifies the energetic cost of organ
growth, which is important as a means of discriminating between possible landmark fits during
organ model registration. The form of Gompertz energy in equation (7.10) is particularly useful,
since it shows the energetic cost of a growth pattern to be directly linked to the associated mass
change.

Recall that Chapter 6 shows eigenmode extrema to be biological landmarks which estab-
lish homologous locations between two organ models; this section employs a simple Bayesian
framework to integrate landmark fitting with the Gompertz energy metric. In this framework,
landmark fits give the likelihood of homology, and the energy cost of the landmark fit is a prior
constraint on the possible range of fits (Syn & Prager [145, 146]).

Likelihood energy

The likelihood of two points, one on each organ model, being similar is established by testing
the (normalised) eigenmode components at these points. Similarity is quantified by the squared
difference between these vector components, which is a measure of local likelihood energy U™.

Provided normalised eigenmodes are used, this is found to be an efficient implementation for
fitting eigenmode extrema without having to compute surface curvature. Another advantage is
that this metric exists continuously over the organ model, instead of just at eigenmode extrema.

Prior energy

The difficulty with matching points between organ models using likelihood energy U™ alone, is
that local coherence may not be maintained. Figure 7.2(a) illustrates an incoherent outcome,
where points are matched between organ models without reference to neighbouring matches.
Figure 7.2(b) illustrates a more desirable outcome, where two matches are mutually coherent.

(a) Incoherent matches (b) Coherent matches

Figure 7.2: Matching points using only likelihood energy may not give coherent local patterns

The purpose of the Gompertz energy metric is to ensure a coherent pattern of local matches.
It does this by encouraging patterns which are most biologically plausible, i.e. those which
entail minimal mass change. Mass change can be computed by the volume change associated
with the set of homology vectors, i.e. the vectors linking matching points.

When there are only a few matching points, however, homology vectors have to be estimated
for the remaining unmatched points. This is done by projecting the existing homology vectors
onto eigenmodes, then using the eigenmodes’ components at unmatched points as estimates
for the missing homology vectors. The interpolated volume change then gives the Gompertz
metric of local prior energy U®".

The aim now is to combine likelihood energy U™ with prior energy UP" in a common
framework, so that registration can be performed using a single combined measure of homology,
which explicitly enforces coherent local patterns of homology vectors between organ models.
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Markov neighbourhoods in finite element models

Markov neighbourhoods offer such a framework, because energies can be translated to probab-
ilities, which can then be combined with each other using Bayes’ theorem. The first step is to
show that finite element organ models form Markov neighbourhoods.

In the finite element method, the displacement of a point within an element is solely a
function of the displacements of the element’s nodes (see Appendix A). Consider the special
case when this point coincides with an element node: the node is shared between adjacent
elements, so its displacement is only influenced by the nodal displacements of all these adjacent
elements.

The neighbourhood formed by such a group of adjacent elements is Markovian, so each
nodal component of an eigenmode exists within a Markov neighbourhood, also known as a
Markov random field (MRF).

nodal displacements

4 of eigenmode
10 R
1 1 /{/

displacement of central node
is influenced only by nodes
of the five adjacent elements

element node

tetrahedral element

Figure 7.3: Five tetrahedral finite elements in a Markov neighbourhood

MRF-Gibbs equivalence

The MRF-Gibbs equivalence (Chou & Brown [27]) maps energy values in a MRF into probab-
ility values. Likelihood and prior probabilities for the ith MRF site on one organ model, being
homologous to the jth site on another model, are given by

PP (i,5) = Ape U0/ (7.15)
PY(i,j) = Age U GI/T: (7.16)

Bayes’ theorem allows the prior probability PP and likelihood probability P™ to be combined
in the MRF to give the posterior probability PP°

PprPlk

pre
Z

(7.17)

where Z is a normalisation constant. The posterior probability PP® describes the net probability
that a site on one organ model is homologous to a site on another organ model. It is determined,
through P™, by eigenmode component similarity between the sites; it is also determined,
through PP*, by the coherence of homology vectors in its Markov neighbourhood.

Bayesian combination in equation (7.17) shows that posterior energy U is the sum of U*"
and U™. However, this summation can only be performed after appropriate normalisation of
the unknowns in equations (7.15)—(7.17), i.e. Ay, A9, T1,T>, and Z.
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Normalising prior and likelihood energies

One normalisation constraint for equations (7.15) and (7.16) is
Al =As =1 (7.18)

which translates to a constant offset to UP* and U™ in each MRF. A probabilistic constraint
also applies
> P(i,j) =1 (7.19)
JEMRF
when matching the ith site on one organ model, to the central site of an MRF in another organ
model.
Dropping the normalisation offset Z from equation (7.17) gives the posterior energy UP®
(scaled by some T3)
U>» =U"/Ty+U"/T, (7.20)

1

By using the change of variable 7 = — 7 over an MRF of n sites, the probabilistic constraint

in equation (7.19) translates to®

n !
ZeU"T =1
=1
= M7 + ()T +... + (") (7.23)

This can be used to find T} and T, after which equation (7.20) gives the posterior energy
UPs as the weighted (Bayesian) sum of the likelihood energy U™ and the prior energy U®".

7.5 Summary

This chapter introduces the Gompertz function as a model of cell proliferation. The Gompertz
growth function is associated with an energy metric which describes the cost of organ growth,
where this cost is approximately given by the (small) change in mass during organ growth.

Chapter 6 shows that a point on one organ model can be matched to a point on another
organ model, by comparing their eigenmode components. However, if points are matched
without reference to other matches in the neighbourhood, an incoherent pattern of matches will
result.

The Gompertz energy metric encourages local coherence in these patterns by choosing
the most biologically probable patterns. This constraint is combined with eigenmode matching
using a Bayesian framework, to give an overall probability for any suggested homology between
organ models.

5T’ can be found by computing the root of the monotonic function
y= (") + (") 4.+ (") -1 (7.21)
using a simple Newton-Raphson iteration

O L
dy_
dT’

I G R G R TR N i s |
UL (eU0)T + Un(eV2)T + ... + Un(eUn)T"

T (7.22)

which gives values for T} and T3 in equation (7.20).
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Chapter 8

Experiments: 3D Registration

Chapter 6 shows that eigenmode extrema are biological landmarks which can be used to register
organ models. Chapter 7 then uses a Bayesian framework to show how eigenmode similarity
can be combined with the Gompertz energy metric, to give a posterior probability for a match
between any point on an organ model, with any point on another organ model.

The space of possible homologies between two organ models is large, so an optimisation al-
gorithm is required to find the map of homologies which minimises these posterior probabilities.
Such a homology map defines the non-rigid registration of the two organ models.

This chapter introduces the highest confidence first (HCF) algorithm, which considers local
evidence in order of global importance when performing optimisation. Thus, the homology
map is initially filled in with the most probable matches, with less probable matches waiting
for neighbourhood support before making commitments.

A globally optimal registration is arrived at by steadily guiding the HCF solution to in-
creasing spatial resolutions, using eigenmodes in decreasing order of spatial scale.

Chapter organisation

e Section 8.1 outlines characteristics of the optimisation problem, and presents the solution
strategy.

e Section 8.2 describes the highest confidence first (HCF) algorithm, which tackles the
global optimisation problem by scheduling the propagation of local evidence in order of
importance.

e Sections 8.3 describes a scale-ordered implementation of HCF, which guides the op-
timisation solution to a global registration by using eigenmodes of gradually improving
spatial resolution.

e Sections 8.4 illustrates the relative importance of likelihood features (i.e. eigenmode
similarity) in defining homologies, compared to the prior constraint (i.e. Gompertz

energy).

e Sections 8.5 illustrates HCF registration results achieved using a posterior combination
of eigenmode features and the Gompertz energy metric.

e Sections 8.6 shows six sets of registration results, performed on all pair combinations
of the Liver-A, Liver-B, Liver-C, and Liver-D models.

e Section 8.7 discusses the HCF registration algorithm and the registration results presen-
ted in this chapter.
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8.1 Mapping homologies

Registration of biological organs is a difficult task which, practically speaking, can only be
achieved by an experienced anatomist. It requires a significant amount of spatial reasoning,
as well as anatomical and medical knowledge about the range of normal and abnormal organ
shapes. Anatomists always perform this correspondence task using biological landmarks, cf.
Bookstein’s [16] work in landmark morphometry referred to in Chapter 3.

Relevant current research in medical imaging is mainly directed towards methods of non-
rigid registration of 2D and 3D brain images. This is motivated by the desire to map standard
atlases to patient data, for the purpose of automatic labelling of brain structures (Gee et al. [45];
Christensen et al. [29]). Automated segmentation and archiving then makes statistical analysis
and training from large datasets feasible.

Betting & Feldmar [10] report a technique for rigid-body registration of MR or CT images
to the actual position of a patient, which can be very useful in neurosurgery or laparoscopy.
Rigid-body registration is also important for integrating functional or anatomical information
in multiple imaging modalities (Hill et al. [61]).

Eigenmodes have previously been used by Sclaroff & Pentland [130] in registration (using
modal matching) of images in a video database, leading to applications in object recognition
and classification. An “affinity table” is compiled of the strongest correspondences between
two objects of similar pose, from which the overall map of correspondences is derived.

Syn & Prager [143] apply a rotation-invariant extension® of this algorithm with some success
to an artificial dataset of 3D ellipsoidal models, but it fails with more complex organ models
such as the foetal liver models from Figure 4.2.

Optimisation strategy

Chapter 7 develops a posterior measure which describes the probability of homology between
two sites, conditioned by a local constraint of biological plausibility. These local probabilities
have to be integrated over the entire organ model, in order to arrive at a global map of the
most probable homologies at all sites. This resultant homology map describes the non-rigid
registration between two organ models.

Fundamental eigenmodes have only one phase change over the organ model, so a non-rigid
registration using a fundamental eigenmode can give two locally optimal fits?>. Either fit will
be of low spatial resolution because there are few displacement extrema on fundamental eigen-
modes. As registration proceeds using higher eigenmodes, however, the non-rigid registration
gradually improves in spatial resolution due to the increasing spatial-frequency of eigenmode
extrema.

