Reinforcement Learning Methods for Multi-Linked
Manipulator Obstacle Avoidance and Control

Chen K. Tham, Richard W. Prager *
Cambridge University Engineering Department,
Trumpington Street, Cambridge CB2 1PZ, UK.

e-mail : ckt@eng.cam.ac.uk, rwp@eng.cam.ac.uk

June 3, 1993

Abstract

This paper treats the multi-linked manipulator obstacle avoidance and control task as the in-
teraction between a learning agent and an unknown environment. The role of the agent is to
generate actions that maximises the reward that it receives from the environment, i.e. when
the goal of reaching the destination without collision with obstacles is achieved. We demon-
strate how two learning algorithms common in reinforcement learning literature: Adaptive
Heuristic Critic (AHC) (Barto et al., 1983) and Q-Learning (Watkins, 1989), can be used to
solve the task successfully in two different ways: firstly, through the generation of position
commands to a PD controller which produces torque commands to drive the manipulator,
and secondly, through the direct generation of torque commands, removing the need for a PD
controller. During the process, the inverse kinematics problem for multi-linked manipulators
is automatically solved. Fast function approximation is achieved through the use of an array
of Cerebellar Model Arithmetic Computers (CMAC) (Albus, 1975). The generation of both
discrete and continuous actions are investigated and the performance of the algorithms in
terms of learning rates, efficiency of solutions, and memory requirements are evaluated.

Keywords: Reinforcement Learning; Machine Learning; Adaptive Systems; Neural Control

1 Introduction

We describe methods to handle the task of multi-linked manipulator obstacle avoidance and control
without a known dynamical or world model. A simulated robot manipulator with two links is used
and the objective is to move from a start point to some desired destination in the workspace. A
reinforcement signal which indicates when a collision with an obstacle or joint limit has occurred
or when the destination has been reached is required. Joint positions and velocities are used as
inputs to the system. The appropriate actions for each joint are obtained which not only enables
the manipulator to reach the destination, but also avoid collisions with obstacles in the workspace.
This a non-trivial task involving large input and action spaces. (see Figure 1)

The performance of two reinforcement learning algorithms for solving this task are compared.
The first set of experiments described in section 3 uses the Adaptive Heuristic Critic (AHC) (Barto
et al., 1983) algorithm together with Williams’ stochastic hillclimbing algorithm (Williams, 1988)
in order to produce real-valued actions. In the remaining experiments, the Q-Learning algorithm
and a discrete action space are used. We evaluate how well these algorithms perform in two
methods of controlling the manipulator: (1) through position commands to a PD controller, and
(2) through direct torque commands.

In the following discussion, robot refers to the two-linked manipulator under consideration;
agent, the controller which has to learn the correct actions to take; and state @, the angular

positions and velocities of the joints, i.e. ® = [91,91, 0>, 92]

*This paper was presented at the IEEE Asia-Pacific Workshop on Advances in Motion Control, Singapore, July
15-16, 1993.

| |
DESTIN%TION ENVIRONMENT | sue x | AGENT |
66 1
, Robot === cmacs |
. / dynamical , 6, ; |
. model ! |
Link 1 : Parameters Parameter updates :
VR U | AVAR AR
g AGT DG
,oor or 1 21
| Q AQ |
reinforcement : !
/ | |
Link 2 ‘ Action selector |
Position of e T, E | |
end-effector st A AQ ! |
changes 1 2 o _______ 1
********************** (through PD controller)
@ (b)

Figure 1: (a) Robot manipulator with obstacles in the workspace. (b) Interaction between the
agent and environment.

2 Reinforcement Learning

Reinforcement learning is a direct learning method where the performance of a learning agent is
judged on the basis of a single scalar signal, the reinforcement r received from the environment.
The objective is to determine the appropriate policy (which specifies the agent’s actions in each
state) in order to maximise the return, the expected long term discounted sum of reinforcement.

2.1 Adaptive Heuristic Critic (AHC) and Stochastic Hillclimbing
Adaptive Heuristic Critic

The learning procedure is an on-line method in which the agent seeks to learn the evaluation
function V(x) of a policy and adjusts the policy for improved performance in every time step
(Barto et al., 1989). The evaluation function gives a prediction of return at any state.

