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ABSTRACT

This paper presents a new architecture which integrates
recurrent input transformations (RIT) and continuous den-
sity HMMs. The basic HMM structure is extended to ac-
commodate recurrent neural networks which transform the
input observations before they enter the Gaussian output
distributions associated with the states of the HMM. During
training the parameters of both HMM and RIT are simulta-
neously optimised according to the Maximum Mutual Infor-
mation (MMI) criterion. Results are presented for the E-set
recognition task which demonstrate the ability of recurrent
input transformations to exploit longer term correlations in
the speech signal and to give improved discrimination.

1. INTRODUCTION
Hidden Markov Models (HMM’s) constitute the most suc-

cessful and widely used approach to modelling acoustic
events in speech recognition. However, the assumptions
made by a first order HMM as to the underlying nature
of speech are poor. A major flaw of HMM’s when applied
to automatic speech recognition (ASR) tasks is the output
observation independence assumption

P(Y: =ye|S] =51, =yi)=P(Ye = w|Se = 5:) (1)

i.e. the probability that an acoustic observation y will occur
at time ¢ depends only on the output distribution associated
with the present state s: of the Markov chain but not on
the other observations. The problem with systems of this
kind is that slowly varying articulatory processes introduce
significantly larger amounts of long-term correlation which
cannot be modelled adequately by the state transition prob-
abilities alone. Modelling of acoustic signal dynamics can
be improved by adding new dimensions to the observation
vectors. Improved performance is normally achieved by in-
troducing first order derivative information as as part of the
observation vector. Recently reported results [8] indicate
that using second order derivatives can also reduce recog-
nition error rate. In most cases, the greater the number of
parameters employed by the model, the greater will be the
potential for modelling complex acoustic events. However,
more parameters will require more training data and the
associated computational requirements will be high. The
obvious solution to this problem is to transform the out-
put of the preprocessor so that the dimensionality is re-
duced while retaining as much information as possible. It
is clearly desirable to rank the components of the observa-
tion vector according to their relative information content
and perform selective pruning using some performance re-
lated criterion. Various input transformations of this kind

have been investigated [7], [3]. However, unlike the work
described here, once derived, these transformations remain
unchanged throughout the training process. Furthermore,
the criteria used to derive them are not directly related to
the objective function used to optimise the HMM parame-
ters.

Reconsidering the independence assumption problem we
realise that using higher order derivative information with
fixed input transformations to reduce dimensionality is not
a complete solution to the problem. Ideally we would like
to enhance the transformation by incorporating a recurrent
mechanism which allows the present output y; to be a func-
tion of (yo,y1,...4¢—1). In this paper we introduce the con-
cept of recurrent input transformations (RIT) in the HMM
framework. The basic HMM structure is extended to ac-
commodate recurrent neural networks which transform the
input observations before they enter the state output of the
HMM. During training the parameters of both HMM and
RIT are simultaneously optimised according to the Maxi-
mum Mutual Information (MMI) criterion.

2. THE HMM/RIT ARCHITECTURE

In a conventional HMM, the probability of an observation
y given a Gaussian output distribution p with parameters

(C,m) is

- L —-1/2(y—m)T ¢~ (y—m)
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where m is the mean vector of the distribution, C is the
covariance matrix, and d is the dimensionality. An input
transformation is defined which transforms the output of
the preprocessor x into the observation y seen by the Gaus-
sian such that

y=fnUsfno1(Uh—y .. AU ). ) (3)

where U; . ..Uy are matrices and f; ... fn are differentiable
functions. The above transformation can be viewed as an
N-layer neural network where the units in layer ¢ are set
to compute f(.) and the weights of layer i are the values
in U;. A recurrent mechanism can be incorporated into 3
by allowing the argument of f; to carry information about
past states of the transform. In the following sections we
consider single layer recurrent transformations with state
units whose structure is shown in figure 1. The output of
the transformation can be expressed as