Chapter 6.3 shows that fundamental modal axes give a rigid-body registration, which is
performed before embarking on non-rigid registration. Provided the fundamental modal axes
are correctly normalised, this initial rigid-body registration should lie close to the correct non-
rigid registration for the fundamental eigenmodes.

The homology map is then refined further using higher eigenmodes. The number of similar
eigenmodes two organ models have in common, determines the spatial resolution to which the
homology map can be determined.

!See Chapter 6.2 for a description of modal projection.
*Two optima of fit between a pair of organ models occur, because the two phases of each fundamental
eigenmode can be matched in two ways.
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8.2 Highest confidence first

The optimisation problem outlined above has the following characteristics:
(1) initialisation within the domain of a local optimum;
(ii) graduated presentation of increasingly localised optima;

and the optimisation strategy is to:
(1) initialise the homology map using a fundamental eigenmode;

(ii) refine the homology map using higher eigenmodes, while taking into account the registra-
tion given by previous eigenmodes.

The highest confidence first (HCF) algorithm is implemented to meet these criteria. HCF
is an efficient algorithm which embodies the principles of graceful degradation and “least com-
mitment” (Marr [86]), with a small and predictable run-time (Chou & Brown [27]). It performs
an approximate mazimum a posteriori (MAP) optimisation using local homology estimates,
with global scheduling to rank commitment decisions in order of importance.

The experiments in this chapter, first presented in Syn et al. [145, 149], represent the
first application of the HCF algorithm to non-rigid registration of organ models; previous
applications have been in stereo correspondence of image features (Lim [82]) and in image
labelling (Chou & Brown [27]). HCF is itself an improved adaptation of the iterative conditional
modes (ICM) algorithm (see Lim [82] for a comparison of ICM and HCF).

State-of-the-art methods for non-rigid registration of brain images similarly apply Bayesian
combination of evidence: Christensen et al. [29] employ a viscous fluid prior, and Gee et al. [45]
measure local likelihoods using the local intensity cross-correlation between the brain images.
Both approaches lead to complex optimisation landscapes, which are solved using iterative
methods.

Augmented search space

The problem specification in the Section 8.1 shows that the local optimisation landscape for
each site, consists of the posterior energy of its homology to the set of possible sites on the
other body. The most probable homology is the one with the smallest posterior energy.

The task of the HCF algorithm, therefore, is to decide which local optimisations to perform
first, and to propagate information about these decisions to other sites which have yet to decide.
This allows confident sites to commit to homologies early on, while equivocal sites wait for
neighbourhood support before making a commitment.

Chou & Brown [27] define an augmented search space as the set of possible homologies or
commitments for a site, augmented with the additional option of being uncommitted. After
a site has committed to a homology, it can still change its commitment but cannot nullify it.
The search space can be pruned to a set of more probable homologies (e.g. on the basis of
Euclidean distance) to reduce computational effort.

The augmented posterior energy is a modified measure which only considers committed sites
in the MRF; from now on all references to posterior energy imply this augmented measure. An
uncommitted site does not therefore participate in the computation of its neighbours’ posterior
energy; however, it always takes the states of active neighbours into account when making a
commitment.
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Local stability measures

The order in which sites have their commitments updated is determined by a priority queue,
which has the least stable site at the top of the queue (also known as a heap).

The stability measure for a committed site is the difference in posterior energy between the
current commitment s; and a commitment (different from the current one) sy, which gives the
smallest posterior energy. This represents the largest reduction in local posterior energy which
can be achieved by a change in commitment

G = min U™(sy) — U™(s1) (8.1)
S2#£81
The stability measure for an uncommitted site is the negative difference in posterior energy
between the sites which have the two smallest posterior energy values. This indicates the depth
of the energetic ‘well’ which the best commitment sits in, and is always negative so that HCF
does not converge until all sites are committed

G = s?;?l_(UpS(‘”)_Ups(sl)) (8.2)
where U™(s;) = min U™ (s)

Note that s,s; and so are sites on another organ model, which lie within the search space
of the site whose stability is being computed.

8.3 Implementation

All sites are initialised as being uncommitted to begin with, so that the augmented local
posterior energies are essentially determined by local likelihood. Therefore, sites with strong
likelihood evidence of one commitment over others (i.e. highly unstable sites), will be visited
early in the construction of the homology map. Sites without strong likelihood evidence will
delay making an initial commitment, and will take their neighbourhood configuration into
account when they finally do so, thus ensuring locally coherent commitments.

A serial implementation of HCF still has the weakness that the first commitment made can
strongly influence subsequent commitments. Chou et al. [28] present local HCF' as a parallel
implementation, which addresses this potential instability by integrating initial commitments
over the network of sites. Parallelisation also promises a major performance improvement over
serial HCF, if executed on a suitable hardware platform.

Graduated spatial localisation

HCF terminates when the top of the stability queue, which represents the least stable site,
is positive. The homology map thus obtained is used to update the estimate of rigid-body
registration, thus improving the accuracy of local prior energy measures during the subsequent
HCF run, which employs the next higher eigenmode as the likelihood feature.

Successive runs are initialised using the homology map from the previous run, which gives a
principled method of propagating posterior estimates from all previous runs as prior information
in the current run. Morever, the graduated spatial localisation achieved by using consecutive
eigenmodes of increasing spatial-frequency, allows a stable descent into a global registration
optimum of gradually increasing spatial resolution.

This approach is similar to Blake & Zisserman’s (ch.3.5)[12] graduated non-convezity (GNC),
where a non-convex function is approximated by a series of functions, initialised as a convex
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function with a single global minimum, whose shape gradually approaches the true cost func-
tion. As illustrated by Figure 8.1, these approximating functions are initialised at the convex
minimum, then successively minimised in the vicinity of the previous minimum, so that the
true global minimum is approached without interference from spurious local minima.

non-convex cost function

NN true global /' , gradually non-convex approximation
N Opwum , of higher spatial resolution

. ~

better approximation - .
to global minimum \\. i

L . initial convex approximation
convex approximation ?‘)O of low spatial resolution
to global minimum

Figure 8.1: Successive approximations to non-convex function using graduated non-convexity
(adapted from Blake & Zisserman [12])

Figure 8.2(a) shows that a fundamental eigenmode, which has few displacement extrema,
will give rise to a registration of low spatial-frequency. An HCF run using this eigenmode
terminates with a homology map which is locally determined with strong likelihood at these
extrema3. Where evidence of homology is weaker, the Gompertz prior propagates information
from these extrema, to give an interpolation throughout the homology map which accords with
the Gompertz growth model.

beam eigenmodes

eigenmode extrema (and hence homologies)

g?&;isngggging are now defined at higher spatial frequency
extrema ___Ng___ .- PR
_,"—_ ~~‘~~\ ,/ N ,/ AN
-7 uniform beam Tl l’ \il’ N
(a) Fundamental eigenmode (b) Higher eigenmode

Figure 8.2: Registration of uniform beam to non-uniform beam proceeds with graduated spatial
refinement, by employing successive eigenmodes of increasing spatial-frequency

Figure 8.2(b) shows that, after inheriting the fundamental eigenmode’s homology map,
registration with a higher eigenmode offers an increased number of extrema for improving

spatial resolution in the homology map.

3Recall that a posterior energy is computed for all possible homologies to a site, and that the stability of
the site is determined by the depth of the energetic well. Therefore, a displacement extremum which commits
to another (appropriately normalised) displacement extremum gives the greatest local stability.
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Computing prior energy

Local prior energies in a MRF are usually defined with respect to cliques, which are totally
connected subgraphs in the MRF. Cliques allow the prior energy to be built up piecewise from
different configurations of spatial dependency; examples of energy functions assembled from
(heuristically assigned) clique functions are found in Chou & Brown [27].

In contrast, the Gompertz energy metric is directly dependent on local mass change, and
does not need to be assembled from clique functions. It is an augmented prior measure (i.e.
computed only from committed sites) and can be computed from any neighbourhood topo-
logy and (non-)commitment configuration. A least-squares fit is locally performed from the
eigenmodes to the committed homology vectors, and mass change is approximated as the local
volume change associated with the set of eigenmode amplitudes.

The Gompertz prior encourages homology vectors in each element’s neighbourhood not only
to minimise displacement, but also to form a coherent cluster of commitments. This coherence
propagates from committed sites through overlapping MRF's, giving supporting information to
undecided sites about the appropriate commitment to make.

In cases where the mesh is both noisily and sparsely sampled, the determination of ei-
genmode amplitudes is made over-constrained by fitting fewer eigenmodes to the homology
vectors. This reduces the ability of local prior energy to discriminate between similar commit-
ment patterns, and dampens the local variability of the homology map.

8.4 Results: relative importance of likelihood features

Gee et al. [45] note that the exact form of the prior function is unimportant, so long as it
penalises ‘unlikely’ homologies and encourages ‘likely’ ones. As demonstrated in this section,
the quality of the homology map is determined very much by the quality of the likelihood
features. Note that the wireframe organ models are scaled up by 10% to show the red homology
vectors more clearly in Figures 8.3-8.4.

Registration using only prior energy

Figure 8.3(a) shows the registration achieved using only a simple Euclidean prior metric in com-
paring homologous sites. The Euclidean metric performs relatively well in this situation, even
without neighbourhood information, because of the lack of noise, good initial pose estimation,
and the coherent relative spacing of the two models’ element nodes.

Figure 8.3(b) shows the registration achieved using only the Gompertz prior, which is gener-
ally more reliable because it seeks neighbourhood support in deciding the biological plausibility
of each suggested homology.

Registration using only likelihood energy

Figure 8.4 shows the homologies obtained by using only likelihood features in HCF estimation,
i.e. there is no prior constraint on a site when choosing its commitment. Figure 8.4(a) shows
that not all sites commit to the correct side of the other model, and that the homology map has
poor spatial localisation since only the first eigenmode is used. Figure 8.4(b) shows that spatial
localisation is improved by complementing the first with the second fundamental eigenmode.
The two gallbladder models have 18 non-rigid eigenmodes in common, where the 18th
eigenmode has a spatial wavelength of approximately 1/4 the length of the model. Figure 8.4(c)
shows that with gradual spatial localisation using all 18 eigenmodes, all sites including the
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(a) Simple Euclidean prior (b) Gompertz prior

Figure 8.3: Registration using only prior energy

awkward ones near the gallbladder tip have committed with good spatial resolution. The
hidden part of the homology map to the rear of the models, also has improved localisation
compared to Figure 8.4(b). The improved pose estimation given by the homology maps results
in a better underlying rigid-body registration.

