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ABSTRACT

It is well known [5] that variations in speaking rate can
account for a significant percentage of errors in practi-
cal speech recognition tasks. This is the result of the
dynamic nature of speech which is not modelled properly
by the standard HMM structure. This paper proposes an
extension to the standard HMM that takes advantage of
the information about the rate of speech that is contained
in inter-frame transitions. The new model can be seen as
a combination of Moore and Mealy type HMM’s that has
output probabilities attached to the transitions between
states in addition to the conventional output probabili-
ties attached to states. In this model fast and slow tran-
sitions are associated with additional hidden parameters.
The output probabilities of the transitions are modelled
with gamma distributions.

1. Introduction

This paper tries to overcome two limitations of the stan-
dard HMM structure. Firstly, the assumption that suc-
cessive frames are independent and secondly that a se-
quence of states which represent part-of- phoneme events
account for all the hidden variables in speech. The two
main assumptions in this paper are that speaking rate is
also an observable that should be modelled by a hidden
variable and that there is a relationship between speaking
rate and the dependency of successive frames. This paper
provides evidence for these assumptions and shows how
they can be modelled within the HMM frame-work. In
section 2 a straight forward measure of the dependency of
successive frames is proposed and its use in deriving in-
formation about speaking rate is shown. In section 3 this
relationship is included into a standard HMM structure
and the properties of this combined Moore-Mealy type
HMM are studied.

2. Speaking Rate and the Dependency of
Successive Frames

The basic idea of this section is to show that the de-
pendency of successive frames carries information about
speaking rate. This is not surprising because the faster
the speech the faster the change in the measurements that
are applied at each time frame. Therefore one would ex-
pect that for fast speaking rates the feature vectors are

less dependent, whereas they are closely correlated for
slow speaking rates.

2.1. Measuring Speaking Rate

Several measures of speaking rate have been proposed
[3, 4] that are defined on various macroscopic levels. They
include measurements of phones, words, utterances or
whole speakers. The definition of speaking rate that is
used throughout this paper is applied to phones. A phone
is considered to belong to a certain speaking rate bin if its
duration lies between the two boundaries that define this
bin. In the case of two speaking rates there is only one
threshold which divides the occurrences of a phoneme
into fast and slow. These boundaries were derived for
each phone separately depending on the statistics of its
duration. In the cross-word triphone context that these
experiments were carried out in this means that all the
triphones that share the same central phoneme have the
same speaking rate bins.

2.2. Measuring the Dependency of Successive
Frames

If one thinks of a phone as being located in a certain
bounded volume in feature space, a possible measure of
dependency is the Euclidean distance between successive
frames. This measure is useful because the average dis-
tance between a feature vector and its nearest neighbour
decreases as the number of feature vectors in the volume
increases. This corresponds to a decrease in speaking
rate. Since the movement of feature vectors through the
feature space is not random but follows certain trajecto-
ries one would also expect that for an increasing number
of vectors in the given volume not only the distance to
the nearest neighbour but also the distance between suc-
cessive frames decreases. For these reasons the measure
of dependency between successive frames in this paper is
chosen to be the Euclidean distance.

2.3. The Correlation between the Dependency
of Successive Frames and Speaking Rate

The following experiments were carried out on a subset of
the Broadcast News 1997 training data. The feature vec-
tors were PLP coefficients with an energy component but
without first or second order derivatives. The speaking
rate bins were derived as described in section 2.1.



The Correlation between Means and Variances of
the Euclidean Distance and Speaking Rate

In table 1 and the following tables number one is as-
signed to the slowest speaking rate and the labels increase
with increasing speaking rate. As can be seen from ta-

speaking rate 1 2 3 4

mean distance | 6.726 7.353 8.411 9.046
variance 11.499 | 13.432 | 14.055 | 14.364
nr. frames 30926 46522 54121 6705
nr. distances 29799 | 43653 | 47925 5449

Table 1: Statistics for phoneme ey

ble 1 speaking rate and Euclidean distance between suc-
cessive frames are monotonically correlated. The same
holds true for the variances. This is not very surprising
because one would expect that with increasing speaking
rate the location of the next feature vector becomes less
predictable. Given this relationship one could think of
speaking rate as a time parameter in a stochastic pro-
cess, where as time passes the paths of the process tend
to move away from the initial state and become more

spread out.
The Distributions of the Euclidean Distance
In addition to the correlation between Euclidean dis-

tance and speaking rate, the distributions of the distance
itself reveal an interesting structure. Figure 1 shows an
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Figure 1: Original and approximating Gamma distribu-
tions for phoneme ao at a certain speaking rate

original distribution (continuous line) as compared to an
approximation by a gamma distribution (dotted line). As
can be seen, the distribution of distance is very close to

the gamma distribution.

