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Summary

Conventional speech recognition systems require information from two knowledge sources - a family
of acoustic models and a language model. The acoustic models incorporate knowledge extracted from
the speech waveform and they are commonly based on hidden Markov models (HMMs). HMMs
have been used successfully for speech recognition for many years, however, in many respects the
assumptions behind the HMM framework are poor. The following issues can be considered

e HMMs are usually trained according to the Maximum Likelihood estimation (MLE) proce-
dure whose optimality, in the sense of providing the lowest possible error rate, is based on
assumptions which are never satisfied in practice. Discriminative training techniques remove
the need for these assumptions and attempt to optimise an information-theoretic criterion
which is related to the performance of the recogniser. Unfortunately, discriminative methods
require substantially more computation than MLE and many previous implementations of
such techniques have been based on the somewhat unreliable steepest-descent procedure.

e In the HMM framework, the acoustic observations are assumed to be independent of each
other, hence, speech dynamics cannot be modelled directly. Such information is typically
provided in “canned” form by extending the feature vectors to accommodate differential com-
ponents which reflect the changes in the standard coefficients. Although this approach results
in improved recognition performance, it entails an increased number of model parameters
and consequently longer training and recognition times. Another problem with differential
coefficients is the assumption that the parameter slope/curvature are the only useful features.

In this dissertation we describe an implementation of the Maximum Mutual Information esti-
mation (MMIE) discriminative training algorithm, where an approximate second-order optimisation
scheme is employed to update the parameters of the HMMs. This algorithm is shown to provide
improved recognition performance, achieved after a small number of iterations. A modification of
the MMIE algorithm is also discussed whereby a different weighting is given to each utterance in
the training set based on the mutual information measure.

The problem of providing compact and informative feature vectors is introduced and discussed
in terms of feature selection and feature extraction algorithms. In this respect, the Minimal Mutual
Information Change (MMIC) feature selection algorithm is proposed where the change in the mutual
information criterion is used to rank-order the components of the feature vector.

Feature extraction techniques are investigated through the introduction of adaptive input trans-
formations in the conventional HMM framework. Transformations of different topologies are ini-
tialised to perform meaningful parameter transformations. Subsequently, during training, the pa-
rameters of the transformations are optimised simultaneously with the HMM parameters according
to a discriminative objective criterion.

The discriminative training algorithms are evaluated on a British English E-set task, an Amer-
ican alphabet recognition task, and a large continuous phone recognition task (TIMIT).

Keywords: speech recognition, hidden Markov models, discriminative training, feature extrac-

tion, feature selection, adaptive input transformations.
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Chapter 1

Introduction

Speech is the most natural form of human communication. The goal of automatic speech
recognition (ASR) is to develop systems that are capable of transcribing natural speech.
Speech recognition devices find widespread use in many applications including information
retrieval, data entry and general man-machine communication thus aiding productivity and
convenience. Research in ASR originated as early as 1950’s and nearly forty years later
speech recognition is still considered unsolved. ASR is a very difficult task due to the
large problem dimension and generally ambiguous nature of speech. Although there are no
complete solutions, the performance of ASR systems has improved dramatically in the last
few years!. Nevertheless, the performance of the resulting systems is still not comparable to
that achieved by human beings. Furthermore, there is a variety of small-vocabulary speech
recognition tasks where high recognition accuracy is the only requirement to warrant their
immediate appearance in our every-day lives.

The performance of current speech recognition devices is entirely dependent on the
ability of the system to discriminate between the different sounds of speech. Most speech
recognition systems make use of two major knowledge sources: a family of acoustic models
and a language model. The acoustic models are commonly based on hidden Markov models.
The focus of this thesis, as suggested by its title, is on enhancing the discriminative ability
of these acoustic models with the aim of improving the overall recognition performance of

the system.

1.1 Speech recognition systems

The structure of a conventional speech recognition system is shown in figure 1.1. The acous-
tic preprocessor transforms the speech waveform into a sequence of acoustic observations
used during classification. Using knowledge from the acoustic and language models in con-

"When this research began in 1990, the DARPA Resource Management task (RM) with a vocabulary of
1,000 words was considered a difficult large vocabulary continuous speech recognition (LVCSR) task. Most
recently [110], the HTK LVCSR system using a vocabulary in excess of 65,000 words achieved a lower error
rate in the November 1994 ARPA Wall Street Journal (WSJ) evaluation than was achieved by the best
system in the first RM evaluation.
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Acoustic Language

model model

/V\/ Speech

Acoustic
preprocessor Features

Classification -
Recognised words

Lexicon

Figure 1.1: Block structure of a conventional speech recogniser

junction with the language constraints provided by the lexicon of the task, the classification
procedure outputs the most likely word sequence hypothesised for the input sequence of
observations.

The usability of a speech recognition device is dependent on its speed and performance.
Acceptable recognition performance is often achieved by limiting the size of the lexicon,
constraining the way the user speaks and limiting the number of speakers the system is able
to recognise. Even constrained systems do not offer perfect recognition and much of the
research effort is still concentrated on improving the recognition performance of systems
with small but useful vocabularies such as digits and spoken letters. Speech recognition
systems vary in their speed and performance and their most important characteristics can
be classified as follows:

e Isolated or continuous speech. This property refers to the mode of speech that the
system is designed to handle. Continuous speech recognition (CSR) is much more
difficult than isolated word recognition (IWR) due to the absence of word boundary
information, increased co-articulation and confusability. Another recently introduced
task is “keyword” spotting which appears to be as difficult as CSR. The aim is to
detect a relatively small number of “keywords” in continuous speech and at the same
time ignore all other words and non-speech sounds.

e Vocabulary size. The vocabulary size is the most important factor affecting the speed
and performance of an ASR system. A larger vocabulary is likely to contain more
acoustically confusable words. Increasing the number of words will typically require
more training data and longer recognition time. In general, the performance of an
ASR system is significantly affected by the confusability in the vocabulary and this can
be a problem in even small vocabulary systems. A typical example is the recognition
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of spoken letters from the English alphabet where the members of the E-set {“B”,
MC”’ “D”’ L(EW’ (LG")’ L(P')?, “T")’ L(V”} are the major Source Of errors‘

o Speaker dependence/independence. Speaker dependent (SD) systems are trained to
recognise speech from a single speaker. Speaker independent systems are capable
of recognising speech from any new speaker. Generally, SD systems achieve better
recognition performance than SI systems because of the limited variability in the
speech signal coming from the same speaker. Speaker independent systems require
complex acoustic models for modelling between-speaker variability with adverse effects
on speed and performance. An elegant solution to the problem is offered by adapting
a generic SI system on-the-fly to the speech characteristics of the current speaker.

Speaker independent large vocabulary continuous speech recognition (LVCSR) systems are
available at present as prototypes in a number of research laboratories. Examples include
BYBLOS from BBN [64], SPHINX [66] and SPHINX-2 [2] from Carnegie-Mellon University,
the HTK system [110] and the ABBOT system [48] from Cambridge University.

1.2 The acoustic modelling problem

1.2.1 Parameter estimation

Speech recognition requires dealing with uncertainty and handling variability from a variety
different sources such as speaker, context, environment, etc. Current speech recognition
systems employ statistical methods that are capable of learning acoustic-phonetic knowledge
from samples of speech. The most common statistical approach is based on hidden Markov
models. This approach is popular since it provides a tractable framework for modelling the
variation in the acoustic signal as a sequence of events of variable duration. At the same
time the models are simple enough so that their parameters can be automatically deduced
from samples of speech. The quality of the acoustic model used in a speech recognition
system is the major factor in determining the system’s ability to distinguish between the
various acoustic classes chosen as the basic units of recognition. Furthermore, an inadequate
acoustic model will limit the potential gains from the introduction of other knowledge
sources such as language and prosody.

In the HMM framework, the parameters of the acoustic model are estimated from large
samples of acoustic data. Ideally, the parameter estimation procedure should yield an
HMM set which minimises the probability of error during recognition. This can be achieved
by maximising the probability of each utterance given the corresponding class model and
at the same time minimising the probability of the utterance given all other models in
the system. Conventional parameter estimation techniques attempt to satisfy the former
requirement, the latter requirement is simply ignored. One such technique is Maximum
Likelihood estimation, whereby the parameters of the models are re-estimated from in-class
data only. A major contributing factor to the success of HMM-based speech recognition is
the powerful Baum-Welch training algorithm for Maximum Likelihood estimation (MLE)
training. One problem with MLE is that it has no obvious relationship with the objective
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of minimising the recognition error rate. Furthermore, the rationale behind the use of
MLE training relies on the assumption that the underlying models are the “true” models
of speech. However, it is well known that from a speech production point of view, HMMs
are a notoriously poor model of speech.

Discriminative training techniques remove the need for the assumption that the under-
lying models are correct and attempt to improve recognition performance by adjusting the
model parameters themselves. Maximum Mutual Information estimation (MMIE) is a dis-
criminative training technique proposed by Bahl et al. [6] as an alternative to MLE. The
approach seems plausible since it directly maximises the quantities which are used during
recognition. Unfortunately, there is no equivalent of the Baum-Welch algorithm for MMIE
and the standard training procedure is often based on the somewhat unreliable gradient
search techniques. Several researchers have reported improvements in recognition rate using
the MMIE approach. The most prominent studies are the work published by Brown [22] on
an American English E-set recognition task and most recently, the successful application of
MMIE training to continuous digit recognition investigated by Normandin [84]. In general,
discriminative training techniques are much more difficult to implement than conventional
MLE training. At the same time, they require substantially more computation than MLE
training since in order to achieve discrimination they consider all acoustic models at the
same time. Thus, it is often perceived that the marginal gains in performance provided
by discriminative training do not justify the introduction of gradient-based optimisation
techniques into otherwise robust, simple and efficient re-estimation algorithms.

1.2.2 The acoustic preprocessor

The acoustic preprocessor is a device which converts the analogue audio signal into a se-
quence of observations which can be modelled by the HMM’s. The extracted feature vectors
should contain as much information as possible about the linguistic content of the acoustic
signal whilst being reasonably compact and free of redundant detail. The quality of the
preprocessing has a considerable impact on the overall performance of the speech recog-
nition system. Compact feature vectors will contribute to faster training and recognition
times whilst well conveyed linguistic detail will aid discrimination. Conventional preproces-
sors perform simple types of filtering and data compression based on Fourier analysis and
linear predictive coding (LPC). Feature extraction is then performed through a parameter
transformation into the “cepstral” domain using the discrete cosine transform (DCT).
The most significant recent development in terms of feature sets is the introduction
of dynamic parameters [45]. Performance improvements from using derivative parameters
as part of the feature vectors demonstrate a major limitation of HMMs. Although, the
information contained in the differential parameters is directly available from the basic
feature set, it has to be provided explicitly for the HMMs to make use of it. This limitation
arises as a consequence of the so-called observation independence assumption in the HMM
framework, whereby each observation vector is modelled independently of all past and
future vectors. However, enhancing existing feature sets through the addition of new feature
derivatives entails more model parameters and increased processing time. Hence, it is clearly
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desirable to rank-order the elements of the feature sets and then select a compact subset
which yields minimal decrease in the overall performance of the system. This is usually
achieved by using feature selection and feature extraction algorithms. One problem with
these schemes is that they are not directly related to the objective of minimising the overall
error rate. Furthermore, once derived, the linear transformations used to perform feature

extraction remain unchanged throughout the training process.

1.3 This study

In this thesis we present an implementation of the MMIE algorithm for continuous mixture
density hidden Markov models (CMD-HMMs). The optimisation procedure uses an approx-
imate second order method ( QuickProp) which only requires first derivative information. An
extension of the MMIE algorithm is also presented, whereby the parameter derivatives from
each individual training utterance are adjusted according to a non-linear weighting function
which is designed to give higher weighting to utterances near the decision boundary. In an
attempt to provide compact and informative feature sets, the Minimal Mutual Informa-
tion Change (MMIC) feature selection algorithm is proposed where the mutual information
measure is used to rank-order the components in the feature set. Finally, the conventional
HMM framework is enhanced to incorporate a variety of adaptive input transformations
which transform the observation vectors before they enter the output distributions of the
HMMs. During training, the parameters of the transformations are optimised together with
the HMM parameters according to a discriminative objective function.

In this study, the above techniques are investigated in the context of SI isolated word
recognition and SI continuous phone recognition. These tasks have been chosen for the

following reasons

1. Recognition experiments are performed on standard databases which have been stud-
ied by other researchers in the speech recognition community with numerous results

available for comparison.

2. The tasks are simple enough to guarantee a reasonable development and evaluation
cycle whilst, and at the same time, being representative of the typical problems which
the discussed methods attempt to confront.

Appendix A describes the three databases used in this study, together with previous results
and details about the pre-processing.

1.4 Outline of this thesis

Chapter 2 provides a concise introduction to the theory and application of hidden Markov
models to automatic speech recognition. In order to provide an easier understanding of
the presented experimental work, several issues related to their implementation are also
discussed. Chapter 3 reviews the various objective criteria which can be used to optimise
the parameters of the acoustic models. The rationale behind two such techniques, MLE
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and MMIE, are described in detail. This chapter also presents a modification to the MMIE
objective function which gives different weighting to different utterances in the training set
based on the mutual information criterion. Chapter 4 describes the implementation of
discriminative training in the context of CMD-HMMs. Chapter 5 presents the experimen-
tal evaluation of discriminative training on three speech databases. Chapter 6 introduces
the background theory of feature selection and feature extraction algorithms. In Chapter
7 a feature selection algorithm based on the mutual information measure is proposed and
evaluated on the TIMIT continuous phone recognition task. Chapter 8 introduces the
theory and application of adaptive input transformations in the CMD-HMM framework.
A variety of input transformations are derived and evaluated on the TIMIT continuous
phone recognition task. Chapter 9 concludes this study by discussing the effectiveness
of the evaluated discriminative methods. Suggestions for future research in discriminative

training are also given.



Chapter 2

Basic Concepts

Conventional speech recognition systems employ statistical models to model various sources
of information. In particular, recognising speech requires the integration of information from
two models - the acoustic model and the language model. The acoustic model incorporates
knowledge extracted from the speech waveform and its design has a considerable impact
on the performance of a speech recognition system. The power of representation in an
acoustic model lies in its structure and parameters. Acoustic models are commonly based
on hidden Markov models. This chapter introduces the theory of hidden Markov models
as applied to the speech recognition problem. Although, the theory is well documented
elsewhere [91, 117] the major steps in the derivation of the parameter estimation formulae
are presented here to serve as a reference for later chapters in this thesis.

2.1 Introduction

The performance of a speech recognition device depends on the system’s ability to reduce
uncertainty about the identity of a spoken word using information from the acoustic signal
and past word sequences.

The speech recognition problem can be viewed as a problem in communication theory
[104]. A spoken string of words of known identity w is viewed as passing through an acoustic
channel model which produces a sequence of acoustic observation symbols a. The term
“word” is used to denote the basic unit of speech such as sentence, phrase, word, phoneme.
An acoustic observation a is a sequence feature vectors extracted from the acoustic signal
generated by the speaker while uttering w. The joint probability of words w and acoustics
a is

P(w,a) = P(a|w)P(w) = P(w|a)P(a)
The language model component, P(w), provides information about the word sequence in w.
The conditional distribution P(a|w) of acoustics given words describes the acoustic channel
model and the conditional distribution P(w|a) defines a probabilistic decoder. For a known
sequence of observations, the marginal distribution P(a) is assumed to be constant since it
does not depend on the models.
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The above definition of the speech recognition problem translates into the following
practical considerations:

o Acoustic model structure - The acoustic model is a probabilistic function which models
the phonological and acoustic-phonetic variation in the speech signal. It is extremely
difficult for a human expert to devise an accurate and complete acoustic model due
to partial knowledge and inability to express such knowledge in an algorithmic form.
For this reason an acoustic model is defined as a family of parametric distributions
with parameter vector A\. The chosen family of distributions should be based on true
assumptions about speech and have a relatively small number of free parameters. The
value of )\ identifies a unique acoustic model from the family and is usually estimated
from a large sample of speech data.

e Parameter estimation - The ultimate goal in parameter estimation is to find a pa-
rameter vector A which produces a decoder with the lowest possible recognition error
rate. This is done by optimising some objective function F(\) which relates to the de-
coder’s performance. The objective function should be such that when F(}) > F())
then A will produce a better decoder than A. Once F (M) has been chosen, the second
problem is to find the parameter set A which maximises it. Complex acoustic models
typically employ several thousand parameters which makes it very unlikely that a
globally optimal A will be found. This means that even with a good function, it is
possible to obtain unsatisfactory results if the estimation procedure converges to a

bad local maximum.

e Probabilistic decoder - A speech decoder is a device which attempts to find the identity
of a word from its acoustic representation. Using the above notation this can be
defined as a transformation a =- w. If the chosen identity @ is different from the
actual identity of the spoken word w then there is a decoding error. The probability
of making an error is the most important factor in choosing the decoder. The optimal
decoder with regard to minimising the probability of error is the maximum a posteriori
(MAP) decoder, where w is chosen such that

(2.1)

w = argmax P(w|a) = argmax P(a|w)
w w

2.2 Hidden Markov models

Hidden Markov models (HMMs) constitute the most successful approach developed so far
for modelling the statistical variations of speech. Since their introduction in the 1970’s
[8, 56] HMMSs have been tested on a wide selection of speech recognition tasks. The HMM
approach provides a framework which includes an automatic supervised training algorithm
with mathematically proven convergence (the Baum-Welch algorithm), and an efficient de-
coding scheme for use in recognition (the Viterbi algorithm). The models have the ability
to generalise from a large amount of training data by making structural assumptions and
adjusting model parameters so as to optimise a meaningful objective function. The HMM
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Figure 2.1: A hidden Markov model with 4 emitting states

theory is well documented in the literature [91] and only a short description is included
in this chapter for completeness. Although the basic HMM concepts have remained un-
changed, different variations of the basic model have been used by different research sites.

2.2.1 Definition

Speech production is a non-stationary process, however, within the HMM framework it is
assumed that over a short period of time its acoustical realisations do not vary significantly
from sample to sample. A Markov model is a finite N-state machine which changes state
according to a probabilistic transition function. Thus, the input utterance is modelled
as a sequence of discrete stationary states, with instantaneous transitions between them.
Transition probabilities are non-negative and the sum of all transitions that leave a state is

unity. Furthermore, transitions from one state to another satisfy the following constraint
P(6:]6771) = P(65/6:-1) (2.2)

where 6; is the state at time ¢ and the th_l denotes the sequence {61,6s,...,60;_1}. The
probability that the Markov chain is in state 6; at time ¢t depends only on the state 6;_; and
is conditionally independent of the past acoustic vector sequence. The transition function
is described by a N x N matrix of discrete probabilities a; ; where

A . .
a;; = P(6y = j|0i—1 = 1), (2.3)

The state sequence 6 can be viewed as a sequence of random variables. In a hidden Markov
model, there is a sequence of random variables, o{ = {01,09,...,07}, which is a proba-
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bilistic function of the underlying stationary Markov chain 6. Then, 6 is a hidden Markov
model for the sequence of random variables, of , provided that for each ¢, o is defined over
continuous space, and

b(0:]0f,67) = b(04|6;) = bs, (0) (2.4)

where b;(0) is the probability density (p.d.) of o in state j. The probability in equation
2.4 is assumed to be independent of ¢. This property is commonly referred to as the
observation-independence assumption.

The sequence of is the observed output of the hidden Markov model. The state sequence
0 is not observed, it is hidden. The usual definition of a hidden Markov model also includes
an initial state probability vector 7; which describes the likelihood of occupying each state
in the model prior to generating any observable output [91]. This is somewhat inconvenient
to handle when many HMMs are linked together. Instead, the basic HMM structure can
be extended to include an initial non-emitting state 6y and a final non-emitting state 6741.
Thus, initial state probabilities are implicitly incorporated into the state transition vector
of 90.

2.2.2 Output distributions

Although the structure of the acoustic models has been determined nothing has been said
so far about the properties of the state output distributions b;(0¢). In general, the state
output distributions can be either discrete or continuous however, parameter tying can lead
to the so-called semi-continuous output distributions [50], which can be considered as a
mixture of the two [13].

2.2.2.1 Discrete input features

In this case b;(0;) is described by a V-dimensional vector of scalars. The system has to
incorporate a Vector Quantiser (VQ) which will assign one of V' unique labels to each
observation vector. The important quality of such a representation is that discrete output
distributions do not assume any specific form of the density functions although modelling
inaccuracies are inherent in the VQ. This is implicitly dealt with in the choice of distance
metric for the clustering procedure in the VQ (e.g. the Euclidean distance measure as
used in the k-means clustering algorithm). Most early speech recognition systems [56,
92] utilised such densities. In an attempt to reduce the quantisation distortion for large
observation vectors following the introduction of differential parameters, Lee [66] utilised
multiple independent code-books in the VQ. All components were assumed independent and
their probabilities were simply multiplied to give the probability of the compound vector.

2.2.2.2 Continuous input features

In this case, bj(0;) is a general parametric distribution of a predetermined form. The most
commonly used distribution is the continuous Gaussian density function defined as

. 1 _lo— IW_l o—
N(O’M’W):We 2( ) (0-p)
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where p and W are the mean vector and the covariance matrix respectively of the distribu-
tion and D is the dimensionality of the observation vectors. To reduce the number of free
parameters it is often assumed that the components of the feature vector are uncorrelated
i.e. the off-diagonal elements in the covariance matrix are set to zero. Unfortunately, the
“true” parameter vector distributions will often have complex shapes, and in such cases
a single Gaussian density with diagonal covariance matrix may prove inadequate. This is
especially true in speaker independent systems trained on both male and female data. The
modelling inadequacies of the Gaussian model will depend to a large extent on the speaker
normalisation capabilities of the preprocessor and the structure of the Markov models [22].
In order to obtain more accurate approximations, it is common to use mixtures of Gaussian
densities
M M
bj(0) = Y ¢;mN (06 tjm, Wim) = D cjmbim(0t)
m=1 m=1

where M is the number of mixture components and c¢; ,, is the mixture weight for the mth
mixture component in state j. Note that the mixture distributions can be implemented
by having several states in parallel with mixture weights as state transitions and single
mixture components associated with corresponding states. Other distribution forms have
also been proposed and used. These include the Gaussian autoregressive mixture density
[60], the Richter mixture density [96] and the Laplace mixture density [81]. Although it can
be proved that a mixture of Gaussians can model any kind of distribution it is not clear how
detailed each model should be. However, an existing mixture density can be “up-mixed”
as more training data becomes available by cloning the dominant mixture component (see
section 2.4.2). Hence, in practice, mixture Gaussian densities provide great flexibility.

The choice between discrete and continuous distributions depends on the following fac-
tors:

e continuous distributions provide more accurate modelling and the structure of the
model can be dynamically altered to achieve the optimal match between model com-
plexity and available amount of training data;

e the performance of discrete models depends to a large extent on the design of the
vector quantiser;

e for the discrete models, the probability calculation can be replaced by a table lookup,
whilst the continuous densities will require a significant amount of computation.

Since accuracy is the major concern here, continuous mixture density HMMs (CMD-HMMs)
will be used exclusively throughout this thesis.
2.2.3 Probability calculation

Now that the structure of the acoustic models has been determined we can proceed to define
the various probabilistic quantities necessary for the parameter estimation and evaluation
of the models. In a speech recognition task, the input utterance is transformed into the
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sequence of T' observation vectors o{ = {01,02,...,0r}. Given an acoustic model with

parameter set A, the probability that this model generates the observed sequence can be
expressed as

Py(of) = Y P\(6)Px(o]6)
0cO®
T+1
= > I1 e6._..0. Hbot o¢) (2.5)
0cO t=1

where O is the set of all possible state sequences in the model, 6 is a particular state
sequence and 6; is the state occupied at time ¢. It is often observed that the quantity
P,\(of) is dominated by the largest term in the summation. Consequently, in many cases
it is more convenient to compute

T+1
P)\(OI{) = max{ H ag, 1,6 H bgt O¢ } (2.6)

In practice, expressions 2.5 and 2.6 cannot be used directly since the number of different
state sequences through the model grows exponentially with the duration of the utterance.
Following Baum [12], we can define a set of forward/backward probabilities for a hidden
Markov model with non-emitting initial and final states. The forward probabilities o;(t)
are defined as follows

a;(t) = P(01,6; = j)
where a(t) is the joint probability that the model with parameters A generates the output

sequence {01,02,...,0:} through a state sequence which ends in state j. The forward
probabilities can be generated in an incremental fashion using the following rules!

a;(0) = 1 forj=1
10 forl<j< N

1. Initialisation

2. Recursion (for 1 <t <T)

al(t) =0
N—-1

aj(t) = a;(t am] b;(o) forl<j <N (2.7)
=1

3. Termination

! As mentioned earlier, states 1 and N are non-emitting and transitions a; ; are equivalent to 7; as
discussed in [91].
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Similarly, the backward probabilities 3;(t) are defined as
Bi(t) = Pa(0/116: = 1)

The quantity §;(t) is the probability that the model will generate the sequence oy, ; starting
with a transition from state i. The backward probabilities are computed recursively starting
from the end of the observation sequence according to

1. Initialisation
1 fori=N

ai, N forl<i< N

Bi(T) = {

2. Recursion

i

1<i< N

Bi(t) = ) aijbj(0t+1)Bi(t +1)  for 1<t<T

=2

3. Termination

N-1
£1(0) = Z a1,;bj(01)5;(1)

Using the forward/backward probabilities we can define several important quantities used
in the parameter estimation procedure. The overall probability of an utterance can be
efficiently computed as

Py(of) = an(T) = p1(0)

The joint probability of observing the sequence o and occupying state j at time ¢ is given
by

Px(of,6; = j) = a;(1)3;(t)
Similarly, the probability of observing the sequence of and taking transition a;; at time ¢
is given by

Py(0T,0; 1 =1i,0; = j) = oyt — 1)a; jbj (o) B;(t)

Finally, the probability of of whilst generating the observation vector o; using mixture

component m at state j is given by

N

Py(0],0; = j, by =m) = > 0yt — 1)a; jcjmbjm(01)B3;(t)
=

2.3 Maximum Likelihood estimation

The most common HMM parameter estimation technique is Maximum Likelihood estima-
tion (MLE). Its best quality is the existence of a re-estimation formula f(.) such that if
A = f(A) then F(X) > F(\) with equality only when X is a local maximum of F(}). The
existence of this re-estimation formula is the main reason for the introduction of HMMs in

speech recognition and it is largely responsible for their success and popularity.
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2.3.1 Objective function

In Maximum Likelihood estimation a parameter vector ) is derived so that

P (w,a) = max Py(w,a)
where Py(w,a) is the probability that the model with parameter set A in the family of
distributions will generate the sample (w,a). By factoring the left hand side in the above

equation we obtain
Py (w, a) = Py(alw)Py(w) (2.8)

The above shows that the acoustic model parameters and the language model parameters
can be estimated separately by choosing the language parameters to maximise Py(w) and by
choosing the acoustic model parameters to maximise Py (a|w). This suggests that MLE tries
to increase the a posterior: probability of the training data given the model corresponding to
the data. The models from other classes do not participate in the parameter re-estimation.
Consequently, it is not obvious how the MLE objective function relates to the objective
of reducing the error rate. In the following chapter, the rationale behind MLE and its
limitations will be discussed in greater detail.

2.3.2 The Baum-Welch algorithm

The mathematical foundations of the Baum-Welch (BW) algorithm for MLE were estab-
lished by Baum in [12]. The paper presented an iterative method for monotonically increas-
ing the value of an arbitrary homogeneous polynomial P(X) with non-negative coefficients
of degree d in variables z;;, ¢ = 1,...,p, 7 = 1,...,q;, defined over a stochastic domain,
D:z;; >0, Z?;l z;; = 1, through a series of transformations performed on {z;;}. The
transformation is defined as

ij 52 P(X)

i (2.9)

T(xij) = —=
! 71 Tij %P(X)

and is often referred to as a growth transformation of P(X). In a preceding paper Baum and
Eagon [11] described a special case of the re-estimation procedure for probabilistic functions
of Markov chains with discrete observations. The proof that the re-estimates provide an
increase in the value of the likelihood was rather intricate. Later, in [12] and [10] the method
was generalised to functions of Markov chains with continuously distributed observations.
The proof relied on the assumption that the output distributions of the Markov chain are
strictly log-concave. More recently, Liporace [72] and Juang [58] presented an analysis
which extended the algorithm to accommodate a larger class of distributions and mixture
distributions.

For HMMs with discrete output distributions, transition and observation parameters are
both updated according to expression 2.9. The following section outlines the derivations of
the ML re-estimation formulae for the parameters of continuous mixture density HMMs.
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2.3.3 Parameter re-estimation

For continuous mixture distributions, we can express the likelihood of an input utterance

in terms of the individual mixture components:

Py(of) = ) PA(6)Px(o] |0) (2.10)
6cO
T+1 T M
= Z H ag,_41,6; H Z Cat,mN(ot; Ho, m> Wet,m)
6eO t=1 t=1m=1

For a fixed state sequence 6 we can define a possible component sequence 1. Then equation
2.10 can be re-written as

Py(o]) = Y. > Py(0)PA(¥)Pr(o] 16,%) (2.11)
[ASSEVISA P
T+1

= Z Z Hagt 19tH09t1/)t HN OtalJ’G“ptaWGtﬂPt)

00 peT, t=1

where Wy is the set of all possible mixture component sequences given a fixed state sequence
6. In order to re-estimate the parameters of the HMM, an auxiliary function Q(A, \) is
introduced

QAN =3 > Pa(of,0,4)log Py (o]0, ¢) (2.12)

0e® eV,
The usefulness of Q(A, A) comes from the fact that Q(\, A) > Q(), \) implies that P;(of) >
Py(oT). A proof of this inequality can be found in [12]. The log factor in equation 2.12 can

be rewritten as

T+1
log P;\(OIT,O, ) = Z log ag, .6, + Zlog Cop 0 + Zlog/\/ Ot; g, 1y Wo,p) (2.13)
t=1 t=1 t=1

and combining 2.12 and 2.13 gives

T+1
QNN = D> > Pa(o],0,%) > logae,_, e, (2.14)
6O ey t=1
+ Z Z P 01,9 77b ZlogCOt,¢t
[ASCENP
+ Z Z Py 01,0 ) Zlog]\f 0¢; g, ¢t,W0t,¢t)
0€® YTy

Using this separability, maximisation of the likelihood function can be accomplished by
maximising each component independently.
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2.3.3.1 Mixture component parameters

Taking the partial derivative of equation 2.14 with respect to fi; ,, gives

1o}
a[l'j,'rn

T
0
= POl 0=t = m) g (ogbym(o))  (215)
t=1 Hjm
where bjm(0¢) = N(04; b, W ; ) is mixture component m at state j. Equating the above
equation to zero and solving for fi;,, (see equation B.14) yields
. YT P\(6; = j, ¢ = m)o
= DG =mo (2.16)
D= 1P/\(9t = j, ¢ = m)
Sie Oéz(t — 1)ai,j¢jmbim(01)B;(t) ot
o1 Z Ut ai(t = 1)ai jcjmbjm(00)B;(t)

similarly for the covariance matrices

0 . T B
o\ = T g, = —— (logb;m 2.17
oW (A A) t_Zl \(01 ,0: = j, 0 = m) awj,m(og ,m(0t)) (2.17)

Equating to zero and solving for VAijm (analogous to equation B.17) yields

T . . . ,
. " Py(0; = j, b = — Yo — fui
W, = >t=1 Pr(0: ;wt m)(ét Bjm) (0t = 1) (2.18)
Et—l PA(Ht =J,% = m)
Zt 1 1 O‘z(t l)ai,jcj, ',m(ot)ﬁj(t) (0 — ﬂj,m)(ot - ﬂj,m),

Et 12 =1 az( — 1)a; jcjmbjm(ot)B;(t)

2.3.3.2 Transition probabilities and mixture weights

The transition probabilities a;; and mixture weights c;,, are non-negative and share the
sum-to-one constraint. For the transition probabilities, the corresponding term in expression
2.14 can be rewritten as

T+1
Z Z Py 01,9 ) Z log ag,_, 6, = (2.19)
0cO eTy
N N T

Z Z Z Z Py(0],0,-1 = i,0; = j,b) log ay

i=1j=1t=1cT,

Considering transitions out of state ¢ only, the above expression takes the form

N
> zjlogy; (2.20)

This function attains a global maximum subject to the sum-to-one constraints at
Zj

N
Zi:l Zi

Y = forj=1,2,...,N (2.21)
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A proof of the above is available in [71]. Hence, the re-estimation formula for a; ;

. _ XoPof. 01 =1i,0, =)
a;; = 23,21 P,\(of, 6 — i) (2.22)
_ Xl ai(t — Daisbi(00)55(t)
Yoy i(t)Bi(t)

where 1 <7 < N and 1 < j < N. The transitions from the non-emitting entry state and
the transitions from the emitting states to the final non-emitting state are treated as special
cases and their re-estimation formulae can be found in [117]. Following similar derivations,
the re-estimation formulae for the mixture component weights ¢é;,, is given by
. _ T Paof b =g,y =m)
Cim = T T ; (2.23)
> =1 (01, 0; = 1)
St Yty it = 1)aijcjmbim(0:) B5(t)
Y1 ai(t)Bi(t)

The re-estimation formulae given above can be interpreted as an implementation of the

Expectation Maximisation (EM) algorithm [31] in which the expectation step is the calcu-
lation of the auxiliary function and the maximisation step is the maximisation of Q(X, )
over \ which provides A

Finally, the fact that the Baum-Welch algorithm is mathematically guaranteed not to
degrade the likelihood function is very pleasing. Most importantly, there is plenty of exper-
imental evidence which shows that good parameter estimates are usually obtained after a

small number of iterations.