Thus Figure 8.4 shows that eigenmode likelihood is important for determining homologies,
whereas Figure 8.3 shows that the Gompertz prior is well suited to maintaining local coherence.

(a) Using 1st eigenmode (b) Using 2 eigenmodes

(c) Using 18 eigenmodes

Figure 8.4: Registration using only eigenmode likelihood
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8.5 Results: registration using posterior energy

Rigid-body registration using fundamental modal axes

Figure 8.5 shows the rigid-body registration of two gallbladder models using fundamental modal
axes.

second fundamental modal axis

first fundamental modal axis

Figure 8.5: Rigid-body registration of gallbladder models by aligning the fundamental modal
axes

Figure 8.6 shows the refinement in pose estimation derived from the first and second modal
homology maps in Figure 8.7.

pose estimation using
first modal homology map

pose estimation using
second modal homology map

Figure 8.6: Refinement of underlying rigid-body registration given by successive homology
maps

Registration of gallbladder models

Figure 8.7 shows the successively refined HCF registration between two gallbladder models.
The first three eigenmodes are of fundamental spatial wavelength (cf. Figure 6.5), so that the
registration achieved in Figure 8.7(b) should be localised to approximately half the length of
the gallbladder model. In fact the presence of the Gompertz prior and the regular spacing of
the two meshes, means that the homology map is almost perfectly recovered®.

The effect of the Gompertz prior can be seen most clearly in Figure 8.7(a), when compared
to Figure 8.4(a) which has a messy homology map on the main body of the gallbladder.

4Standard FEM modelling practice suggests 8 elements per eigenmode wavelength, so the registration res-
olution of the gallbladder models according to this criterion is limited to half the model’s length.
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(a) Using 1st eigenmode (b) Using 2 eigenmodes

(c) Using 18 eigenmodes

Figure 8.7: HCF estimate and refinement of gallbladder registration

Registration of worst case liver models

Figure 8.8 shows successive homology maps for two manually sampled foetal liver models from
Figure 4.2. The final pose estimate in Figure 8.8(c) is approximately correct, but the homology
map computed is almost incoherent. This is due to the sparse and uneven sampling of the
liver models, which gives noisy eigenmode features and restricts the choice of homologous sites
between models.

(a) Using 1st eigenmode (b) Using 2 eigenmodes (c) Using 3 eigenmodes
Figure 8.8: HCF estimate and refinement of liver registration
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8.6 Results: registration of liver models

Figures 8.9-8.14 show homology maps for HCF registration between each pair combination of
the Liver-A, Liver-B, Liver-C, and Liver-D models originally segmented in Chapter 5.5.

(a) First view (b) Second view

Figure 8.9: HCF registration of Liver-A (solid) with Liver-B (wireframe scaled by 110%)

(a) First view (b) Second view

Figure 8.10: HCF registration of Liver-A (solid) with Liver-C (wireframe scaled by 110%)
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(a) First view (b) Second view

Figure 8.11: HCF registration of Liver-A (solid)with Liver-D (wireframe scaled by 110%)

(a) First view (b) Second view

Figure 8.12: HCF registration of Liver-B (solid)with Liver-C (wireframe scaled by 110%)
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(a) First view (b) Second view

Figure 8.13: HCF registration of Liver-B (solid) with Liver-D (wireframe scaled by 110%)

(a) First view (b) Second view

Figure 8.14: HCF registration of Liver-C (solid) with Liver-D (wireframe scaled by 110%)
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110

Four non-rigid eigenmodes are used for HCF registration of the liver models in Figures 8.9—

8.14, since eigenmode similarity degrades beyond this®. The spatial resolution of the homology

map is therefore limited to that of the fourth eigenmode, whose extrema are spaced at ap-

proximately half the liver’s width in each direction. The local coherence of the homology map,

although enforced by the Gompertz prior, is also limited by the relative sparsity of finite element

mesh nodes.

The registration results in Figures 8.9-8.14 seem very reasonable overall. However, ana-

tomical accuracy can only really be validated by an experienced clinician.

Profile of HCF runs
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Figure 8.15: Stability values during HCF registration
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The liver meshes are constructed with 3 internal nodes per cross-section, giving rise to significant coupling
between opposite sides of each model. This means that eigenmodes with greater than fundamental spatial-

frequency are not well sampled by the meshes.
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Figure 8.15(a) shows the stability values during HCF registration using the first eigenmode.
All sites are initialised as uncommitted, so stability values fluctuate over a wide range of values:
low stabilities are due mostly to committed sites, while high stabilities correspond to previously
uncommitted sites reaching the top of the stability queue. Figure 8.16 shows only the (high)
stability values for these uncommitted sites, at the time they first make a commitment.

HCF commitments during registration using first eigenmode
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Figure 8.16: HCF commitment behaviour during registration using first eigenmode

All sites are committed after the first HCF pass, and Figures 8.15(b)-8.15(d) show that
stability values converge more smoothly during subsequent passes with the second, third, and
fourth eigenmodes.

Each liver model has approximately 500 nodes, so the HCF runs make only a small number
of passes over each node, since each run requires fewer than 1000 iterations. Note that the
search space of possible homologies (for each site on one model) is restricted to the 250 closest
nodes (on the other model) at the start of each HCF run.

8.7 Discussion

Initial rigid-body registration

The eigenmode normalisation scheme described in Section 6.2 relies on volume change as a
reliable macroscopic property of the eigenmode field. Eigenmode directions and magnitudes
are determined from this, so as to give a unique initial pose estimate for each organ model.
A more robust scheme is desirable, however, when the model’s (and hence the eigenmodes’)
spatial sampling is unreliably sparse and noisy.

Without a unique normalisation of the first two fundamental modal axes, there are four
possible rigid-body registrations between two organ models. The best one can be chosen by
comparing a ‘best fit’ metric, computed by summing the distances between each surface element
(on one model) and its nearest neighbour (on the other model).

The initial pose estimation process should be made separate from subsequent non-rigid
registration, since pose information is in principle available from patient orientation during
ultrasound scanning. In fact, ultrasonographers routinely use such information, derived from
knowledge of standard scanning procedure or from annotation of image sequences, in order to
visualise 3D structures in ultrasound images.
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Registration without normalisation of eigenmode directions

The Necker cube illusion (Fischler & Firschein (ch.8)[41]) strongly suggests that the human
visual system performs local optimisation in fitting a model to the image, while actively peturb-
ing each local optimum to seek alternative optima. This is consistent with a scheme in which
a number of hypothesised registrations are computed and then compared.

In this scenario, the homology map is initialised using only the prior energy measure, since
the eigenmode likelihood features are not assumed to be direction-normalised. This is done for
each of the four possible rigid-body registrations given by the fundamental modal axes.

For every pair of corresponding eigenmodes, displacement components are compared at
homologous sites on each model, which determines whether the two eigenmodes are signed
consistently. This allows eigenmode signs to be normalised with respect to each other, and the
pair of eigenmodes can then be used to refine the homology map.

This sign-normalisation and homology refinement process is repeated for successive eigen-
modes. Four final homology maps result from each of the four initial rigid-body registrations,
so the final homology map which has the lowest net posterior energy is chosen as the best-fitting
one. This strategy has not been implemented, but may be useful in situations where direction
normalisation of eigenmodes cannot be reliably achieved.

Projected modal components do not require direction normalisation, and can also be use-
fully employed when there are enough eigenmodes available (see Chapter 6.2 and comments
below about eigenmode features).

Deterministic versus statistical algorithms

The deterministic local-search approach of HCF estimation is also in accordance with the
Necker cube illusion. HCF is preferable to stochastic algorithms such as simulated annealing
(van Laarhoven & Aarts [165]), which are computationally expensive although globally optimal.
HCF also has the advantage of an explicitly defined schedule for updating sites, while simulated
annealing requires additional parameters to control the annealing schedule. Note that stochastic
algorithms do not give repeatable results so the quality of solutions needs to be assessed over
a number of runs.

Gee et al. [45] make the point that Bayesian matching algorithms are highly dependent
upon the quality of the likelihood features used, and that the prior measure has just to behave
as a reasonable penalty function; eigenmodes are powerful likelihood features, so our need for
a globally optimal stochastic algorithm is much reduced. Also, the scale-ordered application of
eigenmodes guides HCF registration to the global optimum with gradually improving spatial
localisation, and without interference from spurious registration solutions.

Comments on Gompertz prior

The Gompertz prior has a number of attractive properties:
(1) it is experimentally and statistically motivated as a metric of biological growth energy;

(ii) it encourages coherent (i.e. consistent with Gompertzian growth) local patterns of com-
mitment, propagated by HCF over the entire homology map;

(iii) it is locally computable for any clique configuration in a MRF.

The Gompertz energy metric is well suited to the needs of HCF registration, has a straightfor-
ward intuitive interpretation, and is simply computable on finite element organ models.
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In comparison, most penalty functions employed in medical imaging are mechanically in-
spired, e.g. membrane or thin-plate models. The viscous fluid prior used by Christensen et al. [29]
is intended to improve on these when applied to brain image registration, and has produced
particularly impressive results. However:

(1) viscous fluids specifically allow large non-linear strains (typical in matching brain sulci),
and have little biological basis as penalty functions;

(ii) the viscous fluid prior cannot be computed for arbitrary clique commitment configura-
tions.

Comments on eigenmode features

FEM eigenmodes are computed using the block Lanczos algorithm described in Appendix B.
The implementation used in this dissertation employs a slow but robust reorthogonalisation
scheme, which means that computing more than a few eigenpairs of large eigensystems is
expensive; morever, higher eigenmodes are computed with less accuracy due to roundoff errors
during orthogonalisation against lower eigenmodes.