ye = fo(Ulows +Usori—1) (4)
re = fr(Uirze+ Uggri1) (5)
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Figure 1. General structure of recurrent input transformation.
x is the output of the preprocessor y is the output of the trans-
form, r is the output of the state units and ¢ is the time index.
(note: not all connections are drawn for clarity of presentation)

where r is the output of the state units, ¢ is the time
index, Uro, Urr, Urr, Uro are the matrices describ-
ing the input-to-output, input-to-recurrent, recurrent-to-
recurrent and recurrent-to-output connections respectively.
The functions fo and fr are chosen to compute symmetric
sigmoids with output ranging in the interval [—1.0, 1.0].

Part of our objective in this work is to investigate the
benefits of tying input transformations to specific states or
set of states. The system we have implemented therefore
allows input transformations to be state based (no sharing),
HMM based (single transformation shared by all states of a
model) or global (single transformation shared by all states
of all models). In fact, the system has been developed as
an extension of the HTK package described in [10], [9] and
allows arbitrary tying of input transformations in common
with all of the other HMM parameters.

3. INITIALISATION

Several different approaches can be taken to initialising the
RIT’s. Since we attempt to provide a better acoustic model
with improved discrimination it seems plausible to initialise
the RIT’s to perform discriminative analysis on the feature
vectors. Following Woodland [7], we initialise the trans-
formations to increase the discrimination between in-class
and potentially confusable out-of-class vectors. The in-class
data is characterised by a mean vector m; and covariance
matrix C;. These parameters are directly available from the
Gaussian output distributions associated with the states of
the HMM (eq. 2). The out-of-class (confusion) data can
be similarly expressed in terms of a mean vector m, and
covariance matrix C,. The covariance of the confusion data
centred on the in-class mean, (), can be calculated by

Qo = Co+ (mo — my)(mo —my)" (6)

The required transformation matrix S is the one such that

STC;S=Tand STQ.S =D

Conditional cross-entropy

0.042

0.04
0.038
0.036
0.034
0.032

0.03
0.028
0.026

0 5 10 15 20 25 30
iteration

Figure 2. Plot of the MMI objective function for 15 state
HMM's with 24x16x10 model-based input transformations.

where D is diagonal. Solving the general eigen problem, S
can be expressed as

S =RATY2R, (7)

where R; is the matrix of eigen vectors of C;, A is the di-
agonal matrix of corresponding eigen values and R; is the
matrix of eigen vectors of (RlA_l/Q)TQO(RlA_1/2). Var-
ious possible ways of gathering confusion data have been
discussed in [7], however, in the work reported here we as-
sume that @, is the average covariance over all classes. Im-
proved discrimination in a subspace of the original obser-
vation space can be achieved by discarding dimensions in
which the transformed variance of the confusable data has
a smaller variance than the in-class data. In the following
stage, we use S to initialise a single layer recurrent input
transformation with parameters Uro, Urr, Urr and Ugo.
Following Bengio [2], the input-to-output connections can
be initialised with Uro = ¢S where € is a small positive
number. Consequently, the total input to the output units
of the network will be small and the sigmoid functions will
operate within a linear range. The recurrent-to-recurrent
and recurrent-to-output connections are set to small random
numbers and all biases and input-to-recurrent connections
are set to zero. The advantages of such deterministic ini-
tialisation are that the parameter estimation process does
not depend entirely on random initial conditions and the
recognition performance of the set of HMMs used to derive
the transformations is partially or fully preserved.

4. TRAINING

We consider a speech recognition task where each class is
represented by a single HMM. The set of HMM’s with full
covariance output distributions is trained using ML and the
BW algorithm. Input transformations are initialised from
the corresponding covariance matrices and shared covari-
ance matrices will imply subsequent sharing of input trans-
formations.