Using the Euclidean Distance as a Classifier for
Speaking Rate

For the following experiments MAP estimators were
constructed that classified pairs of frames or whole
phones as either fast or slow depending on the Euclidean
distance between their successive feature vectors. As can
be seen from table 2 the discrimination between a class
of fast and a class of slow transitions allows for the con-
struction of a classifier with reasonable performance. The
first two columns of table 2 show the number of pairs of

true \ est. 1 2 1 2
1 204310 | 158725 | 12888 | 7484
2 145941 | 199560 | 16635 | 23933

Table 2: Estimation for phoneme ey and two speaking
rates based on the length of the phoneme

frames that were classified as either belonging to speak-
ing rate one or two. The last two columns in this table
give the number of whole phones that were assigned to
one of the two classes. For these experiments a whole
phone was classified depending on the predominant class
that was assigned to its individual transitions. The rows
show the true label of a transition or phone, respectively.
From this table one can see that 57.0% of transitions be-
tween successive feature vectors were classified correctly,
whereas 60.4% of phones were assigned to the correct

class.

2.4. An alternative Definition of Speaking Rate

If one uses the Euclidean distance between successive
frames directly as a measure of speaking rate, then it is
possible to classify a phoneme as being fast if the mean
distance between successive frames within the phoneme
exceeds a certain threshold, otherwise the phoneme is
classified as slow. This was done for the following experi-
ments. Asshown in figure 2 the distance distributions be-
come more discriminative for this definition. In this figure
the distributions of the Euclidean distance for two speak-
ing rates under the two definitions of speaking rate are
shown. The continuous line shows the distributions for
the definition of speaking rate from the previous section.
The dotted line gives the distributions for the definition
that is discussed in this section. In both cases the distri-
bution with the higher mean represents the fast speaking
rate. As aresult of this increased discrimination, the per-
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Figure 2: Distance distributions for splitting phoneme
axr into two speaking rates by phoneme duration and
average distance between frames within one phoneme

formance of the MAP estimators increases as well. This
can be seen from table 3 which shows that 66.6% of tran-
sitions between successive frames were classified correctly
and 86.1% of all the occurrences of phoneme ey.



true \ est. 1 2 1 2
1 277072 | 77205 | 23820 | 2772
2 159184 | 195075 | 5678 | 28670

Table 3: Estimation for phoneme ey and two speak-
ing rates based on the average distance between frames
within the phoneme

3. Including Information about Speaking Rate
into a standard HMM

The last section showed that there is information about
the duration of phones contained within inter-frame tran-
sitions. It would therefore be desirable to modify the
structure of the standard HMM in such a way as to in-
clude this additional information.

3.1. Rescoring

A straight forward approach to make use of the dura-
tional information in inter-frame transitions is to rescore
a given hypothesised state sequence § by multiplying the
likelihood of the observation sequence O given the state
sequence § by the likelihood of observing the sequence
of distances D given the sequence of states and therefore
the sequence of speaking rates 4. Therefore the likeli-
hood of observing the sequence of feature vectors O and
the sequence of distances D becomes

L(0, D, 8) = L(0,3)L(D|3) (1)

where L(D|§) = L(D|¥) and 7 is the sequence of speaking
rates that is uniquely determined by the sequence 3.
Although one could use the EM algorithm to reestimate
the parameters of this model it has the disadvantage that
the training procedure cannot learn the notion of speak-
ing rate that is most advantageous for the recognition
process. This is because the notion of speaking rate is
completely determined by the initialisation.

3.2. Creating a new HMM Structure

If the estimators that were constructed in the last section
were perfect maximum likelihood estimators, the follow-
ing would hold true.

L(D|?%) = max L(D, 113) (2)

In this case one can maximise the likelihood of the obser-
vation sequences O, D by maximising with respect to §
and ¢ independently, i.e.

max L(O, D, §) = max L(O, 5) L(D, 9|5) (3)

Although (2) holds only to a certain extent, in this paper
the sequences § and ¥ are treated as being independent.
The likelihood of the combined sequences O, D therefore
becomes

L(0, D, 8,7) = L(0, §) L(D, 7|5) (4)

Here speaking rate is associated with a new hidden vari-
able v. This model has the advantage that it is less sus-
ceptible to the initial definition of speaking rate. Further-
more, as will be shown later the parameters of this model
can be reestimated efficiently in the EM frame-work.

3.3. Some Aspects of the new HMM Structure

The likelihood of the sequence D
The likelihood of the sequence of distances D is defined
by

L(D,4|5) = Hp(dt|vt75t,St—l)P(vt|vt—1,St75t—1) (5)
t

In this equation p(di|vs, st, st—1) stands for the output
probability of the transition at time ¢, which moves from
state s¢—1 to state s; with speaking rate v;. This output
probability is defined on the distances between successive
frames. As was shown in the last section these probabil-
ities can be modelled by gamma distributions and there-
fore

Lo iy o1

p(d|n77’7.]) - P(Vn,i,j) d € (6)
where (n,i,j) stands for the transition from state ¢ to state
J at speaking rate n.
The expression p(vi|vi—1,St,5¢—1) in (5) is the probabil-
ity for observing speaking rate v, given that speaking
rate v;—1 was observed at the previous transition and
the current transition moves from state s;—1 to state s;.
Since the notions of speaking rate that were used so far
are defined on a per-phone basis these transition prob-
abilities are assumed to be zero for transitions between
different speaking rates within a phoneme, whereas be-
tween phoneme transitions can be learned from the train-
ing data. This is a restriction which is not essential to
the structure of the HMM in (4) but which was adopted
in this work due to the macroscopic nature of the concept
of speaking rate.

