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ABSTRACT

Traditional synthesis systems often rely on a large set of rules
and a hand-crafted set of synthesis parameters in order to pro-
duce output speech. Gathering the synthesis parameters and
developing the rule set are very labour intensive tasks. This
paper offers an alternative to these labour intensive tasks. A
set of artificial neural networks (ANNs) are used to produce
the filter parameters which drive a synthesiser. This set of
ANNs is trained on data that is gathered fully automatically.
The networks offer a storage-efficient means of synthesis with-
out the need for explicit rule enumeration. The networks have
the capability to produce temporal variation within a phonetic
segment and differing outputs when input contexts are var-
ied. Furthermore, the distributed architecture of the networks
enables them to produce reasonable outputs when faced with
novel inputs. In addition, a feedback mechanism incorporated
into the architecture creates smooth transitions at segment
boundaries.

1. INTRODUCTION

Developing an unlimited text to speech synthesis system is an
enormous task. It requires converting the text of any desired
utterance into an output waveform. Creating the actual wave-
form involves driving a speech synthesiser with appropriate
control parameters. The determination of these parameters re-
lies on combining knowledge from vast areas of speech research:
acoustic-phonetic, lexical, syntactic, semantic, prosodic, and
higher levels. Unifying this knowledge into a working system
is a very labour intensive job.

Traditionally, the development of a synthesis system involves
careful study of recorded speech. These recordings are some-
times stored parametrically for use in later synthesis. Alterna-
tively, the recordings may be studied and generalisations in the
form of a rule set created. Although synthesis systems built in
this manner have been shown to produce quality output, their
development involves incredible amounts of human effort.

In this paper we will explore an alternative method of per-
forming some of the tasks required in a synthesis system. These
alternatives include the fully automatic gathering of a synthesis
parameter database and the use of a set of artificial neural net-
works (ANNs) for determining the control signals which actu-
ally drive the synthesiser. These alternatives are advantageous
in that the amount of effort needed to create a synthesis system
is drastically reduced. Furthermore, the ANN strategy offers a
useful alternative for situations where a rule-enumerated sys-
tem must fall back onto defaults.

The structure of the remaining sections is as follows. Sec-
tion 2 gives an overview of the entire synthesis system. Section
3 then details the automatic data gathering procedure. The
architecture and training of the ANN set are explained in Sec-
tion 4 Synthesis results, evaluation and conclusions are given
in Section 5

2. SYNTHESIS SYSTEM OVERVIEW

In our synthesis system, the synthesiser control parameters
are determined by combining a phonetic string, an FO contour,
a duration pattern, and data from the synthesis parameter
database into the signals required to control a linear predic-
tion based synthesiser. This is illustrated in Figure 1. The

work presented here has concentrated on building the synthe-
sis control procedure via a set of ANNs and on providing the
synthesis parameter database fully automatically. The pho-
netic string and FO contour are obtained by integrating mod-
ules of the MITalk system [1] into our system. The text of
the desired utterance is given to the MITalk FORMAT, DE-
COMP, PARSER and SOUND1 modules. This produces a
proposed phoneme string. The output is also given to the
MITalk PHONO1, PHONO2, PROSOD and FOTARG mod-
ules. This produces an FO contour. The duration model used
by the control procedure is described in [2].
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Figure 1. Overview of the proposed synthesis system

The proposed system utilises the phoneme as the basic syn-
thesis unit. Although larger units tend to retain inherent nat-
uralness, they sacrifice flexibility to create unlimited synthesis
messages. Smaller units, such as the phoneme, allow great flex-
ibility to produce unlimited messages but introduce significant
coarticulation concerns and loss of natural flow between seg-
ments. Many speech synthesis systems use the diphone as the
basic synthesis unit by claiming that joining synthesis segments
at the middle of a phoneme reduces spectral mismatch. This
relies on the assumption that each phoneme reaches a steady
state target near its midpoint in time. However, if diphthongs
and laterals are considered, spectral transitions through the
duration of the realisation are expected, and thus, no steady
state is reached. Without a defined steady state point, finding
the location for segment concatenation becomes a significant
problem. Phoneme boundaries have been chosen as the point
to join synthesis segments because that is precisely where spec-
tral transitions are expected to occur. This is not to say that
coarticulatory concerns are being ignored. It is fully realised
that transitions between phoneme segments must be smooth in
order to produce intelligible, quality speech. These coarticula-
tory concerns are addressed in the way the synthesis parameter



database is gathered. Although the phoneme is the basic unit,
triphone context examples are gathered giving multiple exam-
ples in the database for a single phoneme. The artificial neural
networks also use a feedback mechanism which smooths the
boundaries between phonetic segments.

