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ABSTRACT

This paper describes a framework for optimising the param-
eters of a continuous density HMM-based large vocabulary
recognition system using a Maximum Mutual Information
Estimation (MMIE) criterion. To limit the computational
complexity arising from the need to find confusable speech
segments in the large search space of alternative utterance
hypotheses, word lattices generated from the training data
are used. Experiments are presented on the Wall Street
Journal database using up to 66 hours of training data.
These show that lattices combined with an improved esti-
mation algorithm makes MMIE training practicable even
for very complex recognition systems and large training
sets. Furthermore, experimental results show that MMIE
training can yield useful increases in recognition accuracy.

1. INTRODUCTION

Previous research has shown that the accuracy of a speech
recognition system trained using Maximum Likelihood Esti-
mation (MLE) can often be improved further using discrim-
inative training. In particular, Maximum Mutual Informa-
tion Estimation (MMIE) has been studied in the context
of small vocabulary speech tasks and substantial gains in
performance have been reported [1, 2].

Discriminative optimisation of HMM parameters using
MMIE is much more complex than the corresponding MLE
case. Firstly, given the complete data set, there is no closed
form for the optimal parameters as there is in Baum-Welch
re-estimation. Instead, some form of gradient-based opti-
misation must be used. Thus, whilst an MLE system can
typically be trained in a few iterations, MMIE training may
require considerably more. Secondly, discriminative train-
ing requires confusion data representative of the recogni-
tion errors made by the speech recognition device. Even in
a small vocabulary task, the gathering of statistics about
mismatched segments of speech results in a dramatic in-
crease in computational requirements compared to the cor-
responding MLE case.

The focus of the work reported here is to find methods
of improving the recognition accuracy of large vocabulary
continuous speech recognition (LVCSR) systems which typ-
ically have several million parameters and require very large
training databases. Thus, the application of discriminative
training techniques to LVCSR systems is computationally
extremely challenging.

A recent trend in the design of LVCSR systems has been
the inclusion of facilities to generate lattices encoding mul-
tiple recognition hypotheses. Currently used for system de-
velopment purposes or multi-pass recognition, these lattices

provide a compact encoding of confusion data and therefore
offer a route towards making MMIE training of such sys-
tems practicable.

This paper explores the use of lattices for the discrimi-
native training of LVCSR systems. The basic framework is
described and then a number of experiments using the HTK
tied-state LVCSR system [6] and the Wall Street Journal
database are presented.

2. MMI ESTIMATION OF HMM
PARAMETERS

MMIE training attempts to increase the a posteriori prob-
ability of the model sequence corresponding to the train-
ing data given the training data. For R training observa-
tions {O1, Oa, ..., Oy, ... Or} the MMIE objective function

is given by
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and it is usually assumed that the denominator in equation
(1) can be replaced by

(1)
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where M, is the model correspondmg to the word sequence
W and Mger, is a model constructed such that for all paths in
every My, there is a corresponding path of equal probability
in Mgen. Typically, Mgen is the model used during recog-
nition. Thus, MMIE training can be interpreted as a two
stage optimisation process. The first stage is equivalent to
performing MLE training such that the HMM parameters
are adapted to increase the numerator term Px(Or|M.).
In the second stage, the HMM parameters are changed in
the opposite direction in order to minimise the denominator
term PA(O\MgEn). The second step dominates the compu-
tation and this will depend on the size of the vocabulary, the
grammar and any contextual constraints. In many practical
situations, for example where cross-word context dependent
models are used in conjunction with a long span language
model, the construction of a complete model for Mgen is
intractable.

A continuous density HMM system can be optimised ac-
cording to the above MMIE objective function by using the
following equations to re-estimate the means p; » and vari-
ances o7, for each state j and mixture component m [2].
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where 6; m(z) represents the sum of all z weighted by the
probability of occupying component m of state j and 9;,m
represents the corresponding occupation counts.