2.4 HMM Structure alterations

Throughout the experimental work presented in this thesis, the HMM structure parameters
will be manipulated using the following two mechanisms.

2.4.1 Parameter tying

Sharing of parameters between multiple HMMs is a powerful technique for achieving better
generalisations and coping with limited amounts of training data. The idea of sharing
parameters is not new. Indeed, in continuous speech recognition the same phone model is
used for each occurrence of the corresponding phoneme in the training utterances. Tying
all covariance matrices across all models produces a Grand Variance/Covariance model set
[89] and tying the means across all mixture components can be used to obtain Richter style
distributions [96]. The above listed cases can be considered as special instances of a more
general tying mechanism where each HMM parameter set can be shared. Such general
tying framework was described by Young [112] with the aim of manipulating and modifying
existing HMM sets. In general
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e Tying aids robust parameter estimation when data is limited since the model structure
can be adjusted to match the available amount of training data. Furthermore, this
opens the way to an automatic data-driven approach for HMM construction.

e Careful implementations of such tying schemes will result in a dramatic reduction in
storage requirements and caching of computation. This is particularly true for large
speaker independent continuous speech recognition systems, where the use of complex
context dependent acoustic models is mandatory.

More formally it can be shown that tying does not alter the form of the parameter re-
estimation formulae and the convergence properties of the Baum-Welch algorithm. This
follows from the expanded form of the auxiliary function (equation 2.14), where tying of
any parameter can be regarded as partitioning the summations which does not alter the
re-estimation formulae [13].

2.4.2 Mixture component incrementing

Mixture component incrementing provides an iterative mechanism for building a multiple
mixture component system from a single Gaussian system. This is accomplished in stages,
by incrementing all state distributions by one or two mixture components at each stage.
An output distribution of M mixture components is converted to an M + 1 component
mixture distribution by cloning the mixture component with the largest weight and then
perturbing the mean vectors of the two identical distributions by adding/subtracting 0.2
standard deviations respectively. The new system is then trained using a few iterations of
the Baum-Welch algorithm.

Traditionally, mixture density HMMs are built by using the segmental k-means pro-
cedure to initialise the required number of mixture components and then retraining the
models using the Baum-Welch algorithm. However, this approach requires one to decide
on the number of mixture components prior to building and assessing the performance of
the desired system. The former approach has been shown to produce similar results to the
k-means clustering method [116]. At the same time, it has the advantage that the number
of mixture components can be continuously increased to obtain any desired balance between
performance and model complexity.

2.5 Whole-word and sub-word modelling

Hidden Markov models can be used to model speech at several linguistic levels e.g. phones,
syllables, words etc. Lee [66] defines a good unit model as the one which satisfies the
following two criteria:

e consistency - different examples of the same unit have similar acoustic realisations.

e trainability - there is a sufficient number of examples for each unit to guarantee robust
estimation of model parameters.
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consistency
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Words Triphones Biphones Phones

trainability

Figure 2.2: Typical levels of acoustic modelling

Consistent acoustic models will improve discrimination and overall recognition performance.
Trainability will guarantee generalisation and better use of model parameters (see figure
2.2).

Words are the most natural units of speech and usually form the output of most speech
recognition systems. Word models are consistent by providing an implicit modelling of
within-word coarticulations and word-dependent context dependencies. They are the obvi-
ous choice for small vocabulary systems and keyword spotting applications. However, using
word models in LVCSR introduces several problems. A large number of word models will
require more training data with an adverse effect on the ability to add new words to the
dictionary.

Sharing model parameters is the obvious solution to improving trainability. English has
a relatively small number of phonemes (40) which can be used to construct every word
in the language. Due to their small number, these can be easily trained from a relatively
small corpora of data. However, phonemes are a very abstract linguistic units and their
actual acoustic realisations are extremely variable. Contextual effects in current speech
recognition systems are usually modelled by using context dependent phonetic models. The
most common such unit is the triphone which is a particular instance of a phone occurring
in a specific neighbouring context. Triphone models are powerful because they are much
more specific and thus able to capture fine phoneme variations. However, triphone models
suffer from severe undertraining problems. For a typical set of 40 monophones, there are
40% potential triphones with only a few of them actually occurring in the training script.
The problem of reliable estimation can be overcome by applying smoothing techniques [66],
and selective parameter tying based on HMM state clustering [112, 116]. Recent results
in [114], have demonstrated the use of a phonetically-driven tree-based clustering method.
Using this approach, acoustic models are assembled on-the-fly from a library of states using
binary decision trees and context information.

In all phone recognition experiments described later in this thesis, we shall make exclu-
sive use of context independent HMMs. This choice was made for the following reasons: 1)
monophone HMM systems are far easier to train and manipulate; 2) as it will be seen later,
discriminative training methods require significantly more computation than conventional
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MLE training. Since the required computation is also proportional to the number of mod-
els, the use of context independent models was necessary to make the experimental work
tractable.

2.6 Viterbi decoding and search strategies

The decoding of an unknown utterance proceeds according to the MAP rule discussed in
section 2.1. This involves computing the likelihood of the unknown observation sequence
given each acoustic model and choosing the one with the highest likelihood. In general it is
possible to use the forward probability calculation to compute the overall likelihood P)\(O,{),
and to identify the utterance based on these quantities. However, in practice we are more
interested in the most likely state sequence which generated the sequence of. Furthermore,
in many cases the decision of choosing w as in expression 2.1 is implicitly incorporated in
the model by combining several models in parallel with common initial and final states and
in such cases the maximum likelihood path is an essential outcome of the recognition. The
Viterbi algorithm [107] is a general dynamic programming technique used to find the most
likely path in a trellis of nodes. The likelihood of the path is computed according to

7 (t) = max {7i(t — 1)ai;} bj(0r)

where for a given model v;(t) is the maximum likelihood of observing of and being in state
j at time t. Indeed the above expression is very similar to 2.7 with the summation replaced
by a maximum.

Continuous speech recognition is normally performed as a time-synchronous Viterbi
search in a state space. The search produces the most likely word sequence by matching
each frame from the unknown utterance to a network of HMM instances. The network is
compiled to reflect the grammar of the language and may explicitly incorporate language
model probabilities. In this case, the search itself is the computationally most expensive part
of the recognition system due to the huge number of possible paths one has to consider.
This is a result of the vocabulary size and inherent acoustic ambiguities. In order to
limit the search space it is customary to threshold the scores generated by the acoustic
models. Multi-pass recognition systems are another way of making the recognition task
more manageable. A typical example is a two-pass system where the first pass generates a
list of the N most probable word sequences (N-best list) using simplified acoustic models
[3, 103]. The second pass re-scores the list using detailed acoustic models and a language
model. A fundamental problem with multi-pass systems is that search errors introduced in
early passes are impossible to rectify thus resulting in degraded performance. With this in
mind, Odell et al. [86, 106] have developed a single-pass decoding algorithm capable of using
complex acoustic models and long-span language models. A version of this decoder will be
used in the experimental chapters of this thesis to perform continuous phone recognition
with a fourgram language model.
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2.7 Language models

The language model is a natural component in the information-theoretic formulation of the
speech recognition problem. A language model assigns a probability value to every word
sequence w. In speech recognition this value is interpreted as the a priori probability that
the speaker will utter the word sequence w. These probabilities will direct the search during
recognition amongst the various partial hypotheses. Well designed language models result
in improved recognition accuracy and reduced search complexity. The constraining power
of a language model is usually measured by its perplexrity which can be interpreted as the
average number of words that have to be hypothesised at any decision point [82]. Simple
language models are implemented as network representations of finite state grammars [88].
Such models are rather restrictive and their application is limited to small vocabulary tasks
with a well defined language structure.

The introduction of word-pair grammars [66] marked the start of the transition towards
more general language models for LVCSR. The most popular language models at present are
the bigram and trigram language models. These models are estimated from a text corpus
during the training phase.

Any type of language model faces the problem that the amount of training data is
limited and always too sparse to observe the typical events often enough. The most common
approach to dealing with unseen events is the general discounting back-off method proposed
by Katz [62]. In this approach, counts of frequent events (n-grams) are discounted and the
accumulated probability mass is redistributed amongst the unseen events according to a
more general distribution, e.g. the (n — 1)-gram. Two common discounting methods are:
1) Turing-Good discounting [62] and 2) Absolute discounting [82]. In the continuous phone
recognition experiments presented in the thesis, the latter approach will be used to construct
a phone-level fourgram back-off language model.

2.8 The HTK toolkit and extensions

HTK is a hidden Markov model toolkit originally designed by Young [113] at Cambridge Uni-
versity Engineering Department. The toolkit contains a set of tools and associated library
modules for building and testing HMM based speech recognizers. The toolkit is primarily
intended for building sub-word based continuous speech recognition systems, however, it
can also be used for isolated or whole-word based systems. The toolkit was designed to
support continuous density hidden Markov models with any number of states and mixture
components. It also implements a general parameter tying mechanism which allows the cre-
ation of complex model topologies to suit a variety of speech recognition applications. The
models are stored as text which allows for the easy creation, manipulation and inspection
of model sets. The following lists the very basic set of tools provided by HTK for building
and evaluating speech recognition systems

e HInit - this tool is used to compute the initial set of parameters for an HMM from
labelled data using the k-means clustering algorithm followed by repeated Viterbi
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segmentation of the training utterances.

e HRest - implements Maximum Likelihood re-estimation of the parameters of individual
HMMSs using labelled training utterances.

e HERest - implements embedded Maximum Likelihood training of a family of HMMs.
The tool uses only sequence information from the label file corresponding to the
training utterance to derive a new set of parameters.

e HVite - this is a continuous speech Viterbi recogniser which matches unknown utter-
ances against a set of HMMs using finite state grammar constraints.

e HResults - this tool performs Dynamic Programming (DP) alignment between the
output of the recogniser and the true transcription to measure the accuracy of the
recognition.

The experimental work described in this thesis also made extensive use of a generic im-
plementation of the embedded Baum-Welch algorithm (HNRest), in which each training
utterance can be aligned against a pre-specified network of HMMSs. As it will be seen later,
such an alignment is essential to carry out discriminative optimisation of HMM parameters.
Any tools written to evaluate the methods discussed in this thesis were built as extensions
of existing HTK tools and library modules.



Chapter 3
Discriminative Training

In HMM-based speech recognition, the purpose of training is to find the HMM parameter
set which results in the lowest possible recognition error rate for the chosen decoder. The
most common HMM parameter estimation technique is Maximum Likelihood estimation
(MLE) which was briefly described in chapter 2. Its most obvious quality is the existence
of a re-estimation algorithm which, in practice, requires very few iterations to obtain the
desired results. One problem with MLE training is that it has no direct relationship with
the aim of minimising the recognition error rate. Discriminative training techniques remove
the need for the assumption that the underlying models are correct and attempt to improve
recognition performance by adjusting the model parameters themselves.

In this chapter we examine the HMM parameter re-estimation problem from an infor-
mation theoretic point of view. Two principle methods are then discussed in detail - MLE
and Maximum Mutual Information estimation (MMIE). Their theoretical formulation is
compared to other previous and current approaches to enhancing the discriminative abil-
ities of the HMM framework. Finally, a modification to the MMIE objective function is
discussed which can result in better generalisation under certain conditions.

3.1 Introduction

Current speech recognition technology is based on the information-theoretic formulation of
the speech recognition problem. The following two sections provide a concise introduction
to this theory.

3.1.1 Entropy and mutual information

Let X,Y be random variables with realisations x,y. The measure of uncertainty in X is
the average number of bits ! necessary to specify the outcome of X when using an optimal
encoding scheme. This measure is given by

H(X) ==Y P(x)log P(z) (3.1)

'The units are bits if the log in equation 3.1 is taken to base 2.

24
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and is known as the entropy of X. A measure of the average amount of uncertainty about
X, given knowledge of Y is the conditional entropy of X given Y defined as

H(X|Y) = =Y P(a,y) log P(zly) = —E [log P(aly) (3.2)

"x7y

The amount of information in Y as to the identity of X is given by

I(X;Y) = H(X)—H(X[Y) (3.3)

_ P(z,y)
B AR ZCT)

Since I(X;Y) = I(Y; X), I(X;Y) is known as the average mutual information between X
and Y.

In the information theoretic formulation of the speech recognition problem, a spoken
sequence of words w is viewed as passing through a probabilistic acoustic channel which
produces a sequence of acoustic observations a, which are in turn passed to the probabilistic
decoder. Let W, A denote random variables with corresponding values w € V, a € A, where
Y is the set of possible word sequences and A is the inventory of acoustic realisations. Using
the above notation the message w is encoded into a. The uncertainty about the identity of
a word sequence w given a sequence of acoustic information a is the conditional entropy of
W given A

HW|A)=HW)—-I1I(W;A) (3.4)

Hence, H(W|A) can be interpreted as the shortest sequence of bits which are necessary
to specify W, given knowledge of A. In practice P(w,y) is not known and we have to
consider a family of parametric distributions Py(w,y) where A is the parameter set of the
distribution model. The conditional entropy of words given acoustics is

H\(W[A) = =3 P(w,a)log P\(wla)
= - w,a) lo M — w,a)lo wla
- %;P( ? )lgP(w|a) %;P( ’ )lgP( |)
_ w.a)lo Py(wla)
= - T Pwalog )+ HOVIA (35)

> —%P(w,a) [W—l} + H(W|A)
> H(W|A)

The above inequality follows from the fact that log(z) < z — 1, with equality for z = 1.
In the above equation the equality only holds when Py(w|a) = P(wl|a). Consequently, in
minimising Hx(W|A) we attempt to make Py(w|a) as similar as possible to P(w|a).

3.1.2 Probabilistic decoder

A speech decoder is a device which estimates the identity of w using information from its
acoustic representation a. The decoder can be expressed as a mapping W = f(a) where f(.)
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is the decoding function. If the chosen identity w is different from the actual identity of the
spoken utterance then there is a decoding error. The probability of making an error is the
most important factor in choosing the decoder. This quantity is defined as

I(f) =1-_ P(f(a),a)

where the term on the right defines the probability of correct classification. The optimal
decoder with regard to minimising the probability of error is the maximum a posterior:
(MAP) decoder, where 1 is chosen such that

W = arg max P(w|a) (3.6)

In practice the true probability distributions are not known, hence the decoder will make
the decision about the identity of the utterance by using the chosen parametric model.
Hence, the model Py(w|a) should be chosen so that Py(w|a) is large when the true P(w,a)
is large. Inspection of equation 3.5 reveals that such a model tends to make Hy,(W|A)
small. Consequently, in reverse, minimising H)(W|A) will tend to minimise the decoder’s
probability of error. By Bayes’ rule, equation 3.6 can be reformulated as

Py (a|w)Py(w)
P(a)

W = argmax Py(w|a) = arg max
w w

This shows that our model of P(w|a) can be decomposed into two components, the acoustic
model Py(a|w), and the language model Py(w).

3.1.3 Acoustic and language models

The acoustic model Py(a|w) computes the probability that the speaker will generate the
acoustic observation sequence a, knowing that he or she will utter the word sequence w. The
language model Py (w) provides the prior probability that the word sequence w will be spo-
ken. Analogous to equation 3.4, the uncertainty H(W|A) calculated using our parametric
model is

HA\(W[A) = H\(W) — I,(W; A)

where, analogous to equation 3.1

Hy(w) = — Y P(w)log Py (w)

w

and, analogous to equation 3.3

Py (wv (L)
L(W;A) = P(w,a)log —————F—
It is most common to minimise Hy(W|A) by first finding a language model which minimises
H)(w). Once the language model has been determined, we can choose an acoustic model
which maximises Iy (W; A) given Py(w). The lower bound of Hy(w) is H(w) and this value
can be achieved only when P(w) is known. In the rare circumstances where word sequences
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are generated according to an artificial grammar, the lower bound is reached simply by
using the probabilities from the grammar. In large vocabulary systems designed to cope
with natural speech this is not possible, and the language model parameters are estimated
from large samples of text. The work presented in this thesis is primarily concerned with
improving the quality of the acoustic model. However, the continuous phone recognition
experiments presented in chapter 5 will make use of a bigram and a fourgram language
models.

As in the language modelling task, when maximising I (W; A) the true probabilities are
not known and one has to consider a family of parametric distributions. The parameters
of the acoustic model are then estimated from labelled training utterances e.g. samples
of (W, A). In maximising I)(W; A), the goal of acoustic modelling is to extract as much
information as possible from the acoustic signal about the identity of the corresponding
word sequence. In chapter 2 we described an acoustic modelling approach based on hid-
den Markov models. The structure of these models is based on certain assumptions about
speech and, although these assumptions are not strictly true, the HMM framework provides
a tractable scheme for modelling the peculiarities of the acoustic phenomenon. An HMM
has two principle types of parameters - transition probabilities and parametric output dis-
tributions. The time-varying nature of speech is modelled by the transition parameters.
With a large number of states very fine phonetic detail can be modelled. The output distri-
butions model the acoustic signal. Mixture Gaussian probability densities have the power
to model any probability density function when estimated from sufficient training data.
Finally, the structure of the model can be finely tuned to achieve good generalisation even
when a limited amount of training data is available.

In the remaining sections of this chapter we shall examine different ways of estimating
the parameter vector A\. Without any loss of generality, the parameter estimation techniques
will refer to the portion of A corresponding to the acoustic model, although, in certain cases,
the language model probabilities will be used in the parameter estimation procedure. Most
speech recognition systems utilise HMMs to model the acoustic signal at subword or word
level. In this case, the probability Py(a|w) is computed using the HMM corresponding to w.
In order to make the re-estimation explicit, we shall assume that the training data consists
of R independent samples (a,,w,) for r = 1,..., R, and the HMM corresponding to word
w, will be denoted by M, 2. Two principal methods which relate to the entropy criterion
(section 3.1.1) will be discussed in more detail: Mazimum Likelihood estimation (MLE) and
Mazimum Mutual Information estimation (MMIE).

3.2 Maximum Likelihood estimation (MLE)

In the statistical framework, speech recognition can be performed optimally if the proba-
bility of any word in the recogniser’s vocabulary (the language model) and the probability
distribution of the acoustic signal representation (the acoustic model) corresponding to that

2In the case of sub-word models, M., is the compound model constructed by concatenating several
sub-word HMMs according to the pronunciation of w,.
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word are known. In this case, the MAP decoder (section 3.1.2), which chooses from all
possible words in the vocabulary the word that gives the highest conditional probability
given the acoustic signal, produces the optimal speech recognition device in the sense of
minimising the probability of error. An estimator g(w, a) is a function of samples of random
variables W and A which yields a new parameter vector . In standard ML estimation the
parameter vector )\ is derived such that

S\ML = gyr(w,a) = arg mfuxPA(w,a) = argm/\ax {Px(a|w)Py(w)}

Explicitly accounting for each individual training utterance, the above can be reformulated

as
R

5\ML = argmf,x H {Pr(ar| My, ) Pr(wr)}
r=1
In other words, we choose the parameter set A which maximises the joint probability of
words w and acoustics a. Assuming model correctness, the performance of the recogniser
will get closer to the optimal performance as the estimator g(w,a) gets closer to the true
parameter set \. The estimator g(w, a) is a function of samples of random variables. Hence,
the estimator itself is a random variable with a distribution related to the distributions of
the sample components. It can be shown that if 1) the sample (w,a) is a sample from
the assumed family of distributions, 2) the family of distributions is well behaved, and
3) the sample (w,a) is large enough, then, the maximum likelihood estimator gysr(w,a)
has a Gaussian distribution with mean A and a variance based on 1 / nB(zwya), where n is

the size of the sample and By, 4 is the Fisher Information [78]. Furthermore, it follows

w,a
from the law of large numbers that the maximum likelihood estimator is consistent e.g.
limy, 00 gurn(w,a) = \. Nadas [78] has shown that when the three previously mentioned
conditions are true no other consistent estimator has lower variance. Hence, no other
estimator can provide a closer estimate to the true parameter set A than the maximum
likelihood estimator. Finally, if the performance of the system does not get worse as the
estimated parameter set moves closer to the true parameter set, then a system trained using
MLE will perform as well as any other system trained using a different form of estimation.

The argument in favour of MLE presented in the above relies on the assumption that
the family of parametric models used to compute P(a|w) contains the true distribution of
the source. This is simply not true, because speech production is a complex mechanical
process whose accurate modelling, even if possible, will require a large number of parameters.
Almost certainly, such a model will be under-restrictive, thus requiring a vast amount of
data in order to obtain reliable estimates of its parameters. A similar argument applies to
the distribution P(w). The true language model is only available if the spoken utterances
conform to an artificial grammar. Due to its complexity and variation, the true grammar
of the English language cannot be expressed in an algorithmic form, hence, we can only
estimate P(w) using a parametric model trained from samples of text. Finally, training
data is always limited. Our acoustic models were specifically chosen to be HMMs since the
HMM allows its structure to be altered and adapted to the available amount of training
data.
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From the above, it follows that the optimality of MLE is based on assumptions which
are not valid in practice. However, it is still possible to minimise the uncertainty of finding
the correct identity of a spoken utterance given its acoustic representation by adjusting the
model parameters so as to minimise this quantity directly.

3.3 Maximum Mutual Information estimation (MMIE)

A few years ago, Maximum Mutual Information estimation (MMIE) was proposed by Bahl
et al. [6] as an alternative to MLE. MMIE attempts to find the HMM parameter set
which maximises the mutual information between the models and the training data. This
is equivalent to maximising the a posteriori probability that each utterance in the training
data was generated by the corresponding model. MMIE is very similar to the Conditional
Maximum Likelihood estimation (CMLE) procedure discussed in [78, 80]. In many cases,
optimising HMM parameters using MMIE and CMLE will produce identical estimates,
however, the subtle differences between MMIE and CMLE are worth pointing out. The
Conditional Maximum Likelihood estimator goar(w,a) is defined as

AemL = gomr(w,a) = argm}e\LxE [log Py(wl|a)]
However, analogous to equation 3.2, we have
H\(W|A) = — ZP(w,a) log Py(wl|a) = —E [log P\(w|a)] (3.7)

Hence, goarr(w, @) will choose a parameter set A which minimises Hy (W |A). Since the true
distribution P(w, a) is unknown, the value of E [log P\(w|a)] can be estimated by assuming
that the sample (w,a) is representative and replacing the expectation in equation 3.7 by
the sample average. The CML objective function is thus given by

R
fomr(N) = E [log Py(w]a)] = % S log Py (wy]ar) (3.8)

r=1
We can use Bayes’ rule to reformulate expression 3.8 in terms of our parametric models

P)\(ar|er)P)\(wr)
P(a;)

1 R
fomr()) = EZlog (3.9)
r=1

R
— % ;{log Py(ar| My, ) Pr(wy) — log P(“T)}

Next, we consider the Maximum Mutual Information (MMI) estimator as discussed in
[6, 22]. This estimator is defined as

Avivr = gumr(w,a) = argm;mx[,\(W; A)

Assuming that the language model Py(w) is given, the MMI objective function is defined
as
Fumr(\) = L(W; A) = Hy\(W) — E [log Py (wla)] (3.10)



CHAPTER 3. DISCRIMINATIVE TRAINING 30

and using sample averages instead of expectations

R R
fumr(N) = —% Y log P(w,) + % 3 log PA(@W]\;(«;T))PA(W)

r=1 r=1

R
= ;Z{logpx(arleT) —10gP(ar)} (3.11)

The first/second term on the right in equation 3.11 will be referred to as the “numera-
tor” /” denominator” likelihoods respectively of the MMIE objective function. Let us now
compare the CML objective function (equation 3.8) and the MMI objective function (equa-
tion 3.10). If the re-estimation procedure does not change the parameters of the language
model P)(w) then the first term on the right in equation 3.10 is a constant, hence, max-
imising I,(W; A) with respect to A is equivalent to minimising Hy(W|A). In virtually
all MMI-related experimental work published in the literature, MMI estimation is in fact
equivalent to CML estimation. The estimation of the language model parameters is carried
out separately, prior to estimating the parameters of the acoustic model. Minimisation of
H) (W) is achieved by choosing a language model which yields the lowest perplexity on the
training data. However, in continuous speech recognition tasks using the language model
whilst computing Py (a,|M,,) may allow for a more efficient pruning. Unless explicitly re-
quired by the context, for the remaining parts of this thesis the term MMIE will be loosely
used to refer to both MMIE and CMLE.

The MMI objective function involves two components. Choosing A to maximise the first
term in the bracketed expression in equation 3.11 is equivalent to finding the ML estimate
of A\. The second term constitutes the difference between MMIE and MLE. The second

term can be expanded in terms of the acoustic model and the language model as follows

Py(a;) = Z Py (ar|My) Py () (3.12)

In an isolated speech recognition task the above expression is relatively easy to compute since
the summation is taken over all words in the vocabulary. In a continuous speech recognition
task, the summation involves all possible word sequences. Even for small vocabulary tasks
(< 100 words) this expression can be prohibitively expensive to compute and store. In
general, P)(a,) can be computed as the likelihood Py (a,|Mye.) where M, is a composite
HMM built from the individual models M,,, according to the grammar of the task. In
many cases, M. is equivalent to the model used in the Viterbi recognition. Using the
recognition model to compute the denominator of the MMI objective function has the
effect of propagating the grammar constraints into the training process. In general, the
more restrictive the grammar is the less computation will be required to evaluate Py(a,).
However, incorporating higher level grammar constraints will require more sophisticated
search techniques. An example of M. is the looped phonetic model used in continuous
phone recognition where bigram language constraints are enforced on the loop transitions
[76]. In the cases where it is not possible to design a suitable M. of a reasonable size,
then expression 3.12 is usually approximated [6, 26]. Since Py(a,|Mrec) is computed as the
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sum of all possible paths through the model, an obvious approximation is to take the IV
largest terms in the summation which can be determined using the N-best algorithm [103].

The effect of Py(a,) is made obvious by computing the derivative of the MMI objective
function with respect to the parameter set \.

D= 53 (o e PP ) — b P
oNTMME T R £\ Py(ar [ Mo, ) 0N T Py (an[Myee) X AT
(3.13)
Assuming that the recognition model M,.. includes M,, for r =1,..., R then for a given
7, Px(a;|Myec) can be decomposed into
P)\(ar|Mrec) = P)\(ar|Mrec—r) + PA(GIT'MUJT)P)\(U)T) (314)
and combining equations 3.13 and 3.14 gives
0 1 &0 1 Py(w,)
il N = =S 2 Pua My _
o Janr () R ;m Marl M) {PA(ar|er) P,\(aT|MTeC)}
1 & 1 d
- 5 ————— avEx(ar Mrec—r 3.15
R;PA(MMT@C) o Dalar] ) (3.15)

The first term in the MMIE derivative is in the same direction and proportional to the
MLE derivative. The effect of the second term is to subtract a component in the direc-
tion of each incorrect path constituted when computing the likelihood of a, given Myec_p.
It is important to realise that M., implicitly incorporates the language model, hence,
paths corresponding to more probable word sequences will make a greater contribution to
the MMIE derivative. This is intuitively correct, since we would like to correct errors in
frequently occurring word sequences. Equation 3.15 also shows the fundamental difference
between MMIE and MLE. In MLE, the model parameters are adjusted to maximise the
probability of generating the data given the corresponding transcriptions. In MMIE, the
parameter set A is chosen to improve discrimination between each correct word sequence
and every possible word sequence. This is also equivalent to maximising the a posterior:
probability that the training data was generated by the corresponding model. If the like-
lihood P)(ar|Myec) is represented by a single path in M,.. and this path corresponds to
the correct transcription of a,, the contribution of a, to the MMIE derivative will vanish.
This corresponds to perfect recognition of a,.

Nédas [78] has carried out a theoretical comparison between MLE and CMLE. He has
shown that if the true distributions are known, the CML estimator is consistent and the
asymptotic variance of the ML estimator cannot exceed the asymptotic variance of the CML
estimator. However with a limited amount of training data, the CML estimator will have
greater variance than the corresponding ML estimator.

3.4 Previous MMIE results

There have been a number of comparisons between MLE and MMIE over the past few
years. The IBM speech recognition group was the first to report results with MMIE. In



CHAPTER 3. DISCRIMINATIVE TRAINING 32

their case, MMIE reduced the error rate by 18% on a 2000 word speaker dependent isolated
word recognition system. Shortly after, Brown [22] reported improvements from MMIE for
isolated recognition on the E-set task. However, in the case of discrete output distributions
MMIE actually degraded the performance which was explained by the fact that discrete
distributions do not make any assumptions about the shape of the “true” distributions.

Merialdo [76] successfully applied MMIE to speaker-dependent continuous phoneme
recognition using discrete HMMs. He used a modified gradient descent training algorithm
to update the HMM parameters, where the effect of “unreliable” low probability values
was reduced by biasing the derivative expressions. The denominator of the MMI objective
function was computed using the recognition looped phonetic model.

Perhaps the most significant evidence in favour of MMIE are the results published by
Normandin [84, 23] on a continuous digit recognition task where in one case he achieved
a reduction in error rate of 40%. Training was carried out using a modified version of the
IBM-proposed extension of the Baum-Welch algorithm to rational® objective functions [46].
In the context of connected digit recognition, Normandin [84] proposed a modification to
the MMIE algorithm, named, the “corrective” MMI training algorithm. This algorithm
starts with MLE trained HMMs. Each iteration is a two step process. First recognition is
performed on the training data to remove all correctly recognised utterances. The MMIE
algorithm is then applied to the remaining part of the training data. The aim is to correct
as many errors as possible from the training set in the hope that this will improve results
on the test set. In the ideal case, for the correctly recognised utterances the numerator and
denominator of the contribution to the MMI derivative will be very similar and consequently
cancel out. However, in the case when the utterance is correctly recognised only because
its path is marginally better than another path, “corrective” MMI training may result in
oscillations. In practice, the results obtained by Normandin using “corrective” MMI training
were very similar to the results obtained when using the full training set. The algorithm is
computationally more efficient since computing the Viterbi path during recognition requires
less computation than for the full likelihood used in the denominator of the MMIE objective
function. Unfortunately, the algorithm cannot be applied to continuous phone recognition,
since the phone models have small average duration, and accurate sentence recognition is
very rare.