3. DATA GATHERING

The proposed synthesis database is gathered fully automat-
ically from the TIMIT acoustic-phonetic database [3]. This
automatic gathering means that a far greater amount of data
can be analysed than would be humanly possible in a similar
amount of time. Our analysis led to a total of 184,511 phoneme
tokens from which to build our database. The database is di-
vided into 50 subsets - one for each phoneme used as our basic
synthesis unit. Figure 2 shows the sequence of steps involved
in gathering synthesis data for each of these phoneme subsets.
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Figure 2. Flow of data gathering steps

Creating the data files for each phoneme begins by taking
each of the TIMIT sentences and performing a pitch analy-
sis algorithm. The waveform is then speaker normalised to
average male characteristics according to a method described
in [4]. The normalised sentence and pitch files are used in a
pitch-synchronous linear prediction analysis module to create
a parameterised data file. Each parameterised data file con-
sists of pitch, probability of voicing, root mean square (r.m.s.)
energy, and 20 cepstral coefficients for each analysis frame. In
addition, the average sentence r.m.s. level is normalised to a
reference level.

The energy normalised parameter files are divided into 50
phoneme subset files. For each example in the subset files,
relevant information regarding the utterance from which it
was taken must be included. The context of the left and
right phonemes, the lexical stress of the left, current and right
phonemes, and sentence position (including syllable, word and
phrase information) are stored. In some cases, there are mul-
tiple phonetic examples having the same context, stress and
position attributes. In these cases, it is desirable to replace
these multiple examples by a “central” example representative
of the entire group. Finding this representative example is
somewhat complicated by the fact that each example may be
made up of a different number of analysis frames (different du-
rations). In addition, each analysis frame is made of multiple
parameter values.

A representative “central” example is chosen by calculating a
distance measure between each pair of phonetic examples. The
example which has the least total distance between itself and
all other examples is selected as the representative example.
The distance measure chosen is a Euclidean distance between

the cepstral coefficients which is a very good measure of spec-
tral similarity [5]. Thus, the chosen representative example is
the central example in spectral terms. Each pair of examples
are time aligned by a dynamic time warping procedure.

Finding a central example in this manner enables the 184,511
examples to be reduced to 39,810 examples. This reduction
leads to a set of templates that may be directly used in con-
junction with a control strategy for synthesis. We will use
these templates to train a set of artificial neural networks.
The reduction in examples significantly decreases the amount
of training time needed.

4. SYNTHESIS CONTROL BY ANNS

A synthesis control strategy must determine the exact param-
eters which drive a speech synthesiser. This usually entails an
elaborate set of rules dictating the selection and concatenation
of synthesis parameters stored in the synthesis database. The
strategy adopted in our system differs. The duration model
and FO contour are used to determine the number of frames
and the length of each for a given phonetic segment. The
actual synthesis parameters are then found by using a set of
trained ANNs. This section details the structure and use of
these ANNs.

ANNs have been used in many speech related tasks. In
speech recognition systems, these networks have been used
as part of auditory preprocessors, vector quantisers and static
pattern classifiers [6]. They have also been applied to the task
of discriminating between voiced, unvoiced and silence por-
tions of speech [7] and to the task of normalising input vectors
of a novel speaker to a reference speaker [8]. Networks have
also been applied to various synthesis-related tasks. Text-to-
phoneme conversion has been done via networks [9]. Networks
have been used to perform syntactic classification of isolated
English words [10] and to predict pitch contours of entire sen-
tences [11]. Neural networks have been used to learn typical
formant values of CVC syllables [12]. Articulatory synthesis
parameters have been learned through an assembly of ANNs
[13]. The have also been used to convert formant values to
articulatory parameters [14].

ANNs are not always the appropriate tool for a given prob-
lem. Their slow speed of model generation means wasted ef-
fort for simple problems. Situations where an ANN might be
the appropriate tool include: problems needing a sophisticated
smoothing algorithm when there are insufficient training exam-
ples to populate the input space, problems where the form of
the solution is unknown and there is no obvious parametric
way to deduce it, and problems where a series of transforma-
tions can exploit high order correlations in the input data. The
task of producing synthesis parameters for different contexts,
sentence positions and lexical stress attributes fits all of these
situations.

We have decided to use a set of 50 ANNs (one for each
phoneme). This choice gives each network a reasonably sized
task in addition to the possibility of reducing overall training
time by using different machines in parallel.

Figure 3 displays the architecture of each individual network.
A 3 layer network is used, consisting of 60 input nodes, 65
hidden nodes and 22 output nodes. Including bias units, each
network requires a total of only 5417 weights. The output of
the final layer is linear while the output of the hidden layer is
sigmoidal. In addition, the values of the output nodes are fed
back directly into the input layer. A similar feedback structure
was used by Jordan [15] to maintain serial order in network
states.

The representation of information in a network’s input layer
is of great importance to its overall performance. We want
our networks to produce the probability of voicing, the r.m.s.
energy level and the 20 cepstral filter coefficients for each syn-
thesis frame. The input given to produce each output frame
includes the context, position, stress and timing of the frame.
How this information is encoded can make a large difference
in the performance of the network. Further, since we hope the
networks will be able to generalise to novel situations, the input
structure should easily reflect similarities among input classes.
For example, the coding of a /bcl/ should be much closer to the
coding of /pcl/ than to an /s/. A distributed coding scheme
can accomplish this. Phoneme identities are encoded according
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Figure 3. Neural network structure

the variables consonantal/vocalic, consonant position, conso-
nant type, vocalic high versus low, vocalic front versus back,
vocalic long versus short, vocalic glide type, schwa versus non-
schwa, and silence type. Sentence position is also encoded in a
distributed manner including binary values for syllable, word
and phrase position.