In the MMI approach the parameters of the model are
reestimated by maximising

Iy="Y log pa(y(n)|t(n)) — log px(y(n)|r) (®)



where y(n) is the sequence of observations, ¢(n) is the cor-
rect transcription of y(n) and r represents the recognition-
time HMM. Traditionally MMI optimisation of HMM pa-
rameters is carried out using some form of steepest descent.
The partial derivative of the cost function is calculated with
respect to each parameter in the system and using this in-
formation gradient descent is performed in the parameter
space. Unfortunately, gradient descent type optimisation
is extremely slow and it scales up poorly as tasks become
larger and more complex.

Another approach to improving the speed of convergence
is to make explicit use of high order derivatives. Let a(t—1)
be the vector containing the present values of all parameters
in a system. Given higher order derivative information, a
new parameter vector a(t) can be computed by

a(t) = a(t — 1) — pH™'g(t) ©)

where a(t— 1) is the old parameter vector, g(t) is the gradi-
ent of the objective function with respect to the parameter
vector and H is the Hessian matrix of second derivatives.
In order to reduce the computational load due to the cal-
culation, inversion and storage of the Hessian matrix most
implementations of this method use some approximation to
the Hessian. In the work presented here we adopt the as-
sumption that all parameters are independent. We further
simplify the computation by using a difference approxima-
tion to the second derivatives rather than exact values.

H = [hs] (10)
L L s - (-1 o
v aa? ~ Aai(t — 1)

Using equations 11 and 9 gives

—ai(t) (12

gi(t)
gi(t —1) —gi(t)

For n set to 1.0 expression 13 transforms into the update
strategy of Fahlman’s QuickProp [4]. Subsequently, the spe-
cial cases arising in 13 with regard to limiting the changes
in parameter value are handled in a similar fashion to the
method used by Fahlman in the original paper. No param-
eter change is allowed to be greater in magnitude than u
times the previous update of that parameter. If the change
computed by the update formula is too large or in the op-
posite direction to the current gradient, we instead use p
times the previous change as the current change. At the
start, one steepest descent iteration is used to bootstrap
the process.

5. DATABASE AND GENERAL
EXPERIMENTAL SETUP

The task chosen to evaluate the performance of the two
training techniques was the speaker independent (SI) recog-
nition of the members of the British English E-set (“B”,
“C”’ “D”’ H:E:”7 HG”’ H:P”7 HT” & “V”). The E—Set recogni_
tion is considered to be a particularly difficult task due to
the high level of confusability between the different classes
in the set. The data used for the experiments was collected
and distributed by British Telecom Laboratories (BTL) and
forms a subset of their spoken alphabet database. The same
database has also been explored by Woodland [7] and Mc-
Culloch [5] which allows for a more realistic comparison of

Aa; (t)

= 7 Aai(t—1) (13)
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Figure 3. Train/Test set performance for 15 state HMM's
with 24x16x10 model-based input transformations globally op-
timised using MMI.

the different training techniques employed. The experimen-
tal conditions are similar to those employed by Woodland
in [7]. Each member of the E-set is represented by three ut-
terances from each of the 104 different speakers (54 males,
50 females). The speakers are split into two halves to form
a training set of 1239 utterances and a test set of 1219 ut-
terances. The acoustic preprocessor uses the output of a
27 channel filterbank to produce 12 Mel Frequency cepstral
coefficients (MFCCs) and their first order differentials (the
twelve coefficients include the zeroeth coefficient which is
the average value of the log power spectrum). The data
was then further transformed using the principal compo-
nents decomposition of the common covariance matrix of
the training set. This resulted in a data set with common
covariance matrix equal to the identity matrix. This trans-
formation step further simplified the calculation of S (eq. 7
by setting Q. (eq. 6) to the identity matrix.