3.5 Other discriminative methods

3.5.1 Minimum Discrimination Information (MDI)

Another training paradigm, minimum discrimination information (MDI) training was pro-
posed by researchers at AT&T [34, 35]. The discrimination information is a measure of
closeness between two probability distributions under a given set of constraints. The MDI
approach was proposed and theoretically studied in the context of autoregressive HMMs. In
this context, the observed acoustic signal is associated with a sequence of partial covariance

3The objective function in MMIE is a rational objective function.
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matrices which characterise the source distribution. The MDI estimator tries to choose a
parameter set A such that the discrimination information measure between the distribution
attributed to the source and the model distribution is minimised. Since the MDI approach
is based on a measure of discrimination, the parameter estimation procedure is not entirely
influenced by the chosen model form. The expected performance of the MDI approach is
not yet known since the method has not been fully implemented and studied. Both MMI
and ML modelling approaches can be reformulated as MDI modelling approaches [36, 37].
In [37], the ML, MMI and MDI modelling approaches were also shown to be optimal in a
minimal average discrimination information sense when used for simultaneous estimation
of all acoustic models.

3.5.2 The H-criteria

The study in [47] presents a general family of estimators jointly referred to as the H-criteria.
The various criteria are constructed as a weighted linear combination of the entropies of
the joint and marginal distributions of words W and acoustics A. An H estimator A=
9(hi hashs) (W, @) is obtained by minimising the corresponding H-criterion defined by

ha,h3)

H)(\hl’ é th)\(w’ a) + th)\(’LU) + h3H)\(a)

Thus, MLE is a minimum cross-entropy estimate given by g1 0,0) (w,a), CMLE is a mini-
mum cross conditional entropy estimate obtained by g 0, —1)(w,a) and MMIE is given by
9(1,-1,—1)(w,a). The problem of selecting the optimal decoder is redefined as the problem
of choosing the appropriate H estimator. The authors describe an example where MLE,
CMLE, and MMIE all select the wrong decoder, however, a different H-criterion succeeds

H)(\hl ah2 7h3)

in finding the correct decoder. In practice, the three parameters in offer only

two degrees of freedom. Furthermore, the language model is fixed which leaves one to con-

sider the criteria given by H §\1,—1,h3)

. Re-visiting equation 3.11 reveals that hs appears as
a weighting factor applied to the denominator of the MMI objective function. In a set of
preliminary experiments, the H-criteria was applied to a single speaker version of the IBM
20,000 word recogniser. The H criteria were obtained by setting hs = 0.0...1.0 in steps of
0.1. A gradient hill-climbing algorithm was run for 50 iterations in each case. An improve-
ment in decoding accuracy of 4.8% was noticed after training the original MLE-derived

models.

3.5.3 Minimum Classification Error (MCE)

An alternative to the conventional distribution estimation approach to decoder design is
to formulate it as an optimisation problem in which the objective is to achieve minimum
classification error on the training set. It should be understood, however, that if the amount
of training data is insufficient, minimising the empirical classification error for the training
set does not guarantee minimum error rate on the test data. Although the application of
minimum classification error estimation to speech recognition is relatively new, several dif-
ferent implementations have emerged in recent publications [74, 43]. In the former reference,
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Ljolje et al. proposed a training scheme where the empirical error rate of the recogniser is
estimated by the following function

dA)=1- 5 Z > Lun@(ar) (3.16)

where 1,, (4)(ar) is a decision function which returns 1 if a, is recognised as @w and 0
otherwise. This function constitutes the average number of utterances from the training
data which were misclassified by the MAP decoder for a given set of acoustic and word
models. The decision function is not differentiable, hence, #(\) cannot be optimised directly.
A possible differentiable approximation is given by

Ly POMu )P
@) =5 P (4| Mg ) Pr (@)

(3.17)

Comparing the above and CMLE objective function (equation 3.8) reveals that the two
approaches use identical statistics in a rather different way. In CMLE, the sum of the
logarithm of these statistics is maximised with respect to A while, the pure sum of the same
components is maximised in the MEE approach. One can argue that the latter approach is
more appropriate since the sum of the logarithms used in the CMLE approach causes the
CMLE derivative to be dominated by the smallest term in the summation e.g. the least
favourable utterance. Consequently, the search in CMLE will concentrate on utterances far
from the decision boundary, while the optimisation in MEE will receive an equal contribution
from all utterance. In practice, CMLE will be easier to implement since the logarithm in
the sum provides a natural normalisation when computing the derivatives of the HMM
parameters.

More recently the Minimum Classification Error (MCE) training for HMMs was pro-
posed in [25]. This approach is based on the definition of a general loss function, introduced
within the framework of an adaptive discriminative learning paradigm, known as Gener-
alised Probabilistic Descent (GPD) [59]. Several researchers have evaluated the MCE/GPD
approach on a variety of isolated and continuous word recognition tasks, [94, 38]. In many
cases, the name GPD has been used loosely to cover both the definition of the objective
function and the actual learning algorithm used to optimise the function. However, in many
of the examples, the convergence proofs provided by GPD are not needed since all of the
training data is available. The objective function in MCE is defined by

1 R
fuce(A) = R > (a(dr(ar)))

r=1

where 1) (.) is the individual utterance loss. The utterance loss, in turn, is defined in terms
of the mis-classification measure d(a,)

1
Ix(dx(ar)) = 1+ e—da(ar)
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The mis-classification measure dy(a,) can be interpreted as a measure of the penalty in-
curred when correctly classifying a,., i.e.

1/m

1
d/\(aT) = _g)\(ara er) + log K_1 Z emor(ar M) (318)

w
where gy (ar, My, ) is the “discriminant function” and K is the number of classes.

1/m2

gr(ar, M) = log Z{PA(aT|/\/i,s)}"2 (3.19)
0cO

In the above, the summation is taken over all possible state sequences in the model M.
An inspection of the MCE objective function reveals that the method is based on statistics
similar to the ones used in the MMI objective function. In virtually all experimental work,
the discriminant function used in MCE (equation 3.19) is evaluated by setting 72 — oo
which corresponds to evaluating the likelihood of the best path, commonly referred to as
the Viterbi likelihood. Furthermore, the mis-classification measure (equation 3.18) is often
calculated by setting 171 — oo so that the numerator of the logarithm corresponds to the
Viterbi likelihood of the utterance computed over the best incorrect model and the denom-
inator of the logarithm is the Viterbi likelihood of the utterance given the correct model.
Training only takes place for utterances with non-negative mis-classification measures e.g.
incorrectly recognised training utterances. We can point out two potential problems with
this approach

1. The Viterbi likelihood can be a poor approximation to the overall likelihood computed
over all possible paths in the model. Hence, discriminating against a single confus-
able path may not affect the overall recognition result. This is particularly true for
utterances of long duration and in the case when crude acoustic models are used.

2. Choosing the most confusable model to discriminate against may result in oscillations
during training. Furthermore, correct classifications close to the decision boundary
are not considered, hence, a further source of oscillations. In general, the algorithm
in its most common implementation, is likely to take longer to arrive at the optimal
parameter set since confusable utterances are dealt with one at a time.

In the spirit of MCE, section 3.6 describes a modification to the MMIE objective function,
where a non-linear weighting function is used to concentrate the parameter estimation
procedure on utterances close to the decision boundary.

3.5.4 Corrective training schemes

Bahl et al. [7] introduced the corrective training algorithm for HMMs as an alternative to
the Baum-Welch algorithm. Whereas the BW algorithm attempts to increase the probabil-
ity that the models generated the training data, corrective training attempts to maximise
the recognition rate on the training data. Corrective Training was designed in analogy with
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an error-correction training procedure for linear classifiers. While the latter can be shown to
converge, it has not been possible to prove convergence for corrective training. Leaving aside
questions of convergence, corrective training is appealing from a pragmatic point of view.
The models are not assumed to be correct and for any set of models, corrective training
attempts to find statistics which make the models work. The algorithm has two compo-
nents: (1) error-correction learning improves correct words and suppresses mis-recognised
words, and (2) reinforcement learning improves correct words and suppresses near-misses.
When applied to the IBM speaker-dependent, isolated word office correspondence task,
this algorithm reduced the error rate by 16%. A possible extension of Corrective Training
to continuous speech is more problematic. With isolated-word input, both error-correcting
and reinforcement training are relatively straightforward, since all errors are simple substitu-
tions. However, in continuous speech recognition, the errors can be insertions, deletions and
substitutions. Lee et al. [70] proposed such an extension of corrective training to continuous
speech recognition. The proposed algorithm hypothesises near-miss sentences for any given
sentence. First, a dynamic programming algorithm produces an ordered list of likely phrase
substitutions. Then, this list is used to hypothesise the near-miss sentences used in the
reinforcement learning stage. The modified training procedure was applied to the 997-word
DARPA continuous resource management task, using the speaker-independent database.
An error rate reduction of more than 20% over the standard MLE-trained SPHINX System
[68, 69] was reported.

3.6 Non-linear MMIE

In this section we shall propose a modification to the MMIE objective function. The non-
linear MMIE described here is a derivative of the standard MMIE criterion. It is important
to understand that the MMIE objective function does not rely on the explicit definition of
classes. For example, it can be applied to both isolated and continuous training utterances
without any necessary alterations.

In the non-linear MMIE, we introduce an utterance specific weighting criterion based
on the mutual information calculated for that utterance. The derivative of the weighting
function is then used to determine the utterance’s contribution to the derivative of the
objective function. The weighting function is designed such that during training emphasis
is placed on confusable utterances close to the decision boundary. Little weight is given
to tokens which are easily recognised or those which are clearly recognised incorrectly.
There are two reasons why the modified objective function may provide improvement in
performance

1. Utterances with low mutual information may not constitute a representative sam-
ple for the corresponding class. Hence, adjusting the model parameters in order to
accommodate such data may have an adverse effect on generalisation.

2. A discriminative training procedure is entirely dependent on the accurate labelling
of the data. In that respect, MMIE is a lot more sensitive to mislabelled data than
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the corresponding MLE procedure. An utterance with low mutual information can
suggest that the data actually corresponds to a different class or simply mean that the
sample is naturally indistinguishable from another class even for a human listener.

Let us now consider the MMIE objective function for a single training utterance a, with
corresponding transcription w,. In the analysis below, we shall assume that the model M,,,
corresponding to w, does not incorporate the language model scores and the generic model
M has the language model probabilities as between-unit transitions.

Py(ar| Moy, ) Py(w;)
P)\(ar|Mrec)

frmr(N) = log (3.20)

We can use the following decomposition
P)\(ar|Mrec) = P/\(ar|Mrec—r) + P/\(ar|Mww)P/\(wr)

And substituting the above in equation 3.20 yields

—log P)\(ar|Mrec)
Py (ar| My, ) Pr(wr)
P)\(ar‘Mrech) + P)\(ar|M'wr)P)\(wr)

fumi(N) =

= s Py(ar| My, ) Pr(w;)
- _lo P/\(ar|Mrec—r) ——1o a
= g (14 o R ) = g (14 T(ar)

The quantity Y (a,) will be referred to as the “mis-classification measure” and it provides
the following useful information. If 0 < T(a,) < 1 then one can conclude that the utterance
a, will be correctly recognised. When Y(a,) = 1 it means that there are one or more
competing paths whose total probability is equal to the probability of the correct path.
However, we cannot predict the outcome of the recognition since the exact number of these
paths and their respective likelihoods are not explicitly known.

Hochberg et al. [49] have shown that the MMIE criterion applies different relative
weighting to the training utterances as a function of where they lie in the decision space.
To illustrate this we consider two word classes W; and W, with models M; and My
respectively. The recognition model M,.. is constructed by placing M; and My in parallel
and a uniform language model is assumed e.g. Py(w,) = % for w, € Wi, Ws. The mutual
information criterion of the training set is given by

fMMI()\):—% ) log(l—}—T(a,«))—% S log(1+ T(ar)

Ar Wr €W2 Ar: We er

Assuming that the MMIE objective function is maximised using a gradient search on the
parameter set of the models, we can express the derivatives as follows
1 T(a,) O

) 1 T(a) 8
9 S S CLORRE: A PV DU S G L0 R PV P
8)\fMMI()\) Ra:w €W11+T(ar)8)\ * (a) Ra:w €W21+’r(ar)a)\ * (a)
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Consider a training token a, : w, € Wj. If the utterance is recognised correctly and it lies
far from the decision boundary then it will have little weight in the derivative

T(ar)

T(a,) <1 = h(ay) T T(a)

<1

If a, is near the decision boundary* Y(a,) 1 = h(a,) ~ 3. Finally, if a, is incorrectly
classified and far from the decision boundary Y(a,) > 1 = h(a,) ~ 1. A similar argument
applies to utterances belonging to word class W». From the above analysis, MMIE appears
to use mis-recognised utterances to update the parameters of the models such as to achieve
better class separation. Furthermore, incorrectly classified tokens far from the decision
boundary will receive a more substantial weighting in their derivatives.

In general, if we are dealing with isolated words with a uniform language model we
can hypothesise the value of Y(a,) beyond which an utterance is clearly mis-recognised.
For K different classes, we can say that if T(a,) > K — 1 then a, will be mis-recognised.
Hence, we can hypothesise the decision boundary as being at Y(a,) = K/2. Now, to
allow the parameter estimation procedure to concentrate on utterances around the decision
boundary, we introduce the following non-linear function

1

fs(z) = 14 @+ (3.21)

applied to the mutual information measure for each utterance. The constants v and &
control the slope and mid-point of the sigmoid function. The non-linear MMIE criterion
will be referred to as the Sigmoid-MMIE (SMMIE). The objective function of SMMIE is
then defined as follows

R
fsmmr(N) = %Zfs(fMMI(ara M)
r=1

where

Py(ar| My, ) Pr(wr)
P)\(ar|Mrec)

is the utterance-specific mutual information measure. In order to maximise fsararr(\) we

fumr(ar, A) = log

use

2 fopnnn) = 2 32 1) 2 fyar(an (322)
oxdsmmI(A) = R 200 s(Z) gy Immr(ar, .
for z = fyrmr(ar, A). The derivative of fs(z) is given by

9
ox

Figure 3.1 depicts a sigmoid weighting function and its derivative applied to the mis-

fs(z) = v fs(z) (1 = fs(2))

classification measure Y(a,). The plot shows that the overall derivative of the objective
function will be dominated by utterances with Y(a,) — 1.6 which is the hypothesised de-
cision boundary for 8 classes with a uniform language model. The slope parameter v will

*For two classes the decision boundary is defined exactly at Y(a,) = 1.
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Figure 3.1: SMMI objective function and its derivative wrt Y(a,) (v = 2.0, £ = 1.6)

have to be determined empirically. In general, a small value of v will give a wider band of
highly weighted utterances around the decision boundary and a larger value will make the
peak of the derivative sharper. With smaller values of v the value of the SMMI objective
function will be dominated by relatively few utterances falling within the narrow boundary
region.

The non-linear weighting function attempts to correct a criticism of MMIE i.e. the
fact that it gives higher weighting to training tokens far from the decision boundary. In
its formulation, SMMIE is somewhat similar to the MCE approach, however, it uses full
likelihoods and attempts to discriminate against multiple confusable utterances at the same
time. Comparing this weighting scheme with those implicitly used by various conventional
classification schemes, it is of the same form as the multi-layer perceptrons. Niles et al.
[83, 49] have shown how the mean squared error minimisation of HMM parameters within
an MLP framework gives most weight to borderline tokens, whereas MMIE training gives
rise to a weighting function which gives little weight to easily recognised utterances and
larger weights to utterances far from the decision boundary.

With this in mind, the SMMIE approach is expected to perform at least as well as
MMIE, with possible improvements in generalisation when the training utterances are not
representative of the task.
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3.7 Summary

This chapter has reviewed a number of current approaches to optimising the parameters of
HMMs. Maximum Likelihood estimation (MLE) is the most common re-estimation crite-
rion, however the assumptions which guarantee its optimality are never satisfied in practice.
This has led to the conclusion that other training schemes such as MMIE and CMLE can
yield better estimates of the HMM parameters with potential improvements in recognition
performance. The MMIE/CMLE approaches seem reasonable since recognition is usually
performed by finding the model with the largest a posterior: probability of generating the
spoken utterance. Unfortunately the expression to optimise is rather complex and often has
to be approximated.

Training schemes aiming at minimising the classification error of the recogniser were
shown to use similar statistics to the MMIE algorithm, often gathered in a simpler way. In
the spirit of the MCE approach, the MMIE objective function was modified to incorporate an
utterance-specific non-linear weighting function. The modified objective function attempts
to bias the re-estimation procedure towards utterances close to the decision boundary. The
algorithm is expected to achieve better generalisation when there is a limited amount of
training data and exhibit robustness to utterances which are not “representative” of the
task. The following chapter will discuss different optimisation algorithms which can be used
to implement MMIE training of HMM parameters.



Chapter 4

MMIE of HMM parameters

This chapter is devoted to the presentation of various optimisation algorithms which can
be used to re-estimate the parameters of a hidden Markov model using a discriminative
objective function such as the MMIE criterion. First, the general approach to function
optimisation is reviewed. This is followed by a discussion of a variety of gradient-based
training algorithms. Finally, we describe the discriminative training framework within which
the MMIE training algorithm will be evaluated.

4.1 Introduction

As discussed in chapter 3, the successful application of HMMs to speech recognition tasks
depends entirely on the definition of a meaningful objective criterion and the availability of a
fast and effective training algorithm. The well-known Baum-Eagon inequality [10] provides
an effective iterative scheme for finding a local maximum for homogeneous polynomials
with positive coefficients over a domain of probability values. Polynomials of this type
appear in various statistical problems dealing with the estimation of probabilistic functions
of Markov chains using the maximum likelihood criterion. It is probably accurate to say that
the powerful Baum-Welch algorithm is one of the main reasons for the introduction and wide
use of HMMs in current speech recognition systems. In the previous chapter we showed that
due to the modelling assumptions of the Markov model, it may be beneficial to estimate
the parameters of our acoustic model using some other criterion such as MMIE/CMLE.
Optimisation of these objective functions involves dealing with the ratio of two expressions,
hence they are commonly referred to as rational objective functions.

4.2 Training algorithms

Although the algorithms discussed in this chapter vary substantially in their motivation,
application and behaviour, they have the common property of being iterative ascent algo-
rithms. Iterative refers to the way an optimal solution is reached through the generation
of a succession of parameter sets from the current model. Ascent characterises the series of
generated parameter sets such that the value of the objective function increases as training

41
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progresses. Ideally, the sequence of points generated in such a manner converges to a solu-
tion of the problem in a finite number of steps. Convergence and the computational effort
involved are the two most important properties of an iterative training scheme. Computa-
tional effort is usually influenced by the number of function evaluations and degree of detail
needed for the algorithm to succeed. Many of the algorithms discussed later in this chapter
have been “borrowed” from the recently revived study of connectionist models [101].

We can distinguish between two rather different types of algorithms. In the Baum-Welch
algorithm, finding a local maximum of the likelihood function is accomplished within the E-
M (Expectation-Maximisation) framework. First, a state/frame alignment is produced for
the training utterances. Then, the parameters of the models are re-estimated to maximise
the value of the likelihood function, given the already calculated state/frame allocation. The
second class of algorithms are the so called “general minimum methods”. These methods
are popular since many complex real world systems can be characterised by a function
whose minimum will coincide with the optimal system’s behaviour. As Thomas J. Acton
[1] describes them

“They are the first refuge of the computational scoundrel, and one feels at times
that the world would be a better place if they were quietly abandoned. But even if
these techniques are frequently misused, it is equally true that there are problems
for which no alternative solution method is known - and so we shall discuss
them.”

To provide consistency with the literature, in describing these methods we will use the terms
“descent” and “minimise” rather than “ascent” and “maximise”. This is not a problem
since every maximisation problem can be reformulated as a minimisation problem. How
we intend to use the method being described should be clear from the context. A major
advantage of the “minimum methods” family of algorithms is that they are relatively simple
to perceive and implement. For example, many texts on numerical optimisation start by
visualising an optimisation problem in two dimensions. The unpleasant fact is that these
methods typically require many iterations to converge, and the methods providing faster
convergence are often too complex to implement for larger systems.

4.3 The E-M algorithm and rational objective functions

Optimising the HMM parameters according to the MMIE criterion described in the previous
chapter, typically, requires finding the local maximum of a rational objective function over
domains of probability values. Recently [46], the Baum-Eagon inequality was extended to
rational objective functions. In theory, the extension allows one to use an iterative E-M-
like algorithm for maximising a variety of discriminative objective functions. In general, a
rational objective function is defined as
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where analogous to section 2.3.2, S1(X),S2(X) are polynomials with real coefficients in
variables X = {z;;}. The problem of finding a growth transformation for R(X) is first
reduced to one of finding a growth transformation for a specifically formed polynomial
P.(X). Gopalakrishnan et al. have shown that for any X € D there exists a polynomial
P.(X) such that if P,(T(X)) > Py(X), then R(T(X)) > R(X). Typically, P,(X) is a non-
homogeneous polynomial, whereas the original proof of the Baum-Eagon inequality used the
homogeneity property of a polynomial as a necessary condition. The work in [46] contains
an extension of the original theorem which proves that the Baum-Eagon inequality also
remains true for non-homogeneous polynomials with non-negative coefficients. Analogous
to equation 2.9, the growth transformation for R(X) is given by

o wi {52 R(X) + C}

T(zi5) = (4.1)
Since faster convergence requires a small constant C' and the determination of such a con-
stant was found to be rather involved, in the experimental evaluation of the algorithm in
[46] an approximate version of the growth transformation was used. At each iteration, the
value of C was chosen to make all derivatives positive according to

)

C(z) :max{m_a,x{ 0 R(X)},O} +e€ (4.2)

where € is a small positive constant. Unfortunately, for the above chosen value of C, the
convergence properties of the algorithm are not guaranteed.

In [46], the extended Baum-Welch algorithm was used to estimate the parameters of
the IBM 20,000 word recognition system according to the H-criterion. The algorithm was
compared to a gradient hill-climbing algorithm in terms of the percentage improvement
in the value of the objective criterion. After six iterations, the extended Baum-Welch
algorithm improved the value of the objective function by 22.4% as opposed to a negligible
improvement of 0.5% provided by the gradient-based algorithm.

In its original derivation, the algorithm was only applicable to HMMs with discrete
output distributions. An extension of the algorithm to continuous density HMMs was
proposed by Normandin and Morgera in [85]. Since then, the algorithm has been used
extensively by the speech recognition group at CRIM [24, 23] to carry out MMIE training of
HMMs for connected digit recognition. On average the algorithm required 8-12 iterations to
provide optimal performance [84]. Beyond this, chaotic behaviour of the objective function
was often observed, which was attributed to the modified! gradient expressions used.

When this research began in 1990, the extension of the algorithm to CMD-HMMs was
not available and the empirical evidence of its success was not yet established. Conse-
quently, our study of discriminative training was focused on investigating the applicability
of conventional gradient search techniques to MMIE training of the HMM parameters. The
remaining parts of this chapter describe these alternative methods.

!Similarly to Merialdo [76], Normandin made use of modified gradient expressions to direct the re-
estimation procedure away from small-valued parameters.
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4.4 Minimum methods

In this section we review the basic techniques used for iteratively solving unconstrained
optimisation problems. A general optimisation problem can be expressed in the form:

minimise f(x) subject to x €A (4.3)

where f is a real-valued function and A is a subset of the n-dimensional Euclidean space E™.
Throughout this discussion A corresponds to the completely unconstrained set, however,
stochastic constraints on certain parameters can be automatically accommodated via suit-
able mappings on the corresponding variables. The fact that these methods can be applied
to any unconstrained problem makes them particularly suitable for optimisation of hybrid
HMM /neural network architectures. However, their practical utility is entirely dependent
on the complexity of the method and its speed of convergence.

In formulating 4.3, one is explicitly searching for a global extremum point of f over A. In
practice, however, due to computational and theoretical constraints only a local solution can
be found. Using function characteristics in the proximity of the current parameter vector
optimisation can be achieved only locally. In general, global solutions can be found only if
the function is unimodal, in which case any local critical point is a global one too. Using
differential calculus, the point & at which f achieves a locally minimal value is characterised
by V f(&) = 0 and the Hessian matrix of second derivatives V2 f(&) is positive semi-definite.
The vector of first derivatives V f(&) is given by

8w8(1) f(=z)
i)

oz(2

Vi) =| o5 ,

~

—~
8

~

where 2 (i) is the i* parameter in the function. In describing the optimisation algorithms,
sometimes we will have to refer to the parameter set at a particular iteration of the training
procedure. The notation xj;, will be used to denote the parameter vector of the function at
iteration k. The change in parameter value will be denoted by Axy.

4.4.1 HMM parameter derivatives

In order to perform any of the gradient based algorithms described in the following sections
we need to be able to differentiate the chosen objective function with respect to the HMM
parameter set A. In this section we will define the gradient expressions for the different HMM
parameters. In previous chapters, the training set was assumed to consist of a number of
samples (w, a) where w describes the identity of the spoken utterance and a is the acoustic
representation. In this section we will redefine the training data as follows. A training data
set O is defined as being comprised of R training utterances, i.e.

O ={0,,0,,...,0,,...,08}
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Each training utterance O, is a sequence of observation vectors
Or =071,0r2,...,0p4,...,0,.7T,

where T, is the number of frames in O,. Finally, each observation vector o,; consists of D
components

Ort1
Ort2

Ort =
Ort.d

Ort.D

Using the above notation, the MMIE objective function is defined as

Faaii(\) = Z{logpA (O, Ma,) — logPA(Or)} (4.4)
r=1
= — Zlog P\(Op|My,) — ZlogP,\ (Or|Miec) (4.5)
r 1 1" 1

where M, is the model corresponding to the utterance’s correct transcription and M.
is the recognition model. The model M,.. is always synthesised from the family of HMMs
according to the recognition grammar, hence, it is assumed that it also includes the language
model scores at the unit boundary transitions. Inspection of equation 4.5 reveals that the
MMI objective function is computed as the difference between two log-likelihoods calculated
using different models. The first term on the right in equation 4.5 will be referred to as the
numerator likelihood and the second term will be referred to as the denominator likelihood.
We will define the log-likelihood of the training set O given a model M as

LA(O|M) = ZlogPA (O | M) (4.6)

The partial derivatives of £y (O] M) with respect to the various HMM parameters are listed
below. All intermediate derivations are given in appendix B.

1. Transition probability a;; (combining B.2, B.9)

0
_ = 4.
ahi,k“(OW) (4.7)
1 R
=3 o ZZ it — Dai i (8,5 — ai 1)b;(on
Rr O|Mt1J 1C( a’] kg — a’k) (Ot)ﬁ]()
subject to
oy = Wi g = e

>k falhik)
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2. Mixture component weight c; ,, (combining B.2, B.10, B.24)

M
E Z Z C(Ta ta]) Z bj,m(OT,t)cj,’m((sk,m - Cj’k-)

subject to

fC(uj,m)

Cim = = and  fe(z)=¢€"

3. Mean pj,, 4 (diagonal covariance) (combining B.2, B.10, B.13, B.16)
0
Ottjm,d

1 R T . Ort.d — Hjm,d
EZZC(’“%J) cj,mbj,m(orat)[ s s

r=1t=1 g

LA(OIM) =

Jm,d

4. Mean vector p;,, (full covariance) (combining B.2, B.10, B.13, B.14)

)
o

—LA(OIM) =
J,m
R T.

1 . -
R Z Z C(T’ t .7) Cj,mbj,m(or,t)Wj,rln(or,t - ll'j,m)
r=1t=1

5. Variance o2 . (combining B.2, B.10, B.13, B.21)

j7m7d

0

0Zjm k

1 &L , 1| (ortd — Hjm.d)?
E ZZC(T7 t7]) Cj7mbj7m(orat)§ 2 - 1

r=1t=1 Ojm.d

LA(OM) =

subject to

0-]2',m,d = fo2(2jm k) and fo2(z) = €°

6. Covariance matrix W;Tln (combining B.2, B.10, B.13, B.18)

0
OLjm

LA(OIM) =

R T
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(4.10)

(4.11)

(4.12)

1 . _
=303 C0t, ) eimbim (0ne) {(E53)' = (0rs = 15 (0ns = 15,) Ly}

r=1t=1

subject to
-1 L. l:,
Wjﬂ” - j7m jv”L

where L, is the lower Choleski factor of W.]_1]”;’l
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Figure 4.1: Difficulties with steepest descent

The common factor C(r,t,7) is defined as

N
Clrt,j) = W{Zai(t—l)ai,j}ﬁj(t) (4.13)

=1
1 o(t)B;(¢)
Py(Or M) bj(0rs)

(4.14)

4.4.2 Steepest descent

The method of steepest descent is the simplest method of minimising a multivariate function.
At each iteration the values of the parameters are modified in the direction in which the
objective function decreases most rapidly. The direction is described by the gradient of the
surface at the current point in the parameter space. The magnitude of the modification is a
constant proportion of the magnitude of the gradient. The proportion is commonly named
the learning rate or step size and the parameter update is expressed as

Tp1 = Tk — NV f(zk) (4.15)

where, following previous notation, x and ;1 are the old and the new parameter vectors
respectively, and n is the learning rate.

Ideally 1 should be set to the value at which f(xr — nV f(2x)) is minimised. This is
equivalent to performing a line search along the direction defined by the gradient. Unfor-
tunately such schemes are impractical for complex functions of several thousand variables.
For example, in the context of optimising the parameters of a set of HMMs, the likelihood
function evaluations over several hundreds of training utterances is prohibitively expensive.
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4.4.3 Momentum

Although steepest descent can be an efficient method it scales up poorly as tasks become
larger and more complex. This is largely due to the fact that in a system with several
thousand parameters the optimised function surface possesses properties which make this
procedure slow to converge. The reasons behind this involve the magnitude of the compo-
nents of the gradient vector and the selected direction of the search. Two main problems
can be identified. The magnitude of the partial derivative of the function with respect to a
parameter may be such that modifying a parameter by a constant proportion of that deriva-
tive will yield a minor reduction in the cost function. This occurs in two cases. Where the
function surface is fairly flat along a parameter dimension, the derivative of the parameter
will be small in magnitude. Thus the value of the parameter is adjusted by a small amount
and many steps are required to achieve a significant reduction in the cost function. Alter-
natively, where the function surface is highly curved along the parameter dimension, the
derivative of that parameter is large in magnitude. Consequently the value of the parameter
is adjusted by a large amount which can result in oscillation.

Another reason for the slow convergence of the steepest descent algorithm is that the
direction of the gradient vector may not point directly towards the minimum of the objective
function. This problem is illustrated in figure 4.1. where contours of the function are long
and narrow, hence the gradient points the quickest way to the floor of the valley but not to
its centre.

Momentum attempts to solve these problems by introducing an extra term in the pa-
rameter update equation.