Similarly, the mixture weight parameters c; ~ can be re-
estimated according to
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To remove emphasis from small-valued parameters [2], the
derivatives of the objective function are approximated by
the following expression
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where v;jm is the occupancy count of mixture component
m in state j.

The constant D is set to be just large enough to ensure
that all variances remain positive. The constant C' is cho-
sen such that all parameter derivatives are positive. Exper-
imentally, these selection criteria have been shown to give
relatively smooth and fast convergence [1, 2].

3. WORD LATTICES

A word lattice forms a compact representation of many dif-
ferent sentence hypotheses and hence provides an efficient
representation of the confusion data needed for discrimina-
tive training [3]. In the HTK system [6], a lattice consists
of a set of nodes that correspond to particular instants in
time, and arcs connecting these nodes to represent possible
word hypotheses. Associated with each arc is an acoustic
score (log likelihood) and a language model score.

Lattices are generated as a by-product of the recog-
nition process. The HTK LVCSR system uses a time-
synchronous one-pass decoder that is implemented using
a dynamically built tree-structured recognition network.
This approach allows the integration of cross-word context-
dependent acoustic models and an N-gram language model
directly within the search [4]. Once these lattices are con-
structed, they can be used as a word graph to constrain the
search space in further recognition passes. Assuming that
the lattice coverage does not change during parameter re-
estimation, this use of lattices as a constraining word graph
forms the basis of the proposed MMIE training algorithm
which is as follows:

1. Generate a pair of numerator and denominator lattices
for each utterance in the training data, these corre-
spond to M, and Mgen, respectively. The numerator
lattice is produced by aligning the acoustic data against
a network of HMMs built according to the “correct”
transcription. The denominator lattice corresponds to
running an unconstrained recognition pass. In both
cases an appropriate N-gram language model is used.

2. For each training utterance, the numerator or denomi-
nator lattice is loaded into the recogniser and reduced
to a word graph. Recognition is performed using the
current HMM set and the language model scores from
the word graph. A new output lattice is then produced
containing the original language model scores and new
acoustic scores. For each node in the lattice and unique
spanning word w;,;, the forward (@) and the backward
(#) lattice probabilities are computed. The forward
probabilities are given by

Qj = Z diPacoust(wij)-Plang(wij) (7)
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and the backward probabilities are computed in a sim-
ilar fashion starting from the end of the lattice. For
each pair of nodes ¢ and j, the corresponding &; and
[; are propagated into the sequence of model instances
corresponding to word wj; j, and statistics are accumu-
lated.

3. The two sets of statistics accumulated by performing
step 2 separately for the numerator and denominator
of the MMIE objective function are combined together
and new parameter estimates calculated according to
equations (3), (4) and (5).

4. SYSTEM DEVELOPMENT

This section describes the practical development of the dis-
criminative training framework. The development was car-
ried out in two separate stages - generation of training set
lattices and optimisation of HMM parameters.

4.1. Lattice Generation

The lattices were generated using the HT'K LVCSR sys-
tem. The system uses state-clustered, cross-word mixture
Gaussian triphonic acoustic models and a back-off bigram
language model.

Each frame of speech is represented by a 39 dimensional
feature vector that consists of 12 mel frequency cepstral
coefficients, normalised log energy and the first and second
differentials of these values.

The state clustering algorithm uses decision trees built
for every monophone HMM state to determine equivalence
classes between sets of triphone contexts. This is followed
by the application of an iterative mixture splitting and re-
training sequence which allows the optimal match between
system complexity and available training data to be found.

For the lattice generation on the training data, a 65k
word list was created by adding the words occurring in the
training set to our standard WSJ recognition lexicon [6].
A corresponding bigram back-off language model was then
constructed to accommodate the SI-284 training set which
contains utterances with both verbalised and non-verbalised
punctuation. The language model (train_bg65k) contained
4.2 million bigrams estimated from the nab94 text corpus
of 227 million words.