The Topology of the new Model

Figure 3 shows the topology of the new model for two
hidden variables that correspond to a fast and a slow
speaking rate. The HMM structure in this example is
the usual left-to-right structure. As can be seen from
this figure the restriction that the speaking rate cannot
be changed within the model results in two separate paths
that can be taken through the model. Each path has its
distinctive output probabilities that are attached to the
transitions between the states. In principle the output
probabilities of the transitions are different for each pair
of states. The states in the two paths are actually the
same and store the same state output distributions.

3.4. EM Reestimation

The reestimation formulae for the existing HMM parame-
ters stay essentially the same. For example, the following
equation shows how the means of the Gaussians are rees-
timated

22, La(0,D, st = j)ot
Hi EtLA(O,D,Sth)

where
Lx(O,D, st = j) = Z Lx(0, 8)La(D|3)
S84 =3

It is more interesting to look at the reestimation formu-
lae for the parameters of the gamma distributions. These



Figure 3: The topology of the new HMM for two speak-
ing rates

are given by

Dnji 23 La(Oy Dy, iy ie—1)ds

Tngyi > Lx(0, D, 0y, ity i4—1)

S, L5(0, D, 1y jiyie—1) log de (T
Zt L)\(O,D,’nt,jt,it_l)

T (7n,,i)
L(On,j,i)

—log fn,j,i =

Here the first equation in (7) is the result of calculat-
ing the derivative with respect to 7y,;,; and the second
equation results from calculating the derivative with re-
spect to 7p,j,i. Note that these formulae differ from their
equivalents in [2]. There the reestimation of 7, new was
performed by using voiq and similarly 7.4 was used to
estimate Vnew. In (7) Vnew and npew are estimated de-
pendent on each other. The second equation in (7) can
be directly used to reestimate the parameters since the
behaviour of the function I /T', which is known as the -
function, is well understood (see [1]). Denoting the right
hand side of the first equation in (7) as my,j; and the
right hand side of the second equation in (7) as l,,;; and
substituting the first into the second equation one can
rewrite the second equation in (7) as follows.

Y (Tn,j,i) — 108 Tn,jyi = lnji — log ma,j (8)

Applying Newton’s algorithm one can find estimates for
Un,j,i iteratively by using the following formula

Y% ) —1log 7™ .+ logma ji — lnyji

_(k+1) _ (k) n,g5i nsJ,
Vngsi = Vnji ¢,(’7(k) ) — 1
n,J,% f’ikz ;

Given a proper value for 7y, j,; the parameter 7, can
now be calculated from (7).

Interpretation of the Reestimation Formulae

The first equation in (7) is intuitively plausible since
Un,j,i [Tin,j,; is the mean value of the reestimated gamma
distribution. However, for the second reestimation equa-
tion one might have guessed

Onji 23 Ia(Oy Dy, iy is—1)(ds — Mpji)>
'Flfzhj,i Et LA(O7 D, ny, js, it)
because the left hand side of this equation is the vari-

ance of the gamma distribution. However, equation (8)
can be interpreted in a similar way, where the concept of

(9)

variance has to be substituted by a KL distance. To see
this suppose there is a probability distribution p(o) over
the possible outcomes o of an experiment. This describes
the situation in the previous section. There the possible
outcomes are the di’s and their probabilities are given by
the appropriate ratios in (7). Now, in this frame-work
the right hand side of (8) can be written as follows.

Z,,:p(o) log o — log (Z p(o)o) = 20:1’@) log W

p(0)o
- ;p(o) log %
——D(pllq) (10)

Here D(p||q) is the Kullback-Leibler distance between
the probability distributions p and ¢ where one has to set

__p(o)o
q(0) = m (11)

The value —D(p||g) can be interpreted as a variance mea-
sure, because it depends on the distribution of the values
of the possible outcomes around their mean. The closer
each individual outcome is to the average the closer the
distribution ¢ is to p. Interestingly, the left hand side of
(8) can be seen to be just the continuous equivalent of
this variance measure for the gamma distribution.

4. Conclusion

It has been shown in this paper that experimental evi-
dence suggests that the transitions between states can be
modelled individually depending on the speaking rate.
A possible alternative to the standard HMM based on
this assumption was proposed. The EM reestimation
formulae for this model were derived and shown to be
intuitively understandable. Work is now in progress to
evaluate this model on the 1997 Broadcast News test
set which has a statistically significant portion of spon-
taneous speech.
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