These computational limitations are important drawbacks, because densely and accurately
sampled organ model meshes are likely to have a larger number of similar eigenmodes, each
of which is also more accurately sampled on the meshes. Given sufficiently many similar
eigenmodes, projected modal components (described in Section 6.2) can be used as likelihood
features. The projected components are defined relative to lower eigenmodes and are therefore
rotation invariant, so that there is no need for pose estimation before registration. However, it
is unclear how the number of similar eigenmodes can be established a priori.

The Gabor wavelet modes developed in Chapter 6.4 also seem an excellent class of shape
feature, which have many of the properties of eigenmodes, as well as resilience to missing shape
information. However, registration using wavelet modes is currently impractical due again to
the very high computational cost of producing wavelet modes to sufficient spatial resolution.

Comments on HCF registration

Registration by expert anatomists is performed by selection of corresponding landmarks, and
we similarly employ eigenmode extrema as scale-ordered sets of landmarks, which have a
straightforward biological interpretation (in the context of our growth model) as locations of
maximal and minimal growth. The results in this chapter, particularly in Section 8.4, indicate
the validity of this argument; the quality of registration results are as expected, however, given
the intrinsically excellent shape and symmetry properties of elastic eigenmodes.

Interpolating homologies between the landmarks is an ill-posed — and usually irrelevant
— problem in clinical practice, but the Gompertz prior is well qualified to perform the in-
terpolation, on both experimental and theoretical grounds. The Gompertz prior acts in an
intuitive fashion by penalising local patterns of growth which result in excessive mass flux, and
is approximately quantified by the volume change due to local growth patterns. The quality
of discrimination between growth patterns is determined by the organ model’s mesh, since a
sparsely sampled mesh limits the range of possible homologies.

The efficient and deterministic HCF algorithm is well suited to computing a global registra-
tion from local posterior evidence, which combines the likelihood of eigenmode similarity, to-
gether with a prior constraint of local consistency with Gompertzian growth. The scale-ordered
HCF implementation described in this chapter refines registration results while avoiding local
optima, by employing eigenmodes of increasing spatial frequency as the likelihood features.
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8.8 Summary

The HCF algorithm efficiently and deterministically propagates local evidence of biological
homology, to form a global estimate of non-rigid registration. Local evidence is presented to
the algorithm in increasing order of spatial-frequency, so that registration is safely conducted
to a globally optimal solution at gradually increasing spatial resolutions.

Fach local posterior measure is computed by Bayesian combination of the likelihood of
homology, together with a prior measure of the coherence of local commitments. The prior
measure is computable for arbitrary commitment configurations, so that sites can be initialised
as uncommitted, when there is no evidence on which to commit.
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Chapter 9

Discussion and Conclusion

This dissertation is motivated by the need to extract organ shapes from 3D freehand ultrasound
images. A model-based strategy is proposed for this purpose, which employs an organ shape
model to geometrically organise fragmented cues about tissue boundaries in the images. The
organ model incorporates prior knowledge about the expected range of organ shapes, and is
required to refine this idealised knowledge by learning from organ shape examples.

Chapters 2-4 develop a representation of organ shape which fulfills these requirements.
Chapter 5 then demonstrates the model-based strategy, using organ shape models to estimate
organ volumes from 3D freehand ultrasound images. In order for the organ model to learn from
organ shape examples, both are first parameterised in a common shape coordinate system using
a method developed in Chapters 6-8.

This chapter discusses the approaches to organ shape modelling taken in this dissertation,
assesses their limitations, and suggests areas of future research to address these limitations.

Chapter organisation

e Section 9.1 reviews and discusses the material presented in this dissertation.
e Section 9.2 suggests promising avenues of future research.

e Section 9.3 concludes this dissertation.
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9.1 Discussion

Summary

An organ growth model is developed using the Oster-Murray mechanisms of substrate deform-
ation, cell diffusion, cell convection, and cell proliferation. The mechanisms’ eigenfunctions
describe the growth patterns of the modelled organ. The organ’s material properties are not
usually known, however, so they are assumed to be uniform. Under this assumption it turns
out that the mechanisms have identical eigenfunctions.

These eigenfunctions are approximated by elastic eigenmodes using a finite element model
of the organ, so ‘bootstrapping’ the organ model with elastic eigenmodes gives it an idealised
knowledge of organ shape variation. This knowledge is used to segment 3D ultrasound images,
in conjunction with both automated and operator-assisted means of ultrasound tissue detection.
This knowledge is also refined by incorporating the segmented organ shapes, so as to make it
more representative of inter-patient variation.

FElastic eigenmodes make excellent shape features and are ordered in spatial scale. They
represent generalised symmetries of the underlying organ model, because eigenmodes emphasise
the organ model’s dominant symmetry at each spatial scale. Eigenmodes of large spatial scale
are resilient to noisy and uneven finite element meshing, and are the most accurately and
easily computed. They form a ‘low-pass’ subspace which excludes shape variations of small
spatial scale, while at the same time describing the most statistically important modes of shape
variation in the growth model. ‘Lower’ eigenmodes are therefore preferentially used as shape
features and as modes of shape variation.

Similar organ models have similar eigenmodes, and the eigenmodes’ displacement extrema
form good biological landmarks. Therefore, organ models can be registered to each other
by choosing them to be homologous at these landmarks. A complete registration requires
homologies to be specified everywhere on the organs, however, not merely at landmarks.

The Gompertz energy metric is introduced to interpolate the registration between land-
marks. A simple Bayesian combination of the likelihood of eigenmode similarity, with the
prior constraint of conformity with Gompertzian organ growth, gives a posterior measure of
homology at all points on and between landmarks.

The highest confidence first (HCF) algorithm then registers two organ models by max-
imising the posterior probability of all homologies. HCF is an efficient and deterministic
algorithm, which is designed to seek the globally optimal registration using a multi-resolution
implementation.

Review
A model-based strategy is employed in two respects:

(i) tissue landmarks are organised into a coherent shape using an organ shape model;

ii) eigenmode homologies are organised into a coherent homology map using the Gompertz
g g g
model.

An organ shape model is employed in (i) to help interpret noisy, non-parallel, and potentially
self-intersecting ultrasound images. Given that tissue boundary landmarks are (by some means)
detected in the images, the organ’s boundary is interpolated by the shape model, which has
prior knowledge of the expected range of organ shapes. In other words, (i) is a model-based
strategy for reconstructing organ anatomy from sparse and noisy boundary cues in 3D freehand
ultrasound images.
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The Gompertz model of organ growth is similarly employed in (ii) to fit organ shape models
to each other using homologous landmarks, which are in this case the eigenmode displacement
extrema. A ‘biologically correct’ (with respect to the Gompertz model) interpolation is achieved
between these landmarks, so that organ shapes can be parameterised for biometric analysis.

The methods and assumptions used for both approaches are developed and justified, and
results are presented to demonstrate their validity. Before concluding this dissertation, however,
the following general topics deserve some further discussion:

(i) organ shape models and their representation of shape variation;
(ii) volume estimation using organ shape models;
(iil) registration of organ shape models;
)

(iv) limitations of our methods and assumptions, and possibilities for future improvement.

Organ shape models

Even if our proposed growth model incorporates an insufficient number of mechanisms to fully
reflect the true biology of organ growth, the use of growth eigenfunctions is well justified.
Given accurate shape and material properties for the organ model, the set of eigenfunctions
describes all the possible patterns of organ growth. Unfortunately, the material properties are
not easily established!, but their uniformity means that deformation, diffusion, and convection
in the model give identical patterns of mass flux described by the elastic eigenfunctions.

Elastic eigenfunctions can be approximated as elastic eigenmodes using conventional meth-
ods of finite element analysis. In fact, the elastic eigenmodes are successfully used by Pent-
land et al. [112, 113, 114] in modelling and tracking object deformations, and by Sclaroff & Pent-
land [130] in object registration. Their success is due to elastic eigenmodes having excellent
properties as shape features, and this dissertation provides a thorough characterisation of these
properties. More importantly, this dissertation also justifies the use of elastic eigenmodes in
modelling organ shape variation, as discussed in the previous paragraph.

Organ shape models are initialised using eigenmodes of large spatial scale as the principal
components of organ shape variation. This ‘low-pass’ subspace filters (noisy) high-frequency
shape variations when interpolating ultrasound image landmarks, so the successful volume
estimates reported in Chapter 5 are quite expected. However, there is no particular reason
why the statistical principal components of organ shape variation should be of large spatial
scale, although Chapter 4.4 shows that this is true if our growth model is assumed.

The issue, therefore, is whether our proposed growth model is a reasonable ‘bootstrap’ for
use in volume estimation. If it is, then Chapter 4.5 shows how the bootstrapped organ model
can be refined after each volume estimation. If it is not, then an adequate refinement may
require an impractical number of iterations.

Fortunately, the important principal components of organ shape variation are generally
of large spatial scale (Cootes et al. [31]; Taylor [153]). Figure 9.1 illustrates that human
visual perception is intrinsically sensitive to particular large-scale variations in organ shape.
Experienced sonographers and anatomists are similarly sensitive to expected modes of large-
scale shape variation when visualising organ anatomy.

'In fact, the only important Oster-Murray mechanism omitted from our growth model is long-range cell
diffusion (see Chapter 2.2). A more sophisticated growth model would include the actual distribution of material
properties in the organ, which means that the eigenfunctions of deformation, diffusion and convection are no
longer identical. The relative mass flux due to each mechanism would also need to be established in this case.
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Figure 9.1: Cardiodal variation in head shape (adapted from Bogin [14])

OO0

Figure 9.2: Affine variation in head shape (adapted from Bogin [14])

Figure 9.1 applies a cardiodal (‘heart shaped’) mode of shape variation to the sequence of
head outlines, which is usually perceived as increasing in age from left to right?. In contrast,
Figure 9.2 applies an affine shear to the head outlines; no biological significance is perceived
in this component of shape variation (Bogin (ch.3)[14]).

