FEM EIGENMODES AS SHAPE FEATURES

M.H-M. Syn and R.W. Prager
CUED/F-INFENG/TR 211
May 1995

Cambridge University Engineering Department
Trumpington Street
Cambridge CB2 1PZ
England

E-mail: mhs@eng.cam.ac.uk, rwp@eng.cam.ac.uk



Abstract

The Finite Element Method (FEM) solution of the wave equation which governs the be-
haviour of elastic structures leads to a generalised eigenproblem. The eigenvectors of this
eigenproblem are known as eigenmodes or mode shapes, which we present as an ideal set of
shape features for use in model-based 3D ultrasound imaging.

We derive from first principles a framework for the modelling of volumetric linear elastic
structures, using the Principal of Virtual Work. This allows us to construct mass and
stiffness matrices which describe the shape and physical properties of a shape model.

We go on to examine the properties of the FEM eigenmodes of an elastic shape model,
and the suitability of such a model in describing shape changes in biological structures. We
show that there is an intimate connection between this model, and a growth model based
on diffusion processes.



Contents

1 Introduction

1.1 Growthmodels . . . . . . . .
1.1.1  Diffusive growth . . . . . . .. ...
1.1.2 FElastic growth . . . .. .. ...

1.2 Prospectus

3.10 Summary

2 Finite Element Models

2.1 Equilibrium . . . . .. e e
2.2 Principle of Virtual Work . . . ... ... ... .. oL
2.3 Mass and stiffness matrices . . . . . ... Lo

2.3.1 Stiffness matrix . . . . . ... Lo

2.3.2 Mass matrix . . . . ... e e e
2.4 Equivalence of virtual work derivation to stationarity of potential . . . . . .
2.5 Interpolation functions for a linear tetrahedral element . . . . . . . ... ..

2.5.1 Continuity . . . . . . ..

2.5.2 Isoparametric elements . . . . ... ... .. L L.

2.5.3 Jacobian . . . ...

3 FEM eigenmodes

3.1 FEM eigenmodes as shape features . . . . . ... ... ... ...
3.2 Mode shapes . . . . . . . e
3.3 Rayleigh quotient characterisation . . . . ... ... ... ... ... ..
3.4 Repeated eigenmodes . . . . ... oL
3.5 You cannot hear the shapeof adrum. . . . .. ... ... ... .. .....
3.6 The diffusion equation in elastic structures. . . . . . ... ... .. .. ...
3.7 Scale ordering of eigenmodes . . . . ... Lo oL
3.8 Medial axes . . . . ... e
3.9 Symmetry of eigenmodes . . . .. ... L oL

W NN NN

© 00 00D U

— = =
o o O

12
13
13
15
15
15
16
17
17
19
19



8

9

Results

4.1 Anonymous FTP . . . . .. .. .

4.2 Computing eigenmodes . . . . . ... oL Lo e
4.2.1 Sparseindexing . . . . . . ...
4.2.2 Factorisation of mass matrix . .. ... ... ... ... ...
4.2.3 Spectral shift . . .. ... . ... .. . o

4.3 Masslumping . . . . . .. e
4.3.1 Invariance to mesh density . . .. ... ... ... ... .. ...,

4.3.2 FEigenmode computation . . . . .. ... Lo
4.4 Mode shapes . . . . . . . e

Ellipsoid with uniform tessellation
Ellipsoid with non-uniform tesselation
Bent ellipsoid with non-uniform tesselation
Ellipsoid with sparse tessellation

Ellipsoid with noise of high spatial frequency

10 Ellipsoid with noise of low spatial frequency

Bibliography

21
21
21
21
22
23
23
24
24
24

26

28

30

32

34

36

36



Chapter 1

Introduction

1.1 Growth models

1.1.1 Diffusive growth

Work by Kimia, Tannenbaum & Zucker (1990), Pizer & Burbeck (1994), Amit, Grenander
& Piccioni (1991) and others suggest diffusion systems as the most general approach to
modeling shape. Zucker and Pizer follow shape change through scale and image space
in analogy to theories of human visual perception, whereas Grenander formulates a more
general theory of image transformation using deformable templates.

The diffusion metaphor for shape variation is particularly appropriate in models of
biological growth, since diffusion is the principal physical mechanism driving the growth of
soft-tissue (eg. spleen), branching (eg. vascular) and bony structures from their embryonic
to fully-developed forms.

Fujita (1986) describes a computational model of central nervous system growth using
60 segments with separate growth parameters using a Gompertzian grwoth function, and
simulates the growth of monkey, rat and mouse brains.

1.1.2 Elastic growth

In the absence of accepted computational models derived from considerations of diffusion
kinetics however, linear elastic models of shape variation between fully developed structures
are generally used.

Bookstein (1991) presents the use of landmarks in analysing biological shape variation,
and uses the thin-plate spline as a shape interpolant in 2D. He proposes the bending energy
of the plate as a measure of shape difference, and linearises the modes of shape deformation
using the principal warps of the bending energy matrix.

Terzopoulos and many others have applied the constraint of minimal bending energy to



regularise the interpolation of image features using active contours or snakes. An extension
of this approach have been applied to the surface segmentation of 3D medical datasets (Co-
hen & Cohen 1993) using an “active balloon”.