Az = (1= OnVf(zx) + Az s (4.16)
= (1=On)_ V(@) (4.17)

where ( is the momentum factor that determines the relative contribution of the current
and past partial derivatives to the current change in parameter value. This contribution
is the exponentially weighted sum of the parameter’s current and past partial derivatives
where ( is the base and the time from the current iteration is the exponent. Without the
use of momentum (¢ set to 0) the update rule is identical to the steepest descent rule. The
use of momentum has the effect of damping oscillations in values of the parameters. When
consecutive derivatives of a parameter possess the same sign, the exponentially weighted
sum grows large in value and the parameter is adjusted by a large amount. Similarly when
consecutive derivatives have opposite signs, this sum becomes small in magnitude and the
parameter is adjusted by a small amount. Two known limitations of momentum can be
specified. First, there exists an upper bound on how large an adjustment momentum can
make to a parameter. A second limitation is that the exponentially weighted sum may have
a sign opposite to the sign of the parameter’s current derivative.
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4.4.4 Newton’s method and conjugate directions

In this approach it is assumed that the function being optimised can be locally approximated
by a quadratic function (truncated Taylor series expansion)

flx) ~ f(xr) + V(xg)(zr — ) + %(azk —z)'V2f(zr)(zp — ) (4.18)

The quadratic function on the right can be minimised exactly at

or1 = o — V3 (@0)] V) (4.19)

Newton’s method has the very desirable property that its order of convergence is two.
However, this is only guaranteed if the algorithm is started sufficiently close to the optimal
point. In order to exploit the algorithm at points remote from the solution the algorithm
requires two modifications. The first modification addresses the problem that in expression
4.19 the objective may actually increase due to non-quadratic terms in f(xy). This is
rectified with the introduction of a search parameter 7

Tht1 =Tk — 1N [sz(a;ggk)] - Vf(zr) (4.20)

where 77 is selected to minimise f. The second modification relates to the properties of
V2f(xy). In general, the second term on the right in the above expression yields a direction
uy, of descent in the form

U = —Mka(:Bk)/ (4.21)

The descent property of uy is only preserved if V f(zr) MV f(x;)" > 0. This is usually
achieved by requiring M to be positive definite. Using the above expression the methods of
steepest descent and the pure form of Newton’s method are automatically accommodated
by setting M, to the identity matrix I or V2 f (xy) respectively. An intermediate solution
is offered by setting

My = [od + V2f(a:k)]_1 (4.22)

where p; is a non negative number for which M, is positive definite. In the Levenberg-
Marquardt type methods, a Choleski decomposition LL’ of [ka + V3§ (a:k)] is employed
to check for positive definiteness. Since LL’ is relatively simple to compute, this can be
used to iteratively increase the value of py until such factorisation becomes possible. Matrix
inversion is further avoided by using the Choleski factors to compute the direction vector
uy, through solving LL'uy = V f(xy), which is relatively simple since L is triangular.

The Conjugate Gradient algorithm is motivated by the desire to accelerate the slow
convergence of the steepest descent algorithm whilst avoiding the computation of the Hes-
sian matrix. The method aims at a more efficient exploration of the search space through
a sequence of linearly independent search directions. The algorithm was originally formu-
lated and analysed for purely quadratic problems. Its extension to non-quadratic problems
requires a line search to be performed along each new direction. Although the line search
can be directed using cubic and quadratic fits, it still requires several evaluations of the
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function. In the classic application of the algorithm, it is always assumed that evaluating
the function is computationally cheap when compared to evaluating the gradient vector. In
the HMM framework, evaluating the MMIE objective function will require computing either
the forward or the backward likelihood for both the numerator and denominator. Referring
to section 4.4.1 it can be seen that in order to compute the derivative expressions we require
both the a and the § matrices. Initially it seems that evaluating the likelihood function
will require half the computation used to compute the derivatives. As will be discussed
later, once the o matrix is computed, the backward pass can be heavily pruned using the
lookahead information already stored in the o matrix, hence the computational effort for
computing the gradients is much less than expected.
If we are considering maximising the MMIE objective function using Newton’s method,
a natural question to ask is how much computation is required to compute the Hessian
of the MMIE objective function. In order to derive this number and interpret it let us
consider the transition probabilities. From section 4.4.1, the derivative of the likelihood
function Py(O|M) with respect to a transition a;; is given by
9 T
PA(O|M) =" st — 1)bj(01) 35(t) (4.23)

t=1

Oa;

For the second derivatives one has to consider differentiating the above equation with respect
to another transition, say ag

T 9 5
{aakl%‘(t — 1) bj(0:)B;(t) + it — 1) bj(ot)aamgj(t)} -

|

where (j(t1,t) is the probability of generating the observation sequence oﬁl starting from

T t—1
> { [Z ag(ty — 1)bl(0t1)51(t1,t)] bj(01)5;(t) +

T

C\ci(t — 1) bj(Ot) |:Z C_Vk(t —1,t; — l)bl(on),@l(tl)

t1=t

state [ and ay(t,t1) is the probability of generating the sequence oil and finishing at state
k. This is equivalent to finding the probability of generating all possible sub-sequences 0%1
starting in state ¢ by taking transition a;; and arriving at state [ with the transition ay .
For an HMM with NV states and an utterance of length T" this will require computation of
the order N37T2. With the resources available when this research began, experiments to
evaluate such algorithms were considered impractical to perform.

Finally, due to the peculiarities of the HMM framework, the fore-mentioned second
order algorithms were considered unsuitable for optimising any likelihood-based functions.
The following sections will review three optimisation schemes which require only local first
derivative information.
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4.4.5 Local optimisation

Local optimisation methods consider local changes for each individual parameter. The
transition from the steepest descent procedure to a more sophisticated local algorithm can
be considered as implementing the following four heuristics proposed by Jacobs [55].

1. Individual learning rates should be employed for different function parameters. This
follows the observation that the step size appropriate for some parameter is not nec-
essarily appropriate for other parameters.

2. Following the fact that function surfaces may possess different properties along differ-
ent regions of a single parameter dimension, every learning rate should be allowed to

vary over time.

3. When the derivative of a parameter possesses the same sign for several consecutive
steps, the learning rate for that parameter should be increased. When the sign of the
derivative behaves in this manner, it is frequently the case that the function surface
along that parameter dimension has a small curvature, and therefore continues to slope
in the same direction for some significant distance. By increasing the learning rate
for this parameter, the number of iterations required for the value of this parameter
to traverse this distance can be reduced.

4. When the sign of the derivative of a parameter alternates for several iterations, the
step size for that parameter should be decreased. Change in the sign of the derivative
often indicates that the function surface at the current point in parameter space along
that parameter dimension possesses a high curvature. In order to prevent the value
of the parameter from oscillating, this value should be adjusted by a smaller amount.

In support of heuristic one, some preliminary experiments were carried out for optimising
the mean vectors in an HMM system according to the MMIE objective function using the
vanilla gradient descent procedure. The algorithm did not produce the desired result. This
was traced to the magnitude of the adjustments made to the mean parameters at each
iteration. The changes in value for most parameters were found to be unacceptably small
to warrant any significant change in the value of the objective function. The reason for this
is that the re-estimation formula for the means (see equation 4.9) involves the reciprocal
of the corresponding variance parameter, and variances were found to vary by as much as
10% even within the same distribution (see figure 4.2). Consequently, the same learning
rate parameter was too large for some parameters and too small for others. In order to
prevent instability, the learning rate had to be set to a small number, consequently the
gradient search was focused on means with small variances. However, in an HMM system
with 10% — 10® parameters to be updated at each iteration it is almost impossible to observe
the desired improvement in the value of the objective function.

It is important to realise that in a system where different step sizes are employed to
govern the changes of different function parameters, the chosen direction to move is not
the direction of the gradient. Thus, local optimisation methods are not gradient descent
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Figure 4.2: Plot of a MFCC_E D_A variance vector from the ISOLET database

methods. The parameter update procedure utilises information from both partial derivatives
and estimates of the curvature of the function’s surface given by the step size adaptation
for each individual parameter. Several possible implementations have been discussed in the
literature which attempt to speed up the steepest descent algorithm. We shall consider
three methods suitable for implementing MMIE optimisation of HMM parameters.

4.4.5.1 Delta-bar-Delta learning rule

The delta-bar-delta learning rule was proposed by Jacobs as an extension of the delta-delta
learning rule introduced by the same author as a slight variation of the update strategy
proposed by Sutton [105]. The rule consists of a parameter update rule and learning rate
update scheme. Let 7;, be the learning rate vector at iteration k and 7 (7) the learning rate

for parameter 7. Then, 1 is updated as

Mit1 = M + Any,
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where An,, is a vector of changes for each learning rate, given by

K if gk,l(z)sz(wk) >0
Ang(i) =< —éme(i) if 6x_1()Vif(zx) <0 (4.24)
0 otherwise

and
k(1) = (1= C)Vif(@r) + COr1(0)

The above equation represents the exponential average of current and past derivatives.
In the original paper [55], Jacobs used dx(i) = V;f(xk), hence the name “delta-bar-delta”.
The rationale behind this method is as follows: if the current derivative and the exponential
average of the previous derivatives have the same sign, then the learning rate for that weight
is incremented by a constant amount x. If the current derivative and the exponential
average have opposite signs, then the learning rate is decremented by a proportion ¢ of
its current value. This somehow supports the heuristic that if the parameter changes are
oscillating, the minimum is somewhere between the oscillations, hence the reduced learning
rate. Overall, the delta-bar-delta rule increments learning rates linearly, but decrements
them exponentially. Linear increment allows a gradual growth of the value of the learning
rate, whilst, exponential decrement ensures rapid decrease and positive value.

4.4.5.2 The RProp algorithm

The algorithm described below is a slight variation of the RProp procedure discussed in
[102]. The algorithm can also be considered as a variation of the delta-bar-delta update rule
where a separate learning rate is employed for each parameter, however, parameter updates
are carried out using only the sign of the derivative. The learning rate update rule is given
by

min(1.2n51(2), Mmaz) if Vif(xr)Vif(xr_1) >0

k(1) = § max(0.50k-1(2), Nmin) i Vif(zr)Vif(xr_1) <0 (4.25)

Nie—1(7) otherwise

and the change in parameter x (i) is given by

Ay (i) = sign[Ve f (@e)]mei) (4.26)

The change in parameter value is the magnitude of the learning rate for that parameter in the
direction of the derivative. Learning rates are incremented and decremented exponentially.
In the original version of the algorithm, no parameter update takes place if the current and
the previous derivative possess different signs. When dealing with the heterogeneous set
of parameters in an HMM, it was found beneficial to set different 7,,,;, and 7,4, for each
different type of parameters e.g. transitions, mixture weights, means and variances.
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4.4.5.3 Approximate second order

This method can be considered as implementing the update rule in Newton’s method using
an approximation to the Hessian matrix V2f(x). Two simplifying assumptions can be
made. First, all HMM parameters can be assumed to affect the value of the function
independently, e.g.

V2f($k) = diag { 62f(xk) 32f($k) azf(mk)}

Oxp(1)27 0z(2)?" 7 Owg(n)?

Second, the value of ‘?J:gz)@) can be approximated by the difference of first derivatives
2 . v
0 f(a?k) ~ Vif(zk) vzf(mkfl) (4.27)
Oxy(i)? Axy_1(i)
substituting equation 4.27 into equation 4.20 gives
Agr (i
Az (i) zr-1(0) Vif (k) (4.28)

=it (@) — Vif (@)
For 7 set to 1.0 expression 4.28 transforms into the update strategy of Fahlman’s QuickProp
[40]. The behaviour of the update rule given by equation 4.28 with n = 1.0 is as follows.
If the current gradient is smaller than the previous one but in the same direction, the
parameter will change again in the same direction. The step taken may be large or small
depending on how much the gradient was reduced by the previous step. If the current
slope is in the opposite direction from the previous one, then we have stepped beyond the
minimum. In this case, the next step will place us somewhere between the current and the
previous position. The third case occurs when the current gradient is in the same direction
as the previous but is of the same size or larger in magnitude. If we were to blindly follow
the formula we would end up taking an infinite step or moving in the wrong direction. The
third case occurs naturally since the update rule given by equation 4.20 will converge to the
nearest turning point. In order to handle this special case, we adopt the method used by
Fahlman in QuickProp. No parameter change is allowed to be greater in magnitude than
@ times the previous update for that parameter. If the change computed by the update
formula is too large, infinite or in the opposite direction to the current gradient, we instead
use @ times the previous change as the current change. Fahlman found that the optimal
value of ¢ is problem specific and for his experiments he used ¢ = 1.75. He also observed
that if ¢ is too large the system behaved chaotically and failed to converge. A bootstrap
process is also used to provide initial values of the parameter changes. More generally, if the
previous gradient is zero or non-existent then the current change in parameter is calculated
using plain gradient descent.

4.5 Discriminative training framework

4.5.1 Overview

The MMIE objective function is a rational objective function whose numerator is based on
the likelihood of each utterance computed according to the correct transcription and whose
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denominator is based on statistics computed by matching each training utterance against
the recognition grammar. Inspection of the derivative expressions given in section 4.4.1
reveals that similarly to the update equations in the Baum-Welch algorithm (section 2.3.2)
the parameter derivatives require the calculation of the forward /backward probabilities for
each training utterance (section 2.2.3). The rational nature of the MMIE objective function
suggests a logical way of structuring the training process. The discriminative training
framework which will be used to carry out MMIE training is outlined in figure 4.3.

The top left branch of the diagram shows the calculation of the forward/backward
probabilities for each utterance using the generic recognition model e.g. the looped phonetic
model in the case of continuous phone recognition. The right branch of the diagram shows
the calculation of the forward/backward probabilities from the alignment of each training
utterance against the “correct” HMM. In both cases the forward /backward probabilities are
used to accumulate statistics which will be used in the parameter re-estimation procedure.
In the case of the Baum-Welch? algorithm these statistics are in the form of state/mixture
occupancy counts and expected values of the distribution parameters. In the case of MMIE
optimisation, the statistics are the derivative expressions of the log-likelihood function with
respect to each HMM parameter. In each case, after all training utterances have been
processed, the collected statistics are stored in external files. The logical separation between
the calculation of derivatives and the actual parameter update procedure allows for the
relatively easy implementation of MMIE variants such as the H-criterion. Furthermore,
the calculation of derivatives can be performed concurrently on multiple processors by
splitting the training data into several equal chunks and gathering statistics for each of
them separately.

The bottom branches of the diagram in figure 4.3 show the two post-processing steps
which perform the re-estimation of the HMM parameters. The module on the right shows
the Maximum Likelihood estimation step where the statistics from the “correct” alignments
are used to adjust the parameters of the HMMs so as to increase the value of the likelihood
objective function. In this case, the statistics are automatically assumed to be count-based
although it is possible to optimise the likelihood function using a gradient search technique.
The corresponding right branch of the digram performs HMM parameter updates accord-
ing to a discriminative objective function. In the case of MMIE, the statistics accumulated
from the denominator likelihood are simply subtracted® from the corresponding statistics
gathered in the numerator pass. The resulting derivatives are then used by any of the
previously discussed gradient-based algorithms to carry out adjustments to the HMM pa-
rameters. Virtually all “local” optimisation techniques involve a quantity which describes
past changes in the values of the parameters. Such data is accumulated and stored into the
“Update statistics” file as the training progresses from one iteration to another.

Although intuitively very similar to MMIE, the SMMIE objective function cannot be
used directly in the above re-estimation framework. This is because the derivatives from the

2Incidently, the right branch of the diagram in figure 4.3 summarises the organisation and behaviour of
the HERest re-estimation tool from HTK [117].
3Re-estimation is carried out in the log-domain.
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numerator and denominator of the MMIE objective function are accumulated separately
and the combination of the two is carried out as a post-processing step. Consequently, the
update routines have no knowledge of the mutual information measure for each training
utterance and subsequently, the derivative weighting cannot be carried out. In order to im-
plement SMMIE training, the original framework of figure 4.3 was enhanced to incorporate
a routine which collects statistics from the numerator and denominator simultaneously -
figure 4.4. Thus, the utterance specific derivative weighting can be carried out as soon as
the probabilities from the numerator /denominator «/(-passes are available. The parameter
update procedure is based on the MMI re-estimation module from the original framework.

4.5.2 Implementation

The above described discriminative training frameworks were implemented as extensions
of the HTK toolkit [117]. In particular, the /3 passes and accumulation of derivatives
were implemented as modifications of a previously developed generic implementation of the
embedded Baum-Welch algorithm (HNRest) [61]. For each training utterance, the tool loads
a specified network file which describes the structure of the model to be synthesised (figure
4.3). An HMM instance is created and attached to each node in the network. The full
forward (a) and backward (3) probabilities are then computed for each HMM instance. In
order to save memory, the @ and 8 matrices are computed column by column, and only
columns corresponding to active models are created. Once, the forward and the backward
probabilities are calculated, a final pass through the frames of the utterance is made in
order to calculate and accumulate the derivatives of the likelihood function with respect to
the parameters of each HMM. After all training utterances have been processed, the tool
dumps the accumulated derivatives to external binary files.

The implementation of SMMIE is based on a modified version of HNRest which simulta-
neously maintains two sets of derivative accumulators and aligns training utterances against
two separate networks at the same time. In general, the modular fashion in which HNRest
was originally designed allowed for a rapid reorganisation of the code with minimal extra
programming effort.

The calculation of the o/ 3 probabilities is carried out within the token passing paradigm
[115] where each forward/backward probability is represented by a token held within the
corresponding HMM state. The a and § matrices created for each training utterance
are potentially very large. In practice, their size is dramatically reduced by computing
and storing columns of a and (§ only for HMM instances which are within the beam of
active models. The width of the beam is controlled by a forward and a backward pruning
thresholds. At the start of the utterance, there is only one model in the beam. At each
time frame, partial paths are extended by, first, propagating tokens between the states of
the active models and, second, by propagating tokens from the final states of active models
into their successors. At this stage, many previously inactive models are brought into the
beam. This corresponds to hypothesising all possible extensions of the currently maintained
partial paths which are consistent with the structure of the model. After this step, all active
models are examined and the maximum forward probability score is found. The beam is
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then narrowed, such that any models within the pruned beam have at least one state with
an « score within a threshold from the maximum. The backward pruning is very similar
to the forward pruning mechanism, however, one can make use of the information stored in
the o matrix to further narrow the beam. In this respect, the o matrix can be considered as
a lookahead which, for every state/time instance gives the probability of generating the not
yet seen portion of the utterance. Hence on the backward pass, the maximum alpha-beta
product is used to prune the models rather than the maximum value of § on its own. As will
be seen later, the pruning mechanism plays an essential role in reducing the computational
effort during parameter estimation.

4.6 Summary

Most implementations of MMIE for HMM parameters rely on gradient descent to optimise
the objective function. An alternative approach is to make use of the the extension of the
Baum-Eagon inequality to rational objective functions, however, the convergence of this
algorithm depends entirely on the appropriate selection of the value of the constant used
in the re-estimation formulae. In this chapter we considered three optimisation schemes
which are easy to implement and only make use of local first derivative information. Previ-
ous results have indicated that these “local” methods work rather well when applied to the
optimisation of the energy function used to train multi-layer perceptrons. Finally, a discrim-
inative training framework was described which will be used to carry out MMIE/SMMIE
training of HMM parameters. The following chapter presents an empirical evaluation of the
MLE, MMIE and SMMIE training algorithms.



CHAPTER 4. MMIE OF HMM PARAMETERS 58

% Training Utterances

O-pass/ 3-pass O-pass/ [3-pass
/ (denominator) (numerator)
| 88840 | 00090.,9999
3 0;89@9@;8; 3 Correct Transcription
o Qaaha |
L O=Q=0=0=0~

~

Original HMM set

Denominator Numerator

statistics statistics
Update /
statistics -

- MMIE MLE
//_k_\\\ /’/ /7{ } E }

T 0000 T QN0
L O=0=0=0=0= ! P O=O=0=0=0= "
Q000 - 0NNN
:O>O>O>O>O>i :O>O>O>O>O>i
00NN 00NN
;O>O>O>O>O>J ;O>O>O>O>O>J

MMIE HMM set MLE HMM set

@ - files
[ ]-process
Figure 4.3: Estimation of HMM parameters using MLE and MMIE - application to contin-

uous phone recognition



CHAPTER 4. MMIE OF HMM PARAMETERS 59

Training Utterances

SARARAEAIE AR AR AN

3 | 0=0=0=0=0=0=0=0=0=0~
\ J/ / Correct Transcription

a-pass/ B-pass
(numerator)

a-pass/ B-pass

(denominator)

Derivative weighting| \ = ______________.
L ) Q000
O=0=0=0=0= "
AEARARANE
O=Q=0=0=0= |
SEARARAEE
O=Q=0=0=0=
‘Original HMM set
Denominator Numerator
statistics statistics
Update
statistics _ - MMIE ]
T EARARARAN
0NN 0
i O=0=0=0=0~> |
0000
1 O=0=0=0=0= .
= -files SMMIE HHM set
[ ]-process

Figure 4.4: SMMIE optimisation of HMM parameters - application to continuous phone

recognition



Chapter 5

Evaluation of Discriminative
Training

Chapter 3 described a variety of objective functions which can be used to optimise the pa-
rameters of an HMM-based speech recognition system. Two techniques were considered in
detail: Maximum Likelihood estimation (MLE) and Maximum Mutual Information estima-
tion (MMIE). MLE is the most common approach to HMM parameter estimation. In this
approach, each model is trained using data from the class to which the model corresponds.
On the other hand, MMIE is discriminative in nature and as such it has many theoretical
advantages over MLE. However, MMIE training involves a number of practical difficulties.
For example, with a large number of classes, the algorithm requires orders of magnitude
more computation than the corresponding MLE case. Furthermore, due to the lack of the-
oretical guidance, past research on MMIE has tended to use somewhat slow and unreliable
steepest descent methods. With this in mind, in this chapter we present an empirical com-
parison between MLE, MMIE and the proposed non-linear version of MMIE (SMMIE) on
a variety of speech recognition tasks. In particular, experimental results are presented on
the BTL E-set database, the OGI ISOLET database, and the well known TIMIT contin-
uous speech database. The first section of this chapter, also includes an empirical study
of four local optimisation techniques which can be used to optimise the HMM parameters
according to a discriminative objective function.

5.1 The choice of training algorithm

As discussed in chapter 3 the successful application of any discriminative training scheme
depends to a large extent on the availability of an effective optimisation algorithm. Ideally
the algorithm should result in a reasonable improvement in the value of the discriminative
objective function after only a small number of iterations. The Baum-Welch algorithm used
for MLE training is theoretically proven to converge. At the same time, a good value of
the likelihood function is usually obtained after a small number of iterations. In the case
of MMIE, steepest gradient descent and the extended Baum-Welch algorithm [46] are the
only training procedures which are guaranteed to converge. However, as discussed in the

60



CHAPTER 5. EVALUATION OF DISCRIMINATIVE TRAINING 61

0.045
0.04 1
c L i
S 0.035
=
©
S
-
R
IS 0.03F b
©
=}
=
>
= 0.025F N
O QuickProp
+ Gradient
0.02 H
X ' Delta—bar
* RProp
0.015 ‘ ‘ :
0 5 10 15 20 25

Iteration

Figure 5.1: Comparison of optimisation algorithms.

previous chapter, the surface of a function of several thousands variables is likely to be rather
complex in which case the steepest gradient descent algorithm will require a large number
of iterations to find an optimal solution. Similarly, the extended Baum-Welch algorithm is
only guaranteed to converge for a sufficiently large value of the constant term used in the
re-estimation formulae, in which case, the speed of convergence makes the algorithm much
less useful in practice. In the case of any other optimisation scheme, a theoretical proof
of convergence is not available. Hence, the only way to judge the effectiveness of such an
algorithm is to demonstrate its utility in practice.

In this section we shall present an empirical comparison between four local optimisation
schemes: a modified version of the Gradient Descent algorithm, the Delta-bar-Delta adapta-
tion rule, the RProp algorithm and the approximate second-order algorithm, which, we shall
refer to as QuickProp following its similarities to the optimisation technique proposed by
Fahlman in [40]. The task chosen to evaluate the algorithms was the speaker independent
recognition of the members of the British English E-set {“B”, “C”, “D”, “E”, “G”, “P”,
“T” & “V”}. For these experiments we used the single mixture diagonal covariance model
set described in the following section. The last nine states of each HMM were tied across
all models to provide common modelling of the vowel sound. It is important to realise that
in this comparison we are not interested in the recognition performance of the system, we
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shall merely compare the rate of change in the value of the MMIE objective function for
each one of the selected four algorithms.

Starting from the MLE trained models, the evaluation of each optimisation algorithm
consisted of optimising the models’ parameters for 22 iterations of discriminative training
according to the MMIE objective function. In more detail, the four algorithm evaluated
were

1. Modified Gradient Descent. A preliminary experiment using straight-forward gradient
descent exhibited very slow convergence. This, as explained earlier, was attributed
to the large dynamic range of the derivative values. The basic algorithm was then
modified to use a separate learning rate for each HMM parameter type e.g. a distinct
learning rate was used for all transitions, all means, all variances/covariances and all
mixture component weights. The momentum term for all parameters was set ( = 0.3.
The initial step size was set automatically according to

|z] ,_ 0

n(x) = 0.05 n\lf;xm where 2’ = p (x) (5.1)

where the maximum was taken over all HMM parameters of that type.

2. Delta-bar-Delta (section 4.4.5.1). The algorithm was evaluated using ¢ = 0.5 and
¢ = 0.3. However, difficulties were encountered in setting the value of the learning rate
increment . This was due to the fact that an appropriate increment for the learning
rate of one parameter wasn’t necessarily useful for another parameter. The algorithm
was modified, so that individual learning rates were incremented exponentially e.g.
multiplied by k = 1.6, if two consecutive derivatives possess the same sign. The initial

learning rate for each parameter was set using expression 5.1.

3. RProp algorithm (section 4.4.5.2). The algorithm was modified to incorporate separate
Nmin, Tmaz fOor each parameter type. The corresponding values were set for each
iteration according to

Nmaz(2) = 0.10 max |z and Nmin(z) = 0.001 max |z|
Yz Yz

The initial learning rates for all parameters were set separately for each parameter
type using
n(z) = 0.05 max |z|
Vo

4. QuickProp (section 4.4.5.3). The algorithm was evaluated using ¢ = 1.75 as suggested
by Fahlman. The individual learning rates were bootstrapped using expression 5.1.

The convergence plots of the four different algorithms are shown in figure 5.1. QuickProp
appears to be the most effective algorithm. After only 10 iterations the value of the MMIE
objective function is very close to its theoretical maximum 0.0432. The modified gradient
descent algorithm provides steady but slow convergence. This is attributed to the common
learning rate used within each parameter type and the lack of learning rate adaptation.
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The Delta-bar-Delta learning rule exhibits faster convergence properties than the modified
steepest descent algorithm, however the changes in the value of the objective function are
marginal when compared to the QuickProp algorithm. The algorithm’s behaviour was
found to depend on choosing an appropriate value for k. Too large an increment resulted in
oscillations whilst slow convergence was observed for a small value of k. The performance
of the RProp algorithm is similar to the performance of Delta-bar-Delta algorithm. The
algorithm performs marginally worse in the early stages of the training and marginally
better during the last 4 iterations.

Overall, it seems that successful optimisation of the MMIE objective function requires
rapid adaptation of the value of each individual learning rate parameter. The plots presented
in figure 5.1 show the “typical” behaviour of each algorithm. Although it was possible to
obtain faster convergence by tweaking the parameters of each adaptation rule, no drastic
alteration in overall convergence was observed. In general, faster convergence in the early
stages of the training was followed by erratic behaviour in later iterations and complete
failure to converge. However, this is not to say that QuickProp is in general a “good”
optimisation scheme and the remaining three are useless. It is strongly suspected that
these local optimisation methods are to a large extent task-specific.

The suitability of any algorithm to a particular task depends on how well the adaptation
rules captures the properties of the curvature of the objective function. However, we have
shown that QuickProp is the most effective algorithm when applied to the re-estimation
of HMM parameters according to the MMIE objective function. Another advantage of
this algorithm is that it is simple to implement and it requires one to set a single variable
parameter . The convergence plots of the QuickProp algorithm for different values of ¢ are
shown in figure 5.2. Larger values of ¢ provide faster convergence, however when ¢ = 3.0
the algorithm exhibits chaotic behaviour and fails to converge. The corresponding plot
is prematurely terminated since the updated HMM set after the eighth iteration caused
the pruning mechanism in the following alignment to fail. In all experiments with MMIE
training in this thesis, the QuickProp algorithm will be used exclusively to update the
parameters of the HMMs. Finally, the QuickProp algorithm was devised as a neural network
optimisation techniques. As such, it represents the ideal tool to adapt the parameters of
the adaptive input transformations which will be introduced in chapter 8.

5.2 Experiments on the BTL E-set database

The first task chosen to evaluate the performance of the proposed discriminative training
methods was the speaker independent recognition of the members of the British English
E-set. A description of the database is given in appendix A.

5.2.1 Baseline results and parameter tying

Each member of the E-set was modelled by a left-to-right HMM with 15 emitting states and
no skip transitions. A diagonal or full covariance mixture output distribution was associated
with each emitting state. In each case, the parameters of the models were estimated from
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Figure 5.2: Convergence of the QuickProp algorithm for different values of ¢.

the full training set (1239 utterances) according to the MLE criterion using 8 iterations
of the Baum-Welch algorithm. As discussed in chapter 2, the sharing of parameters in
an HMM system is a powerful mechanism for adjusting the structure of the models in
order to obtain reliable parameter estimates from limited amounts of training data. A
preliminary set of experiments was carried out to investigate the sharing of parameters in
the output distributions of the models. The results from these experiments are presented
in table 5.1. The first column indicates the number of mixture components and the type of
covariance matrix used. For the latter, Diag denotes diagonal covariance; Full denotes full
covariance; GCov denotes a single covariance matrix shared by all distributions in all models
(Grand Covariance); and GMCov denotes a single covariance matrix for all distributions
in each individual model (Grand Model Covariance). The second column in the table
indicates which HMM states share the same mixture distribution across all models. A
clear improvement in performance is visible when each of the final 9 states shares the same
distribution across all models. This is due to the fact that virtually all of the information
necessary to discriminate between the different classes is concentrated in the consonant
part of each utterance!. Separate modelling of the vowel sound in each class increases the

Tt is assumed that the first 6 states of each word model implicitly model the consonant part of the
utterance, whilst the final 9 states model the vowel.
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H Type H States shared ’ log(P) ‘ %Acc train ’ %Acc test | Param. H
1/Diag no tying -29.645 90.88 81.21 5760
1/Diag 7-15 -30.385 91.04 84.50 2736
1/Full 7-15 -27.681 98.87 92.29 19152
1/GCov 7-15 -32.685 88.70 84.09 1704
1/GMCov 7-15 -29.836 95.00 90.65 4056

Table 5.1: The effect of sharing HMM parameters, MLE-trained models.

H Type H log(P) ‘ %Acc train ‘ %Acc test | Param. H

1/Diag || —30.385 91.04 84.50 2736
1/Full | —27.681 98.87 92.29 19152
3/Diag || —28.660 95.24 88.76 8379
4/Diag | —28.354 96.85 90.65 11172
5/Diag || —27.892 97.43 90.40 13965
7/Diag || —27.263 98.22 90.32 19551

Table 5.2: Baseline MLE results on the BTL E-set database.

chance of a mismatch occurring in the final stages of the Viterbi search. This observation
also indicates that the available training data is not enough to obtain reliable estimates of
the distribution parameters for the vowel in each individual class.

For all subsequent experiments on this database, the sharing of the final 9 states was
always enforced. The results in table 5.1 also reveal that full covariance output distributions
provide more accurate modelling than distributions with diagonal covariance matrices. This
is indicated by the higher log-likelihood per frame as calculated on the training set and the
actual improvement in recognition performance on the test set. Sharing a full covariance
matrix across all the states of a single model provides a very compact but effective system.
Table 5.2 shows the baseline Maximum Likelihood results for different number of mixture
components. The full covariance system still provides the best performance although in
terms of number of parameters, it is roughly equivalent to the 7 mixture component diagonal
covariance system which is showing signs of undertraining.

5.2.2 Discriminative training results

In these experiments, discriminative training according to the MMIE and the SMMIE ob-
jective functions was performed on the MLE-trained model sets described in the previous
section. Adaptation of the HMM parameters was carried out for 12 iterations using the
QuickProp algorithm. The recognition results are given in table 5.3. In all experiments, the
MMIE-trained models achieved 100% recognition accuracy on the training set which sug-
gests the need for larger training databases. The full covariance model set provides the best
performance in this case with an overall recognition accuracy of 94.01%. For comparison
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Type MMIE SMMIE

%Acc train ‘ %Acc test | %Acc train ‘ %Acc test
1/Diag 100.00 91.05 98.22 92.21
1/Full 100.00 93.85 98.87 94.59
3/Diag 100.00 91.39 99.03 92.04
4/Diag 100.00 91.55 99.52 91.87

Table 5.3: MMIE and SMMIE results on the BTL E-set database.