Figures 9.1-9.3 illustrate that important modes of biological shape variation tend to be of
large spatial scale. Just as human perception is intrinsically sensitive to the examples chosen
for Figures 9.1-9.2, so are sonographers sensitised by prior experience to the range of expected
organ shapes. It is this experience which our organ shape models aim to acquire, so as to
interpret 3D ultrasound images in a biologically justified manner.

|

(a) Birth (b) 2 years (c) 6 years (d) 12 years(e) 25 years

Figure 9.3: Size-normalised variation in typical male body shape (adapted from Bogin [14])

Figure 9.3 shows five male outlines which, although identical in height, are still perceived
as increasing in maturity from left to right. In this particular case, biological landmarks on
the body (e.g. hands, shoulders, chin etc.) give sufficient within-sample shape information to
indicate maturity, even though the absolute positions of the landmarks are not available for
between-sample shape comparisons.

Most organs have few anatomical landmarks, however, so size normalisation is required to
minimise corruption of information about organ shape variation in a dataset. The generalised
centroid size metric developed in Chapter 4.1 successfully normalises organ shape examples, so
that homologies between the shapes can be established using biological landmarks, to provide
an accurate estimate of the modes of shape variation in a given dataset.

®Todd et al. [158] report that human subjects also perceive maturation in a range of bird and dog heads
subjected to cardiodal transformation; it is also reported for transformed Volkswagen Beetle cars.
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Volume estimation

There is scope for a number of engineering improvements to the Stradivarius project hard-
ware (see Figure 1.4). The ultrasound video information is currently digitised at 5-10 frames
per second, and at a significantly poorer image quality than the scanner’s video display unit.
The calibration, consistency, and accuracy of position measurements from the probe’s sensor
could also be improved; a mechanical arm may in fact be more appropriate in certain applic-
ations, where precision is more important than the flexibility of freehand scanning (e.g. burns
assessment, needle biopsy).

3D freehand ultrasound imaging is motivated primarily as a refinement to conventional 2D
ultrasound, which does not require a change in conventional scanning techniques. Its full utility
is not realised in current applications, however, because the 3D images are stored for secondary
analysis, which only occurs after clinical examination is undertaken in the standard way.

A major improvement in useability can be realised by implementing stradview as a ‘real-
time’ application. A touch-sensitive screen to display the organ shape model next to a ‘live’ 3D
ultrasound image sequence, would allow both to be touch-manipulated for volume estimation
during clinical examination. With improved quality in the digitised images, and more sophist-
icated tissue detection algorithms, the organ segmentation can be further refined and analysed
for biometric studies. With improved computer network capacity, volume estimation can even
be performed at a remote site by specialist sonographers, i.e. “telemedicine”.

Registration

Figure 9.3 serves to illustrate the importance of biological landmarks in registering organ
shape models. Chapter 6.1 shows that eigenmode displacement extrema are excellent biological
landmarks, and Chapter 8 develops a reliable method for organ model registration using these
landmarks. As mentioned previously, our successful registrations may simply be due to the
excellent shape representation properties of elastic eigenmodes. It is unclear if eigenmode
extrema will still be successful landmarks if non-uniform material properties are used in the
organ model, i.e. if eigenmodes are no longer the uniform elastic eigenmodes.

One weakness of eigenmodes, highlighted in Chapter 6.2, is the need for direction nor-
malisation on which pose estimation® and registration of organ models both depend. Modal
projection is suggested as the ideal solution, but it requires densely sampled organ models and
a larger number of accurate eigenmodes. Dense sampling gives rise to very large eigenproblems
which may not be soluble in a reasonable time on conventional workstations, unless powerful
memory management and eigensolution methods are used.

Densely sampled models are also difficult to construct, since manual segmentation of organs
(even from relatively clean MRI scans) is required. Deriving a well-distributed finite element
mesh from the segmentation is largely still a heuristic exercise*. However the dataset of organ
models is segmented and meshed, automatic registration is essential if the modes of shape
variation are to be analysed from datasets large enough to be statistically significant.

One important area of future work is therefore to perform scanning, organ segmentation,
and organ registration on a sufficiently large pool of patients, in order to validate the utility
of automatic registration for organ model refinement. This and other areas of possible future
work are now discussed.

3There is no reason in principle, why patient (and hence anatomical) pose cannot be made available with
3D ultrasound data.

‘Methods of automatic mesh generation are also important in other engineering applications
(Shroeder & Shephard [129]).
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9.2

Future work

The work presented in this dissertation has some limitations which remain to be addressed.

Two such areas are:

e Eigenmode computation

Eigenmodes can be computed for densely sampled organ models using more advanced
implementations of the Lanczos method, e.g. employing selective (Grimes et al. [59])
rather than complete reorthogonalisation (Appendix B). Provided organ models can also
be accurately sampled and tessellated (see previous discussion on registration), this would
allow the use of modal projection and wavelet modes as described below.

e Tissue discrimination

Improved (multi-scale texture-based) methods of tissue discrimination in ultrasound im-
ages are very much desired (Muzzolini et al. [98]). Development of future clinical tools
requires the model-based approach of this dissertation to be complemented by data-driven
tissue discrimination techniques. Only then can the ultimate goal of fully-automated ul-
trasound image segmentation be envisaged.

Interesting issues which remain to be fully explored include:

e HCF registration

Given sufficiently many high-quality eigenmodes, modal projection can be used in organ
model registration, without the need for (unreliable) eigenmode normalisation during pose
estimation. The performance and reliability of the HCF algorithm can also be improved
by parallelisation (Chou et al. [28]).

Gaussian interpolation functions (Sclaroff & Pentland [130]) may allow scattered tissue
boundaries (e.g. from texture discrimination in ultrasound images) to be tentatively
connected together to form an approximate organ mesh, whose mass and stiffness matrices
are used to derive approximate eigenmodes. Noisy boundary fragments can in this way
(potentially) be registered to an organ model, for an organ segmentation.

e Wavelet modes

High-quality eigenmodes also allow high-quality wavelet modes. Methods of computing
Gabor wavelet modes and other wavelet forms in the spatial-frequency domain should be
explored, while the Gabor wavelet modes developed in this dissertation for the natural-
frequency domain, can be further examined for their properties in shape representation.
Our wavelet generalisation of the elastic eigenmodes may also be useful in localised
contact problems, e.g. in simulating foetal delivery through the pelvis (Lapeer [78]).

e Biometric analysis

Datasets of organ models should be registered by automated and manual means: firstly
to validate automated registrations against expert anatomists, and secondly to check the
variability of manual registrations between anatomists. The registered datasets can then
be examined to see if the principal components of shape variation are best represented
using linear or non-linear modes. The appropriateness of elastic eigenmodes in boot-
strapping an organ model’s modes of shape variation can thus be validated.

Expert knowledge of organ shape variation is currently acquired in an ad hoc way by
individual sonographers. Registration allows such knowledge to be pooled and quantified
so that biometric analysis can be performed on a common knowledge base, which can
then be incorporated in simulated scans for standardisation of sonographic training.
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9.3 Conclusion

This dissertation introduces 3D freehand ultrasound as a flexible and affordable improvement to
conventional clinical ultrasound imaging. Unfortunately, volume rendering of freehand images
is of little clinical utility, due mainly to the inherent noise and artefacts in the images, and to
widely and inconsistently spaced frame positions.

Morever, current methods of noise reduction and tissue discrimination are insufficiently
reliable for automated segmentation of the images. Even if tissues can be reliably segmented
(e.g. by an operator, or by future methods of texture analysis), the segmented information from
multiple non-parallel and self-intersecting frames still needs to be geometrically reconstructed.

Two model-based strategies are successfully developed for this purpose: an organ shape
model to interpolate scattered tissue boundary landmarks, and the Gompertz growth model
to register organ shape models. The purpose of the latter is to allow organ shape models to
correctly incorporate novel organ examples, since interpolation in the former relies on accurate
knowledge of expected organ shape variation.

These strategies are validated by experiments on both volume estimation from 3D freehand
ultrasound images and registration of 3D organ models. A number of innovations emerge from
devising these strategies:®

(i) Oster-Murray mechanisms are used to model biological growth in an organ model, whose
patterns of shape variation are described by the mechanisms’ eigenfunctions.

(ii) A finite element sampling of the organ enables eigenfunctions to be linearly approximated
by eigenmodes, which are computed using a memory efficient implementation of the state-
of-the-art block Lanczos algorithm.

(iii) Displacement extrema on an organ model’s eigenmodes are utilised as biological land-
marks, so that organ models can be registered where these landmarks are homologous.

iv) The Gompertz model is used to derive an energy metric which quantifies the biological
g g
plausibility of suggested homologies.

(v) Bayesian combination of (iii) and (iv) results in an overall measure of homology. Regis-
tration is performed by optimising this measure over two organ models, using an efficient
multi-resolution implementation of the HCF algorithm.

In conclusion, this dissertation successfully develops a model-based framework for organ-
ising sparse and noisy cues about tissue boundaries in 3D ultrasound images. This framework
is intended to complement future work on tissue boundary analysis in ultrasound images, so
as to achieve fully-automated 3D ultrasound image intepretation.

SComputer codes implemented for assembling finite element organ models, and for computing finite element
eigenmodes, are available from the author. Codes are also available for graphical visualisation and manipulation
of organ models, eigenmodes, and wavelet modes.
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Appendix A

Finite Element Method

The finite element method (FEM) is a numerical technique for solving partial differential equa-
tions. It partitions the continuous solution domain into a finite number of elements, so that
solutions are sampled at element nodes, then propagated within each element using an inter-
polation function.