The TD (temporal difference) error! is obtained by :

er41 = Tep1 + YVe(®eq1) — Vi) (1)

where @, is the state of the system at time ¢ and ~ is the discount factor.
The evaluation function, approximated by a Cerebellar Model Arithmetic Computer (CMAC)
(Albus, 1975), is updated according to :

Vigi(z) = Ve(2) + agrqice(x) (2)
where c¢(®) = 14+ Aeg—q1(x) if @ =,
ee(®) = Acio1(®) if @ # x;

« is the learning rate parameter and ¢ (), an eligibility trace affecting the states through which the
system passed in the time steps preceding ¢. This eligibility trace, which decays at a rate dependent
on the parameter A, accelerates the learning process as shown by Sutton (Sutton, 1984).

1The TD error is also known as the heuristic reinforcement signal.

Stochastic Hillclimbing

In order to achieve real-valued outputs, actions are determined stochastically by associative stochas-
tic learning automata (Williams, 1988). Each action a is chosen from a Gaussian probability dis-
tribution with two parameters, the mean p and standard deviation o, which are approximated as
functions of the inputs by CMACs.

Williams proposed a method to update the parameters p and o in the direction of increasing
expected return E(r | &) in a stochastic hillclimbing manner :

Ap = B(r— bu)e(") where e(#) = % — (“U—Zﬂ)2 2 .
and Ac = pf(r-— ba)e(”) where e(9) — Bér;g _ (a—ua)a—o'

The terms e(#) and e(?) are the characteristic eligibilities of parameter updates; (r—b,) and (r—b,)
are the reinforcement offsets indicating how good the last action was with respect to reinforcement
baselines b, and b,. The TD error €;41, which provides a utility measure of the last action taken
with respect to the expected return in the previous state (Barto et al., 1989), can be used as the

(1) (o)

reinforcement offset. As in Equation 2, we employ eligibility traces s;”’ and s; ’ when updating u
and o respectively.

Since the operations involved in updating g and ¢ are the same, let p = [, 0], e = [e(®) e(?)]
and s = [3("), 5(”)]. Writing p,, e; and s; for these terms evaluated at time ¢, the policy update
rule is :

Pey1(@) = po(@) + Perrse() (4)
where si(®) = ei(x) + Asi—1(x) if T =X
se(®) = Asi_1(®) if ®# @

This update rule allows u to increase towards a if @ > g and the expected return from taking action
a is better than the average action p, as indicated by positive €;11 (and vice versa). The standard
deviation ¢ is decreased if |a — pu|< ¢ and €444 is positive, leading to convergence towards a locally
optimum action. The opposite case causes ¢ to increase and allows more exploratory behaviour.

2.2 Q-Learning

In Q-Learning (Watkins, 1989), the state-action value Q(x, a), which is the return in state @ when
action a is performed, is estimated. The action space is discrete and a separate Q(x, a) exists for
each action a. Each time the agent takes an action a from state z at time ¢, the current state-action

value estimate for ® and a denoted Qt(w, a) is updated as follows :
Qt+1(ma a) = (1 - ﬂ)Qt(mJ a) + ﬂ[r(m, Y, a) + 7IZIéa'AXQt(yJ l)] (5)

where y is the actual next state, v is the discount factor, 5 is a step-size parameter, A is the set
of possible actions and r(x,y, a) is the reinforcement that is received in the transition from state
@ to state y by taking action a. As in Equations 2 and 4, the state-action value estimates for the
preceding state-action pairs were also updated by amounts determined by the decaying eligibility
trace (not shown in Equation 5 for clarity). The state-action value estimates for other states and
actions remain unchanged.

During learning, the agent has to explore by performing different actions in order to discover
the best one. As in Sutton (Sutton, 1990), the method we have used is to select actions according
to the Boltzmann distribution

Pla|@) = Q@3 /3" Q@D forall € 4 (6)
l

This allows the agent to bias its policy toward the estimated optimal actions while permitting
sufficient exploration.

Unlike the AHC approach which has separate update rules for the evaluation function V()
and the policy p(x), Q-Learning requires only one update rule for the state-action values Q(x, a).
However, this does not imply reduced computation as the maximum Q(w, a) across actions has to
be found and the action probabilities calculated for state @ before an action is selected.