Woodland [109] reported 95.5%/92.1% on the same training and test sets respectively using
discriminative state specific input transformations. For the diagonal covariance single mix-
ture distribution models, MMIE has managed to reduce the error rate by 42%. However,
as the number of mixture components is increased the relative improvement in performance
provided by MMIE decreases. The last two columns in table 5.3 show the recognition per-
formance of the same model sets optimised according to the SMMIE objective function.
For these experiments the parameters of the sigmoid function (equation 3.21) were set to
v =0.001, £ = 1.6094. The latter corresponds to the hypothetical decision boundary for 8
classes and uniform language model, calculated as described in section 3.6. The result of
92.21% accuracy is very close to the original MLE trained full covariance model set which
has 7 times as many parameters as the single mixture diagonal covariance model set. In
general, parameter adaptation according to the SMMIE objective function has provided
a consistent improvement in performance over the corresponding MMIE trained models.
However, these results were found to be rather sensitive to the appropriate selection of the
v parameter which controls the slope of the non-linear weighting function. Too small a value
of v makes SMMIE more similar to MMIE, whilst a larger value of v discards a significant
number of training utterances which, in turn, does not alter the recognition performance.
Finally, the result of 94.59% accuracy is very good by itself, however, it still falls short of
the best accuracy figure of 96.0% published by Ayer [4].

5.3 Evaluation on the ISOLET database

The ISOLET database is an isolated speech, English alphabet database. Its full description
is given in appendix A. The task was seen as a natural progression from the BTL E-set
database for evaluating the proposed discriminative training methods. In terms of number
of utterances recorded per class the ISOLET database is no larger than the BTL E-set
database. However, the different partitioning of the data (80% training data, 20% test
data), the larger speaker population and the overall appeal as a realistic speech recognition
application makes this task a more representative speech recognition problem.
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|  Type | MFCCE | MFCCED | MFCCEDA ||

1/Diag || 86.47 | 91.67 92.76
4/Diag | 88.91 | 95.00 95.13
8/Diag | 89.55 | 95.45 95.26
12/Diag | 90.19 | 95.83 95.71
16/Diag | 90.38 | 95.51 95.96

Table 5.4: MLE results on the ISOLET database using different feature vectors.

| Type | MLE | MMIE | SMMIE | Param. |

1/Diag || 91.67 | 93.33 93.26 16536
1/Full || 96.03 | 96.60 96.47 124020
2/Diag || 93.91 | 94.74 94.67 33708
2/Full || 96.09 | 96.34 96.41 248676
4/Diag || 95.00 | 95.70 95.77 67416
8/Diag || 95.45 | 96.09 96.21 134832
12/Diag || 95.83 | 96.22 96.28 202248
16/Diag || 95.51 | 95.77 95.90 269664

Table 5.5: MLE and discriminative training results on the ISOLET database.

5.3.1 Baseline results

Each letter in the alphabet was modelled by a word-level left-to-right HMM with 15 emit-
ting states and no skip transitions. As before, the last nine states of models corresponding
to members of the American English E-set (9 classes) were tied together to provide common
modelling of the vowel sound. Tying other states according to the alphabet pronunciations
(table A.1) produced no improvements in performance. There was a total of 318 distinct
states in the system with diagonal or full covariance mixture output distribution. Four
iterations of MLE training were used to re-estimate the parameters of the baseline model
sets. Table 5.4 shows comparative results from using three different feature sets. It is clear
from these results that the MFCC_E_D feature set provides the optimal balance between per-
formance and number of parameters used. The use of second differential parameters yields
some improvement in performance, however, the relative gain is reduced as the number of
mixture components is increased. The full set of MLE results for diagonal and full covari-
ance model sets is given in the second column of table 5.5. The single mixture full covariance
system provides the best performance of 96.03% which is comparable with the best result
to date of 96.00% published in [27]. The confusion matrix from the recognition experiment
using this model set is given in table 5.6. Analysis of the distribution of recognition errors
shows that 65% of the errors take place within the E-set and another 19% between the
letters {M,N}.
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Table 5.6: Confusion matrix for MLE-trained single mixture full-covariance models (ISO-
LET).

5.3.2 Discriminative training results

In these experiments, the parameters of the MLE trained model sets were optimised using
the MMIE and SMMIE algorithms. The QuickProp algorithm was used to adapt the HMM
parameters for 12 iterations. The results from these experiments are presented in table 5.5.
To our knowledge, the performance figure of 96.60% accuracy achieved using single mixture
full covariance HMMs represents the best result published on this database. The confusion
matrix from this experiment is given in table 5.7. The MMIE training has resulted in 5%
fewer errors within the E-set and 25% fewer errors in the {M,N} set. As before, in all cases
the MMIE-trained models achievd 100.00% recognition accuracy on the training set.

For the SMMIE experiments, the parameters of the non-linear weighting function were
set to v = 0.008, £ = 2.6390. The latter corresponds to the hypothesised decision boundary
for 26 classes using a uniform language model. The application of the algorithm did not
resulted in any substantial improvement in performance. In fact, in certain cases the appli-
cation of the algorithm actually caused minor degradations in performance. As mentioned
earlier, the behaviour of the algorithm is highly sensitive to the appropriate selection of the
v and & parameters. It is possible that v = 0.008 is not the right choice, however, in the
preliminary trials used to determine this value, no substantial change in performance was
noticed. Another explanation for this behaviour came from the histogram distribution of
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Table 5.7: Confusion matrix for MMIE-trained single mixture full-covariance models (ISO-
LET).

mutual information measure of the utterances in the training set. This was found to be
fairly uniform which suggests that there is a good match between the models and the data.
The latter observation can be attributed to the larger training set and the stringent quality
filtering carried out whilst collecting the database.

In general, the application of discriminative training has been more effective in improving
the recognition performance of the “compact” model sets, e.g. the ones that use fewer
mixture components.

5.3.3 Computational considerations

The quantities needed to optimise the MMIE objective function are calculated using the
Forward-Backward (FB) algorithm. In MLE training the procedure is performed once using
the correct transcription of the utterance. In the case of MMIE the algorithm is performed
twice, once using the correct transcription of the utterance and the second time using the
recognition model. In E-set recognition, the recognition model consisted of the 8 class
models placed in parallel. In the case of alphabet recognition we have to consider 26 models
at the same time which is more than three times as many models than in the previous
E-set experiments. As mentioned in the previous chapter, the computational complexity of
the Forward-Backward algorithm can be reduced by using separate pruning thresholds for
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Figure 5.3: The effect of forward-backward pruning (ISOLET).

the forward and the backward passes. The choice of pruning thresholds is task specific and
reflects on how well the acoustic models fit the training data. A number of experiments have
been performed in order to determine the optimal values of the pruning thresholds?. Figure
5.3 shows the average number of active models per frame for each pass in the FB algorithm
when applied to the recognition model®. In general smaller threshold will reduce the number
of active models, however, this may introduce search errors and in the extreme case the FB
algorithm may even fail to find a path. For all discriminative training experiments presented
on this database, the forward pruning threshold (a-pass) was set to 200 and the backward
pruning threshold (5-pass) was set to 75.

2Similar experiments were carried out on the BTL E-set database, however, due to the similarities between
the two tasks, here we consider only the database with more classes.

3The application of the FB algorithm to the correct model is not considered since the word-level HMM
remains active throughout the alignment. This comes from the fact the pruning mechanism operates at
the HMM level rather than at state level. Having a separate vowel HMM in the case of E-set recognition
as opposed to tying states across models is a partial solution to the problem. However, the computational
complexity of the alignment when using the correct model is negligible.
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Type MFCC_E MFCC_E D MFCC_ED_A
%Corr ‘ %Acc | %Corr ‘ %Acc | %Corr ‘ %Acc

1/Diag || 53.01 | 48.87 | 59.78 | 54.79 | 62.94 | 55.58
4/Diag | 57.09 | 53.25 | 66.29 | 61.95 | 68.29 | 61.59
8/Diag || 58.43 | 54.80 | 68.33 | 64.26 | 70.55 | 64.38
10/Diag || 58.71 | 55.26 | 68.83 | 64.64 | 71.25 | 65.20
24/Diag | 59.93 | 56.55 | 70.59 | 66.51 | 73.71 | 68.69

Table 5.8: Comparison of using different parameter sets (TIMIT).

H Type H %Corr ‘ %Sub ‘ %Del ‘ %Ins ‘ %Acc ‘ Param. H

1/Diag | 62.94 | 26.60 | 10.46 | 7.36 | 55.58 11232
1/Full | 67.79 | 20.57 | 11.64 | 4.46 | 63.33 | 117936
2/Diag || 65.27 | 2543 | 9.30 | 7.12 | 58.14 22752
2/Full | 69.42 | 19.65 | 10.92 | 4.14 | 65.28 | 236160
4/Diag || 68.29 | 23.47 | 825 | 6.69 | 61.59 45504
8/Diag || 70.55 | 21.90 | 7.55 | 6.17 | 64.38 91008
12/Diag || 71.93 | 20.87 | 7.19 | 6.00 | 65.93 | 136512
16/Diag || 72.52 | 20.40 | 7.08 | 5.29 | 67.22 | 182016
20/Diag || 72.86 | 20.19 | 6.94 | 5.07 | 67.79 | 227520
24/Diag | 73.71 | 19.63 | 6.67 | 5.02 | 68.69 | 273024

Table 5.9: Baseline MLE results using diagonal and full covariance output distributions.

5.4 Evaluation on the TIMIT database

This section describes the continuous phone recognition experiments performed on the
TIMIT database. A detailed description of the database and the general experimental
setup is given in appendix A. Each of the 48 phone classes in the system was modelled by
a left-to-right HMM with 3 emitting states and no skip transitions. No tying was applied
to any of the HMM parameters. The full training set of 3696 utterances was used for both
MLE and MMIE training. All tests were performed on the core test set of 192 sentences.
Results are presented in terms of percentage correctly recognised phones and overall recog-
nition accuracy. For more details on the scoring procedure see section A.4. Unless stated
otherwise, a phone-level bigram language model with a scale factor of (2.0) was used in the

recognition experiments.

5.4.1 Baseline results

Four iterations of MLE training were used to re-estimate the parameters of the baseline
model sets. Table 5.8 presents comparative results from models using different feature sets.
Contrary to the results from a similar experiment on the ISOLET database, the perfor-
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H Type H %Corr ‘ %Sub ‘ %Del ‘ %Ins ‘ %Acc

1/Diag | 67.79 | 22.40 | 9.81 | 6.79 | 61.00
4/Diag | 71.61 | 19.04 | 9.34 | 6.39 | 65.23
8/Diag || 73.31 | 17.95 | 8.75 | 5.67 | 67.64
12/Diag || 74.25 | 17.59 | 8.16 | 5.65 | 68.59
16/Diag || 74.80 | 17.17 | 8.02 | 5.05 | 69.76
20/Diag || 75.08 | 16.80 | 8.12 | 5.03 | 70.05
24/Diag || 75.20 | 16.59 | 8.21 | 4.77 | 70.44

Table 5.10: TIMIT results using MMIE training and diagonal output distributions.

mance figures indicate a clear gain in recognition accuracy when using the 39 dimensional
feature set comprising of 13 MFCCs, energy component and their respective first and second
differentials. The MFCC_E_D_A feature set was used exclusively in all subsequent experiments.
The performance of the MLE trained model sets is given in table 5.9. The best performance
figures of 73.71% correct/68.69% accuracy are very good for a baseline system using con-
text independent HMMs. A somewhat surprising observation is that the two full covariance
distribution systems did not provide the expected gain in performance as suggested by the
two previous results on the isolated tasks. For example, the 8 mixture component diagonal
covariance system has 23% fewer parameters and yields higher accuracy than the single
mixture component full covariance system.

5.4.2 MMIE experiments

Similarly to the previous discriminative training experiments, the baseline MLE-trained
model sets were optimised according to the MMIE objective function using 18 iterations of
the QuickProp algorithm. Due to the somewhat disappointing performance of the full co-
variance model sets and the extra computational overhead involved in their use, the MMIE
algorithm was only applied to diagonal covariance mixture distribution model sets. The
results from these experiments are presented in table 5.10. MMIE has provided a consistent
improvement in accuracy over the corresponding MLE results. The MLE and MMIE per-
formance figures are graphically compared in figure 5.4. In particular, MMIE has provided
12.2% reduction in error rate for the single mixture component system and 5.6% reduction
in the 24 mixture component system. In the latter case, the improvement in overall recogni-
tion accuracy comes from a 15% reduction in substitution errors. Unfortunately, in certain
cases, reduction in the number of substitution errors made, is offset by an increase in the
number of deletions.

In a set of preliminary experiments, the application of SMMIE to continuous speech
recognition was found to be rather less effective than the corresponding isolated cases. This
is intuitively expected, since the SMMIE objective function gives a different weight to each
utterance according to the mutual information measure and the value of this measure has
a relatively uniform distribution over the training utterances. Indeed, a small number of
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Figure 5.4: Performance of MLE and MMIE trained models (TIMIT).

training utterances were found to have significantly inferior mutual information than the
sample average. However, their removal from the training process did not alter the recogni-
tion performance. This observation follows from the fact that even the most complex system
uses a mere 273024 parameters which are estimated from a total of 1124823 observation
vectors. Finally, finding the hypothesised decision boundary is also rather involved due to
the language model scores and the vast number of distinct paths in the model. An alter-
native solution is to manually derive this value from the histogram of mutual information
measure on the training set.

5.4.3 Computational considerations

Table 5.5 shows the effectiveness of the forward-backward pruning for both the recogni-
tion model and the correct transcription. For the correct transcription, the reduction in
computation is significant since even with only 3 active models on the forward pass, the
pruning does not alter the overall likelihood of the utterance. In the case of the correct
transcription, the overall reduction in complexity is typically 16 times on the forward pass
and 20-24 times on the backward pass. However, the forward-backward pruning is rather
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Figure 5.5: The effect of forward-backward pruning (TIMIT).

less effective when applied to the looped phonetic model. Virtually all models (48) remain
active on the forward pass, no matter how narrow the pruning beam is. This is attributed
to the short average duration of each phone model, e.g. only 3 observations are needed for
a token? to traverse each phone model. On average, 6-10 models are required to be active
on the backward pass. In general, with more detailed acoustic models forward-backward
pruning is more effective, however, the MMIE training algorithm still requires 12-15 times

more computation than standard MLE training.

5.4.4 The use of long-span language models

In this experiment, the standard bigram language model was replaced by a fourgram back-off
language model. The language model was constructed using a recently developed extension
of HTK. The language model training data came from the transcriptions of the full TIMIT
training set (3696 sentences). The language model was generated using the absolute dis-
counting method [82] where each n-gram (n = 2,3,4) contributed an equal amount to the
total unseen “mass” used in calculating the probabilities of unseen events. Trigrams which
occur less than 3 times and fourgrams which occur less than 10 times were considered to in-
troduce unwanted bias towards the grammar of the training utterances and were discarded.

“The Forward-Backward algorithm is implemented using the token-passing paradigm [115].
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Component || Entries | Cut-off | core (192) full (1344)
7215 tokens | 50754 tokens

bigram 1692 0 16.35 16.33
trigram 8055 2 14.71 14.70
fourgram 2470 9 14.51 14.58

Table 5.11: Perplexity tests on the core and full TIMIT test sets.

H Component H requested ‘ found ’ approx ’ backed H

bigram 1121 99.1% | 0.9% 0.0%
trigram 5203 78.5% | 20.0% | 1.5%
fourgram 7023 25.9% | 20.3% | 53.8%

Table 5.12: Fourgram access statistics on the TIMIT core test set.

The language model parameters and the results from perplexity tests are given in table
5.11. The trigram language model provides 10% reduction in perplexity whilst the four-
gram model provides a further reduction of 1%. Table 5.12 shows the statistics about the
language model access during recognition. Only 25% of the requested fourgrams are found
in the model, the rest are either computed using the corresponding trigram and the four-
gram’s back-off weight or fully backed-off to the corresponding trigram. The improvement
provided by the trigram language model is due to the high proportion (78%) of requested
trigrams explicitly contained in the model. Recognition experiments with the fourgram lan-
guage model were performed using the single-pass decoding algorithm described in [86, 106].
The decoder incorporates a dynamically grown non re-entrant recognition network which is
built on-the-fly. A new copy of the full phone network is grown as a successor of each active
phone model. Thus, different recognition paths are maintained separately which allows for
the relatively easy incorporation of language model scores.

The fourgram language model was used in conjunction with the best performing set
of models. The results are given in table 5.13. The use of fourgram language model
has resulted in further reduction in error rates of 5.24%/3.82% for the MLE and MMIE
trained models respectively. To our knowledge, the performance figures of 71.57%/75.51%
accuracy/correct represent the best result obtained on the TIMIT database using context
independent HMMs. In fact, these figures come close to the recently published results

H Type H %Corr ‘ %Sub ‘ %Del ‘ %Ins ‘ % Acc H

MLE, 24/Diag 74.16 | 18.13 | 7.71 | 3.84 | 70.33
MMIE, 24/Diag || 75.51 | 16.87 | 7.62 | 3.94 | 71.57

Table 5.13: TIMIT experiments with a fourgram language model.
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by Young and Woodland [116] of 72.3%/76.7% using 1176 state clustered right context
dependent bi-phone HMMs and a bigram language model.

5.5 Summary

This chapter has presented an experimental evaluation of MLE and MMIE. In virtually

all experiments, MMIE has provided a consistent improvement in performance over MLE.

However, the different nature of the three different databases has resulted in different relative

gains in performance. We have also made the following observations

1.

On average, discriminative training provides larger improvements in performance for
isolated word tasks than when applied to the continuous speech recognition task. This
can be explained with the fact that a phone is a very abstract linguistic unit with a
short average duration whose actual realisation depends on neighbouring context.

. Parameter tying has provided a mechanism for sharing parameters between word-level

HMDMs with substantial gains in performance.

. The MLE-trained, full covariance models have provided the best performance on the

two isolated tasks, however, this is not the case for continuous speech where diago-
nal mixture distributions give superior performance. For the isolated tasks, the full
covariance model sets were further trained using MMIE and achieved state of the art
performance.

. The use of second differentials in the feature set is vital to achieve good performance

on the continuous phone recognition task, however, they are of a limited value when
applied to the isolated alphabet database. Furthermore, in the former case, second
differential parameters appeared to be more effective with models of higher complexity.

. The use of a fourgram back-off language model was investigated in the context of

continuous phone recognition and found to yield an improved recognition accuracy
over the standard bigram language model for both MLE and MMIE trained models.

. The successful application of discriminative training has been possible through the

use of an efficient training algorithm. The QuickProp algorithm is an approximate
second order optimisation strategy which is simple to implement and very effective
when used to implement MMIE training.

. Forward-Backward pruning is an important technique, which has also contributed to

the successful application of MMIE. The method provides a mechanism for discarding
unimportant models from the FB algorithm with substantial computational savings
in both the isolated and continuous cases.

. The SMMIE algorithm provides a flexible scheme for selecting representative train-

ing utterances. Unfortunately, its application is limited to the isolated tasks where
decision boundaries are more clearly defined. In particular, with limited amounts of
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training data the algorithm was found to offer consistent performance improvements
over MMIE.

On the two isolated word recognition tasks, MMIE always achieved perfect recognition on
the training set which leads one to discuss the generalisation abilities of the MMIE algo-
rithm. Indeed, MMIE seems to be very good at memorising the training data, however,
good recognition performance on the training data does not always translate into improved
recognition performance on an independent test set. In MLE training, a mismatch between
the performance on the training data and the performance on the test data is often at-
tributed to the training data not being “representative” of the task. In the case of MMIE
the differences in performance are more substantial and a possible explanation is that the
algorithm attempts to model acoustic events which are peculiar to the utterances of the
training set and have no global significance for the task. It is certainly true that certain
parameters in the HMM framework are more globally significant for the task than others.
For example, in the case of BTL E-set recognition the full covariance system used four
times as many parameters and achieved better recognition results on the test set than the
single mixture diagonal covariance system. At the same time, both systems achieved perfect
recognition on the training set.

Finally, in all experiments carried out, MMIE training was shown to be more effective
for the systems which use fewer mixture components. On the continuous speech recognition
task, MMIE only provided a marginal performance improvement when 24 mixture com-
ponent models were used. Indeed this observation is in accordance with the theory which
shows that when the training sample is large, and as the model distributions get closer to
the “true” distributions of the source, performance differences between MLE and MMIE

will vanish.



Chapter 6

Input Transformations

A significant recent development in improving the performance of speech recognition sys-
tems has been the addition of new feature components to the observation vectors. However,
because of the larger dimensionality of the observation vector the number of model param-
eters and the computational requirements have also increased. To improve recognition
performance it is not feasible to indefinitely increase the size of the observation vectors, nor
is it satisfactory or practical to run recognition experiments on manually chosen subsets of
the feature space in order to decide on the best performing set with a reasonable number
of parameters. In such cases, it is clearly desirable to understand which components of
the feature vectors provide the greatest contribution to the recognition performance and to
discard the least useful components. This chapter introduces the theory and application of
dimensionality reduction methods which can be used to provided compact and informative
feature vectors for an HMM-based speech recognition system.

6.1 Introduction

Until a few years ago each observation vector contained only spectral coefficients as esti-
mated from the speech signal over a period ranging from 20 to 50 ms. However it has
been shown [45] that improved recognition performance can be achieved by including the
time derivatives of the spectral coefficients in the frame vectors. More recently, the further
addition of the second-order time derivatives of the spectral coefficients has been shown to
yield improved recognition performance for large vocabulary speech recognition [51]. The
improved recognition performance obtained by using first and second differential param-
eters shows a limitation of the conventional HMM framework. Although the derivative
information is directly available from the static parameters, the observation independence
assumption prevents the Markov model from tracking the rate of change in the observa-
tion vector components because it considers each observation vector in isolation from its
immediate predecessors and successors.

Nowadays, it is common to transform the spectral parameter representations into a
“cepstrum-like” domain by applying the discrete cosine transform (DCT) to the output of
the filter bank or the linear predictive coefficients (LPCs). First and second differential

78
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parameters are then computed from the basic cepstral coefficients. The (DCT) is a very
important tool in the current speech recognition technology since the resulting cepstral
features are largely uncorrelated which makes the diagonal covariance Gaussian distributions
(section 2.2.2) somewhat more appropriate. The basic feature sets and their derivation as
used in the experiments presented in this thesis are given in appendix A. The following
sections will describe 1) feature selection algorithms which can be used to rank-order the
components of the feature vector; and 2) feature extraction algorithms which transform the
spectral/cepstral coefficients and provide a method of selecting a subset of parameters from
the transformed domain.

6.2 Classes and distance measures

Speech recognition is about recognising time variant patterns which form higher level struc-
tures such as phones, words and sentences. Speech recognition using hidden Markov mod-
els makes the assumption that speech patterns are quasi-stationary and as such their time
variability can be modelled as a sequence of states and associated probability distributions.
Developing a speech recognition system involves training a set of whole or sub-word models
and then testing unknown utterances against these models during recognition. Several of
the feature selection and feature extraction techniques discussed in this chapter are based
on the concept of “improving discrimination between classes”. With this property, their
application to static pattern recognition is a straight forward task. However, the success of
these techniques to the speech recognition problem will depend to a large extent on choosing
an appropriate class definition.

In the HMM framework each model consists of a sequence of states where each state can
be thought of as modelling a particular class of speech sound. There is no explicit correspon-
dence between HMM states and any particular sub-word unit. The set of utterance frames
that map to a given state are assumed to belong to that class of speech sound and form a
set of possible acoustic realisations for that class. Each observation vector can be regarded
as a pattern in multi-dimensional space and the distribution of frames corresponding to a
particular state is assumed to be a multivariate Gaussian mixture density. Taking a simpli-
fied view, the recognition of a single utterance is accomplished by matching the sequence of
utterance frames against each model in turn and the model with the highest likelihood of
producing the observation sequence is chosen. At the frame level, the recognition process
becomes one of assessing the probability of a particular utterance frame belonging to a
given state. Due to the inherent confusability in speech sounds, the distributions for differ-
ent classes will overlap. This overlap is a potential source of recognition errors, however,
there is no guarantee that improving class discrimination at the frame/distribution level
will result in better overall recognition accuracy.

The frame log probability computed by a Gaussian output distribution is given by

log b(0) = log [(22) P/ W | 2] = (0~ YW o~ )

Assuming that W is the same for all states, and dropping the first term in the above
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expression gives the popular Mahalanobis distance. When W is assumed to be diagonal
and the variances of all features are the same, the second term becomes equivalent to the
squared Euclidean distance. In the HMM framework, the first term can be interpreted
as a state-specific weighting factor derived from the covariance of the distribution. The
Mahalanobis and Euclidean distances are invariant to non-singular rotations of the feature
space, and the Mahalanobis distance is further invariant to scaling transformations.

6.3 Class separability

Class separability measures are usually generalisations of the F-ratio concept (see section
6.4.2). In a typical speech recognition task, improved class separability will not always
yield a gain in recognition performance. This will depend to a large extent on the class
definitions themselves and also on the definition of a meaningful measure of class separability
which explicitly or implicitly relates to the overall recognition performance of the system.
Measures of class separability are usually based on in-class and out-of-class statistics from
the data representing the various classes. The in-class scatter measure for each class 7 is
given by the matrix
Wi = El(z; — p;) (i — ;)]

where x; denotes all samples representing class ¢ and p; is the mean vector for class .
Assuming that the features representing each class are normally distributed, the in-class
scatter measure is equivalent to the covariance matrix of the Gaussian distribution modelling
that class. This equivalence is important since it gives a convenient way of computing W ;
as a by-product in the HMM training procedure. The average in-class scatter is given by
the pooled in-class covariance matrix, that is

1
W:H;Wﬁ

where n is the number of classes. Ignoring in-class variation and representing each class by
its mean p,, the between-class covariance can be computed as

B = E[(; — pg) (i — 1,)’]

where p  is the mean of p;. Since the desired features should have small in-class covariance
and large between-class covariance, measures of separability involve a ratio whose numerator
is based on B and whose denominator is based on W. Four such measures are described by
Fukunaga [44] and the following two are of a particular interest since they remain invariant
under non-singular rotations and scaling of the feature space

Ji = tr(W™B) (6.1)
Jo = |WB|

The J; measure can be interpreted by applying a similarity transformation U which simul-
taneously diagonalises W and B. If such a transformation exists, J; can be interpreted
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as the sum of the F-ratios of the features in the transformed domain. The J; measure
will have the same value before and after the transformation provided that all features are
retained.

The determinant of each covariance matrix is equal to the product of its eigenvalues,
and the eigenvalues in turn are proportional to the lengths of the axes of the hyper-elliptical
contours of equal probability. Hence, the J; measure compares the scatter of the within-class
and between-class distributions in terms of the squares of their multi-dimensional volumes.

6.4 Feature selection

Feature selection is a technique for reducing the dimensionality of the input vector by
selecting a subset of the original feature set. This is accomplished by choosing a figure
of merit to evaluate the performance of each individual feature and then selecting the
best D features to use thereafter. However, the D features that give the best recognition
performance when used jointly may not be the same as the D highest ranking individual
features according to the chosen criterion. Evaluating the performance of each individual
subset by performing recognition experiments is a computationally expensive and somewhat
tedious task. In practice, this problem is usually ignored and it is common to assume that
unless the features are linearly dependent, then each new feature will further aid correct
classification and the performance of the selected subset will be very close to that of the
best set of D features.

6.4.1 Selection based on power spectrum resolution

The power spectrum resolution can be used to visualise the ability to accurately represent
the various classes in a speech recognition task using a particular feature set. When using
cepstral parameters, it is well known that higher order cepstral coefficients contribute less
to the power spectrum resolution. If the extra resolution provided by these higher-order
coefficients is judged to be unimportant for a particular recognition task, the resolution
of the power spectrum can be lowered by removing these parameters without any loss in
recognition accuracy. In speech recognition, the cepstral parameters are more important
than their first derivatives, which in turn, are more important than the second derivatives.
This information can be used to manually devise a subset of the original set, where we
include more cepstral coefficients than delta cepstral coefficients and more delta cepstral
coefficients than delta delta cepstral coefficients [87]. Such selection makes sense since the
finer detail attributed to the power spectrum by the higher order coefficients is likely to be
lost when computing the delta parameters.

6.4.2 Selection using the F-ratio

A measure that can be used to evaluate the effectiveness of a particular feature is the
F-ratio. It is defined as the ratio! of the between class variance B and the within-class

1 Using matrix notation, this is given by W ~!B.
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variance W, where W and B are strictly diagonal. In the context of feature selection for
pattern classification, the F-ratio can be used to select the features which maximises the
separation between different classes and minimises the scatter within classes. The following
assumptions are made when using the F-ratio as a method for reducing dimensionality:

e the feature vectors within each class must have Gaussian distribution;
e the features are uncorrelated;
o the variance within each class must be equal.

In practice the above conditions are rarely satisfied and the F'-ratio cannot be used to
evaluate more than one feature unless all the features are uncorrelated. A set of correlated
features can be transformed into a set of independent ones, for which the F-ratios can be
used to select the best combinations of features. This approach will be discussed as a feature
extraction method.

6.4.3 Selection based on recognition performance

The relative merit by which speech recognition systems are judged is the recognition per-
formance, hence, in judging the usefulness of each feature it makes sense to compute the
contribution of each feature to the recognition performance and use it as a figure of merit
to select subsets of features. In order to accomplish this, Paliwal [87] has used each individ-
ual feature to recognise all utterances in the training set. This is equivalent to running D
recognition experiments - one for each feature in the original set. The D features are then
rank-ordered using the error rate as a figure of merit and the top D features are selected.
The method has the advantage that it makes a single assumption about the features being
uncorrelated. However, the selected feature subset can depend on the speech recogniser
used and on the actual training data used to measure the error rate. This approach bears a
resemblance to the knock-out and add-on algorithms discussed in [88] which reduce and grow
sets of features respectively one feature at a time based on overall recognition accuracy.

Bocchieri and Wilpon have described a feature selection method based on statistics
gathered from the recognition errors made on the training set [17]. The Viterbi algorithm is
used during training to provide (state, mixture)/frame alignment of each training utterance
according to the correct transcription model M, and the generic recognition model M,...
The average distance vector is computed in each case according to

1 & - 2
DaM) = = (o1 2“9““"1) ford=1,...,D (6.3)
T3 96, 1,d

In the case when M. is used to produce the alignment, the summation over ¢ is replaced by
observation sequences corresponding to insertion and substitution errors. Since the Viterbi
(state, mixture)/frame alignment is also used to compute ML estimates of the parameters
of the HMMSs, Dg(Mcorr) = 1.0 for d = 1,...,D. Therefore the feature components are
rank-ordered according to the values of Dy(M,.) which is also interpreted as the ratio of a
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F-ratio Error rate Class distance
ranki_20 | 21-40 || ranki_20 | 21-40 | Tanki_20 | 21-40
Cy ACy 4 Cy AFE A2C
AFE ACH AFE ACho A2E A2Cy
Cy ACy Cy AC11 Cy AZCl
Cs AChg ACh ACjH Cs Cy
Cy A2C3 ACy ACy 4 ACy
Cio ACs Cs3 Cio ACy A205
Cn A2C, A’E ACy Cs A2Cy
ACy ACy ACs ACq ACq A2Cy
Cs ACho Cy A2Cy ACHk ACqg
Cs A2Cy A2C, A2Cy Cy A%Cyg
AC, A2010 Csx ACa AC3 Ci1
AC3 A2Cy Cio A2Cy Cs ACh1
Cy A2Cs Cly A2Cy Cy Cho
A%E A2Cy; || Oy A2Cq AC, A%Cho
Cy A208 A203 A2010 ACy Cio
Cs A2Cy A2Cy A2Cy; || ACy A2Cq
Ch2 A2Cq Cr A2C5 ACy AC12
ACsk A2Cys || ACY A2Cy | A%C4 A2Chs
ACy Cs A?Cy
A2C4 ACy Cy

Table 6.1: LPC cepstral feature ordering using different criteria: F'-ratio and recognition
Error rate figures of merit as used by Paliwal; Class Distance method based on recognition
error rate as studied by Bocchieri and Wilpon.

between-class and within-class scatter measure. There are two potential drawbacks of this
method. First, it requires errors to be defined explicitly in terms of their boundaries and it
is also incapable of dealing with deletion errors explicitly. The second drawback is the fact
that the Viterbi (state, mixture)/frame alignment can be a poor approximation to the sum
of all possible paths through the model. This has the effect of removing multiple competing
paths in favour of a single path with a marginally better score.