Two sets of lattices were generated, each consisting of
numerator and denominator subsets. Table 1 gives a com-
parison of the HMM systems used to generate each set.
Table 2 gives an indication of the quality of the lattices in
terms of word/sentence error rate and lattice density. The
lattice density figure is the average number of lattice arcs
(representing words) per spoken word. The lattice sentence
error rate relates to whether a path corresponding to the



[ System [ States [ #Mix. comps. Data |
OMM-0 | 3948 2 SI-84 (WSJ0)
HMM-1 | 6399 12 SI-284 (WSJO0+1)

Table 1. HMM systems used for lattice generation.

correct sentence transcription exists in the lattice. The lat-
tice word error rate is a lower bound on the word error rate
from rescoring the lattice.

System Set [ Density | %SER | %WWER
HMM-0/1 | num 1.7 0.0 0.0
HMM-0 den 50.7 21.6 1.9
HMM-1 den 14.9 14.8 1.2

Table 2. Lattice densities and % lattice sentence/word error
rates for the HMM-0/1 lattice sets.

Both HMM-0 and HMM-1 are gender independent state-
clustered cross-word triphone systems using the 1993 LIMSI
WSJ Lexicon and phone set. The HMM-0 system was
trained on the SI-84 (WSJO0) data set (7,176 utterances).
A relatively wide pruning beam was used which resulted in
an average lattice density figure of 50.7. The HMM-1 sys-
tem was trained on the SI-284 (WSJ0-+1) data set (36,441
utterances). Details of this system and its performance on
various WSJ test sets is given in [6]. Lattices were generated
for the full SI-284 training set. To speed up development
time, a tight pruning beam was used resulting in an average
lattice density figure of 14.9.

Finally, some of the denominator lattices in the HMM-
0/1 sets were found not to contain the correct transcription
of the utterance. To solve this problem, the corresponding
numerator and denominator lattices were merged together
to form a new set of denominator lattices used for MMIE
training.
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Figure 1. Change in the value of the MMIE objective function
for global and per-phone D constants using HMM-0 with 2
mixture components and 400 training utterances from SI-84.

4.2. MMIE optimisation

Preliminary experiments were performed in order to estab-
lish and tune the convergence properties of the MMI re-
estimation algorithm. The optimisation was focused on the

mean/variance parameters of the Gaussian distributions.
The speed of convergence is directly related to the value
of the constant D in the re-estimation formulae (equations
3 and 4). These tuning experiments were performed using
the HMM-0 system with 2 mixture components per state on
a subset of 400 utterances from the SI-84 (WSJ0) training
set.

Similarly to [1], in the first experiment a global constant
was used such that all re-estimated variance parameters
were positive. In the second experiment phone-specific con-
stants were used (47 different constants in total) such that
the variance parameters for all triphones of each phone were
positive. The value of the objective function in the two cases
is plotted in Figure 1. It is clear from the plot that the use
of phone-specific constants improves the convergence rate
of the algorithm by a factor of two.

5. EXPERIMENTS

All recognition experiments were performed on the 1995
American English evaluation test set (si_et) selected for
the European SQALE project [5] which consist of 200 ut-
terances from a total of 20 different talkers. All results are
scored using the official SQALE word-map file.

5.1. HMM-0 experiments

The preliminary evaluation of the proposed MMIE training
method was carried out using the family of HMM-0 state-
clustered cross-word context dependent triphone systems
with 2, 4 and 8 mixture components per state. The mod-
els were originally trained for 4 iterations using the MLE
criterion on the SI-84 (WSJ0) data set. In each case, this
was followed by 10 iterations of MMIE training for mean,
variance and mixture weight parameters. In general, it was
found that the best performance figures were obtained after
the fourth iteration of MMIE training, after which, the per-
formance started to degrade. Recognition test were run us-
ing the ARPA November 1993 20k word list and associated
bigram language model estimated from 37 million words of
WSJ text data supplied by MIT Lincoln Labs. The test set
results from all experiments were produced by re-scoring
recognition lattices originally computed using the baseline
HMM-0 system with 8 mixture components per state.
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Figure 2. Objective function value and lattice recognition per-
formance on the SI-84 training set using the HMM-0 system
with 2 mixture components per state.