Our work in 3D ultrasound imaging (Syn, Gosling, Prager, Berman & Crowley 1994, Syn
& Prager 19950, Syn & Prager 1995¢) requires the use of strong prior constraints of expected
shape and variation in shape, in order to facilitate the segmentation of 3D datasets in a
particularly noisy modality. Another technical report in this series (Syn, Gosling, Berman
& Prager 1995) describes the use of modes of elastic growth (cf. Bookstein’s principal
warps above) in constraining the frequency response of an elastic shape model, so that
prior knowledge about shape variation is incorporated into the interpolating “spline”.

1.2 Prospectus

In Chapter 2 we develop a framework for the modeling of volumetric linear elastic structures.
The Principle of Virtual Work leads us to the finite element approximation of the governing
equilibrium equation.

In Chapter 3 we present an efficient method of solving the matrix eigenproblem associ-
ated with diagonalisation of the governing equation.

In Chapter 4 we present eigenmodes computed for a number of synthetic shape mod-
els. These indicate that eigenmodes are stable for reasonable peturbations in shape, and
therefore constitute an ideal set of shape features for use in comparison of shape models.

Please note that the results presented in this report are also available via anonymous-ftp.
See Section 4.1.



Chapter 2

Finite Element Models

The following derivations follow closely those of Bathe (1982), using the following variables

(z,y,z) = global coordinate system

(r,s,1) local coordinate system within element
nodal displacements in global coordinates
= nodal displacements in local coordinates

u
ut

2.1 Equilibrium

Consider the equilibrium of a body with the following forces acting upon it

b0t = volume forces (per unit volume)
rsvrface  —  surface forces (per unit surface area)
rPoint = point forces acting on the bod

p g y

The displacements of the body from its unloaded state, due to the action of these forces,
are described by the vector u defined above. The plane and shear components of strain?
corresponding to u are

e=[ew @ e T e T | (2.1)

and the stress? components are

T
'1':[7'm Tyy T2z Toy Tyz sz} (2.2)

!Strain is ratio of displacement to original length in the direction of displacement.
2Stress is the force applied per unit area.



2.2 Principle of Virtual Work

In order to analyse the response of the body, we establish differential equations describing
the equilibrium of the body subject to appropriate boundary and compatibility conditions.
One such formulation employs the Principle of Virtual Work, which states that a body in
equilibrium requires the total internal virtual work done to equal the total external virtual
work done

/ETT.dV:/ ﬁTrbOdy.dV+/ al i gA 4 3 al o (2.3)
1% 14 A ;

where the overline signifies a virtual strain or displacement.
For Equation 2.3 to hold, the displacements must meet the following conditions

e they should be compatible and continuous between elements
e they must satisfy the displacement boundary conditions

e they must satisfy constitutive relationships (i.e. stresses can be evaluated from strains)

A finite element discretisation of the body allows us to use a system of interpolation
functions, defined in the displacement interpolation matric H to relate the displacement
within each element to the displacements of the nodes bounding each element, @

u®(r,s, t) = H(r, s, t)a(z,y, 2) (2.4)

Strains can similarly be interpolated using the strain interpolation matriz B

€5 (r,5,1) = BE(r,5, 03(2, , ) (25)
where B(r, s, t) =
- 88_:17 0 0 -
a
0 e 0
0 0 £
5 o g [Hns1) (2.6)
dr Oy
0 2 2
5 dy 882
L3z 0 77 ]




2.3 Mass and stiffness matrices
The relation between the strain €; and initial stress T? at node j is

T = E]‘Ej + T? (2.7)

where E is the elasticity matriz® which relates local stresses to resultant local strains.
Over a volumetric element?

[ 1 lzu lzu 0 0 0 |
21 &0 0 0
E(1-v) = 1= | 0 0 0
= 1-2 2.8
(+v)i-20)| 0 0 0 535 0 0 (28)
0 0 0 0 525 0
1-2
0 0 0 0 0 3%y

Summing over all m elements of the body, we can rewrite Equation 2.3

“ _ “ — bod @ — sur face
Z/V e?‘rj.de = Z/V (Hjuj)Trj y.de+Z/A (Hju]-)Trj ! dA; (2.9)
7=1 J 7=1 J 7=1 37

=T d
+ Z % I_?o es
7

2.3.1 Stiffness matrix

By substituting the stress-displacement interpolation function from Equation 2.6 into Equa-
tion 2.7, and factoring out the initial stress state 7° later in Equation 2.18, we obtain using
u instead of uj

7; =E;B;u (2.10)

by noting that for a given element only the displacements at the nodes of the element
affect the displacement and strain distributions within the element.
We can then substitute for €; and 7; in the left-hand side of Equation 2.9 to give

®The scalar E in one-dimension is also known as Young’s Modulus
*p is the Poisson ratio
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/V (Bjw;)" (E;Bju).dV;

J

m
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J
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/V‘ ﬁ]TBjTEij.de) u (2.11)
1 7

Nel

From the right-hand side of equation 2.