6.4.4 Previous results

Bocchieri and Wilpon [17] investigated the performance of their feature selection scheme
by performing experiments on a variety of databases. The feature rank-order was derived
using 3444 sentences from the training portion of the TIMIT database. The data was
parametrised using 12 LPC cepstral coefficients, their first derivatives (computed using full
regression) and their second derivatives (computed using simple differences). The first and
second derivatives of the energy were also included to make up a 38 dimensional param-
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eter vector. Subsets of the original feature vector were evaluated on test utterances from
several databases including the TIMIT database, the TT connected digit database and an
“in-house” E-set database. The derived rank-order is reproduced in the column labelled
“Class distance” in table 6.1. On the TIMIT database the authors achieved a baseline
phone accuracy of 59.8% using 3 state, 16 Gaussian component mixture per state context
independent models. The feature vector was successfully reduced to 24 elements with a
marginal improvement in performance (60.0%) and then further reduced to 18 elements
with minimal loss in performance (59.2%).

A comparison of different feature selection schemes was carried out by Paliwal in [87].
In his study the author performed multi-speaker recognition experiments on an isolated
alpha-digit database recorded over the telephone using an LPC-based feature set identical
to the one used by Bocchieri and Wilpon. The feature rank-order using the F-ratio and the
recognition Error rate on the training set are reproduced in table 6.1. Without any degra-
dation in performance, the feature set was reduced to 24 and 16 components for the F-ratio
and the recognition Error rate criteria respectively. In fact, in both cases the performance
was marginally better than the result obtained using the original 38 dimensional feature
vector. In addition, Paliwal also performed experiments using several manually derived fea-
ture subsets. These include the first 8-10 cepstral coefficients, 3-8 delta cepstral coefficients,
3-4 delta-delta cepstral coefficients and AE and A?E. Surprisingly, these manually selected
subsets of the original feature vector were found to perform better than any of the other
feature reduction methods investigated in that study.

6.5 Feature extraction

Feature extraction methods reduce dimensionality by projecting the original D dimensional
feature space onto a smaller subspace through a transformation. Each feature in the trans-
formed set is computed as a linear combination of all elements in the original feature set.
A number of such transformations are reported in the literature. In speech coding work
the discrete form of the Karhunen-Loeve (K-L) transformation is used to de-correlate the
samples within a given frame of speech. The discrete cosine transform (DCT) is a data-
independent transformation with performance close to the optimal K-L transformation. The
K-L transformation has the sole aim of de-correlating a set of features or samples. Linear
discriminant analysis (LDA) takes this process one step further and focuses on the between
class variations in the signal to find directions of maximum separability.

6.5.1 Principal component analysis (PCA)

In the method of principal components, dimensionality reduction is achieved by projecting
the original D-dimensional feature space on a D dimensional subspace and finding the ori-
entation of the subspace which best preserves the information available in the original space.
The first principal component of a pattern vector is the projection of that sample onto the
direction of largest variance as estimated over all samples. The rationale behind princi-
pal component analysis is the assumption that the direction of maximum variance contains



CHAPTER 6. INPUT TRANSFORMATIONS 85

most of the information about the various classes that the input patterns represent. Indeed,
principal component analysis is identical in formulation to the K-L transformation used in
speech coding where a transformation is derived which approximates each D-dimensional
pattern vector by a D dimensional vector which minimises the mean square error of the
different representations over all samples. The resulting transformation is given by a D x D
unitary matrix U whose columns are the eigenvectors corresponding to the D largest eigen-
values of the grand covariance matrix of the data. When no dimensionality reduction is
performed e.g. D = D, this transformation amounts to a rotation in the feature space
and in this case the Mahalanobis distance and the Euclidean distances remain invariant.
However, three potential drawbacks can be identified

e Principal components are not invariant to parameter scale. If the ath parameter in
each input vector is multiplied by a large constant then the variance of that parameter
will become larger and larger and the first principal component will approach this
scaled parameter. The problem stems from the fact that scaling up parameters cannot
possibly affect the amount of information encoded in them. Principal components can
be made invariant to transformations of the input vectors by using diagonal matrices
to scale the parameters to achieve unit variance.

e PCA is based on a transformation derived from the grand covariance matrix of the
data - e.g. the matrix computed over all samples without any knowledge about classes.
In a typical speech recognition setup a large proportion of training data corresponds
to background silence/noise, typically at the start and the end of each utterance.
Consequently, the grand covariance matrix will be dominated by the covariances of the
distributions employed in the silence model. If this is the case, without dimensionality
reduction the PCA transformation will simply diagonalise the covariance matrix of
the silence model. With reduced dimensionality, the transformation will rotate the
vectors such as to preserve primarily the information which will be useful in recognising
silence.

e The final drawback of PCA is the fact that the direction of maximum variation does
not necessarily contain most of the information which aids class discrimination. This
problem is depicted in figure 6.1 where projections of the sample vector onto the first
principal component does not provide any information as to what class the input
sample belongs. Indeed, the direction of maximum class separability is perpendicular

to the first principal component.

6.5.2 Linear discriminant analysis (LDA)

Linear discriminant analysis (LDA) is a technique used in statistical pattern recognition,
where a linear transformation is found for extracting a set of features which are most
important for discriminating between different classes. LDA is also equivalent to finding
a linear transformation of the feature space which maximises the J; and Jo measures of
class separability. Consequently, the quality of the selected set of features will depend on
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Figure 6.1: Gaussian classes with equal covariance matrices

how accurately J; and Js measure class-separability and how well class discrimination aids
improved overall recognition performance. LDA makes the following three assumptions:
1) each class can be represented by a single Gaussian distribution with in-class covariance
matrix W;; 2) the covariance matrices of all classes are identical i.e. W; = W for all 7; and
3) the class centroids themselves can be represented by a single Gaussian distribution with
between-class covariance matrix B. The assumption that the features are uncorrelated is
not necessary, hence LDA can be considered as an extension of the F'-ratio feature selection
method that maximises the F-ratio of the data in the transformed space.

Finding the matrix S used in the LDA transformation involves a simultaneous diago-
nalisation of the W and B matrices. The matrix S is found such that

SWS=1I

and
S'BS=TrT

where I is the identity matrix and I' is diagonal. This operation can be split into three
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steps. The first two steps together perform a full rank factorisation of W and consist of a
rotation R; to diagonalise W

R’1WR1 =A= diag(Al, A2, ey AD)
followed by a scaling which transforms the hyper-ellipsoids into hyper-spheres
ATVPRIWRIA Y2 =T (6.4)

The columns of R; are the eigenvectors of W and A is the diagonal matrix of corresponding
eigenvalues. In fact, the matrix Ry is equivalent to the transformation matrix of PCA. Since
R, is orthogonal, the above expression can be rearranged as

W = (RA?)(AY?R)) = $,8)

The whitening transform S is then used to rotate and scale both covariance matrices.

The second stage in LDA involves diagonalising the transformed B matrix which is
accomplished by finding the eigenvector matrix Ry and the eigenvalues I" of the resulting
S’ BS; matrix. This is equivalent to solving

|IS'BS —TI'I|=0
Using equation 6.4 and the fact that |A||C| = |AC|
|S1BS1 — I'S1W S| =|S}||B—-TW||S1| =0

and pre-multiplying by W !
W™iB-TI|=0

confirming that this simultaneous diagonalisation problem results in the problem of finding
the eigenvalues of W =B which in turn can be used to evaluate J;.
The orthogonal matrix of eigenvectors Ry performs the required diagonalisation of the

transformed B matrix giving
ROATVPRIWRIATY PRy = 1

and

RL,AYV2R/BRiA™?Ry = T = diag(['1,Ts,...,T'p)

The final linear transformation S is expressed as a product of three matrices representing

two rotations and a scaling
S = R1A71/2R2 (6.5)

The final step in LDA is dimensionality reduction. The final transformation is given by a
matrix U, where U is a D x D matrix whose columns are the eigenvectors corresponding
to the D largest eigenvalues of the matrix W1 B. This can be implemented by sorting the
columns of S in decreasing eigenvalue order and using the first D columns of I to form a

truncation matrix F' such that
U =R AV?RyF (6.6)
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Figure 6.2 (after Parsons [88]) shows the effect of the effect of the LDA transformation
applied to three classes with identical covariance matrices. The original in-class distributions
are shown in (a) as ellipses representing equal probability contours. The effect of the first
transformation (R;) is to remove correlations between the features (b). This is followed by
a scaling (A'/?) which “whitens” the distributions (c) after which, the elliptical contours
have been transformed in to circles. The final stage (d) assumes that the class centroids
are normally distributed around the mean of the data and performs a further rotation (Rj)
which orientates the classes for maximum separability.

With any feature extraction technique, after projecting the components of the feature
vector onto a subspace, the physical meaning of each parameter is lost. As Brown [22] points
out, this is not a problem provided that the output distributions in the HMMs do not rely
on any prior information about the physical meaning of the original parameters. Sometimes
a representation of the new feature set in terms of the original parameters can be useful [9]
and in such cases further orthogonal transformations can be applied to undo the rotations
in expression 6.6. Using spectral parametrisation, such inverse transformations can be used
to study the enhancement provided by the LDA transformation of those spectral features
which contribute most to maximising class separability.

6.5.3 Confusion data analysis

Doddington [32] and Woodland [109] have both investigated methods for improving the
discrimination capabilities of standard HMMs via the introduction of state-specific dis-
criminative transformations. In the phonetic discriminant model, the aim is to create a
metric which enhances the discrimination between the “true” phonetic state and all other
competing states which are confusable with it. This is achieved with the introduction
of state-specific linear discriminative transformations which transform each feature vector
modelled by that state. The observation likelihood is then computed as the Euclidean
distance between the transformed feature vector and the reference vector. The approach
was originally outlined in [16] where it was applied to an isolated word task using a DTW
template based recogniser. It was later extended to the SI recognition of connected digit
strings using continuous density HMMs. In the latter case, the number of states in the
HMDMs were set to the average length of the utterances they modelled which, the author
argued, allowed for a “more sensitive temporal model”.

The phonetic discriminant model is made up of two parts. The first part is the usual
in-class model characterised by the mean vector and the covariance matrix of the underlying
data for that state. The second part is the confusion data model which is characterised by
the mean vector and the covariance matrix of all speech frames that are incorrect for the
given state but are “plausible” based on probability calculations. Using this information
a state-specific linear transformation is derived which improves the discrimination between
data modelled by the “true” distribution and acoustically confusable data modelled by other
states in the HMM. The transformation for each state is computed using the algorithm
for computing the LDA transformation described in section 6.5.2. For the calculation,
the average in-class covariance matrix W is replaced by the covariance matrix W; from
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the Gaussian distribution of the given state, and the between-class covariance matrix B is
replaced by the covariance matrix of the confusion data for the given state, re-centred around
the in-class mean. After applying the transformation, each component of the feature vector
is uncorrelated for both the in-class and out-of-class (confusion) data, and each feature of
the in-class data has unity variance. To improve discrimination, dimensions in which the
confusable data has smaller variance than the in-class data are discarded.

A major step in deriving the transformations is the process of gathering confusion data.
In Doddington’s work [32] this is carried out by producing state/frame alignments for each
training utterance using the correct transcription and a “free” grammar which allows all
possible word sequences. The free grammar is biased against the correct word sequence
using a “prejudice” parameter. The confusion model is computed from data corresponding
to those portions of the alignment using the free grammar which disagree with the correct
word label. Woodland and Cole [109] have investigated a Viterbi based approach and a
frame based approach to gathering confusion data. The former is similar to the method used
by Doddington, however, multiple thresholds are used to define “near-misses” and confusion
data is simultaneously accumulated for all thresholds. In the frame based approach, a frame
is classified as confusable if its probability given a state from an incorrect model is within a
certain distance of the frame’s probability produced by the most likely state of the correct
model.

6.5.4 Previous results

Brown performed experiments on an American E-set recognition task where he compared
the performance of PCA and a technique called “linear discriminants” which is similar to
LDA. Parametrisation was based on 20 features derived by an “ear model” from the output
of a 20 channel filter-bank. Pairs of consecutive frames were joined to form a 40 dimensional
observation vector. With fewer than 24 features, linear discriminants were always found to
perform better than principal components. For both techniques, the performance initially
improved as the dimension of the feature vector was reduced.

Woodland and Cole [109] evaluated the performance of the state-specific discriminative
transformations on the E-set portion of the BTL database (appendix A). Using Viterbi
confusion analysis the error rate was reduced by 11% for 16 features from the original 24
dimensional vector which was based on MFCCs and their first derivatives. The authors
showed that the use of the correct Gaussian normalisation term computed in the reduced
feature space is important for achieving high recognition accuracy.

Doddington [32] evaluated the performance of his state-specific “Phonetically Sensi-
tive” transformation on the TI/NIST connected digit database. Using LPC-derived cep-
stral parametrisation, he achieved 0.5% (1.5%) word (sentence) error rates for digit strings
of unknown length. Later, he discovered that the features in the Euclidean distance had
been unintentionally weighted by their corresponding standard deviation which had a ben-
eficial effect on the results published in [32]. This variance weighting scheme was further
investigated in [33].

IMELDA is an application of LDA to the speech recognition problem developed by Hunt
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H Type ‘ Num. parameters ‘ add/multiply H

Diag. Covariance M +2D 2MD
Full Covariance (1) | M + (D?+3D)/2 | M(D?*+ D)
Full Covariance (2) | M + (D?+3D)/2 | M(D*+ 3D)/2

Table 6.2: Number of parameters/computational requirements for different types of output
distributions with M mixture components and feature vector size D.

[52]. In IMELDA, linear discriminant analysis is applied to the output of a mel-scale filter
bank to derive a global feature transformation. This transformation has been shown to give
an improved set of features for speech recognition when compared to other representations
[53, 54]. Results in [53] indicate that IMELDA can be used to transform heterogeneous sets
of features and reduce dimensionality without loss in recognition performance and it can
also provide robustness to signal degradation.

6.6 Computational considerations

In this section we examine the computational requirements for evaluating full and diagonal
covariance Gaussian output distributions. As discussed previously each state in an HMM
has an associated output distribution in the form

M —1
b](ot) = Z ijm 1 67%(Otfuj,m)le,m(otflllj’m)
m=1 (2m)P W jm]
The constant term in the Gaussian expression can be precomputed and stored. The major-
ity of the computation is concentrated in the evaluation of the exponent. Table 6.2 lists the
number of parameters in each case together with the number of add/multiply operations
necessary to evaluate the exponent. In the full covariance case, straight forward implemen-
tation requires (D? + D) add/multiply operations. However, W;;1 is a positive definite
matrix and as such it may be decomposed into

-1 _ . /
Wim = LimLjm

where L;,, is a lower triangular matrix (Cholesky factorisation). Using expression 6.6 the
Gaussian exponent term can be rewritten as
]‘ / !/ !
=5 [0t = i) L] (00 = 1) L]

In this form, the computation will require only (D? + 3D)/2 add/multiply operations.

The above derivations show that in the case of state-specific input transformations
as used by Woodland and Doddington, computational savings are only available if the
dimensionality of the feature vectors is reduced by more than a half. This follows from the
fact that the full discriminative transformations are not symmetric and as such they contain
almost twice as many parameters as the corresponding covariance matrices in the Gaussian
distributions.
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6.7 Summary

This chapter has reviewed a variety of dimensionality reduction methods that can be used
in the HMM framework to improve discrimination and reduce computational requirements.
Feature selection methods are somewhat simpler than the feature extraction schemes since
they do not alter the existing structure of the speech recognition system. Computational
savings are thus immediately available when unimportant features are removed from the
observation vectors. Feature extraction schemes are based on linear transformations of the
original feature space. A single global transformation can be implemented as a matrix mul-
tiplication within the acoustic preprocessor. The most complex feature extraction schemes
are the state-specific discriminative transformations described by Doddington and Wood-
land. The complexity of these models in terms of the number of parameters is almost twice
as much as the number of parameters used in the corresponding full covariance Gaussian
models. In terms of computation, they do not offer any savings unless the dimensionality
is reduced by a half, however, the increased number of parameters does provide improved
recognition accuracy.

Several of the feature selection schemes and virtually all feature extraction schemes
rely on the appropriate “class” definitions which are typically chosen as the states of the
HMMs. Hence, it is not clear how improving discrimination at frame/state level will affect
the overall recognition performance which is measured at phone/word/sentence level.

In the light of the work reviewed in this chapter, the following two chapters will describe
alternative ways for feature selection/extraction based on the mutual information criterion.
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Chapter 7

Mutual Information based Feature

Selection

The previous chapter outlined a variety of feature selection schemes where the components
of the observation vector are ranked according to some discriminative criterion. Feature
selection was found to be an important technique for reducing the number of parameters
used in the output distributions in an HMM-based system. In this chapter we present an
alternative feature selection scheme based on the mutual information measure between the
models and the training data.

7.1 Motivation

As discussed earlier, the performance of a speech recognition system is judged by its ability
to recognise unknown utterances correctly. Consequently, the relative merit of a feature
should be valued by its contribution to the overall recognition performance. In chapter 3
we also discussed how maximising the mutual information between the acoustic model and
the training data can result in improved recognition performance. Hence, using a mutual
information related measure to rank the features in the observation vectors can provide
information as to which features are more useful than others. Removing a feature from the
observation vector will inevitably change the mutual information between the model set
and the training data. In MMIE training the aim was to maximise this quantity. Hence,
when reducing the feature set, it would be desirable to remove features which yield minimal
decrease in the mutual information. As we discussed in the previous chapter, finding the
best subset of features is a difficult task, consequently, one has to assume that all features
are independent. In the remaining part of this chapter, we shall derive a method which will
provide an estimate of how much the mutual information will change if a particular feature
from the observation vector is deleted. Since the method attempts to minimise the change
in the mutual information of the reduced feature set, the procedure will be called Minimum
Mutual Information Change (MMIC) feature selection.

93
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7.2 Theory

The MMIE objective function plays a central role in the definition of the saliency of a
parameter. It would be prohibitively expensive to explicitly evaluate the change in the
objective function by deleting each parameter in turn. Fortunately, it is possible to construct
a local model of the function and analytically predict the effect of perturbing the parameters
in the observation vector. Consistent with previous notation, in the following derivations it
will be assumed that the training data consists of R training utterances where each training
utterance O is a sequence of observation vectors

O =o0,,09,...,04,...,0T

The change in the objective function after deleting a component from the feature vector
comes from the change in the values of the output probabilities in the model. The proposed
feature selection algorithm will be applied to continuous density HMMs with mixture Gaus-
sian distributions with diagonal covariance matrices. For the output distribution at state j

and mixture component m we have

D _(or,a—#jm,a)”
b' = 71 202 j,m,d
im(0t) = H € gim (7.1)
d=1

/ 2
27T0j7m’d

The effect of removing features can be studied by introducing an exponent for each param-

eter in the form u
D 1 _(ota=rima)® Y

202
a=t | /270

e dym.d (7.2)
The elements of u will be referred to as the feature weights and the effect of removing
feature component d will be equivalent to setting ug = 0. As discussed in the chapter 4, a
function of many variables can be locally approximated by a truncated Taylor series of the
form

Fly) = f(2) + V' f(@)y — @)+ (y — =) V2 (@)(y — o) (73)

In particular, in order to evaluate the components of the feature set we shall further simplify
conditions by dropping the last term in the above expression and consider a first derivative
approximation to the value of the MMIE objective function with respect to the weight vector
w. This will enable us to find a new @ with only d non-zero elements which yields minimal
decrease in the value of f. Setting elements of u to zero has the ultimate effect of reducing
the observation vector size which also entails reduction in the number of parameters used in
the mixture densities. Recall from chapter 3 that the MMIE objective function is essentially
the difference of two likelihoods.

1 & 1 &
fumr(N) = = > " log Py(Or|Mu,) — i > " log Pr(Or|Myec) (7.4)

r=1 r=1
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In order to estimate the change in the mutual information after deleting a component, we
will have to approximate the changes in the likelihood for the numerator and denominator
expressions. Combining equations 7.3 and 7.4 and using u as the parameter set \ gives

fumr(a) ~ fMMI(U)+VIfMMI( )(u — )

= fumr(u)+ Z fMMI u) (7.5)
d,lg= 0
Since we are interested in fully removing components from the observation vector rather
than modifying the individual exponents, it is clear by inspection of 7.5 that minimal change
in the value of fyrpr7(@) is guaranteed when setting the elements of @ to zero according to
the increasing order of their corresponding derivative values. Differentiating equation 7.4
with respect to u yields

B 1 & 1 o,

fu M () = RZP,\(O (Mo,) Ou

PA(0;[My,)
1 & 1 B
_E;m Py (Or| Myec) (7.6)

From appendix B we have
0
a—P)\ (OIM) = Z Z {Z a;(t a”} Bj(t ) b;(o) (7.7)
t=1j=1

where b;(0¢) is a mixture Gaussian (section 2.2.2) with derivative

0 M 0
o bi(or) = ) Cjm gy Oiim (0%) (7.8)
m=1

Differentiating equation 7.2 with respect to u gives

2
(o¢,d=Hj,m,d)

ib' (0t) = bjm(ot)log ot e_ 202j,m,d
J,m - J,m
1 — limd)?
bjm (Ot)2 {—log(27ra md) — M} (7.9)
05 m,d
Combining equations 7.7, 7.8, 7.9 gives
0
TP*(O‘M) - (7.10)
Ud
1 0. — Wim 2
ZZCtJOM ZC;, j.m Ot 2{ log(27ro']md) W}
t=1 j=1 024

The common factor C; ;(O, M) is defined as

1 080
CilO M) = 5G] by (0r)
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The derivatives of the MMIE objective function with respect to the elements of u are
calculated as the difference of the corresponding derivatives from the numerator and the
denominator log-likelihoods (equation 7.6).

7.3 The algorithm

The MMIC feature selection algorithm is summarised below
1. Train a set of models for the specified task using conventional MLE training,.

2. Compute the derivatives of the mutual information objective function according to
the formulae in the preceding section. The grammar used to compute the derivatives
of the denominator of the objective function should be as close as possible or ideally
identical to the task recognition grammar, incorporating all language constraints.

3. Order the observation vector components according to the value of the derivative of
the corresponding weight.

4. Select the top D components to form the new feature vector.

5. Retrain the system from scratch using the new feature set and evaluate its perfor-

mance.

In practice, retraining the system from scratch was found not to be necessary. Instead, the
feature selection procedure was followed by 2-3 iterations of embedded Baum-Welch training
to readjust the parameters of the models according to the new state/frame alignment.

7.4 Simplifications

Before we establish the relationship between the MMIC feature selection procedure and
other methods we shall consider the following simplification. As we discussed in chapter 2
the total likelihood Py (O|M) of a speech utterance O given a model M can be calculated as
the sum of the probabilities of all paths through the model. If we make the assumptions that
1) this sum is dominated by the most likely path (the Viterbi path) and 2) the probability
of an observation vector is provided by the best mixture component, then we can calculate
the exact contribution of each feature to the value of the MMIE objective function. We
have

log P\(O|M) =~ Y logag,_,6, + Y _logbs, (o) (7.11)
t t

= Zlog ag,_1,6, T Z log Coy iy T Z log bGt,th (Ot)
t t t

where 0; € © and ¥y € Uy are the state and mixture component respectively at time ¢.

Hence, the exact contribution of each feature vector component to the overall log-likelihood
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is given by

1 5 (0t,d — 146,p1,d)°
Q(d) = =5 > | log(2703, y,.a) + 5 (7.12)
t 98, 3p1,d

When the Viterbi state/mixture approximation to the overall likelihood is good the above

expression is equivalent to the derivative of log Py(O|M) with respect to ug (equation 7.10)

since
1 if6; =9
a;(t)B;(t) _ B

PA(OIM) 0 otherwise

Hence, if the Viterbi state/mixture alignment is a good approximation to the overall like-
lihood the MMIC feature selection algorithm will produce exact results. The first term on
the right in equation 7.12 can be interpreted as a state/mixture-specific variance weighting
provided by the Gaussian normalisation term. The second term can be interpreted as the
scaled distance between the dth component of the observation vector and its corresponding
mean value at state 6;, mixture component ;. Finally, for a fully converged maximum
likelihood trained system we have

1 L& w (0,0 — Mjm.a)®

m

T E E Ce i (O, Mcorr) E ¢jmbjm(0p) ——5L"— =1.0 (7.13)
t=1 j=1 m=1 O5m,d

The above expression follows from the Baum-Welch re-estimation formulae for the distri-
bution parameters (equations 2.16, 2.18). The above equality will be used to establish the
relationship of the MMIC algorithm and the feature selection scheme proposed in [17] (see
section 7.6).

7.5 Discussion

The MMIC algorithm does not make any assumptions about the level of modelling. Thus,
it is applicable to both word units and sub-word units. The selection procedure does not
rely on appropriate class definitions - these are implicitly incorporated into the recognition
model used to calculate the denominator likelihood. The use of the task-specific recognition
model allows the propagation of the grammar constraints into the selection process. If the
Viterbi state/mixture path approximates the overall likelihood well, the first derivative
approximation to the value of the MMIE objective function will be exact.

One uncertainty about the algorithm lies in the crude first derivative approximation
to the value of the MMIE objective function. Indeed, from numerical analysis [90], even
the quadratic approximation to the value of the function becomes grossly inaccurate at
points far from the desired solution. Unfortunately, more accurate approximation will
require higher-order derivatives, which, in the HMM framework are prohibitively expensive
to compute. The second limitation of the algorithm is the fact that in the parameter
reduction stage, all components of the feature vector are considered independent. As soon
as we discard a single component, the frame/state allocation is likely to change and thus the
derivatives of the remaining components will also change. Ideally, feature selection should be
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carried out one feature at a time, with re-evaluation of the derivative expressions after every
reduction. Unfortunately, the MMIC feature selection algorithm is not computationally
cheap, due to the potentially large number of model states that need to be considered in
order to evaluate derivatives in the denominator of the objective function. The above two
problems became apparent in the initial set of experiments carried out. All derivatives of
the MMIE objective function with respect to the feature weights were found to be negative
which indicated that by deleting a parameter, the value of the mutual information measure
would actually increase. Since this is the objective in MMIE training, the top D features
with largest derivatives were selected. The performance of the system was dramatically
impaired which was to the contrary of what the derivatives predicted. This prompted an
investigation into the gradual reduction of the number of features, still deleting the feature
with the largest weight derivative at each step. Indeed, removing the feature with the
largest weight derivative exhibited an improvement in the mutual information criterion,
however, subsequent evaluation of the parameter derivatives produced a severely altered
feature rank-order.

7.6 Relationship to other methods

In this section we consider the discriminative feature selection method proposed by Bocchieri
and Wilpon in [17], which was briefly outlined in chapter 6. In this method, the components
of the feature vectors are rank-ordered according to the measure

Dd(Mrec)
Jj=—— 7.14
d Dd(Mcorr) ( )
where
1 & [ (014 — H6y.0.0)°
Da(M) = 3 4 =55 ford=1,...,D (7.15)
t=1 %0, 41,d

From the above, the method appears to use similar statistics to the MMIC algorithm, gath-
ered in a different way - only the average scaled distances are considered, the variance weight-
ing terms are ignored. Disregarding the latter discrepancy, the numerator/denominator
in equation 7.14 are somewhat equivalent to computing the derivative of the denomina-
tor /numerator likelihoods respectively in the MMIE objective function with respect to ug.
In the practical implementation of the algorithm, the following simplifications are made.
The statistics Dg(M o) are gathered over the most likely (Viterbi) state/mixture sequence.
Furthermore, the Viterbi alignment is also used in the MLE procedure to optimise the pa-
rameters of the HMMSs, hence, the denominator in equation 7.14 is assumed to be 1.0. This
assumption is valid by the Maximum Likelihood training criterion as discussed in section
7.5. Consequently, the Bocchieri and Wilpon feature selection algorithm is solely based on
values of Dg(Myec). As for the denominator Dg(M.err), the statistics gathered from the
recognition model are computed using Viterbi alignment e.g. only the most likely path
through the model is considered. Furthermore, only misaligned frames corresponding to
substitution and insertion errors are taken into account. Finally, feature selection is per-
formed by discarding features with small J;. The authors argued that the components with
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H rank ‘ feature ’ change H rank ‘ feature ‘ change

1 AE 0.0529 || 21 A2C5 | 0.0212
2 Ci 0.0500 | 22 Cy 0.0199
3 Cs 0.0478 | 23 ACs 0.0187
4 AC, 0.0454 || 24 A%C; | 0.0181
5 A’E 0.0422 || 25 A%C,; | 0.0176
6 Cs 0.0381 | 26 Cho 0.0174
7 E 0.0371 || 27 ACy 0.0169
8 Cs 0.0353 | 28 A%Cs | 0.0168
9 ACH 0.0348 || 29 A%Cs | 0.0162
10 Cy 0.0342 | 30 Cn 0.0162
11 Cy 0.0310 || 31 ACy 0.0157
12 Cs 0.0290 | 32 A%Cyo | 0.0150
13 ACy 0.0290 | 33 Ci2 0.0142
14 A2C; | 0.0280 || 34 A2Cy | 0.0140
15 A2Cy | 0.0276 | 35 A%2Cy5 | 0.0138
16 AC3 0.0257 | 36 A%2Cy; | 0.0136
17 ACq 0.0244 || 37 ACi1 | 0.0126
18 A2C5 | 0.0229 || 38 AC1o | 0.0112
19 ACy 0.0224 | 39 ACiz | 0.0105
20 Csg 0.0217

Table 7.1: Feature ordering according to the MMIC feature selection algorithm applied to
the TIMIT data.

largest ratios give the highest contribution to the average distance between the “incorrect”
HMM and the misaligned speech frames. Hence, intuitively such features will provide a
better between-class separation.

The MMIC algorithm described in the previous section, automatically accommodates
the Bocchieri & Wilpon discriminative feature selection scheme as a special case. Its main
advantage lies in its theoretical derivation from the Mutual Information criterion and its
ability to consider multiple confusable paths/mixture components in the feature selection
procedure.

7.7 Implementation

The algorithm was implemented in the MMIE discriminative training framework outlined
in section 4.5. The tool (HNRest) was extended to accommodate routines which calculate
the derivatives of the likelihood function with respect to the exponent vector w. The
computation of derivatives is carried out in two passes - one for the numerator and another
one for the denominator likelihoods. In a postprocessing stage the two sets of derivatives
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Type % Corr | % Sub | % Del | % Ins | % Acc
(13) MFCC_E 59.93 23.74 | 16.33 3.38 56.55
(26) MFCC_ELD | 70.59 | 19.67 | 9.74 | 4.07 | 66.51
(39) MFCC_E_D_A | T73.71 19.63 6.67 5.02 68.69

Table 7.2: Baseline results for 24 mixture MLE trained models (TIMIT)

are combined to calculate the selection criterion for each component of the original feature
vector. The actual feature selection is carried out using a selection template in the form of
a matrix with {0, 1} elements. Once the template is constructed, it is used to transform the
mean and variance vectors in all models. During subsequent recognition and training, the
selection template is applied on-the-fly to the original data to produce the desired subset
of features which are then seen by the output distributions of the HMMs.