This appendix applies the FEM to the structural equilibrium of elastic bodies (Bathe [8];
Hughes [66]); computer codes implemented from this appendix are available from the author.
Variables used are mostly consistent with Bathe:

T,Y, 2 global coordinate system

r,s,t local coordinate system within element

u displacement components for nodes of whole body
u} displacement components for body node 4

uj(r,s,t) displacement function for element j

Ug, Uy, U, displacement components for element j

ué

5 displacement components for nodes of element j

Appendix organisation

e Section A.1 considers the principle of virtual work, which embodies the equilibrium
between external forces acting on an elastic body, and its internal stresses and strains.
The equilibrium is interpolated over a finite element model of the elastic body.

e Section A.2 shows the equivalence between this continuous equilibrium, and the dis-
cretely sampled equilibrium of a finite element body.

e Section A.3 uses this equivalence to derive an expression for each element’s stiffness
matriz.

e Section A.4 does likewise for each element’s mass matriz.

e Section A.5 shows how the integral expressions for mass and stiffness matrices can be
numerically evaluated.

e Section A.6 derives linear interpolation functions for the tetrahedral elements used for
all FEM models in this dissertation.

e Section A.7 shows that a (scalar) pressure distribution accompanies any (vector) elastic
deformation.

e Section A.8 derives an expression for the energy of elastic deformation.
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A.1 Equilibrium of elastic body

Consider the equilibrium of a body with the following forces acting upon it:

rV volume forces (per unit volume)
r® surface forces (per unit surface area)
r* point forces acting on the body

The displacements of the body from its unloaded state, due to the action of these forces,
are described by the vector u. The corresponding plane and shear components of strain are

ez(f:c:v €yy €zz VYazy Vyz Vezx )T (A'l)

and the stress components are

T = ( Tex Tyy Tzz Toy Tyz Tzx )T (AQ)
Strain is defined as the ratio of displacement to original length in the direction of displacement,
and stress is the force experienced per unit area.

Principle of virtual work

Analysis of elastic body response requires the wave equation (2.3), which describes elastic equi-
librium subject to appropriate boundary and compatibility conditions. An equivalent but more
straightforward differential formulation employs the principle of virtual work (Bathe (ch.4.2)[8]).
This states that a body in equilibrium requires the total internal virtual work done to equal
the total external virtual work done

/ elrdv = / alrVdvV + / wrtdS+ ) u'r) (A.3)
v v s ;
where the overline signifies a virtual strain or displacement. For equation (A.3) to hold, the
displacements must meet the following conditions:

(i) they should be compatible and continuous between elements;

(ii) they must satisfy the displacement boundary conditions;

(iii) they must satisfy constitutive relationships (i.e. stresses can be evaluated from strains).

Finite element formulation

A finite element discretisation of the body requires a system of interpolation functions. These
functions are collected in a displacement interpolation matriz H, which relates displacements

within the jth element u$(r, s,t) to the displacements of its bounding nodes uj;

uj(r, s,t) = Hj(r, s,t)u; (A.4)
Strains can similarly be interpolated using a strain-displacement interpolation matriz B

j(r,s,t) = By(r, s, t)us (A.5)
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where
2
ox
9
9y
Rl
B(’I‘,S,t) = el o) oz H(’I‘,S,t) (AG)
oz dy
o 0
Jdy 0z
9 0
ox 0z
The stress-strain relationship for the jth element (with an initial stress 73) is

T =Bje; + 7§ (A7)

where E is the elasticity matriz relating local stresses to resultant local strains. Over a volu-
metric element

1 5 1
Ty 1 o1y
E(1-v) = 1= 1
E=——-————" _ A8
(1 + I/)(l — 21/) 2%1_25) ( )
1-2v
2(1—v)
1—2v
2(1—v)

where F is the Young’s modulus, and v is the Poisson ratio. Summing for all N elements of
the body, equation (A.3) can be rewritten in finite element form®

N N T N T
> [dma = ¥ [ (w) yay+ Y [ () s (a9
=17V =17V =175
+> @) r
3

Elastic potential at equilibrium

Assuming a linear elastic continuum and applying the stress-strain equation (A.7), gives the
the total elastic potential of the body (Bathe (ch.4.2)[8])

1
we = —/ e'EedV —/ ulrV dv — / ulr®ds — > u'r} (A.10)
2Jv 1% S -
For stationary potential éW* = 0, this becomes
/ 5(eTEe) dV = / s(ul'rV) dv + / §(u”r®)dS+ > 6(u"r}) (A.11)
1% v S -

Providing displacements satisfy boundary conditions, so will the corresponding strains in
equation (A.11). Stationarity of W* can now be seen to be equivalent to equation (A.3), with
de = € and du = u. The principle of virtual work therefore implies an equilbrium state where
net elastic potential is stationary (minimised).

!Note that there are different H for surface and volume interpolations.
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A.2 Equilibrium of discrete elastic system
The discrete FEM equilibrium equation for an undamped and unforced structure
Mii = —Ku (A.12)

differs from the continuous wave equation

8%u

W = —DeIV(V'u) (A13)

in that equation (A.12) has the right-hand term u, where equation (A.13) has V(V-u).

The limiting behaviour of a one-dimensional finite element system is examined in Figure A.1,
as the elements decrease in size?. Nodes are connected elastically to each other at natural length
d, and elements have mass density p.

elasticity = k"

density = p natural length = d

O O

Figure A.1: Discrete one-dimensional finite element system

Consider the displacements u,—1, %, and u,y1 of three adjacent elements. The mass be-
longing to each node is pd, with half the elemental contribution on either side. Then for natural
elasticity k™ the equilibrium equation is

knat(unfl + Upt1 — 2un)

pdiin = (A.14)
d
In the limit as d — 0 this gives
pii = k™*V2y (A.15)
which is the one-dimensional version of the wave equation (A.13), with
knat
D = (A.16)
p

Generalising this result to three dimensions allows equation (A.9), which describes the
elastic equilibrium of finite elements, to be manipulated to look like equation (A.12). This
similarity in form is exploited in Sections A.3-A.4, so as to derive expressions for the mass M
and stiffness K matrices.

2Tt is simplest to have all elements at the same mass and natural length, so that in the limit the system tends
straightforwardly to a continuum.
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A.3 Stiffness matrix

Substituting the strain-displacement interpolation relation from equation (A.5) into equation (A.7),
and factoring out the initial stress state 7° later in equation (A.26), gives

7; = E;jBjuj (A.17)

The displacement and strain distributions within the jth element are only affected by
displacements at the element nodes. So u can be used in place of uj to give

Substituting equation (A.5) for €;, and substituting equation (A.17) for 7, in the left-hand
side of equation (A.9)

N N
j;/vjzfrjdvj = g/ (B,m) (B;Bju) av;
= (iv: (w;)"BJE;B; dV) (A.19)

Equating the right-hand sides of equation (A.19) and equation (A.9) gives
N
> / (w)"BjE;B;dV; | u Z / (w)"H] r} dV; (A.20)
=17V Vj
+Z/ )TH] T3 dS; + Z (@)

Comparing this with the steady-state equilibrium equation (A.12) for an elastic body under

a static load f
Ku=f (A.21)

gives an expression for the symmetric stiffness matriz K

N
K = Z/' BT E;B; dVj (A.22)
j J
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A.4 Mass matrix

Equation (A.20) also gives an expression for the load f, composed of body, surface, and point
components®, minus initial loading f° (which causes initial stresses T5)

f=fV 45+ —f0 (A.23)

where

£V —Z / HTrY 4V, (A.24)
£ _Z / HTrS ds; (A.25)

£ —Z / BT 79 v (A.26)
fr =r" (A.27)

For a time-varying load f(t), inertial effects are included using d’Alembert’s principle*.
Assuming that the element accelerations are in the same directions as the element displacements,
and considering only body forces fV for ease of notation, the inertia force is incorporated into
the load vector

N
(0 = X [ HY (8 - piHji) av;
j=1"VYi
N
- Y [ =it av; - Z / HY p;H; dV; (A.28)
j=1"Vi

where p is the mass density.
Comparing this to the body’s dynamic equilibrium equation (A.12)

Mii + Ku = f(t) (A.29)

gives the symmetric mass matrix M

M = Z / HY p;H; dV; (A.30)

3Point forces are chosen to act at element nodes with no loss of generality.
4This treats the ma term in f = ma as an inertial force, so that f — finer® =0
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A.5 Numerical integration
Elemental mass and stiffness matrices from equations (A.30) and (A.22) contain integral terms
K, = / BTE,B; dV; (A.31)
V4

M, = /V HY p;H; dV; (A.32)
J

which require numerical evaluation. One method of evaluation uses the Gaussian quadrature
formula (Kreysig (ch.18.5) [77]), in which the integral

= /w " a(z) do (A.33)

1

is computed from n samples of a(z) using the change of variable (0 < r < 1)
z(r) =z1(1 — 1) + zor (A.34)
The integral is approximated by
1
I = (22— 331)/ a(z(r))dr
0
Z w;a(r;) (A.35)
i=1

Q

where weights w; and abscissae r; are taken from Gaussian quadrature tables for an n-sample
approximation. Equation (A.35) gives an exact integration for polynomials of degree (2n — 1).

A.6 Interpolation matrix for linear tetrahedron

Tetrahedral elements are used throughout this dissertation, because volumetric meshes for finite
element models are relatively easily computed using (some form of) volumetric triangulation
(Syn & Prager [144]). A tetrahedral element has four nodes, and is spanned by three local
coordinate spatial parameters (r, s, t), varying from 0 to 1; thus its four nodal coordinates are
(0,0,0),(1,0,0),(0,1,0), and (0,0,1).

A linear interpolation function h(r,s,t) spanning the tetrahedron is completely specified
by four constants (g1, 92,93, 94), determined in this case using constraints at the four nodes

g1
h(r,s,t) = ( 1 r st ) 92 (A.36)
g3
g4
h(0,0,0) 1 000 g1
h(1,0,0) 1100 g
h(0,1,0) 1 010 g3 ( )
h(0,0,1) 1001 g4

Equation (A.37) is written in terms of the geometry matriz G

h=Gg (A.38)
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where h contains nodal values of h(r,s,t), and g contains the polynomical coefficients of
h(r, s,t). Substituting g back into equation (A.36) gives

h(r,s,t) = (1 r S t)G_lh

= h (A.39)

Comparing this to equation (A.4) shows that the displacement interpolation matrix H for
a linear tetrahedral element is

H(r, s,t) = (A.40)

Iso-parametric elements

Along one edge of the tetrahedral element (r, s) are held constant, so the interpolation function
varies linearly with ¢. Since this linear function is uniquely determined by the nodal con-
straints at both ends of the edge, there will be continuity along any interface between linear
elements. Note that this does not hold true if global coordinates (z,y, z) are used to define the
interpolation, instead of local coordinates (r, s,t).