Z/ €7,.dV;, = Z/ a W4y, (2.12)

m
—TyyT . surface ) —T _nodes
=174 B

Comparing the right-hand sides of Equations 2.11 and 2.12 with the steady-state equi-
librium Equation 2.3 under nodal loading f

Ku =f (2.13)

we have an expression for the stiffness matriz

K=Y /‘ B'E;B;.dV; (2.14)
j=1"Y

and from Equations 2.12 and 2.13 the loads f, which are composed of body, surface and

nodal point components minus the vector of initial loads f° (due to initial stresses 79)

=18 4154V - £° (2.15)
where®
. bod
£7 :Z/V‘ HT 2 qv; (2.16)
j=1"Y
£S5 = E‘/A‘H?rjwface.d/lj (2.17)
j=174
=3 ., Bl r0.dv; (2.18)
j=1"Yi
fN = prodes (2.19)

Snote that there are different H for surface and volume interpolations



2.3.2 Mass matrix

If a load is applied rapidly, we must include inertial effects using d’Alembert’s principle ©

Mii + Ku = (1) (2.20)

Assuming that the element accelerations are in the same directions as the element dis-
placements, the contribution of the inertia force to the load vector is

. Z/V‘H;-F (€8 — o] av; (2.21)
=17V

- Z/V‘ H7£B.av; - (E/V H’;?ijj.dvj) i (2.22)
j=1""; j=17VYs

where p is the material density, giving

M = Z/V HYp;H;.dV; (2.23)
j:]_ J

2.4 Equivalence of virtual work derivation to stationarity of
potential

Assuming a linear elastic continuum, the total potential of the body is

1 :
= 3 /VeTEe.dV - /, ulrbody gy — /A ul'psurface g4 — E ulp?on (2.24)

by using the stress-strain relation in Equation 2.7

T = Ee (2.25)

For II to be stationary, I = 0. Then since the elasticity matrix E is symmetric, we
have

/ 5("Ee).dV = / s(uT o). qv + / S(ulrrrfoee) 44 + 3 6(uTr?" ™) (2.26)
v v A -

5This treats the ma term in f = ma as an inertial force, so that f — finertia =0



Providing displacements satisfy boundary conditions, so will the corresponding strains
in Equation 2.26. Stationarity of Il in Equation 2.24 is then equivalent to the principle of
virtual displacements in Equation 2.3, with de = € and du = u. In other words, the body
tends towards a stable energetic state where its net potential is minimised.

2.5 Interpolation functions for a linear tetrahedral element

For a four-node tetrahedral element, we use unit coordinates for which the three spatial
parameters (r,s,t) vary from 0 to 1. This gives nodal coordinates of

(T‘, 5, t) = {(07 0, 0)7 (1a0a 0)7 (07 1, O)a (Oa 0, 1)} (2'27)

In three dimensions, the simplest complete polynomial has three constants, so that
this linear function can be derived from the four nodal constraints. We can then define a
polynomial interpolation function within the tetrahedral element

91

pi(r,s,t)=gi+g5.r+95.5+git=1]1 r s ?‘; (2.28)
3
9i

where the superscript denotes local parameters in local coordinates within an element.
Substituting nodal constraints

p°(0,0,0) Prodel 100 014
p°(1,0,0) Prode2 1100114
= node = 2.29
pe(()’ L, O) p?iode?; Lo 10 gg ( )
pe(o’()? 1) p;ode4 1001 92
or
p;odes = Gge (230)
where G is the geometry matriz.
We then substitute back into Equation 2.28
pe (T‘, S, t) = |: I r st G_lpfwdes = H(?“, Sy t)u;odes (231)

where H is the interpolation matriz containing the interpolation functions

10



H(T‘,s,t) = { Hl(rasat) H2(ra37t) HS(raSat) H4(?",S,t) } =

2.5.1 Continuity

Along one edge of the tetrahedral element, we hold r and s constant. Thus the interpolation
function varies linearly with ¢ along this boundary. Since this linear function is uniquely
determined by the nodal constraints at both ends of the edge, we have continuity along any
interface between linear elements. This is not true if we use the global coordinates (z,y, 2)
to define the interpolation.

2.5.2 Isoparametric elements

Equation 2.3 is presented in global coordinates, and involve derivatives with respect to
global coordinates. Isoparametric elements use the same (local coordinate) interpolation
functions used to define any local parameter, to map to global coordinates.
For example, we can define the global coordinates of an element (z,y, z) in terms of its
local coordinates (r, s, t)
a(r,s,t) T

’y(T‘, 5, t) = H(T‘, 5, t) [ Xiodes y?i,odes Z'fiodes } (233)
z(r, s,t)

by interpolating between nodal values given as a function of global coordinates. This
allows us to retain the interfacial continuity mentioned in the previous section.

2.5.3 Jacobian
Using the relationship just established between local and global coordinates, we can now
find expressions for the Jacobian matrix J, the determinant of which (the Jacobian) is used
to effect a change of variables during integration in Section ?7.