The standard feed-forward artificial neural network is by na-
ture static where a single input vector is related to a single
output vector. However, our problem is not static. Transi-
tions between neighbouring output vectors should be smooth.
In addition, some indication of temporal variation within a
phoneme is needed. These concerns are addressed in the net-
work architecture. A feedback mechanism places the outputs
of the previous frame into the input vector of the following
frame. This helps to smooth transitions between neighbouring
vectors, especially on segment boundaries. Temporal variation
is addressed by dedicating a number of input units to coding
relative position within a segment.

The above described architecture was used to build 50 net-
works, one for each phoneme to be trained. The training
method used was a back propagation version similar to that
of Jacobs [16].

5. RESULTS AND CONCLUSIONS

Evaluation of a synthesis system is always a subjective task.
Without a panel of independent listeners (as used in Diagnostic
Rhyme Tests) it is difficult to present an evaluation regarding
synthesis quality without bias. Thus the following analysis at-
tempts to evaluate the developed synthesis by looking more
objectively at its capabilities and shortcomings. In the fol-
lowing analysis, some reference to audible output quality was
necessary, however, attempts have been made to keep these
minimal.

At a fundamental level, a synthesiser must first be capable
of producing all the sounds which serve as its basic synthesis
unit. This capability was tested by using the synthesiser to
produce phonetically rich sentences and listening to the out-
put. In addition, spectrograms of the synthetic utterances
were studied to ensure that spectral characteristics matched
those expected from established acoustic-phonetic studies. Al-
though the spectrograms did not always clearly exhibit higher
formants distinctly, lower formants were clear and located in
expected regions. The formant tracks of at least the first two
formants of vowels and semi-vowels were clear. Closures were
clean and bursts were distinct. Furthermore, fricatives, both
voiced and unvoiced, had appropriate high frequency energy
patterns. Diphthongs and glides exhibited appropriate transi-
tions throughout the duration of the segment.

Once it has been established that the networks are capable of
producing the basic sound units, it is also important to show
that the networks can produce different outputs when given
different contexts, stress, and sentence position information as
inputs. Furthermore, the networks should be able to produce
variation within a phonetic segment, especially for diphthongs
and glides. These capabilities are illustrated in Figure 4. The
left side of the figure shows waveforms and spectrograms of [iy]
examples in different contexts. Differences in the spectrum of
each example may also be seen. The [iy] preceded by the [h]
(the first example) has a second formant which remains above
2000 Hz during the entire duration of the phoneme. In the
following example, [iy] in the context of [m] and [ix], the sec-
ond formant remains around 2000 Hz throughout the phoneme.
The final 2 examples show movement in the second formant as
it initially starts low and moves upward. The right side of the
figure shows examples of [w] and [ey] displaying appropriate
formant transitions.

Another important capability of a synthesiser is the way
coarticulatory concerns are addressed. This was explored by
comparing the output of the network controlled synthesis with
output produced by concatenating appropriate “central” tem-
plates. Immediate differences in the smoothness of transitions
between phonetic segments was noticed. This is illustrated
in Figure 5. The left portion of the figure shows the wave-
form and spectrogram of template based synthesis while the
right portion gives the output from the networks. The tem-
plate synthesis is quite “chunked”. This results in speech that
sounds very disconnected. The network speech, however, is
much smoother and is preferable to the template speech.

Perhaps the greatest strength of the ANN control system is
its ability to produce novel outputs (i.e. outputs not contained
in the training set). In many rule based systems, novel outputs
are coped with by reverting to default parameter sets. The
network scheme, however, utilises similarities in input codes to
produce viable output parameters. For example, one network’s
training vectors included an utterance in the context [p][ax] in
an unstressed word initial position. When the novel input of
[p][eh] in an unstressed word initial position was presented to
the network, it was able to draw on similarities between the
two examples to produce acceptable output. This was true in a
wide variety of cases. Audibly, the novel outputs are intelligible
and of the same quality as the learned outputs.

As discussed previously, an objective evaluation of a synthe-
sis system 1s difficult. Attempts have been made to show that
the neural based synthesiser can adequately perform essential
synthesis tasks. First, it is capable of accurately producing
the basic sound units. Second, it can produce various realisa-
tions of the same phoneme when different input contexts are
supplied. Third, it exhibits variation within a phonetic ex-
ample as one would expect when listening to actual speech.
Fourth, it is able to produce reasonable synthesis parameters
when faced with situations not included in the training data.
Furthermore, the ANNs serve as a very efficient means of stor-
ing synthesis data. They also alleviate the burden of explicit
rule generation for producing synthetic messages. Finally, the
ANNs address the primary weaknesses of a template based
system, poor smoothing and poor template selection in novel
situations.
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