Since Q(x,a) is stored for all actions in each state, memory requirements in Q-Learning are
greater than that of AHC if the action space is large. In AHC, the policy p(x) has to be stored
whereas in Q-Learning, the policy is deduced from the Q-values.

3 Experiment Details

Four experiments were carried out :

AHC-POS: the AHC-Williams algorithms are used and the outputs are real-valued position
change commands.

AHC-TOR: the AHC-Williams algorithms are used and the outputs are real-valued torque com-
mands.

Q-POS: the Q-Learning algorithm is used and the outputs are discrete position change commands.

Q-TOR: the Q-Learning algorithm is used and the outputs are discrete torque commands.

In the AHC-POS and AHC-TOR cases, there was no need to pre-determine the range of action
values for the agent; the action values were initialized to zero at the beginning and converged to
the appropriate actions in each state. In the Q-POS and Q-TOR cases, the actions are discrete and
the magnitudes of position changes and torques corresponding to each action are set to reasonable
values for the task at hand. For Q-POS, the actions are { -0.4, -0.2, -0.1, -0.05, -0.025, 0.0, 0.025,
0.05, 0.1, 0.2, 0.4 } and for Q-TOR, the actions are { -10.0, -5.0, -2.0, -1.0, -0.5, 0.0, 0.5, 1.0, 2.0,
5.0, 10.0 }, in units of rads and Nm respectively. In our experiments, Q-POS and Q-TOR, used
an array of 22 CMACs (one for each action in each joint) while AHC-POS and AHC-TOR used 5
CMACs (one for each of V, 1, 01, pa, 02).

The reinforcement r is awarded according to : o

1. If the destination is reached, r = 0.5 + 0.5e~(f1l+1%21) " This gives a higher than normal
reinforcement if the destination is approached with low velocities.

2. If a collision occurs, r = —0.025x |@| of the link involved, subject to the constraint that the
maximum negative reinforcement is r = —0.30.

3. If either |01 | or |03 | is greater than 10.0 rad/s, r = —0.05. This is to indicate that excessively
high velocities are undesirable.

The following were the same for all four experiments: the dynamical model of the robot, the
reinforcement schedule and the CMAC structure. The value of 4 in Equations 1 and 5 was 0.95 and
the TD(A) method (Sutton, 1984) of using an eligibility trace in parameter updates for temporal
credit assignment was employed in all cases. With A = 0.5, the eligibility traces decay rapidly;
thus, we only had to maintain a queue of 5 previous states (and actions for Q-POS and Q-TOR)
and update the function values of these states or state-action pairs. For the AHC-POS and Q-POS
cases, the PD controller used had the form:

7= ki x A0 — kyx0 (7)

where k1 = 100.0 and ks = 3.0. Parameters 8 and ogt4r¢, however, had different values in the
experiments. These are summarized in Table 1.

‘ Experiment 5y A o 5] Wstart Ostart Memory req’mt
AHC-POS 0.95] 05] 0.1|0.005]| 0.0rad® | 0.1 rad 672K
AHC-TOR | 0.95 | 0.5] 0.1 0.5 0.0 Nm? | 10.0 Nm 668K
Q-POS 095105 | — 0.5 | random® n/a 2048K
Q-TOR 09505 | — 0.5 | random® n/a 2044K

Table 1: Parameter values and memory requirements during execution in the 4 experiments. Notes:
(a) actions are selected according to the Gaussian distribution; (b) actions are selected according
to the Boltzmann distribution across possible actions.

Training was conducted in cycles of 5000 trials where each trial consists of at most 100 steps.

If the destination is reached or a collision occurs, the current trial ends and the next one begins
with the robot starting at a random position in the workspace.

4

(a)

Figure 2: Trajectories followed by the robot from different start positions to the destination.

4 Results

Figure 2 shows that the robot is able to reach the destination from different start positions in
the workspace. The motion is smooth and the robot is able to back out of tight situations before
moving towards the destination.