7.8 Experimental evaluation

In this section we shall describe the MMIC feature selection experiments applied to con-
tinuous phone recognition on the TIMIT database. We start with the original D = 39
MFCC_E_D_A feature set. Using the MMIC feature selection algorithm the dimensionality
is then reduced to D features and the performance of the system is evaluated on the test
data. The baseline performance of the fundamental subsets of the original parameter sets
are provided in table 7.2 to serve as reference points. The system uses the TIMIT mono-
phone model set described in appendix A. The full training set of 3696 utterances was used
to estimate the parameters of the model according to the MLE criterion using the embedded
Baum-Welch algorithm. The 24 mixture Gaussian system was built from a single mixture
system by gradually incrementing the number of mixture components for all states in the
models.

The system was evaluated on the suggested TIMIT core test set of 192 sentences. Dur-
ing recognition, a phone bigram language model was applied with language model weight
(exponent) of 2.0. The performance of 68.69% accuracy is very good for a system based on
context independent HMMs. For example, Bocchieri & Wilpon [17] have reported 59.8%
recognition accuracy using monophone HMMs with 16 mixture components using LPC-
cepstral parameters and their first and second differentials.

For the feature selection experiments, the full training set was used to compute the
approximate change in mutual information for each parameter in the observation vector.
The ordering of features according to the MMIC criterion is given in table 7.1. Although
it is not intuitively clear what the feature ordering represents we can offer the following in-
terpretation. The three energy components appear high in the list which confirms common
knowledge regarding their importance in speech recognition [93, 66]. The first 13 param-
eters also include the first 7 cepstral coeflicients together with 3 of their first derivatives.
The least important 10 entries in the table include the first and second derivatives of the
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D % Corr | % Sub | % Del | % Ins | % Acc
(38) 73.89 19.39 6.72 4.98 68.91
(34) 73.17 19.92 6.92 5.11 68.05
(30) 72.58 20.11 7.30 4.93 67.65
(26) 72.16 20.36 7.48 5.03 67.12
(22) | 71.30 | 20.60 | 8.11 | 4.75 | 66.54
(18) | 69.58 | 21.73 | 8.69 | 4.16 | 65.42
(16) 69.02 21.83 9.15 4.16 64.86
(13) 66.54 23.02 10.44 3.80 62.74

Table 7.3: Performance of feature subsets selected using the MMIC feature selection algo-
rithm.

last 4 coefficients, together with C1; and Ci2 themselves. The somewhat surprising fact is
that in some cases, the second derivatives of a parameter appears as more important than
its first derivative {C5, C1g, C11,C12}. Table 7.3 shows the recognition performance of the
system for a different number of selected features from the original MFCC_E_D_A observation
vector. The plot in figure 7.1 shows the gradual decrease in performance as more and more
features are removed. In [17], the authors managed to reduce the feature vector size from
38 components down to 18 with only a marginal decrease in the recognition accuracy. In
our case, the decrease in performance over the same range amounts to 4%, which can be ex-
plained by the use of a possibly more “optimal” parametrisation (MFCC_E_D_A) and acoustic
distributions with a large number of mixture components. The usefulness of the algorithm
becomes apparent when comparing the performance of the fundamental MFCC_E_D_A sub-
sets to the identically sized reduced feature sets in table 7.3. The performance figures of
72.16% and 66.54% correct provided by the MMIC reduced sets of size 26 and 13 features
respectively, provide improved performance over the figures of 70.59% and 59.93% when
using the MFCC_E D and MFCC_E parameter sets respectively.

In chapter 6 we outlined a manual feature selection method based on the power spectrum
resolution. This method has been used by Paliwal in his study of feature reduction methods
[87]. The author also points out that the advantage of using this method lies in one’s ability
to justify the use of these feature sets on physical grounds, hence they can be expected to
perform equally well on other tasks. In order to compare the performance of the MMIC
feature selection method, we have devised a number of reduced feature sets. Their definition

is as follows
(26) = Ci_10,E,AC1_s,AE,A*C1_5,A’E
( ) = 01797E7A01777AE7A201737A2E
R(18) = Ci_s,E,AC)_4,AE,A%Cy_3,A’E
( ) = Cl—SaEaA01—3aAEaA2C1—2aA2E

These manually derived feature sets were evaluated on the test data and the performance
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Figure 7.1: Recognition performance for different subset of the original features. Consecu-
tive points on the graph represent a difference of two features, except for points explicitly

labelled.

figures are given in table 7.4. It can be seen from these results that these feature sets perform
marginally better than the corresponding MMIC feature sets. This observation is similar
to findings in [87] where the manually selected feature sets gave the best performance.

Another explanation for these somewhat disappointing results is offered from the fact
that in the MMIC feature selection algorithm each component in the feature vector is
considered independently. Unfortunately, even for the cepstral coefficients this is not a valid
assumption. Figure 7.2 shows the correlation matrix for the components of the MFCC_E D_A
feature vector. The two “valleys” in the corners of the diagram show correlations between
the static cepstral coefficients and their second derivatives. Also, the three peaks on each
side of the diagonal indicate correlations between the energy components {E, AE, A’E}
and the first cepstral coefficient C;. These observations suggest that by taking cepstral
parameter correlations into account, the MMIC selection scheme may provide improved
feature subsets.
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Type | % Corr | % Sub | % Del | % Ins | % Acc

R(26) | 72.31 | 2022 | 7.47 | 4.95 | 67.36
R(22) | 71.38 | 20.75 | 7.87 | 4.67 | 66.71
R(18) | 69.77 | 21.80 | 843 | 439 | 65.38
R(16) | 69.36 | 21.69 | 895 | 4.09 | 65.27

Table 7.4: TIMIT results for manually derived feature sets, 24 mixture models

Figure 7.2: Correlation matrix for the components of the MFCC_E D_A feature set calculated
on the TIMIT database (3696 utterances)
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7.9 Summary

This chapter has described a feature selection algorithm based on the mutual information
criterion. A first derivative approximation of the changes in the mutual information mea-
sure are calculated for each feature vector component. The parameters are then sorted in
increasing value order and the desired top D features are selected to form the new feature
set. The algorithm achieves the desired goal of reducing the size of the observation vectors
with gradual and modest degradation in performance. Unfortunately MMIC did not pro-
vide an improvement over the corresponding manually selected feature sets. This can be
attributed to the various approximations made within the algorithm, in particular, the lack
of modelling the correlations between the components of the feature vectors.



Chapter 8

Adaptive Input Transformations

Chapter 6 described several approaches to improving the discriminant abilities of hidden
Markov models through the introduction of input transformations. One problem with these
methods is that the criterion used to derive the transformations is not related to the ob-
jective function used to optimise the HMM parameters. Furthermore, once derived, these
transformations remain unchanged throughout the training process. In this chapter we
shall describe methods for integrating adaptive input transformations into existing HMM
systems. During training, the parameters of the transformations are optimised jointly with
the HMM parameters according to the MMIE objective function. Experimental evalua-
tion of different HMM /input transformation (HMM/IT) topologies will be presented on the
TIMIT continuous phone recognition task.

8.1 Introduction

As discussed in chapter 6, feature reduction methods apply one or many input transforma-
tions to the input data and a subset of the transformed output is then used as an observation
vector for the HMMs. Three such transformations were discussed - the PCA transforma-
tion, the LDA transformation and the state-specific discriminative input transformations
used by Woodland et al. [109] and Doddington [32]. The LDA transformation was shown to
be optimal in the sense of optimising the J; measure of class separability which is based on
the ratio of within-class and between-class scatter measures. Apart from the requirement
for appropriate class definitions, the LDA transformation relies on the assumptions that
the covariance matrices of all classes are identical and that the class centroids are normally
distributed around the mean of the data. Unfortunately, these conditions are never satisfied
in practice. Ayer [4] has carried out a set of simple experiments to verify the validity of
the LDA assumptions. He analysed the shape and orientation of a number of within-class
covariance matrices corresponding to intuitively different classes. The analysis used the
largest eigenvalue and the ratio of the largest to the second largest eigenvalue to judge the
shape of the distributions. The two different classes investigated were found to have signif-
icantly different shapes, and the variability within the class of voiceless fricatives {f,s} was
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found to be larger than the variability within the steady state vowel class {i:(B),i:(E)}!. The
identical class covariance matrix assumption can be avoided by considering state-specific
input transformations, however, this approach results in a vast number of parameters with
computational savings available only if the output dimensionality is reduced by more than
a half.

Input transformations can be considered as mapping patterns from the original feature
space into patterns in the reduced subspace. As such, they resemble artificial neural net-
works commonly used as pattern classifiers. As it will be shown later, this correspondence
will enable us to the use the back-propagation training algorithm from the field of neural
networks, to derive a global optimisation scheme for the parameters of both the HMMs
and the input transformations. The following section briefly outlines the theory of neural
networks and their application in the field of speech recognition.

8.2 Background

8.2.1 Neural networks for speech recognition

An artificial neural network (ANN), also referred to as connectionist model, multi-layer
perceptron (MLP) or parallel distributed processing (PDP) model, is a structure based
on connecting many simple processing elements. These models are the outcome of the so
called “holistic” approach to modelling human intelligence where the computational power
of the brain is modelled by many simple processing elements. This approach dates back
to the early 1960’s. The recent revival of interest in the field has been prompted by the
development of new learning algorithms and the advances in computer technology required
to carry out experimental simulations. Since the mid 1980’s, ANNs have been applied
to a diverse selection of problems, including pattern classification and continuous speech
recognition. The advantages of these models can be summarised as follows:

1. Parallelism. Neural networks implement a high degree of parallel computation using
many simple, identical computational units. Hence, their implementation in hardware
can provide huge performance benefits at low production cost;

2. Robustness and fault tolerance. Being massively parallel and having the information
distributed to every computational element makes these networks highly insensitive
to faults in the structure;

3. Adaptive learning. The structure and the parameters of the network can be adapted
on-the-fly to achieve better performance;

4. Powerful approximations. A multi-layered network with non-linear computational
elements can approximate, arbitrarily closely, any non-linear mapping.

1The members of this class are the vowel segments of two utterances corresponding to the letters “B”
and “E” from the BTL E-set database.
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Conventional ANN’s are structured to deal with static patterns and the network parame-
ters are typically estimated from pairs of input output patterns. As such, ANNs have been
successful for characterising speech segments of limited duration [108]. However, speech
production is inherently a time varying process and there is no established way of han-
dling dynamic patterns in connectionist models. Several researchers have adapted the basic
ANN’s structure in order to enhance its ability to model time variant patterns. Waibel
et al. have proposed the Time Delay Neural Network (TDNN) which incorporates basic
speech pattern dynamics by expanding the input of the network to N adjacent frames. An
alternative ANN structure for dealing with dynamic patterns has been proposed by Robin-
son [97]. The network uses unit time-delay recurrent connections to propagate a subset of
the current network output back into the network input for the following time frame.

Various attempts have been made to assign an interpretation to the outputs of ANN
classifier. Bridle [19] attempted to give an explicit probabilistic interpretation of the net-
work outputs through probability scoring and a normalised exponential non-linear output
function. Early work by Robinson et al. [99] used a dynamic programming based postpro-
cessor with stochastic duration and bigram language models to perform continuous phone
recognition using the output of a recurrent ANN. With the introduction of discriminative
training in the HMM framework, several researchers have attempted to accommodate the
HMM theory into the framework of ANNs. The Alphanet approach [18] is an example of
a scheme which attempts to unify HMMs and adaptive neural networks. The idea is to
view the forward likelihood calculation of the data as the forward pass in a large recurrent
network of a special kind that produces sets of numbers which can be treated as posterior
probabilities for the classes of interest. Partial derivatives of the chosen error criterion can
be propagated back through the network. At the end of the backward pass accumulated
partial derivatives can be used to re-estimate the parameters of the network so as to de-
crease the error function. Similar schemes have been studied by Young [111] and Niles et
al. [83]. These approaches are significant in that they establish the relationship between
HMMs and neural networks.

8.2.2 ANNs as input transformations - related work

There have been several attempts to combine the discriminative power of ANN’s with the
explicit time handling capabilities of HMMs. The most common approach is to use the
outputs of the network as observation probabilities for the states of the Markov chain [95],
[77]. The ANN is trained to compute the appropriate values according to the Least Mean
Square (LMS) criterion using the error back-propagation algorithm. The LMS criterion
is minimised over the frame/state allocation provided by the supervised (forced) Viterbi
alignment. This approach has also been used by Robinson [98] for continuous phoneme
recognition, using a recurrent neural network as a probability estimator.

A slightly different hybrid approach was discussed by Bengio et al. [14] where an ANN
was used to compute an additional set of symbols considered as observation parameters in
a discrete HMM framework. In this approach a vector-quantised code-book was generated
for the extra observation symbols and added to the existing code-books for conventional
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parameters. The parameters of the HMMs and the ANN were optimised separately. Cardin
et al. investigated a similar approach in [23] where a recurrent neural network was used
to perform broad phonetic classification on input frames. The four outputs of the network
and their first differentials were quantised using two separate code-books and added to the
existing three code-books for standard cepstral coefficients.

Joint optimisation of HMMs and input transformations was suggested by Bridle [20]
within the Alphanet framework. He argued that although cepstral coefficients offer a rea-
sonable representation, there is reason to expect that non-linear transformations might be
more sensitive to movements of spectrum peaks. No suggestions were given regarding the
derivation of such non-linear transformations. In a later study [21] Bridle et al. presented
a preliminary evaluation of joint optimisation of the HMM parameters and the weights of
a single input transformation. The transformation was derived from LDA and was strictly
linear. Furthermore, the HMM parameters were optimised using MLE, whilst the param-
eters of the transformation were adapted according to the MMIE criterion using gradient
descent. The system was evaluated on a single speaker continuous phoneme recognition
task with a total of 18 minutes of training data and 5 minutes of test data. Adapting the
transformation did not improve recognition performance.

Bengio et al. [15] also investigated joint global optimisation of HMMs and ANNs applied
to the recognition of plosive sounds on the TIMIT database. The system made use of
three neural networks and 11 continuous density HMMs with 5 mixture components per
state. Two of the networks were initially trained to perform plosive recognition and broad
phonetic class classification. The third network was deterministically initialised to compute
the principal components of the concatenated output vectors from the first two networks.
The network output of 8 parameters formed the observation vectors for the HMMS. When
the parameters of the ANNs and the HMMs were optimised separately, the system achieved
recognition accuracy of 75%. Simultaneous optimisation of all parameters in the system
according to the MMIE criterion resulted in improved recognition accuracy of 86%.

Another interesting approach is the Whole-word Adaptive LDA (WALDA) transforma-
tion proposed by Ayer [5]. A single global input transformation was derived using LDA.
The parameters of the transformation were then optimised according to a discriminative
objective function using gradient descent. The transformation was applied to the speaker
independent recognition on the BTL E-set database. The result of 96% accuracy represents
the best performance figure published up to date on that database. The training of the
transformation required 50-100 iterations of gradient descent in order to achieve the desired
results.

Most recently, Johansen et al. [57] have investigated the use of non-linear input trans-
formations in the framework of continuous density HMMs. A single global transformation
was initialised with small random weights and the current feature vector was added to the
output of the transformation. The system which was globally optimised according to the
MMIE criterion achieved 22% fewer errors on a TIMIT broad-class phone recognition task
over the baseline MMIE-trained HMM system.
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8.3 Integrating input transformations

The hybrid approaches discussed in the preceding section provide an elegant way of in-
tegrating the discriminative power of ANNs with the time handling structure of HMMs.
Although the idea of joint optimisation of HMMs and input transformations parameters
according to a discriminative objective function is not new, the empirical evidence in favour
of its applicability and success is very limited. The following sections will describe a general
framework for integrating input transformations into existing HMM systems. Part of our
objective in this work was to investigate the benefits of sharing input transformations. The
system we have implemented therefore allows input transformations to be state-specific (no
sharing), model-specific (single transformation shared by all states of a model) or global
(single transformation shared by all states of all models). In fact, the system has been
developed as an extension of the HTK package described in [117, 112] and allows arbitrary
tying of input transformations in common with all of the other HMM parameters.

8.3.1 General theory

In a conventional HMM, the probability of an observation 6; given a continuous mixture
Gaussian output distribution is given by

M
) 1 B, YW B, )
bj(at): Cim e 2(0t—H; ) 5m(Ot—Hb; (81)
’ 1/2
m=1 (27T)D/2| W j,m| /
where Hjm is the mean vector and W ,, is the covariance matrix for the mt" mixture

component at HMM state j. In general, we can assume that the observation vector &,
seen by the mixture distribution is the output of a state-specific transformation function 7
applied to the output from the acoustic pre-processor 0,2, e.g.

6;5 = T(Ot)

A generic input transformation is defined as a sequence of matrix multiplications with the
intermediate resulting vectors mapped using pre-defined output functions

T(0) = INUNfN-1(UN_; ... 1(U%0)...)) (8.2)

The above transformation can be viewed as an N-layer neural network where the units in
layer [ are set to compute f(.) and the weights of layer [ are the values in U;. The functions
fi(.) are chosen to be differentiable vector valued functions. Two such functions are

1. Linear
Yy, = filz;)  where y, =z (8.3)

2Although the framework allows transformations to be state-specific, in most of the derivations in this
chapter a single global input transformation is assumed. However, for the derivations of the re-estimation
formulae, the notation 6;,; will be used to denote the observation vector at time ¢, produced by the trans-
formation associated with state j.
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2. Sigmoid {—1.0;+1.0}

2

= (8.4)

y; = filzy) where Yl

In general, we shall use x; to denote the vector of total input to the nodes at layer | and y,

will denote the output from the nodes at I following the application of the output function.
We have

z=Ujy,_, and 1y, = filxy) (8.5)

where y; = o0;. In the above notation, bias vectors are assumed to be implicitly incorporated
into the weight matrices U;. In the context of neural networks, equation 8.2 defines the
forward pass for a feed-forward network. A feed-forward network is one where the topology
is such that values of ; and y; can be calculated in an order that does not lead to recursion.
The following section will describe the structure of a recurrent input transformation.

8.3.2 Recurrent transformations

A major limitation of the hidden Markov modelling approach to automatic speech recogni-

tion tasks is the so called observation independence assumption
P(o4|67, o) = P(04/6:) (8.6)

This states that the probability of an acoustic observation o; at time ¢ depends only on
the output distribution associated with the present state 6; of the Markov chain but not
on the other observations. The problem with systems of this kind is that slowly varying
articulatory processes introduce significantly larger amounts of long-term correlation which
cannot be modelled adequately by the state transition probabilities alone. As discussed in
previous chapters, modelling of acoustic signal dynamics can be improved by adding new
dimensions to the observation vectors. Unfortunately, increasing the number of features
in the observation vectors introduces more parameters in the output distributions of the
HMDMs which, in turn, will require more training data and the associated computational
effort will be increased. A partial solution to this problem is offered by the dimensionality
reduction methods discussed in chapter 6. A more general approach is to enhance the
transformation by incorporating a recurrent mechanism which allows the present output
0; to incorporate knowledge of past and future observations. Due to the complex nature
of the mapping and the lack of knowledge as to which types of correlations are important,
the parameters of such transformation cannot be determined directly. In this section we
introduce the concept of adaptive recurrent input transformations in the HMM framework.
The transformations will be initialised to performing non-recurrent mappings, however,
during training the discriminative training algorithm will be used to establish the recurrent
mechanism in the transformation.

Recurrent processing structures were extensively studied by Robinson [97] in an attempt
to model dynamic patterns by a sequential information processing system. The essential
quality of a dynamic network is that its behaviour is determined both by the external



CHAPTER 8. ADAPTIVE INPUT TRANSFORMATIONS 111

N
Mea 0,
net(t)
N\
Oy Iy 0 t41
net(t+1)
N
O tn1 M1 0t
net(t+2)
0 142 I s

Figure 8.1: A dynamic network structure expanded in time where o; is the input pattern
to the network at time ¢, 6; is the corresponding output and r; is the output of recurrent

state units.

input to the network and also by its internal state, which holds information about previous
mappings. The state units form part of the current output of the network and also present
themselves as part of the input to another copy of the network in the following time period.
Another interpretation of the state units is that they link multiple copies of the network
over time to form a dynamic sequential structure, see figure 8.1.

Using the above, a recurrent mechanism can be incorporated into 8.2 by allowing the
argument of f; to carry information about past states of the transform. In the following
sections we consider single layer recurrent transformations with state units whose structure

is shown in figure 8.2. The output of the transformation can be expressed as

6 = fo(Uppoi+Ugori1) (8.7)

ri = [r(U7 ot +Ufgpgri-1)

where 7 is the output vector from the state units, ¢ is the time index and Ut o, Uy g,
URrr, Ugro are the matrices describing the input-to-output, input-to-state, state-to-state
and state-to-output connections respectively. The functions fo and fgr are chosen to com-
pute symmetric sigmoids (equation 8.4).

8.4 Initialisation

Several different approaches can be taken to initialising the input transformations. ANNs
are commonly initialised with random weights, however, with random initialisation the
training of the system will be rather slow since the parameters of the HMMs depend on the
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Figure 8.2: General structure of a recurrent input transformation where o is the output of
the preprocessor, 6 is the output of the transform, 7 is the output of the state units and ¢
is the time index. (note: not all connections are drawn for clarity of presentation)

outputs of the transformations. Another possibility is to initialise the parameters of the
transformation deterministically [15]. Such initialisation is highly desirable for the following
reasons:

1. The parameter estimation does not depend on random initial conditions. Kolen et
al. [63] have shown how different initial conditions can give rise to different neural
networks with rather different performances.

2. Deterministic initialisation will allow input transformations to be integrated into an
existing HMM system without any significant degradation in performance.

The HMM framework discussed so far offers two possible ways for deterministic initialisation
of input transformation: 1) Initialisation based on rotations/scaling of the the observation
feature space, and 2) Initialisation based on differential parameter computation. The fol-
lowing two sections will describe these two methods in detail.

8.4.1 Rotation/scaling of the feature space

In this approach, the input transformations can be initialised using a linear transformation
matrix as provided by PCA, LDA or the method of principal discriminants [22]. Since we
attempt to provide a better acoustic model with improved discrimination it seems plausible
to initialise the transformations to perform linear discriminant analysis LDA on the feature
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vectors. As discussed in chapter 6, LDA makes use of two covariance matrices - the between-
class covariance matrix B and the average within-class covariance matrix W. The discussed
HMM/IT framework allows input transformation to be state-specific. Hence, LDA should
be performed at a level which reflects the specificity of the desired transformations. For ex-
ample, if state-specific input transformations are desired, LDA will be performed separately
for each state where B is still the overall between-class covariance matrix and W is the
average covariance matrix from the distribution at state j. The between class covariance
matrix is computed by

B = %(“i — pg) (i — 1g)' (8.9)

where n is the number of classes, p; is the mean vector of the distribution associated with
class ¢ and p, is the mean vector of the data. The use of sample average instead of proper
expectation provides immunity to biasing B towards classes with more training data. The
within-class covariance matrices W ; can be calculated as a by-product of the Baum-Welch
algorithm hence, we proceed to build a full covariance HMM system where covariance
matrices are tied to match the desired level of tying for the subsequently introduced input
transformations. For example, if the eventual goal is to produce an HMM system with a
single global input transformation, we set off to train a grand covariance HMM system. At
the other end of the extreme, we can train a full covariance HMM system where each state
distribution has its own distinct covariance matrix. The latter scheme will enable us to
construct a final system with state-specific input transformations.

Assuming single Gaussian distributions with individual covariance matrices W ; and a
grand covariance matrix B, the required transformation matrix §; is computed such that

S'W;S;=1 and S/BS;=T (8.10)

where I' is diagonal (see section 6.5.2). Solving the general eigen problem, S; can be
expressed as
S; =R ATY?R, (8.11)

where R; is the matrix of eigenvectors of W;, A is the diagonal matrix of corresponding
eigenvalues and Ry is the matrix of eigenvectors of (R;A~Y2)B(R;A~/?). Improved
discrimination in a subspace of the original observation space can be achieved by discarding
dimensions corresponding to the smallest elements of I

8.4.2 Stacked input

The observation vectors in most current HMM-based speech recognition systems are based
on log-power spectrum representations together with their first and second derivatives.
The earliest attempt to use differential information was discussed in [79] by researchers at
IBM. Differential information was incorporated by concatenating adjacent frames together,
much like the windowed input presented to ANN based speech classifiers. This dramatically
increased the numbers of parameters and also caused estimation problems. The solution was
to use principal components analysis to reduce the observation vector size. More recently,
Brown [22] used linear discriminants to reduce the size of stacked observation vectors for an
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Figure 8.3: Input transformation initialised to calculate differential cepstral parameters over
using an input window of 5 frames.

E-set recognition task. One problem with differential parameters as used in most current
speech recognition systems is the assumption that the cepstral slope is the only useful
feature. The stacking of input frames does not make such an assumption, hence, with an
appropriate feature selection algorithm it may result in a more compact and informative set
of parameters. The combined HMM /input transformation architecture provides a powerful
mechanism for combining heterogeneous sets of features and extracting a small number of
parameters according to a discriminative objective function. A deterministic initialisation
of such input transformations is offered by the formulae used to compute the first derivative
parameters

Y1 7(Cilt+7) = Ci(t — 7))

2% 72

where V is typically set to 2. The above equation can be expressed as a transformation

ACy(t) = (8.12)

matrix A applied to an input vector formed by concatenating five adjacent observation
frames from the utterance, see figure 8.3.

8.4.3 Non-linearity and 2-layer transformations

Assuming that we have the transformation matrices A and §; derived using the above
schemes, we can proceed to initialise the weight matrices of the input transformations.
Based on the properties of the input transformation, we consider the following cases

1. Single-layer, linear. The derived transformation matrix S; becomes the transforma-
tion matrix U;.
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2. Single-layer, non-linear. Following Bengio [15], the connections of the transformation
can be initialised with U = €S; where € is a small positive number. Consequently, the
total input to the output units of the network will be small and the sigmoid functions
will operate within a linear range.

3. Two-layer, non-linear (1). The derived matrix S; can be decomposed into the product
of two matrices e.g. §; = PQ, using LU decomposition [90]. This decomposition
can be used to initialise a two layer network with connection matrices U, and U,
describing the input-to-hidden and hidden-to-output connections respectively. Then,

U,=¢eP and U; = Q.

4. Two-layer, non-linear (2). The transformation matrix A corresponding to the dif-
ferential parameter computation over a fixed window of short duration is used to
initialise the first layer in the transformation, e.g. U1 = €A. The second layer of the
transformation is initialised by setting U, = S;.

5. Recurrent, non-linear. Similarly to case 2, the input-to-output connection matrix can
be initialised with Uy o = €S;. The state-to-state and state-to-output matrices U g g
and Upg o respectively, are initialised with small random numbers and the elements
of the input-to-state connection matrix U g are set to zero.

In all cases, the elements of the bias vectors are set to zero. The values of the scaling
coefficient € and output range of the random number generator are determined empirically,
so that the performance of the existing HMM system is partially or fully preserved.

8.5 Back-propagation

In chapter 4 we presented the derivatives of all HMM parameters which allowed us to op-
timise any likelihood-based objective function using a gradient search technique. Although
using only first derivative information, the QuickProp algorithm was shown to provide fast
convergence when applied to the optimisation of the MMIE and SMMIE objective functions.
In this section we will extend the training algorithm to allow adaptation of the parameters
of the input transformations. Since an input transformation can be considered as a spe-
cial kind of neural network, the derivatives of the parameters of the transformations with
respect to the objective function will be computed using the well-known back-propagation
algorithm. Incidently, the back-propagation algorithm [100], was one of the main reasons
for the resurgence of interest in ANN’s.

The back propagation algorithm is an application of the chain rule to ANN’s. It is not
an optimisation technique, however it can be used to calculated the derivatives of the chosen
objective function with respect to each weight in the transformation. The algorithm is well
documented elsewhere [100], so only a short description follows. In general, let node i in
the network receives input from all other nodes in the network given by x;. The output, or
activation of the node, y; is given by

yi = fi(xs)
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where f; is the node function. For nodes in the input layer y; is set to the input pattern.
For nodes not in the input layer x; is given by

Tj; = E Y Wi 5
i

where w; ; is the weight between nodes 7 and j. The back-propagation algorithm provides
a mechanism for calculating % for each weight in the network, where F is the objective
function. By applying the chain rule we can calculate the derivatives in the following order.
First, the effect that changing the weight w; ; has on the input to node j is given by

OB _ OF 0x; 0B
8?1)1',]' N c%j Bwi,j N ij i

An expression for % in terms of the node activations y; is given by

O _ 0B 0y _OF o
Ox; Oy; 0x;  Oy; Ox;

fz(xz)

oF

Finally, for nodes which are not in the final layer, 3 By is given by

oL OF
oy ; wmajj

The above derivations are equivalent to propagating the derivatives g—i backwards through
the layers of the network, hence, the name “back-propagation”. The algorithm is also
applicable to recurrent networks as described in the preceding sections. In this case, the
partial derivatives are computed by unfolding the network in time. The algorithm requires
the same amount of computation as for a standard feed-forward network, however, the state
unit activation should be stored to avoid redundant computation.

Next, the above algorithm will be used to calculate the derivatives of the MMIE objective
function with respect to the parameters in the transformation. Analogous to appendix B
we proceed to define the derivatives of the log-likelihood of the training set O given a model
M. For the objective function we have

0
U,

(O Meorr) — LA(O|Myee) (8.13)

(W) = oU ; oU ;,

where U ;; is the connection matrix for layer / of the input transformation at state j. Using
the chain rule and from the definition of £)(O|M) (equation B.1)

0 1 & 0
(@ =

R ZPA(O M) ¢ Z aU ’"%J)mPA(OrIM) (8.14)

Where 6, ; is the output of the transformation at state j, time frame ¢, utterance r. For
the derivative of b;(6,4;) we have

0 o= O e, O
ouU ;70 T 9, % 06,4

b;i(6rt.5) (8.15)
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From appendix B

9 a;(t)B;(t)
— — _P\(O, M) = SR (8.16)
9b;(6rt,5) b;(6r,t,5)
and u
0 R 1,4
——bj(0r15) = D Cimbim(0rt )W (8r1 — 1) (8.17)
807‘,t,] me=1

Using the back-propagation algorithm, the above derivative can be propagated backwards
through the layers of the transformation which will enable one to compute the derivatives
of the objective function with respect to each connection matrix (equation 8.15).

8.6 Implementation

The MMIE training of the HMM/IT architecture was incorporated within the MMIE train-
ing framework discussed in section 4.5. Following the basic design principles of HTK [117],
the tying of input transformations was implemented in the internal representation of each
HMM/IT using structure sharing. Storage for each shared transformation is allocated once,
and all higher level structures use pointers to refer to the shared objects. In particular,
shared objects can be whole transformations or individual layers. The syntax of the lan-
guage used to define the transformations is outlined in appendix D. To eliminate redundant
computation when shared objects are used, caching of observation vectors and intermediate
node activations is implemented for each distinct transformation. In general, all necessary
observation vectors from each transformation are computed and stored on the forward («)
pass. The pre-computed vectors are then used during the calculation of the backward (3)
pass. In the case of recurrent transformations, the cache is automatically extended to ac-
commodate the activation vector of the state units for each time frame. A final pass through
the frames of the utterance is made in order to accumulate the derivatives of the likelihood
function with respect to each parameter in the system. In the case of recurrent transfor-
mations, the recurrent structure is automatically unfolded in time for the length of the
current utterance by updating the derivative accumulators whilst scanning the observation
sequence backwards. All derivative accumulators are attached directly to the corresponding
objects, hence any sharing of parameters is completely transparent to the the re-estimation
procedure.