For a tetrahedral element with three independent coordinate variables (r, s, )

11



9 92

887" 881,‘
2 1=32 (2.34)

9 9

at dz

9x By 0z

cgr gr (gr

— | 2z 9y 3z
J= Js gs Js (235)

dz  Jy Oz

ot ot ot

The change of variables required to integrate globally over quantities defined in local
coordinates can be achieved with

d(V) =dz.dy.dz=|J|.dr.ds.dt (2.36)

The Jacobian is usually computed numerically for elements other than the 4-node tetra-
hedron, which has a constant Jacobian |[J| =6 x V

12



Chapter 3

FEM eigenmodes

It is generally difficult to find the eigensolutions of Equation 2.3, even if an analytic de-
scription is available of its shape and material properties. One of the few examples is the
closed-form eigensolution for surfaces which can be mapped onto a sphere, giving rise to
spherical harmonics (Poli, Coppini & Valli 1994, Ballard & Brown 1982). Another is the
solution of the wave equation on a vibrating square or circular membrane (Kreysig 1988,
Ch. 11).

The purpose of the Finite Element Method (FEM) is to allow the solution of partial
differential equations (PDEs) such as the one governing the dynamic equilibrium of a linear
elastic structure with no damping, by discretisation over the continuous domain of the
structural mass and stiffness operators to give

Mii + Ku = (1) (3.1)

where M and K are the mass and stiffness matrices, and £(t) is a time-dependant applied
force.
The equation of undamped free (i.e. no external forces) vibration

Mi+ Ku=0 (3.2)

has simple harmonic solutions, u;(t) = q.’)z-ej‘“i(t_to), derived from the generalised eigen-
problem

K& = 0*°M® (3.3)

This can be solved using numerical techniques such as the Lanczos method to give @,
the matrix of eigenvectors ¢,, and €2, the diagonal matrix of eigenvalues w;.

13



3.1 FEM eigenmodes as shape features

FEM eigenmodes were first used as 2D shape features by Sclaroff & Pentland (1995), and this
derived from their work in using elastic eigenmodes to constrain the recovery of shape (Pent-
land 1990, Pentland & Horowitz 1991, Pentland & Sclaroff 1991, Pentland & Williams 1989),
using 2D boundary models and 3D surface models.

Brady & Scott (1988) also suggested eigenfunctions of other PDE formulations, over
2D solid shapes, as more generalised symmetric axes than the Symmetric-Axis Transform
(SAT). SAT algorithms (e.g. grassfire) implicitly compute the eigenmodes of Laplace’s
equation with the appropriate boundary conditions. See Section 3.8 for more details.

In the medical imaging literature Nastar & Ayache (1993) use FEM eigenmodes in
motion analysis. Staib & Duncan (1992) also use a more limited set of Fourier harmonics
for motion tracking, and more recently Coppini, Poli & Valli (1995) have applied this to
left-ventricular shape recovery in echocardiographic images.

Some early work in combining simple physical models of biological structures with sta-
tistical models appears in (Martin, Pentland & Kikinis 1994).

The application of eigenfunctions of a PDE to constrained “shape” recovery is well-
established and commonly used in both the structural engineering (Bathe 1982, Ch. 9.3)
and morphometric literature (Bookstein 1991, Ch. 7.5). The novelty in recent applica-
tions cited above, is the application of powerful modern workstations to the symmetric
eigenproblem (Parlett 1980).

Our presentation in the following sections examines why elastic FEM eigenmodes have
excellent scale-ordered and globally symmetric properties, when used as 3D shape features.

3.2 Mode shapes

These eigenvectors, ¢,, derived from structural FEM are usually termed etgenmodes or
mode shapes. They describe mutually orthogonal modes of free vibration, each with natural
frequency of vibration w;.

Figure 3.1 shows some non-rigid mode shapes of an ellipsoidal surface discretised into
triangular elements, ranked in increasing order of natural frequency of vibration. It can be
seen that the spatial frequency of the mode shapes increase with natural frequency.

These “harmonics” behave very much as the Fourier harmonics described for spheres
and membranes at the start of Chapter 3. Indeed for a simple one dimensional example
of a piece of linear elastic string with uniform material properties, the mode shapes are
exactly the Fourier harmonics. This is illustrated in Figure 3.2. Note that while the spatial
frequency of the harmonic mode shapes depends on the geometry of the string, the natural
frequency of vibration depends only on the mass and stiffness properties of the string.

14



(a) 7th mode (b) 9th mode (c) 11th mode (d) 13th mode (e) 15th mode

Figure 3.1: FEM mode shapes of free vibration for an ellipsoidal surface in increasing order
of natural frequency.

1st Mode Shape

2nd Mode Shape

Spatial wavelenth
of 2nd Mode Shape

Figure 3.2: First and second mode shapes of a linear elastic string.
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3.3 Rayleigh quotient characterisation

The minimax (Parlett 1980, Ch. 10.2) or Rayleigh quotient characterisation (Bathe 1982,
Ch. 2.8) of the generalised eigenproblem leads to an equivalent definition for eigenmodes
and natural frequencies

T

u- Ku

— 'Y 1 4
¥ S,dim(rg)azxn—i+1{u€r§l}1?¢0{ uTMu}} (34)

where the expression being locally minimised is the Rayleigh quotient p(u), defined for
symmetric mass and stiffness matrices, and the eigenvectors ¢, are given by the vectors u
corresponding to each w;.

The physical interpretation of p(u) for structural FEM, is as the ratio of elastic potential
to kinetic energy of the structure in free vibration. Successive and non-decreasing (Bathe
1982, Ch. 2.8) maxima in local minima of this energetic ratio therefore correspond to the
eigenmodes of the structure in free vibration. All natural frequencies w; will be non-negative
since M > 0 and K > 0.