Learning Curves - No. of Successes x 10° No. of Steps per Training Cycle
22 T T T T T
|
ol |
Il
|
18 .
il
U
| 16| B B 4
-TOR ‘
/ Q 141 —
| 7 \
S000pf] s\ AHC-POS
| AHC-TOR 12]
500l : : . i L wa
1] L e VAT AN P AR 4
L‘ ‘ L _qpos YNNI fan
20007 | o8l | ATV e AT AT AN ot e A A]
(Q-TOR:
|
1500 I 06 I
|
1000(t 4 04l J
/ AHC-TOR
500 i i i i i i i i i 02 i i i i i i i i i
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Training Cycles Training Cycle

(a) (b)
Figure 3: (a) Performance improvement with training. (b) Policy optimization with training.

Figure 3(a) shows how the performance of the agent improved with training in terms of the
increasing number of successes in each cycle. For the four implementations, the agent required
different amounts of training before reaching its best level of performance. AHC-POS learnt
fastest, followed by Q-POS and Q-TOR. AHC-TOR was the slowest.

The final performance figures for the four experiments are summarized in Table 2. AHC-TOR
reached its best level of performance after 443 training cycles (not shown in Figure 3(a)) and both
were better than their Q-Learning counterparts. This is due to the more precise control actions
possible with real-valued outputs. The best performance achieved are in AHC-POS, AHC-TOR,
Q-POS and Q-TOR order.

In all four cases, there are two distinct phases during learning as seen in Figure 3(b). In the
beginning, the number of steps taken per training cycle increases as the agent discovers how to
avoid collisions. This is then followed by a policy optimization phase where the agent attempts to
perform actions to reach the destination in as few time steps as possible. In the end, the efficiency
of the learnt policies are in AHC-TOR, Q-TOR, Q-POS and AHC-POS order.

The evaluation function V(z) learnt by AHC-TOR is shown in Figure 4. The AHC-POS
evaluation function had the same shape although the policy learnt was different. There are two
possible robot configurations in which the end-effector reaches the destination, i.e. two solutions

Evaluation Function V(x)

‘ . Experiment Final Final Average
‘Q’Q"[' ‘\. # Success | # Steps/Trial
:,'00 w\\., AHC-POS 4720 17.99
AHC-TOR 4701 12.72
"' Q-POS 4650 16.56
Q-TOR 4416 15.41

Figure 4: Evaluation function surface at Table 2: Summary of final performance figures.
61 = 0.0rad/s, 0, = 0.0rad/s.

to the inverse kinematics. These correspond to two peaks in the evaluation function surface as
indicated by (1) and (2) in the graph. In the Q-Learning experiments, 22 different Q-functions
were learnt which gave the Q-value for each of the possible actions in every state.

5 Conclusion

We have demonstrated how reinforcement learning can be used in an integrated method for obstacle
avoidance and control of a multi-linked manipulator. Qur results indicate that the AHC-Williams
and Q-Learning algorithms are effective in learning how to solve a complicated task involving
large input and action spaces. The algorithms required different amounts of training and achieved
different levels of performance. We found that the AHC-TOR approach required a lot more training
than the other methods, but converged to the best policy in the end.

References

Albus, J. S. (1975). A new approach to manipulator control : The cerebellar model articulation
controller (CMAC). Journal of Dynamic Systems, Measurement and Control, 97(3):220-227.

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike elements that can solve
difficult learning control problems. IEEE Transactions on Systems, Man and Cybernetics,
SMC-13(5):835-846.

Barto, A. G., Sutton, R. S., and Watkins, C. J. C. H. (1989). Learning and sequential decision mak-
ing. Technical Report COINS 89-95, Dept. of Computer and Information Science, University
of Massachusetts, Ambherst.

Sutton, R. S. (1984). Temporal Credit Assignment in Reinforcement Learning. PhD thesis, Uni-
versity of Massachusetts, Amherst, MA.

Sutton, R. S. (1990). Integrated architectures for learning, planning and reacting based on ap-
proximating dynamic programming. In Proceedings of the Seventh International Conference
on Machine Learning.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis, University of Cambridge,
Cambridge, UK.

Williams, R. J. (1988). Toward a theory of reinforcement-learning connectionist systems. Technical
Report NU-CCS-88-3, College of Computer Science, Northeastern University, Boston, MA.