Iso-parametric elements use local coordinate interpolation functions to map local properties
to global coordinates, so as to maintain inter-element continuity. For example, the displace-
ment of a point (r,s,t) within an element, can be described in terms of its global coordinate
components (Uz, Uy, ;)

T
ug (7, 8, 1)
Uy (T, 5, 1) = H(r, s,t)uj (A41)
uy(r, s, t)

since element node displacements uj are also defined in global coordinates. This is useful in
equation (A.3) which is presented in global coordinates and involves derivatives with respect

to global coordinates.

Jacobian

The relationship established between local and global coordinates gives a Jacobian matrix J,
the determinant of which (the Jacobian) is used to effect a change of variables. For local
coordinate components (7, s,t) in a tetrahedral element

9 0

ar 6a$

9 9

ot 0z
oz Oy 9z
gr gr gr

— or oYy 0z

=J= ds 0s Os (A43)

oz  OJy 0z
ot ot ot
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The change of variables required during numeric integration can be then achieved with
dV =dzdydz = detJ drdsdt (A.44)

The Jacobian detJ is efficiently computed for linear tetrahedra, by applying equation (A.42)
to equation (A.41). It has a constant value 6V, where V is the tetrahedral volume.

A.7 Hydrostatic pressure

Timoshenko & Goodier (ch.1.7)[157] define the hydrostatic pressure p of an element to be the
negative mean of its principal stresses

_ Tax + Tyy + T2z

= A 45
p g (A.45)

The stress-strain relation for planar components (see equation (A.7)) is
T = Ee (A.46)

Tzx 1 i i €z

E(1 — 1-v 1-v
w | = T | e 1 || (a4)
(I+v)(1—-2v) » ”
Taz > 1w | €2z

where E is the Young’s modulus and v is the Poisson ratio. This means that hydrostatic
pressure is directly dependent upon the local principal strain components®

E (€xag + €yy + €22)
1—2v) 3

p= 1 (A.48)

For an infinitesimal element, the strain vector € = V-u. Let us examine the vector com-
ponents of u=( u; u, wu, )’ in the wave equation (A.13)

52 Uy Uy
5 | W = —DGIV(V- Uy )
Uy Uy
o
¥ ou ou ou
_ _pi| o (_w Ouy ) A.49
%y oz + oy + 0z ( )
0z
Since u, exists only in the z-direction
0? 0?
_ - =0 A.50
and similarly for u, and u,, equation (A.49) becomes
32
i ar | [ e
5| W= S = Y T (A.51)
62
Uz 022 Uz

5The sum of principal strains is also known as the dilatation 8 = €., + €,y +¢.. This gives a more intuitive
explanation of pressure, as the result of local compression or negative dilatation.
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By taking the mean of the spatial derivatives of the three vector components, the scalar
wave equation for hydrostatic pressure p is given by

0p

W = —DSIVQp (A52)

This shows that there is a (scalar) pressure distribution associated with any (vector) displace-
ment of an elastic body. Morever, there is a scalar pressure eigenfunction associated with each
displacement eigenfunction of the (vector) wave equation (A.13).

A.8 Energy of elastic deformation

There is a potential energy We associated with the deformation of an elastic body. It is a
measure of the work required to deform the body to a desired configuration, so the natural
approach to computing the energy is to examine the eigenmodes involved in deformation.

The spectral distribution of W* is determined by projecting the deformation u onto each
eigenmode ¢;. Each projected displacement has modal amplitude ||@; u||, and from equa-
tion (3.5) modal stiffness is w? (Bathe (ch.4.2.5)[8]).

The body’s net elastic energy is therefore the sum of modal energy contributions from each
of its 3n independent modes of elastic deformation®

3n
1
we =3 el ul® (A.53)
i=1

6Cf. the single degree-of-freedom expression W* = 1ku®, where k is stiffness and u is displacement.

141



The Symmetric Eigenproblem 142

Appendix B

The Symmetric Eigenproblem

The real symmetric generalised eigenproblem
K® = M®A

arises in Section 3.2 from consideration of a body’s elastic equilibrium. The matrix ® consists
of orthogonal eigenmodes ¢;, and the (diagonal) matrix A consists of eigenvalues \; = w2,
where the natural-frequency of vibration of each eigenmode is w;. The mass matrix M and
stiffness matrix K are assembled as described in Appendix A.

There is considerable literature on numerical methods used to solve large eigenproblems! in
structural mechanics, since eigenmodes determine an elastic structure’s dynamic response. This
appendix describes the eigensolution methods used in this dissertation, and the presentation
follows that of Parlett [109] and Saad [124]. Golub & van Loan [51] is also useful as the standard
reference in numerical linear algebra.

Throughout this appendix the variable ¢ indexes matrix elements, while n indicates the

iteration count or a subspace dimension.

Appendix organisation

e Section B.1 introduces the QR factorisation, which is used in orthonormalising vectors,
as well as solving small eigenproblems.

e Section B.2 presents the Rayleigh-Ritz procedure for computing optimal eigenpairs
from an approximately invariant subspace.

e Section B.3 presents the power method and subspace method for solving large eigen-
problems.

e Section B.4 presents the Lanczos method, which can be seen as a more efficient gener-
alisation of the basic power method.

e Section B.5 addresses computational issues which arise in the implementation of a
generalised eigensolver.

1A 1000 node structure would be considered large in the context of currently available workstations, with
each 3000x 3000 double-precision matrix requiring 70 megabytes for uncompressed storage.
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B.1 Orthogonality
A real matrix A is defined as orthogonal if

ATA =AAT =1 (B.1)
where the columns and rows of A are also mutually orthogonal.

QR factorisation

The unique QR factorisation of a (non-null) rectangular m xn matrix A

n -r- n

| | | _
m A _ 7|n Q R T—rankA

is the matrix formulation of the Gram-Schmidt procedure (Golub & van Loan (ch.5.2)[51])
applied to the orthonormalisation of the columns of A. The factorisation results in an upper-
triangular matrix R, and the columns of Q form an orthonormal basis for span A (defined
later).

There are a number of QR factorisation algorithms other than the straightforward transla-
tion of Gram-Schmidt, e.g. Householder QR applies Householder reflection transformations to
an upper-triangular reduction (Golub & van Loan (ch.5.2)[51]).

QR algorithm for small eigenvalue problems

The QR transform algorithm repeatedly applies a similarity transform to a tridiagonal matrix?
while preserving its tridiagonal form during each iteration, until convergence to a diagonal
matrix is achieved. This algorithm can therefore be used to solve small eigenvalue problems
which crop up in the Rayleigh-Ritz procedure in Section B.2.
Consider the QR factorisation
A—uI=QR (B.2)

for some origin shift u. The QR transform for A is

~

A = RQ+ul
= QU(A—uD)Q+ul
= QTAQ (since QT = Q1) (B.3)
The close relationship between the convergence of this iteration and the power iteration (see

later) are examined in Parlett (ch.8.5)[109]. The choice of shift x to give good convergence to
diagonal form is also discussed.

2Matrix tridiagonalisation for small problems can be achieved using Householder reflections (Par-
lett (ch.7.4) [109]). The Lanczos iteration described in Section B.4 achieves this efficiently for large
eigenproblems.
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B.2 Approximations from a subspace

A subspace S (of n-dimensional Euclidean space £™) is a subset which is closed under the
operation of taking linear combinations (Parlett (ch.1.2)[109]). Any small set of vectors which
generates S is a spanning set, and there are infinitely many spanning sets for each S.

If these vectors form the columns of some matrix A, then Ax denotes some linear combin-
ation of these vectors, and A can be said to span S

S =span A (B.4)

The minimal set of spanning vectors forms a base, and the number of vectors in a base gives
the dimension of §. An n-dimensional base is notated by S™.

Invariant subspaces

Consider the eigenvector ¢; of A, which gives rise to the subspace S' = span¢; with the
properties:

(i) S!is mapped into itself by A (i.e. AS! C S!);

(ii) the image under A of any ¢, in S! is simply a fixed multiple of ¢, (i.e. Ap; = \;¢p; and
\; depends on S' alone and not ¢;).

Subspaces satisfying (ii) are called eigenspaces. Subspaces satisfying (i) are called invariant,
and have a basis of eigenvectors.

Rayleigh-Ritz procedure

If the subspace 8™ at hand turns out to be almost invariant under A, it should contain good

approximations of some eigenvectors of A. The Rayleigh-Ritz procedure (RR) computes these

approximations optimally3, for a given initial Ay whose (full-rank) columns are a basis for S™.
The basic procedure is as follows:

)
)
(iii) Form the (matrix) Rayleigh quotient R(Q)=Q” (AQ) (previously defined in Section 3.3).
) Compute the eigenpairs of R(Q) from R = Afpjt. The A} are the Ritz values.

)

The Ritz vectors ¢; = Qup}, together with the Ritz values, are the best approximations
to eigenpairs of A which can be derived from S™ alone.

(vi) Compute ||r;||, where r; = A¢; — A\l = (AQ)y;' — AFe)t, to give residual error
bounds. Each interval [A} — ||r;|, Aft + ||r;||] contains an eigenvalue of A, and extra work
(Parlett (ch.11.5)[109]) needs to be done if intervals overlap, since it is possible that two
or more different \;' are approximating the same eigenvalue of A.

3Parlett (ch.11)[109] explains the sense in which RR is optimal.
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B.3 Vector and subspace methods

Eigenvectors of rank one matrices

Consider the rank one matrix A = ¢, @1 . Its eigenvector* is found by first computing

y = Ax
= ¢1¢ix (x #0) (B.5)

for some arbitrary x. If y =0 then x is an eigenvector of eigenvalue 0 (i.e. ¢; for i > 1).
Otherwise since

Ay = A¢ pix
= ¢l Pl x
= ¢l iy (B.6)

then y is an eigenvector with eigenvalue ¢7 ¢p;. This eigenvalue can be computed by dividing
a component of Ay by the corresponding (non-zero) component of y.