3.4 Repeated eigenmodes

It follows from this that structures in three dimensions with either 2 or 3 planes of mirror
symmetry, will have either 2 or 3 local minima of p with exactly the same energy, with
respect to each of the planes of symmetry. These eigenmodes are known as repeated eigen-
modes of multiplicity 2 or 3, and are of exactly the same shape about their respective planes
of symmetry, as well as having exactly the same eigenvalues.

They are at the same time orthogonal to each other, and uniquely determined with
respect to each other, although they are not individually uniquely determined with respect
to other eigenmodes. Repeated eigenmodes therefore span an eigenspace uniquely defined
with respect to other eigenmodes.

Symmetries of multiplicity 3 (eg. sphere, unit cube) are highly unlikely, so we consider
only two-dimensional eigenspaces which define a unique plane (rather than vector) at each
of the structure’s nodes. We can use the normal to this plane as the unique vector given by
a pair of repeated eigenmodes, so that both repeated or simple eigenmodes can in future
be treated in the same way when used as shape features.

The block Lanczos algorithm which we use is designed to detect such repeated eigen-
modes when solving the generalised eigenproblem (see Section 4.2).

3.5 You cannot hear the shape of a drum

Kac (1966) asked the question “Can one hear the shape of a drum”, and proved that one

16



can determine the area and circumference of a membrane from its eigenvalue spectrum.
For a polygonal membrane, he also proved the connectivity of the membrane can also be
determined. Gordon, Webb & Wolpert (1992) have shown that two different domains can
have the same eigenvalue spectrum however, hence one cannot determine the shape of the
drum from its eigenvalue spectrum.

Even when we have information about eigenvectors as well as eigenvalues, this is still
insufficient to uniquely determine the structure’s shape. Information in the mass and stiff-
ness matrices is reduced in dimensionality when the generalised eigenproblem is solved, so
this transformation is necessarily irreversible.

Reduction in dimensionality is a desirable property for shape features, since we are trying
to distill shape information into a handful of meaningful and representative quantities.

Natural frequencies have properties similar to moment invariants (Hu 1962) when used
as shape features. They are global features and hence not fault tolerant, and their represen-
tation of actual geometric features is very weak. They are invariant to linear transformation
and scaling however, and shape features derived from moments can be useful when used
for rough discrimination between shapes. Syn & Prager (1995a) presents an application for
moment features.

3.6 The diffusion equation in elastic structures

There is an intimate connection between the wave equation governing the behaviour (or
displacement, u) of elastic structures

92
8—;; = V% (3.5)
and the diffusion equation governing the behaviour of diffusing structures
88—1; = *Viu (3.6)

2

For the wave equation, ¢* is equal to the stiffness operator divided by the mass operator.

For the diffusion equation applied to heat flow for example, the stiffness operator in ¢? is
replaced with the ratio of thermal conductivity to specific heat (Kreysig 1988, Ch. 11)!.

For a separation of variables solution

u = f(wa Y, Z)g(t) (37)

with the spatial and temporal derivatives notated with primes and dots respectively

"'We follow Kreysig’s notation in using ¢? to show that the operator is always positive semi-definite

17



0%u .
6? = fg (3-8)

Viu = f'g (3.9)
and substituted into the wave equation in Equation 3.5 we have

.. "
% = f? = k(constant) (3.10)
g
The spatial component of the above equality is the same for both wave and diffusion
equations

Viu+ku=0 (3.11)

which leads to the spatial eigenproblem first derived in Finite Element matrix form in
Equation 3.3. See (Syn & Prager 1995a) for details on how the FEM formulation maps to
the continuous formulation.

In other words, the eigenmodes of Equation 3.3 can also be interpreted as the principal
modes of growth of a structure, the shape and properties of which are described only in ¢?,
which is changing shape by process of diffusion (e.g. accretion of mass in bony structures,

or subdivision of cells in soft tissue structures).

3.7 Scale ordering of eigenmodes

The analytic solution for mode shapes of a spherical membrane is not only harmonic in
time, being of form ¢’“f, but also harmonic in spatial shape. Spherical harmonics (Ballard
& Brown 1982, pp. 270-274) parameterised in (6, ¢), are modulated by /™ and e/"?.

This is also true of other structures such as those in Figure 3.1, and this observation
accords with the Rayleigh quotient characterisation of mode shapes. The smaller the spatial
wavelength of each mode shape, the higher the elastic potential energy, since w? is effectively
the modal elasticity constant (Bathe 1982, Ch. 4.2.6, p. 173). The kinetic energy tends to
decrease with spatial wavelength.

This natural scale ordering is another desirable property of eigenmode shape features,
since higher (natural) frequency modes are unimportant in determining larger-scale response
of the freely vibrating structure. We can hence discard eigenmodes in principled order,
particularly since the Nyquist cutoff (spatial) frequency of the mode shapes is determined
by the sampling resolution of the model’s finite element mesh.

18



Modal Elasticity
is square of the
natural frequency

Elastic energy is
higher and kinetic
energy is lower

for mode shape of
smaller spatial scale

Figure 3.3: Scale ordering of modes of string.