6. RESULTS & DISCUSSION

Some preliminary experiments were carried out in order to
establish the usefulness of the proposed architecture. In
the first set of experiments, each class was modelled by a 3
state left to right HMM with no skips. The distributions of
the final state were tied across all models to provide mod-
elling of the vowel part of each utterance. By restricting
the HMM’s to just 3 states, the baseline performance is
considerably reduced from the best achievable (for exam-
ple with 15 state HMM’s we obtained 93.7% on the same
recognition task). However, the primary objective of our
research is to investigate the ability of a globally optimised
HMM/RIT configuration to exploit the available parame-
ters. Subsequently, we wish to determine the advantages of
the HMM/RIT architecture compared to the conventional
Maximum Likelihood (ML) trained HMM systems.

The first row of results in table 1 established the base-
line performance for Maximum Likelihood and Maximum
Mutual Information trained models. A global input trans-
formation was then introduced with output dimensionality
reduced three times. The transformation was initialised to
perform discriminative analysis and after the initialisation
stage, the HMM parameters were reestimated via ML. The
low performance figure obtained at this stage of the experi-
ment (2nd line in table 1) indicates the loss of discrimination



Transformation ML MMI
train % | test % | train % | test %
none 73.61 72.44 94.51 76.54
24x8 63.84 59.23 85.47 75.47
24x8x20 63.84 59.23 89.34 80.75

Table 1. E-Set results for various input transformations using
3 state HMM'’s and single global transformation. The type of
the transformation used is encoded as IxOxz R where I is the
number of input units, O is the number of output units and R
is the number of recurrent (state) units

Transformation ML MMI
train % | test % | train % | test %
24x24 95.00 90.65 100.00 91.88
24x16 94.35 87.94 100.00 88.27
24x8 91.69 81.46 98.55 82.12
24x16x10 94.35 87.94 100.00 91.03
24x8x12 91.69 81.46 100.00 88.36

Table 2. E-Set results for various input transformations using
15 state HMM's and model based transformations. The type
of the transformation used is encoded as [zOxz R where [ is
the number of input units, O is the number of output units
and R is the number of recurrent (state) units

information introduced with the vastly reduced dimension-
ality. In the next stage, the HMMs and the associated input
transformation were simultaneously optimised according to
the MMI criterion. The recognition results after this stage
show that the global optimisation enables the MMI train-
ing to succeed in restoring the discrimination abilities of
the models. The third line of table 1 shows the results ob-
tained when the above experiment was repeated except that
20 recurrent units were added to the input transformation.
In this case, the combined RIT and HMM, simultaneously
trained using MMI show a significant improvement in per-
formance. This confirms that there is extra information in
the long term correlation which the model is able to exploit.

Table 2 gives results of using model-based transforma-
tions with 15 state HMM’s. In this case, the final 9 states of
each model were tied and shared a single input transforma-
tion, the remaining 6 states of each model shared a separate
model-based transformation. Figure 2 shows the evolution
of the MMI objective function for the case of model-based
recurrent input transformations with 16 outputs and 10 re-
current units. The graph clearly demonstrates the fast con-
vergence properties of QuickProp. Figure 3 plots the recog-
nition performance achieved after each iteration of MMI
training. As can be seen from table 2, the performance on
the training data in four out of the five cases tested was
100.00% and this suggests that the system is undertrained.
As a result the absolute performance level achieved is below
that of our best full-covariance MMI-trained system. Nev-
ertheless, the positive effect of adding recurrent state units
is still clearly seen.

7. CONCLUSIONS

A system has been described which combines recurrent in-
put transformations with conventional continuous density
HMM’s. Preliminary results have been presented which
demonstrate that global optimisation allows the dimension-
ality of the feature vectors to be reduced without loss of
performance. Furthermore, when recurrent states are intro-
duced, performance increases significantly suggesting that

there is further information to be extracted from the local
context.

The use of recurrent input transformations on our best
models has not yet achieved an improvement when com-
pared to an MMI trained full covariance HMM’s. However,
the BTL E-set database is very small and we expect more
substantial gains will be possible when more data is avail-
able.
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