Power iteration

For large n, the normalised matrix A™/||A™|| is close to a rank one matrix (Parlett (ch.4.2)[109]).
The power iteration utilises this fact, and estimates the rank one eigenvector as shown above:

(1) Initialise with xo.
(ii

) Compute y, = Ax,_1.
(iii) Normalise to give x, = yi/||Vkl-
)

(iv) Test for convergence by comparing x, and Ax,.

Subspace deflation

Parlett (ch.5.2)[109] discusses a number of methods of subspace deflation, which restricts a
subspace to be orthogonal to previous eigenvectors, in order that the power iteration can proceed
to find other eigenvectors®.

The simplest technique is deflation by restriction which uses a starting vector xg orthogonal
to already computed eigenvectors. Loss of orthogonality during the power iteration will occur
due to round-off errors, and this is remedied by occasional reorthogonalisation using the QR
factorisation.

Subspace iteration

Subspace iteration is a straightforward generalisation of the power iteration, using iterations
of a p-dimensional subspace and occasional orthonormalisation. The advantage over power
iteration comes from an improved convergence to eigenvalue clusters, which makes up for
any extra work required to deal with a bigger subspace than necessarily required. Another
significant advantage is the ability to detect multiple eigenvales (depending on choice of p).

*If A is known a priori to be rank one, then any non-null column will give the dominant eigenvector.
5The accumulated round-off errors in orthogonalising higher eigenmodes against lower ones, mean that
higher eigenmodes are computed with worse accuracy.
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The difficulty is that eigenvalue distribution is not usually known a priori, and efficiency is
sensitive to the value of p chosen. Parlett (ch.14.4)[109] discusses convergence and termination
criteria for subspace iteration.

The basic algorithm is as follows:

(1) Initialise with Xy of dimension p.
(ii)) Compute Y, = AX,_1.

)
)
(iii) Test each column for convergence as in power iteration.
(iv) Orthonormalise using QR factorisation Y, = Q,R,,.

)

(v) Set X,, = Qp.

More refined implementations incorporate the application of RR to X,,, since the columns
of X, are not the optimal approximations to target eigenvectors (Parlett (ch.14)[109]).

B.4 Lanczos method

Krylov subspaces

A Krylov subspace K™(x) is spanned by the column vectors in a Krylov matriz K™ (x)

K"(x) = (x,Ax,...,A" !x) (B.7)
K"(x) = spanK"(x) (B.8)

The power iteration only utilises A™x and not K" (x), so by applying RR to the subspace
K™, we obtain better and more cost-effective approximations. See Parlett (ch.12)[109] for the
convergence analysis.

There is an important theoretical limitation on the power iteration and Krylov subspace
methods: if x is orthogonal to any eigenvectors of A, then their projections will be zero and
they cannot be detected using K™. However roundoff errors during computation usually make

this an irrelevant consideration.

Tridiagonal form

Consider the Lanczos basis Q, defined by Gram-Schmidt orthonormalisation of a full-rank
Krylov matrix K"(x)
K"(x) = Q.R, (B.9)

This QR factorisation is very efficient for Krylov subspaces, yielding a three-term recurrence
relation for columns of Q, = (qi,...,q,). For full-rank K"(x), a tridiagonal matrix T, is
given by (Parlett (ch.12.6)[109])

Tn = QZAQn
ar i
1 az Po
_ By asz - (B.10)
ﬁn—l
1871—1 (677}
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from which
T
o = alAdg (B.11)
Bi = ai1Aqi (B.12)
Aq; = qi-16i—1 + 9oy + Qi1 B (B.13)
For each 1<n
T;
A Q; = Q; + 0 r;

so that the residual r; in the last column on the right is given by

ri = Aqi—qi-18i-1 — qioy (B.14)
= qit1bi (B-15)

Lanczos iteration
For qg = 0, and some initial q; approximating the desired eigenvector:
(i) Compute r; from equation (B.14).

(ii) B; = ||lrs|| (since B; = |lqs+15ill = ||rs]])-

(iii) If B; = 0 then the residual is zero, so that AQ, = Q;T;. Therefore span Q; is the smallest
invariant subspace containing x.

(iv) If B; > 0 then q;4+1 = r;/||r;]|, go to (i).

The Lanczos iteration can also be interpreted as the application of RR to the sequence
of Krylov subspaces K’(x). At each step the subspace dimension increases by one, and
the best approximate eigenpairs (A}, 47) in the subspace are computed economically and
straighforwardly® from the tridiagonal T;, which is effectively the (matrix) Rayleigh quotient
R(Q;). The Ritz pairs (A}, Q;2;') are then tested for convergence.

The efficiency of this algorithm, together with superior convergence properties, makes the
Lanczos iteration currently the best algorithm for solving a few inner or outer eigenpairs of
large symmetric eigenproblems (Golub & van Loan (ch.9)[51]; Grimes et al. [59]).

Lanczos vectors q; lose mutual orthogonality as the number of iterations increase, so oc-
casional reorthogonalisation is required; selective orthogonalisation is a more efficient modific-
ation (Parlett (ch.13)[109]). The ability to automate this orthogonalisation, by maintaining a
reasonable preset level of linear independence, means that the Lanczos method can be used as
a ‘black box’ eigensolver, requiring no delicate parameters to be set by the user.

The block generalisation of the Lanczos method (Parlett (ch.13.10)[109]) operates with a
block of eigenvectors, which allows the detection of multiple eigenvalues (cf. subspace iteration).

5See previously for the QR transform algorithm.
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B.5 Implementation

Sparse indexing

The sparsity structure of the mass and stiffness matrices of an ellipsoidal volume are shown in
Figure B.5(a).

Sparsity structure of mass and stiffness matrices for volumetric ellipsoid Sparsity structure of Cholesky factor of mass matrix
0 T i T T 0
201 1 20
401 1 40t
60 1 60
80 1 80
100+ b 100+
1201 1 1201
140+ b 140+
1601 k 160
180 b 1801
200} ‘ ‘ ‘ a 200 ‘ ‘ ‘ B
0 50 100 150 200 0 50 100 150 200
nz = 1986 nz = 2814
(a) Sparsity of mass and stiffness matrices (b) Sparsity of Cholesky factor of mass matrix

Figure B.1: Sparsity plots for a finite element ellipsoidal volume (nz = number of non-zero
elements)

Dense storage of the matrix structure is very expensive, both in memory usage as well as in
computation. Sparse indexing technology (Saad (ch.2)[124]) allows efficient storage of sparse
matrices, so that more matrix elements can be kept in core memory. When properly designed,
a sparse indexing system also allows for efficient computation of matrix-vector products by
exploiting the fact that many of the elemental multiplications are guaranteed to be zero.

Bathe (app.2.3)[8] recommends renumbering nodes in order to reduce matrix bandwidth,
which directly affects the computational cost of solution methods. A sparse matrix-vector
product routine should incorporate this consideration.

Standard eigensolver for generalised eigenproblem

Given a standard eigensolver for
AP =PA (B.16)

the naive approach to solving the generalised eigenproblem
K® = M®A (B.17)

is to invert the mass matrix to form the standard eigenproblem (B.16), which destroys the
sparsity structure of the mass and stiffness matrices.
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The Cholesky factorisation for M >0 is given by
M=L"L (B.18)

and Figure B.5(b) shows that sparsity is preserved for the upper-triangular Cholesky factor L.
Given this factorisation, equation (B.17) can be solved in standard form?

L TKL '® = ®A (B.19)

The power iteration, subspace iteration and Lanczos algorithms only require the matrix A
to be specified during the formation of a matrix-vector product

y = Ax
= (LTTKL YH)x (B.20)
which allows the user to exploit special properties of the matrix A, e.g. with sparse indexing.

An efficient method of computing equation (B.20) is to use sparse triangular-solve and
matrix-vector product routines as follows

Lw= x (giving w)
z= Kw (giving z)
LTy= = (giving y) (B.21)

Mass lumping

A lumped-mass approximation to the consistent-mass representation derived in Appendix A.4,
gives a diagonal mass matrix instead of a densely populated one, by lumping the element’s
distributed mass at nodal positions.

There are a number of lumping schemes, the simplest of which Hughes[66] calls special
lumping. This discards the off-diagonal elements of each element’s mass matrix, and scales
the remaining ones to give the same total elemental mass. This scheme has the advantage of
ensuring that the mass matrix is positive-definite.

Special lumping is a very good approximation for a uniformly tessellated structure with
uniformly distributed mass and stiffness, especially when only the low-frequency response is
required for dynamic analysis (Hitchens (ch.1)[62]). Mass lumping also tends to compensate
for the FEM’s tendency to over-estimate natural frequencies.

The FEM converges monotonically to give the true eigenmode shapes as the mesh gets finer
(Bathe (ch.4)[8]), but the FEM tessellation is frequently formed from a sparse and noisy mesh
with non-uniform spacing. The eigenmode displacement fields resulting from mass lumping are
bound to be less accurate, but are at the same time more invariant to changes in mesh density,
which is an advantage when eigenmodes are being used as shape features®.

A diagonal mass matrix is trivial to invert, hence equations (B.21) can be replaced with
a single matrix-vector product using M~!K. This reduces computation time substantially,
since code profiling suggests that up to 656% of computing cycles are spent in the two sparse
triangular-solve routines in equations (B.21).

"Using L™TKL™" preserves symmetry.
8The inertial effects of distributed mass are effectively muted by mass lumping, so that frequency response
is determined mainly by the stiffness matrix, which can be thought of as a shape ‘connectivity matrix’.

149



B.5 Implementation 150

Software
The eigensolvers used to generate the results in this dissertation, are based on the following
publically available software:

(i) power method: the rsg() subroutine from the eispack eigensystem solution package.

)
(ii) subspace method: the simitz() subroutine based on Rutishauser [123].

(iii) block Lanczos: theminval() subroutine based on Underwood [162] and Golub et al. [50].
(iv) sparse matrices: the sparskit subroutine package described in Saad (ch.2)[124].

The first three items are available on netlib, together with utility subroutines for ba-
sic linear algebraic manipulation. See the sci.math.num-analysis newsgroup for ftp sites
which contain the netlib collection. The fourth item is available via anonymous access to

ftp.cs.umn.edu.
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