3.8 Medial axes

Brady & Scott (1988) present the Symmetric-Axis Transform (SAT), commonly also known
as the Medial-Axis Transform, as a highly parallelisable means of shape description. The
use of medial axes in medical imaging has been extensively explored?, and the most recent
research involves tracking these axes through diffusion scale space eg. Pizer’s method of
“cores” (Pizer & Burbeck 1994) . This extension attempts to build a description which
draws support from neighbourhoods of varying extent? in order to localise features on the
shape’s boundaries.

The SAT is designed to emphasise symmetry, but the most important criticism of this
representation, which scale-space extensions partially alleviate, is that it cannot encompass
both mirror and rotational symmetries. Brady in fact speculates as to the greater flexibility
of the normal modes of a membrane shape model in this respect, and suggests that these
modes (which can be derived in more than one way for the same shape depending upon the
PDE) are in fact more generalised descriptors of shape and symmetry than medial axes.

Figure 3.4 from (Brady & Scott 1988) compares the eigenmodes and medial axes of a
square plate

The medial axes can be computed using a “grassfire” algorithm. A simple analogy is
that of placing a uniform distribution of electric charge along the boundary, so that the
ridges of maximum (or minimum) potential describe the medial axes. This is a solution of
Laplace’s equation, VZu = 0, with the given boundary conditions. The medial axes are also
the ridges of maximum concentration in a homogeneous mass within the shape boundaries

21t has been found to be particularly appropriate as a means of describing branching (eg. vascular or
arterial) structures!().
3The standard medial axis description typically has global support

19



(a) Eigenmodes (b)
Medial Axes

Figure 3.4: Comparing eigenmodes and medial axes of a square plate

undergoing diffusion (Pizer, Oliver & Bloomberg 1987).

We have seen in Section 3.6 that there is an intimate connection between the the wave
equation and the heat equation. This Section also shows that the eigenmodes of the wave
equation are superior shape features to the medial axes which are derived from a particular
formulation of the diffusion equation.

3.9 Symmetry of eigenmodes

The first six eigenmodes of the freely vibrating structure are those of rigid-body motion.
These rigid-body eigenmodes account for any translational or rotational motion of the
body about its centre of mass. There are no supports or physical boundary conditions, so
after an initial impulse acts upon the body, there are no external forces acting upon the
freely vibrating body. Therefore none of the other (nonrigid) mode shapes can have a net
translation of the centre of mass, or a net rotational moment.

This does not necessitate any symmetry in the (nonrigid) degrees of freedom that the
structure has in motion, but for those which are eigenmodes and therefore local minima in
the Rayleigh quotient, symmetric deformations allow for a minimal penalty in elastic energy
while obeying the constraints set out above

Additionally most biological structures are simply connected (ie. “bloblike”) and map
straightforwardly to an ellipsoid. The eigenmodes of the ellipsoid retain symmetry when
mapped.

Each mode shape therefore tends to emphasise symmetries in the structure, at the
characteristic spatial scale of that mode. Eigenmode features require global support, and
cannot therefore easily cope with occluded part structures. This is irrelevant in model-based
imaging, since the shape model is always constructed in full.
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3.10 Summary

We have presented FEM eigenmodes as ideal shape features for models used in 3D ultra-
sound imaging. They have a natural ordering in spatial scale (cf. Medial Axes), and draw
on global support to emphasise structural symmetries at each characteristic scale.

These shape features can be derived for any structure, using any of the available elements
in structural FEM. There are no complications element mesh generation because we are not
interested in a stress-strain analysis, and there is therefore no need to refine meshes at
points of high stress. Uniform meshing is in fact recommended to minimise the number of
elements needed for the desired accuracy in modelling (Hitchens 1992, Ch 4.7)%.

It is standard practice in numerical FEM to allow a minimum of eight elements to span
the smallest feature of interest. We are therefore justified in using only linear elements,
which have the computational advantage of having a constant Jacobian matrix, since a
piecewise linear approximation to, say, a sine wave discretised to eight elements per half-
wavelength is more than sufficient for our needs. We need then only use mode shapes of low
spatial frequency out of this rich feature set, since the high frequency ones are inaccurate
beyond the Nyquist sampling frequency.

It is also an ideal representation for determining the equilibrium configuration of the
structure given a set of applied forces, and has been used by Pentland & Horowitz (1991)
for overconstrained shape fitting, where he uses only as many degrees of freedom as there
are applied point forces.

The rigid-body eigenmodes, which are orthogonal to the other non-rigid mode shapes,
can therefore be used to separate the translation and rotation response of the body from
nonrigid shape deformation. We have applied these eigenmodes in the efficient computation
of the response of a linear elastic shape model when used as an interpolating spline in
segmenting 3D ultrasound images (Syn et al. 1995).