The results in Table 3 shows the recognition performance
of the systems on the training data (SI-84). The plot in



Figure 2 also shows the typical change in the value of the
objective function at each iteration together with the recog-
nition performance of the system in terms of word /sentence
error rates.

Table 4 shows the recognition performance of the various
systems on the si et test set in increasing order of com-
plexity. Despite possible gains in performance obtained by
rescoring lattices from a more sophisticated system the re-
sults should be indicative of the relative improvements in
performance contributed by the MMIE training scheme.

The results show that MMIE has provided a worthwhile
improvement in the performance of all systems with the re-
sulting performance of the 2 mixture MMIE trained system
matching that of the original 8 mixture MLE trained sys-
tem. The 4 mixture MMIE system provides the best overall
word error rate of 17.4%. Unfortunately the improvement
in the performance of the 8 mixture system after MMIE
training was found to be small. Indeed, this is not too sur-
prising in view of the limited amount of training data used.

#Mix. MLE MMIE

comps. | ZWER | %SER | %WWER | %SER
2 10.6 69.4 2.1 24.2
4 8.0 60.7 1.4 17.1
8 5.4 49.4 1.1 13.5

Table 3. Recognition results on the SI-84 training set using
the HMM-0 systems with different number of mixture com-
ponents per state and the train_bg65k LM. WER/SER denote
word /sentence error rate respectively.

#Mix. MLE MMIE

comps. | BWER | %WSER | B®WER | %SER
2 20.6 83.5 18.0 78.5
4 18.9 82.0 17.4 79.0
8 18.0 79.5 17.5 80.0

Table 4. Recognition results on the si_et test set using the
HMM-0 systems and the 1993 20k ARPA bigram LM.

5.2. HMM-1 experiments

The HMM-1 system in these experiments used the combined
WSJ0+1 corpora resulting in 66 hours of acoustic train-
ing data and a recognition vocabulary of 65k words with
bigram, trigram and fourgram language models estimated
from the nab94 text corpus of 227 million words (test_65k
LMs). The use of a larger recognition vocabulary reduces
the OOV rate from 1.46% to 0.39% for the si_et test set.
This combined with the substantial amount of acoustic and
language model training data results in an improvement in
baseline recognition from 18.0% to 12.6% word error rate
for the best performing MLE trained systems using bigram
LMs.

The HMM-1 system was optimised for four iterations
of MMIE training. The first row in Table 5 shows the
performance of the system on the training set using the
train bg65k bigram LM. Consistent with previous MMIE
results, the word error rate is dramatically reduced from
8.1% to 3.5%. The second, third and fourth rows in Table
5 show the performance of the system on the si et test set
with 65k bigram, trigram and fourgram language models
respectively. In all cases, the MMIE training has resulted
in improved recognition performance.

Data LM MLE MMIE

set 7WER | %7SER | %7WER | %SER

SI-284 | bg 8.1 58.8 3.5 34.1

si_et bg 12.6 77.0 11.9 73.5

si et tg 9.0 60.0 8.2 59.5

si et fg 7.9 56.0 7.4 55.0
Table 5. Recognition results on the SI-284 training set

(train_bgb5k LM) and si_et test set (test_65k LMs) using the
HMM-1 system.

6. CONCLUSIONS

This paper has described an implementation of MMIE dis-
criminative training based on the use of lattices to com-
pactly encode and compute the required confusion data. It
has been demonstrated that this approach makes it feasible
to apply MMIE training to very large HMM-based recogni-
tion systems. Furthermore, the re-estimation formulae used
previously for small systems give good convergence on large
systems provided that the learning rate constants for mean
and variance parameters are set on a per phone basis.

Experimental results using the WSJ0 and WSJ0+1 sets
of the Wall Street Journal training database show that the
proposed method is very effective in reducing the word error
rate on the training set. Typically, results on unseen test
data show a reduction in word error rate of 5-10% following
MMIE training.
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