*Mode shapes cause large displacement amplitudes all over the body, so uniform meshing is most sensible.
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Chapter 4

Results

4.1 Anonymous FTP

The datasets presented here are available in animated form for the following platforms

Linux
Sun0S/Solaris
IRIX

HP-UX

from our anonymous-ftp server

svr-ftp.eng.cam.ac.uk:/pub/data/geomdemo.*.tar.gz

4.2 Computing eigenmodes

We have implemented a block Lanczos solver to compute eigenmodes and natural frequen-
cies. The Lanczos method was first proposed as a method for tridiagonlisation of matrices,
but this later developed into a method of extracting extreme eigenpairs in the symmetric
eigenvalue problem, because tridiagonal systems can be solved efficiently (Golub & van
Loan 1989, Ch. 9) (Parlett 1980, Ch. 13).

The block Lanczos algorithm allows us to detect repeated eigenpairs (see Section 3.4)
by generalising the Lanczos algorithm to work with a subspace instead of a vector.

4.2.1 Sparse indexing

The sparsity structure of the mass and stiffness matrices of an ellipsoidal volume are shown
in Figure 4.2.1(a)
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Sparsity structure of mass and stiffness matrices for volumetric ellipsoid Sparsity structure of Cholesky factor of mass matrix
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Sparsity of mass and stiffness matrices Sparsity of Cholesky factor of mass matrix

Figure 4.1: Sparsity plots for an ellipsoidal volume (nz is the number of non-zero elements)

Dense storage of this structure is very expensive, both in memory usage as well as in com-
putation. Sparse indexing technology (Saad 1992, Chapter 2) allows us to efficiently store
sparse matrices, so that more matrix elements can be kept in core memory. When properly
designed, a sparse indexing system also allows for efficient computation of matrix-vector
products by exploiting the fact that many of the elemental multiplications are guaranteed
to be zero, since the matrices are sparse.

Bathe (1982, App. 2.3) recommends renumbering nodes in order to reduce matrix
bandwidth, which directly affects the computational cost of solution methods. Modern
sparse matrix-vector product routines incorporate this consideration.

4.2.2 Factorisation of mass matrix

Given a standard eigensolver, the naive approach to solving the generalised eigenproblem

K& = MA® (4.1)

is to invert the mass matrix to form the standard eigenproblem, which destroys the
sparsity structure of the mass and stiffness matrices.
We can perform a Cholesky factorisation on a positive-definite mass matrix
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M = LLT (4.2)

and it can be seen in Figure ??(b) that the Cholesky factor preserves sparsity.
Given this factorisation, we proceed to solve Equation 4.1 in standard form®

LKL T®d = A® (4.3)

The Lanczos solver allows the user to specify the matrix implicitly by providing a matrix-
vector product routine

v = Hu
= LKL Tu (4.4)

An efficient method of computing Equation 4.4 is to use sparse triangular-solve and
matrix-vector product routines in the following procedure

LTw= u (giving w)
y= Kw (giving y)
Lv= 'y (giving v) (4.5)

4.2.3 Spectral shift
See Grimes, Lewis & Simon (1994).

4.3 Mass lumping

Eigenmodes for volumetric models are much more stable with respect to small shape changes
than for a surface model. This is simply because there are more constraints internally due
to volumetric elasticity.

Eigenmodes can be made even more invariant by using a lumped mass approximation
to the consistent mass representation derived in Section 2.3.2. This approximation gives a
diagonal mass matrix instead of a fully populated one, by lumping the element’s distributed
mass at nodal positions.

There are a number of lumping schemes, the simplest of which Hughes (1987) calls
special lumping. This discards off-diagonal elements, and scales the remaining ones to give
the same total elemental mass. This scheme has the advantage of ensuring that the mass
matrix is positive definite.

'"Using L™'KL~7T preserves symmetry.
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Special lumping is a very good approximation for a uniformly tessellated structure
with uniformly distributed mass and stiffness for which only low-frequency response is
required (Hitchens 1992, Ch. 1). In addition, the FEM tends to over-estimate natural
frequencies, whereas the lumped mass approximation tends to compensate for this (see Sec-
tion 4.3.1 below). The associated mode shapes tend to have cumulative error, which does
not matter since we are not interested in dynamic response.

Qualitatively, special lumping “conditions” the landscape of the Rayleigh Quotient so
that local minima representing eigenvectors are better separated and made “deeper”, so
that peturbed shapes still tend to give the same mode shapes.

The inertial effects of distributed mass are effectively muted by mass lumping, so that
the structure’s frequency response is determined mainly by the stiffness matrix. This is
why lumped-mass mode shapes are good shape features: the stiffness matrix is effectively
a shape “connectivity matrix” for a uniformly elastic volume.

4.3.1 Invariance to mesh density

The FEM converges monotonically to the true mode shapes as the mesh gets finer (Bathe
1982, Chapter 4). We have observed that this can lead to “flipping” in the eigenvalue
sequence, so that mode shapes can no longer be reliably matched for two tessellations of
the same shape. Mass lumping tends to reduce this effect, thus making mode shapes more
invariant to changes in mesh density.

4.3.2 Eigenmode computation

A diagonal mass matrix is trivial to invert, hence Equations 4.5 can be replaced with a
single matrix vector product using M~!'K. This reduces computation time substantially,
since code profiling suggests that up to 65% of CPU cycles are spent in the two sparse
triangular-solve routines in Equations 4.5

4.4 Mode shapes

The following six Chapters 5-10 show the mode shapes of the following volumetric models
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(a) Uniform meshing (b) Non-uniform meshing

(c) (d) Sparse meshing
Non-uniform meshing and bending

(¢ o6 (©

High spatial-frequency noise Low spatial-frequency noise

Figure 4.2: Ellipsoid shape models with peturbations



Chapter 5

d with uniform tessellation

ipsoi

Ell

Figures 5.1 to 5.9 show the mode shapes for an ellipsoidal volume tessellated uniformly with

tetrahedral elements.
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Figure 5.1: Snapshots of 1st non-rig
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Figure 5.2: Snapshots of 2nd non-rigid mode shape. This is a repeated version of the 1st

of mirror symmetry.

non-rigid mode shape, since the ellipsoidal volume has 2 planes

Figure 5.3: Snapshots of 3rd non-rigid mode shape
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Figure 5.4: Snapshots of 4th non-rigid mode shape
Figure 5.5: Snapshots of 5th non-rigid mode shape
Figure 5.6: Snapshots of 6th non-rigid mode shape
Figure 5.7: Snapshots of 7th non-rigid mode shape
Figure 5.8: Snapshots of 8th non-rigid mode shape

Figure 5.9: Snapshots of 9th non-rigid mode shape
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Chapter 6

Ellipsoid with non-uniform
tesselation

Figures 6.1 to 6.9 show the mode shapes for an ellipsoidal volume sampled more densely

near the poles, both on the surface and internally.

(e.g. recovered from MR, or other previously built models, or from a tesselation tech-

nique, or manually sampled?)

Figure 6.1: Snapshots of 1st non-rigid mode shape

Figure 6.2: Snapshots of 2nd non-rigid mode shape

Figure 6.3: Snapshots of 3rd non-rigid mode shape
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Figure 6.5: Snapshots of 5th non-rigid mode shape
Figure 6.6: Snapshots of 6th non-rigid mode shape
Figure 6.7: Snapshots of 7th non-rigid mode shape
Figure 6.8: Snapshots of 8th non-rigid mode shape
Figure 6.9: Snapshots of 9th non-rigid mode shape
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Chapter 7

1id with non-uniform

Bent ellipso
tesselation

.9 show the mode shapes for a bent version of the ellipsoid in Section ??

(shows stability of modes of large spatial-scale shape change) eg from ultrasound to MR
ground truth. note that 2d ultrasound probes never reconstruct scanned images perfectly.

7

Figures 7.1 to

an equatorial cross-section of a pingpong ball is reconstructed as ellipsoidal.

Figure 7.1: Snapshots of 1st non-rigid mode shape

Figure 7.2: Snapshots of 2nd non-rigid mode shape

Figure 7.3: Snapshots of 3rd non-rigid mode shape
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Figure 7.4: Snapshots of 4th non-rigid mode shape
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Figure 7.6: Snapshots of 6th non-rigid mode shape

Figure 7.7: Snapshots of 7th non-rigid mode shape

Figure 7.8: Snapshots of 8th non-rigid mode shape

Figure 7.9: Snapshots of 9th non-rigid mode shape
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Chapter 8

Ellipsoid with sparse tessellation

Figures 8.1 to 8.9 show the mode shapes for sparsely sampled ellipsoid. This shows that
mode shapes are stable for models with different sampling densities (e.g. MR and ultra-

T oo a

Figure 8.1: Snapshots of 1st non-rigid mode shape

OO OB

Figure 8.2: Snapshots of 2nd non-rigid mode shape
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Figure 8.3: Snapshots of 3rd non-rigid mode shape
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Figure 8.4: Snapshots of 4th non-rigid mode shape
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Figure 8.5: Snapshots of 5th non-rigid mode shape
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Figure 8.6: Snapshots of 6th non-rigid mode shape
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Figure 8.7: Snapshots of 7th non-rigid mode shape
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Figure 8.8: Snapshots of 8th non-rigid mode shape
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Figure 8.9: Snapshots of 9th non-rigid mode shape
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Chapter 9

Ellipsoid with noise of high spatial
frequency

Figures 9.1 to 9.9 show the mode shapes for noisily sampled ellipsoid. The noise added
to each sample point is correlated Gaussian with a standard deviation of 1 element width.
This simulates the effect of errors in sampling, in landmark specification (see (Syn et al.

1995)), in proprioception etc.
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Figure 9.3: Snapshots of 3rd non-rigid mode shape
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Figure 9.9: Snapshots of 9th non-rigid mode shape
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Chapter 10

Ellipsoid with noise of low spatial
frequency

Figures 10.1 to 10.9 show the mode shapes for an ellipsoid with noise of large spatial
correlation added to each node. This simulates the effect of imaging distortions in 2D
ultrasound acquisition®, or interpatient variability in structures being scanned.
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Figure 10.3: Snapshots of 3rd non-rigid mode shape

19D ultrasound probes never reconstruct scanned images with perfect linearity.
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Figure 10.4: Snapshots of 4th non-rigid mode shape
Figure 10.5: Snapshots of 5th non-rigid mode shape
Figure 10.6: Snapshots of 6th non-rigid mode shape
Figure 10.7: Snapshots of 7th non-rigid mode shape
Figure 10.8: Snapshots of 8th non-rigid mode shape
Figure 10.9: Snapshots of 9th non-rigid mode shape
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