8.7 Experimental evaluation

This section presents the results from incorporating a variety of adaptive input transforma-
tions into existing HMM systems on the TIMIT database. In the experiments reported here,
all transformations were initialised to perform non-linear mappings. All results quoted are
on the TIMIT core set (192 utterances). The results are also supplemented by the number of
parameters each system uses excluding transition probabilities. Table 8.1 contains baseline
MLE and MMIE results which will be used for performance/system size comparisons. In or-
der to allow for reasonable development and evaluation time, the transformations were used
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HMM type MLE MMIE Param.
%Corr ‘ %Acc | %Corr ‘ %Acc

1/Diag, MFCCEDA || 6294 | 55.58 | 67.79 | 61.00 11232
4/Diag, MFCCEDA | 68.29 | 61.59 | 71.61 | 65.23 45504
1/Diag, MFCC_ED 59.78 | 54.79 | 65.85 | 60.47 7488
2/Diag, MFCCED 62.99 | 58.14 | 68.09 | 63.20 15264

Table 8.1: Baseline MLE and MMIE results on the TIMIT database

in conjunction with single mixture diagonal covariance models. Training was performed on
the full TIMIT training set (3696 utterances) and bigram language model with scale factor
of 2.0 was incorporated into the looped phonetic model used in the MMIE training.

8.7.1 Training

So far, in MLE and MMIE training the parameters of the HMMs were updated after a com-
plete pass through the training data. This type of method is often referred to as off-line
optimisation. Since the MLE procedure requires a small number of iterations to converge,
this is the most suitable training method. Neural networks typically rely on slower gradi-
ent based optimisation techniques, and in many cases parameter update after every single
training pattern results in faster convergence. Such optimisation is often called on-line
learning. On-line methods therefore cannot optimise a global objective function and such
optimisation may result in oscillations. During some preliminary experiments, optimising
the parameters of the input transformations only, was found to be slower than the MMIE
training of the HMM parameters. In order to speed up the convergence of the optimisa-
tion algorithm a hybrid on/off-line optimisation scheme was adopted. During the first 6
iterations parameter updates took place after a gradually increasing number of training ut-
terances. For the remaining part of the training, the optimisation was performed in off-line
mode. This hybrid scheme resulted in 25% fewer interations than the corresponding fully
off-line case.

8.7.2 Global input transformations

This section describes the experiments carried out in order to evaluate the performance of
a global adaptive input transformation. The transformation was incorporated into a single
mixture diagonal covariance model set using MFCC E D A parametrisation. The baseline
MLE and MMIE performance of this system is given in table 8.1. The input transformation
was derived in a sequence of steps as shown in figure 8.4. Initially, a single mixture grand
covariance system was built by tying all covariance matrices in the full covariance model
set given in table 5.9. After tying, the parameters of the grand-covariance system were re-
estimated using 4 iterations of MLE training. Using linear discriminant analysis, the grand-
covariance matrix was transformed into the identity matrix and the between-class covariance
matrix (equation 8.9) was diagonalised. Dimensionality reduction was performed according
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Dimen. Baseline MMIE t-form MMIE joint Param.
%Corr ‘ %Acc | %Corr ‘ %Acc | %Corr ‘ %Acc

G(39) 61.58 | 56.56 | 62.04 | 56.84 | 68.62 | 61.93 12792
G(34) 60.49 | 55.47 | 60.86 | 55.50 | 67.91 | 61.40 11152
G(30) 58.93 | 53.90 | 60.32 | 54.40 | 67.12 | 61.01 9840
G(26) 57.71 | 53.33 | 58.12 | 53.83 | 66.25 | 60.96 8528
G(22) 56.55 | 52.57 | 56.91 | 53.07 | 65.00 | 59.93 7216
G(18) 55.41 | 51.35 | 56.12 | 52.13 | 63.34 | 57.26 5904
G(14) 52.99 | 49.06 | 53.69 | 50.20 | 60.26 | 55.86 4592
G(10) 49.62 | 45.92 | 51.03 | 48.18 | 57.71 | 52.52 3280
G(6) 41.84 | 39.13 | 44.16 | 42.11 | 50.67 | 47.11 1968

Table 8.2: Results for single mixture models with a global input transformation.

to the eigenvalues from the second diagonalisation stage in LDA. In each case, the derived
transformation matrix was used to transform the mean vectors of the HMMs. The grand-
covariance matrix in the resulting system was replaced by individual unity-variance vectors
for each distribution. Finally, the transformation matrix was used to initialise a single
layer input transformation as described in section 8.4.3. The parameters of each model set
were further optimised using 2 iterations of MLE training. The baseline performance of all
model sets is given in table 8.2. The labels in the first column will be used to identify each
individual system e.g. G(14) is the model set in which the output of the transformation
consists of 14 features.

The first observation is that when all features are retained (39) the system’s performance
(56.56% accuracy/61.58% correct) is roughly equivalent to the performance of the original
single mixture diagonal covariance system in table 8.1 (55.58%/62.94%). The somewhat
disappointing result is that, with 26 features retained, the LDA transformation performs
worse than the single mixture diagonal covariance system using MFCC_E D parametrisation
(table 8.1) e.g. 53.33%/57.71% vs. 54.79%/59.78%. The latter result is probably due to
the assumptions made by LDA which do not hold in practice.

In the second set of experiments, the parameters of the transformation in each system
were optimised according to the MMIE criterion. The results from these experiments are
given in table 8.2/”"MMIE t-form”. The optimisation of the transformation has provided
a small but consistent improvement in the recognition performance of all model sets. In
absolute terms, it appears that the discriminative optimisation is more effective for the
smaller systems e.g. (~ 3%) with 6 features, than the larger ones e.g. (= 0.3%) with the
full set of 39 features.

In the final set of experiments, the MMIE criterion was used to optimise all parameters
in each system using further 15 iterations of the QuickProp algorithm. From the results in
table 8.2/” MMIE joint”, the global optimisation has provided a reasonable improvement in
performance across all model sets. For comparison, with all 39 features retained, the jointly
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Dimen. Baseline MMIE joint | Param.
%Corr | %Acc | %Corr | %Acc
M(39) 53.75 | 48.09 | 71.56 | 65.41 86112
M(34) 56.19 | 49.76 | 71.03 | 65.02 75072
M(30) 56.70 | 49.76 | 70.41 | 64.53 66240
M(26) 57.48 | 50.82 | 69.62 | 63.95 57408
M(22) 58.06 | 51.49 | 68.73 | 63.26 48576
M(18) 57.89 | 51.59 | 67.71 | 62.36 39744
M(14) 57.31 | 51.71 | 66.43 | 61.14 30912
M(10) 55.19 | 50.40 | 65.11 | 59.92 22080
M(6) 50.21 | 47.25 | 62.47 | 57.77 13248

Table 8.3: Results for single mixture models with model-specific input transformations.

optimised model set G(39) achieves better performance figures of 61.93%/68.62% than the
baseline single mixture diagonal covariance system with performance of 61.00%/67.79%
accuracy/correct respectively. Similarly to previous MMIE experiments, the the joint opti-
misation of HMM/IT parameters has been more effective for the “compact” systems than
for the ones which use more parameters.

8.7.3 Model-specific input transformations

The aim of these experiments was to investigate the usefulness of model-specific input
transformations. The rationale behind this approach is that a discriminative feature set
appropriate for one class is not necessarily optimal in a discriminative sense for another
class. As before, the systems used in the experiments were constructed from a full covariance
model set where the same covariance matrix was shared amongst all states within each
model. Linear discriminant analysis was used for each model to derive a model-specific input
transformation with reduced dimensionality. One unfortunate result from the specificity of
the transformations, is the loss® of the model-specific covariance weighting provided by the
constant term in the Gaussian distributions. This term is given by

1
(2m) D2 (W [ V/2

There are two possible solutions to this problem:

gconst = (8.18)

e Compute the correct gconst for each model in the reduced subspace as suggested by
Woodland et al. [109]. Fix the variance vectors in each distribution to unity and
during training update only the mean parameters of the distributions.

e Calculate gconst in each distribution using W ; ,, = I and allow the training algorithm
to optimise both the mean and variance parameters.

3The loss is incurred when the model-specific covariance matrix is transformed into the identity matrix
by the corresponding input transformation.
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System/Topology Baseline MMIE joint | Param.
Inpx0ut xRec %Corr ‘ %Acc | %Corr ‘ %Acc
R(39), 39 x 39 x 32 || 61.58 | 56.56 | 70.12 | 64.56 16344
R(26), 39 x 26 x 32 | 57.71 | 53.33 | 68.36 | 62.41 11664
R(14),39 x 14 x 32 || 52.99 | 49.06 | 64.71 | 59.82 7344
R(6), 39 x 6 x 32 41.84 | 39.13 | 58.67 | 53.60 4464

Table 8.4: Results for a global recurrent input transformations using single mixture models.

Fixing the variance parameter was thought to be over-restrictive, hence, in the experiments
presented here the latter approach was adopted. After derivation, each transformation, was
used to rotate/scale the mean vectors of the distributions in the corresponding model. After
this operation, the variances in each distribution were set to unity, and the parameters of
each model set were re-estimated using 2 iterations of the Baum-Welch algorithm. The
baseline performance of all newly derived systems is given in table 8.3. The effects of los-
ing the correct Gaussian normalisation term are immediately visible from the significantly
degraded recognition performance. As more dimensions are discarded the performance grad-
ually improves, however, even with 22 features the performance of the system (51.49/58.06)
is still significantly worse than the performance of the baseline diagonal covariance system
(55.58%/62.94%).

In the following experiments, joint optimisation according to the MMIE objective func-
tion was carried out. The results are given under the heading “MMIE joint” in table 8.3.
The results show improved recognition performance provided by the discriminative training
algorithm. In figure 8.5, the performance of the model-specific transformation systems is
plotted against the performance of the corresponding global transformation systems. In gen-
eral, the decline in recognition accuracy is more gradual for the model-specific systems than
for the ones that use global transformations. The relative reduction in error rate provided
by M(6) over G(6) accounts for 20% whilst with all features kept the reduction in error rate
is only 9%. As mentioned above, the poor performance of the initial systems was due to the
inability to retain the model-specific normalisation terms, hence a comparison with other
systems which use similar numbers of parameters is thought to be more meaningful. In
this respect, the gain in recognition performance appears to be associated with a dramatic
increase in the number of free parameters. For example, system G(39) achieve performance
figures of 61.93%/68.62%, performs better than system M(6) (57.77%/62.47%) and uses 3%
fewer parameters. A similar argument applies when comparing model sets M(22), M(26),
M(30), M(34) against the 4-mixture diagonal covariance system in table 8.1. In general,
although more flexible than the global transformation systems, the model-specific trans-
formations do not appear to be very efficient in terms of the number of parameters used.
Furthermore, the discriminative training of these systems is too computationally expensive
compared to a conventional HMM architecture to justify its use in practice.
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Figure 8.5: A comparison of different input transformations

8.7.4 Recurrent input transformations

This section investigates the use of recurrent input transformations within the HMM frame-
work. Although it is possible to construct a system which uses model-specific recurrent input
transformations, in this study we have considered only a single global input transformation
for the following reasons:

e The pruning mechanism used in the Forward-Backward algorithm was shown to be
crucial for the tractable implementation of MMIE training. Unfortunately, model ac-
tivation/deactivation introduces discontinuities in the sequence of observation vectors
which causes difficulties in the processing carried out by recurrent structure.

e The model-specific transformations investigated in the previous section were shown
to be inefficient with regard to the number of parameters used.

Furthermore, due to the increased amount of processing required to compute the deriva-
tives of the state unit connections only a limited number of systems were evaluated. The
recurrent input transformation was derived in the same way that was used to derive the
global input transformations in section 8.7.2. In all cases, the transformations had 32 state
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System/Transformation Baseline MMIE joint | Param.
%Corr | %Acc | %Corr | %Acc
P1, [1] recurrent 26 x 26 x 32/LDA 60.46 | 55.93 | 69.76 | 63.67 | 10910
P2, [1] LDA /global 60.46 | 55.93 | 67.32 | 6143 | 8190
P3, (1] LDA/model 53.32 | 4829 | 70.84 | 65.18 | 41184
P4, [1] A-comp/global 59.17 | 54.21 | 68.47 | 63.33 | 9204
P5, [1] A-comp/global, [2] LDA/global | 60.87 | 56.41 | 69.16 | 64.23 | 9906
P6, [1] A-comp/global, [2] LDA/model || 52.86 | 47.53 | 71.07 | 65.92 | 42900

Table 8.5: Results for various input transformations using single mixture diagonal covariance

models.

units. No attempt was made to optimise this number, however, results in [98] suggest that
improved recognition can be achieved as more state units are added. In each system, the
derived transformation was optimised jointly with the HMMSs’ parameters using 25 itera-
tions of MMIE training. The performance of these systems is given in table 8.4/” MMIE
joint” and the corresponding accuracy plot is shown in figure 8.5. In terms of recogni-
tion performance, the systems perform better than the corresponding global non-recurrent
transformation systems. For example, system R(26) achieves 62.41%/68.36% whilst G(26)
yields 60.96%/66.25%. In terms of performance with roughly equal numbers of parame-
ters, R(6) is worse than G(14) and systems R(14) /R(26) are somewhat similar to systems
G(22)/G(34) respectively.

8.7.5 Other transformations

This section describes experiments with a collection of one and two layer transformations
applied to the single mixture diagonal covariance HMM system using MFCC_E D parametri-
sation (see table 8.1). The latter feature set was chosen, since it allows the delta parameter
calculation to be mapped onto a single layer input transformation over an input window of
five frames. After initialisation, joint optimisation of all HMM/IT parameters was carried
out for each system using 25 iterations of MMIE training. The performance of these sys-
tems is shown in table 8.5. The transformation type is given in terms of layer number, the
initialisation procedure used and the level of sharing. For example, {[1] A-comp/global, [2]
LDA /model} describes a two-layer input transformation where the first layer is initialised to
perform first differential parameters computation and is shared by all states in the system;
the second layer of the transformation is model-specific and is initialised to perform LDA
on the components of the MFCC_E_D feature vector.

The first system presented (P1) makes use of a global recurrent transformation with 32
state units and no dimensionality reduction. The system uses nearly 30% fewer parameters
than the baseline two mixture diagonal covariance system shown in table 8.1 and at the same
achieves better recognition performance. The next system (P2) uses a single layer global in-
put transformation with no dimensionality reduction. Compared to the corresponding single
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mixture diagonal covariance system in table 8.1, the input transformation has resulted in an
average improvement in performance of 1% (absolute). The model-specific version of this
transformation (system P3) achieves recognition performance of 65.18% accuracy/70.84%
correct at the expense of 41184 parameters. Incidently, this system performs better than
system M(30) in table 8.3 which uses 60% more parameters. In system P4, the transforma-
tion was initialised to perform calculation of first order cepstral coefficients from an input
window of 5 frames. The system exhibits higher recognition accuracy than the P2 system
which uses a global LDA-initialised transformation. The addition of a second layer (system
P5) does provide improvements in performance which is very similar to the performance of
the recurrent input transformation system P1. Finally, the best performing system P6 uses
two-layer input transformations, which are derived as a combination of the global transfor-
mation used in system P4 and the model-specific transformations used in system P3. In fact,
system P6 achieves similar performance and uses fewer parameters than the four-mixture
diagonal covariance system shown in table 8.1.

8.8 Summary

This chapter has presented the theory and evaluation of adaptive input transformations in
the HMM framework. The conventional HMM framework was extended to accommodate
input transformations which transform the observation vectors before they enter the output
distributions of the HMMs. The system was implemented to allow arbitrary sharing of input
transformations in common with all other HMM parameters. A variety of deterministic
initialisation procedures were described, which allow transformations to be introduced into
existing HMM systems without any significant degradation in performance. Recurrent
input transformations were proposed in an attempt to tackle the observation independence
assumption in the HMM framework. An adaptive feature extraction procedure was also
discussed whereby an input transformation is initialised to perform the calculation of first
order dynamic coefficients.

In all experiments presented, the joint optimisation of HMM/IT parameters according
to the MMIE criterion has resulted in improved recognition performance. In the initial
set of experiments, performance gains were visible from optimising only the parameters of
a global input transformation. However, the improvements from such optimisation were
found to be small. Similarly to the experiments presented in chapter 5, the discriminative
optimisation of the HMM/IT parameters has proven more effective for the model sets with
smaller observation vector size. Compared to the baseline results of 55.58%/62.94% ac-
curacy/correct for the MFCC_E D A single mixture diagonal covariance system trained using
MLE, the global discriminative optimisation of HMM/IT parameters have provided the
following improvements. The use of a global input transformation allowed us to reduce the
observation vector size to 18 features and at the same time it has improved the recognition
performance to 57.26%/63.34%. Using model-specific input transformations, the perfor-
mance of the system rose to 57.77%/62.47% with only 6 features. Finally, when using a
global recurrent input transformation, the performance of the system was 59.82%/64.71%
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with a feature set of 14 components.

In general, global input transformations, were found to be more efficient in their use of
parameters than the corresponding model-specific transformations. In many cases the latter
type achieved better recognition performance, however, the same results could be obtained
by applying MMIE training to conventional HMM systems with multiple mixture compo-
nents. For example, with all 39 features retained the system with model-specific transfor-
mations achieved performance figures of 65.41%/71.56% accuracy/correct which is roughly
equivalent to the performance of the 4-mixture diagonal covariance system (65.23%/71.61%)
which uses nearly 50% fewer parameters.

Several input transformations were evaluated in conjunction with HMMs using the
MFCC_E D feature set. The best performance figures were achieved using model-specific
input transformations with single and 2-layer topologies. The recurrent input transforma-
tion and the two-layer transformation initialised to compute delta coefficients followed by
LDA also provided good performance with very efficient use of parameters. In general,
the performance of the recurrent transformation (63.67%/69.76%) was very similar to the
performance of the 2-layer global transformation (64.23%/69.16%). This was closely fol-
lowed by the global input transformation initialised to perform the calculation of first order
differential parameters (63.33%/68.47%), which, in turn, was better than the performance
of the single global transformation initialised to perform LDA (61.43%/67.32%).



Chapter 9

Conclusions

There are many ways of improving the performance of HMM-based speech recognition
systems. Improved recognition performance can be achieved by optimising the front-end
of the system, utilising output distributions with more mixture components, introducing
context-dependent models, increasing the complexity of the language model, etc. In this
thesis, emphasis was placed on improving the discriminative abilities of the acoustic models
through parameter estimation according to the MMIE objective function. The study also
investigated ways of improving the acoustic representation with the aim of providing com-
pact and informative feature vectors. The latter goal was pursued through the introduction
of discriminative feature selection and adaptive feature extraction techniques. The following
sections summarise the work carried out and also give suggestions for future research.

9.1 Summary of work and general conclusions

Chapter 3 outlined the rationale behind two very different optimisation criteria - Maxi-
mum Likelihood estimation (MLE) and Maximum Mutual Information estimation (MMIE).
MMIE was shown to be more appealing since it does not rely on the model correctness as-
sumptions, which form the basis of MLE. On the other hand, MMIE is more difficult to
implement, requires more computation and when this work began the empirical evidence
of its success was very limited. One point to note is that although MMIE is discriminative
in nature, a marginal increase in the value of the objective function does not guarantee
improved recognition accuracy even for the training set. This is a consequence of the fact
that in MMIE multiple incorrect paths are considered together, hence, decreasing their
total likelihood does not guarantee recovering the dominance of the correct path. Other
discriminative training techniques such as MCE claim a more direct relationship to the
empirical error rate of the recogniser, whereby discrimination is achieved against the most
likely incorrect path. In the spirit of MCE, an extension to MMIE was discussed where a
sigmoid weighting function is applied to each individual training utterance to re-adjust the
corresponding derivative contributions (SMMIE).

The effectiveness of discriminative training depends to a large extent on the availability
of a good training algorithm which provides a reasonable improvement in the value of the
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objective function over a small number of iterations. With this in mind, chapter 4 outlined
a variety of techniques which can be used to optimise the HMM parameters according to a
discriminative objective function. Second order techniques were considered but found im-
practical to implement due to the substantial computational requirements involved in eval-
uating and inverting the Hessian matrix of second derivatives. Instead, our study moved to
investigate the application of local optimisation techniques from the field of neural networks
where separate learning parameters are employed for each individual HMM parameter. Fol-
lowing Kapadia [61], a discriminative training framework based on the Forward-Backward
algorithm was outlined where the calculation of parameter derivatives is carried out in two
passes: one for the numerator of the MMIE objective function using the correct acous-
tic model constructed from the transcription of the utterance, and a second pass where
the training utterances are aligned against the recognition model. The update of model
parameters was carried out in a post-processing stage in which, parameter derivatives accu-
mulated in the two preliminary passes are combined together. Chapter 4 also presented the
expressions required to calculate the derivatives of any likelihood based objective function
with respect to each HMM parameter. Stochastic and positive constraints were automati-
cally satisfied within the re-estimation procedure by performing suitable mappings on the
corresponding parameters.

In chapter 5 MMIE and SMMIE were empirically compared to MLE on three speech
databases. The QuickProp algorithm was found to be very effective for optimising the HMM
parameters according to the MMIE criterion. On average, the algorithm required 12-18 it-
erations to achieve a reasonable improvement in the value of the objective function. In all
experiments, MMIE demonstrated improved recognition performance over the correspond-
ing MLE-trained model sets. On all three databases, discriminative training was found to
be more effective for the smaller model sets which used fewer mixture components per state.
For the BTL E-set the SMMIE training algorithm demonstrated further improvements in
recognition performance. However, on the ISOLET database the improvements were only
marginal. This was explained by the larger number of speakers in the training set which was
thought to be more representative of the task. Modelling cepstral parameter correlations
using full covariance distributions was shown to be crucial for achieving state of the art
results on the two isolated tasks. The use of second differential parameters was shown to
yield gains in performance on the TIMIT continuous phone recognition task, in particular,
when used in conjunction with “good” acoustic models. Further improvements in phone
recognition accuracy were obtained through the use of a fourgram back-off language model,
used in conjunction with the best performing MLE and MMIE trained models.

Chapter 7 outlined a feature selection algorithm based on the mutual information cri-
terion. It was argued that since the mutual information measure relates to the quantities
used during recognition, it would be an appropriate criterion to rank-order the components
of the feature vector. The MMIC algorithm was used to rank-order the components of the
39 dimensional MFCC_E D _A feature vector used in the TIMIT continuous phone recognition
experiments. The algorithm was shown to provide an intuitively plausible feature order. It
also fulfilled the objective of allowing us to reduce the size of the observation vectors with a
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gradual increase in the recognition error rate. Unfortunately, the MMIC algorithm did not
provide any improvements in performance over a number of manually selected feature sets.
The latter observation was attributed to the various approximations made within the algo-
rithm and in particular, the lack of modelling of the correlations between the components
of the feature vector.

In chapter 8 the traditional HMM framework was extended to accommodate adaptive
input transformations whose parameters are optimised jointly with the HMM parameters
according to MMIE objective function. A variety of input transformations were discussed
together with methods for their deterministic initialisation. The combined HMM/IT archi-
tecture was evaluated on the TIMIT phone recognition task. In all experiments, the jointly
optimised systems achieved improved recognition accuracy over the corresponding MMIE-
trained HMM systems. The HMM/IT framework was implemented to allow sharing of input
transformations in common with all other HMM parameters. Unfortunately, in the context
of single Gaussian HMMs, the model-specific input transformations were shown to be in-
efficient in their use of parameters. In general, the optimal balance between performance
and model complexity was achieved through the use of recurrent input transformations and
one/two-layer input transformations initialised to calculate first differential cepstral param-
eters in conjunction with LDA. The results from these experiments were encouraging and
the application of adaptive input transformations is to be investigated further in the larger
application domain.

9.2 Some suggestions for future work

There are several aspects of the work presented in this thesis that will require further
investigation both in terms of different application domains and modifications to the existing
techniques.

9.2.1 Discriminative training and LVCSR

The MMIE results presented in this thesis are very promising. Although there are a number
of tasks with small but useful vocabularies, current research in speech recognition is concen-
trated on improving the performance of large vocabulary systems. By current standards,
the tasks considered in this study were based on very small vocabularies e.g. 48 in the case
of continuous phone recognition. In the continuous phone recognition experiments, this was
an important issue since it allowed us to use the somewhat simple looped phonetic model
when calculating the denominator of the MMIE objective function. Indeed, improvements
in recognition performance were observed in all phone recognition experiments. However,
it would not be a surprise if the word recognition error rate of the same systems was not
improved at all. This follows from the fact that many of the discriminations at phone level
achieved by the MMIE training algorithm are unnecessary when applying the higher level
word constraints. The implication of this argument is that in order to achieve meaningful
discriminations the recognition grammar should be fully incorporated into the training pro-
cedure. Unfortunately, incorporating higher level language constraints requires a substantial
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search effort in a potentially huge HMM state space. One possible way of achieving this is
to use N-best sentence hypotheses as an approximation to the denominator of the MMIE
objective function. However, as the baseline performance of our conventional systems im-
proves, it is very likely that the top N hypothesis will differ from one to another by a very
small number of words. Consequently, N will have to be chosen sufficiently large in order to
allow for a reasonable number of substantially different alternatives to be considered. With
research moving onto very large vocabulary systems (in excess of 20,000 words) a different
approach to hypothesis representation has become more viable. Instead of generating an
N-best list, a lattice of word choices is produced. The lattice consists of nodes connected by
arcs, where each node represents a time instance and each arc a word which is hypothesised
as occurring between two time frames. Since, the lattice can be considered as a compact
representation of a large number of sentence hypotheses, it can be used to approximate
the denominator of the MMIE objective function. Furthermore, with recent advances in
search techniques [3], the lattice generation can be speeded up through the use of multiple
forward-backward passes.

9.2.2 Language model weight

For the E-set and Alphabet recognition tasks the language model scores were assumed to
be uniform and their role during training and recognition was not important. Virtually,
all phone recognition experiments made use of a phone level bigram language model whose
scores were raised to the power of 2.0 prior to being combined with the acoustic scores both
during training and recognition. The language model weight was determined empirically
in a preliminary set of experiments using MLE/MMIE trained models. Consequently, it is
very possible that the language model weight was appropriate for some experiments and
wrong for others. As Normandin [84] points out, the language model weight is very similar
to the code-book exponents used in the semi-continuous modelling framework and both
types of parameters arise from the incorrect modelling assumptions in the Markov models.
In the same way as used in [84] the language model weight can be adapted during training
according to the MMIE criterion.

9.2.3 Discriminative feature selection

Based on the mutual information criterion, the MMIC training algorithm was shown to
provide a reasonable ordering of the cepstral coefficients and their derivatives with gradual
and modest degradation in performance. As mentioned before, one limitation of dynamic
parameters is that the slope/curvature of the features are thought to be the only useful
features. This assumption can be put to the test by applying the MMIC feature selection
algorithm to a feature vector of a large dimensionality which apart from the standard
MFCC_E D_A parameters also includes basic cepstral parameters from neighbouring frames.
The failure of the algorithm to provide improved recognition performance over the man-
ually selected feature sets was attributed to the assumption that all components of the
feature vector are independent. Inspection of the correlation matrix of the TIMIT training
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data showed that this is not the case. Hence, another desirable extension is to incorporate
covariance modelling within the MMIC feature selection algorithm. The basic idea is to
build a full covariance system and using the covariance matrices to attempt to derive a
model which approximates the change in the mutual information measure when removing
each possible pair of features.

9.2.4 Adaptive input transformations

The area of adaptive input transformations is very new and the set of experiments presented
in this thesis barely scratches the surface of the multitude of possible topologies. The
application of adaptive transformations in LVCSR systems will depend to a large extent on
the successful implementation of the MMIE training algorithm and the ability to exploit
the full grammar constraints within the training process. Another observation is the fact
that with more complex systems (e.g. large number of mixture components) the parameters
employed by the input transformations will be only a small proportion of the total number
of parameters used by the system. In these cases, model-specific or even state-specific input
transformations may prove a viable option.

Recurrent input transformations offer great flexibility by allowing one to enhance their
structure through the use of more state units. With more state units, such transformations
are expected to model longer contextual effects. However, it is also expected that with the
higher level word constraints in place, the difference in performance between the recurrent
input transformations and the windowed input transformations will narrow, due to the
limited range of context modelled by the state units in the recurrent transformations.

9.3 Summary

This chapter has summarised the conclusions from this study and identified areas for future
research. The main conclusion is that discriminative training should be considered in any
small vocabulary task or real-time speech recognition system. The use of adaptive input
transformations in the HMM framework has demonstrated very promising results and they
merit further research. Future work in discriminative methods should aim at applying
them to larger scale tasks such as continuous speech dictation systems. Furthermore, with
the ever increasing power of computer technology such investigations are rapidly becoming
possible.
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Databases

This appendix describes the speech databases and the basic HMM sets used in the various
experiments described in this thesis.

A.1 Speech coding

The speech coding procedure described below was used to parametrise the ISOLET and
TIMIT databases. Parametrisation was carried out using the HCode tool from the HTK
toolkit [117]. For the processing, each utterance was split into frames of 25ms duration
with frame shift at 10ms. Pre-emphasis by a factor of £ = 0.97 was applied to the speech
waveform, defined by

Sp = Sn — ksp—1

Each frame was then transformed using a Hamming function defined by

2mn
si, = 0.54 — 0.46 cos <N — 1) Sn

where N is the number of samples in the frame and s, is the n** sample. Each frame was
coded into 12 Mel-Frequency Cepstral Coefficients (MFCCs), plus a log-energy component.
The MFCC coefficients are computed from the output of a mel-scaled triangular filter bank
according to

P .
i
- 4 —(i—o0. =1,...M
C; jEZlm]cos<P(j 05)) for i=1,

where P = 24 is the number of filters, and M is the desired number of MFCC parameters.
This was followed by cepstral liftering using a factor of L = 22

(e ()
Ci—<1+2sm i Ci

The final observation vectors were formed by coercing the MFCCs with the energy com-
ponent and with their first and second differentials. Three commonly used feature sets
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Figure A.1: E-set recognition network with a uniform language model.
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MFCCE = {Ci,...,C12, E} (A1)
MFCCED = {MFCCE,ACy,...,ACi2,AE} (A.2)
MFCCEDA = {MFCCED,A%C),...,A%Cy, A’E} (A.3)

First derivatives of the basic MFCC_E coeflicients are computed using the regression

SV (Gl 1) = Cit— 1)
257y 72

For the second derivatives, the summation in the numerator is taken over the differences

AC;(t)

between the first derivative parameters in the feature vector.

A.2 The BTL E-set database

The British English E-set is defined as the set {“B”, “C”, “D”, “E”, “G”, “P”, “T” & “V”"}.
E-set recognition is considered to be a particularly difficult task due to the high level of
confusability between the different classes in the set. The BTL E-set database was collected
and distributed by British Telecom Laboratories (BTL) as part of the CONNEX project
and forms a subset of a larger alphabet database. The data was recorded in a noise-free
environment and was originally sampled at 20KHz. Utterance boundaries were marked by
a semi-automatic process. Each member of the E-set is represented by three utterances
from each of the 104 different speakers (54 males, 50 females). The speakers were split into
two halves to form a training set of 1239 utterances and a test set of 1219 utterances. The
acoustic preprocessor used the output of a 27 channel filter-bank (SRU-Bank) followed by a
Discrete Cosine Transform to produce 12 Mel Frequency cepstral coefficients (MFCCs) and
their first differentials. The twelve coefficients include the zeroth coefficient which is the
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letter | phones || letter | phones
A ey N eh n
B b ee 0 oh
C C ee P p ee
D d ee Q k y ooh
E ee R ahr
F eh f S eh s
G |jee T t ee
H ey ch U y uh
I ay \% vV ee
J jey W | duhbulyooh
K k ey X ehks
L ehl Y w ay
M eh m Y/ 7 ee

Table A.1: Alphabet pronunciations

average value of the log power spectrum. Principal Component Analysis was then used to
transform the covariance matrix of the data to the identity matrix. The preprocessor and
the partitioning of the data are identical to the ones used by Woodland and Cole in [109].

Each member of the E-set was modelled by a left-to-right HMM with 15 emitting states
and no skip transitions. The network used in the recognition experiments is shown in figure
Al

The BTL E-set database was used by McCulloch [75] to compare the performance of
standard ML training vs a discriminative training technique accomplished within the Al-
phanet framework [18]. Using 8 state left-to-right models with a shared variance vector and
parametrisation of 8 MFCC coefficients he achieved 68.58% accuracy for the ML training
and a peak performance of 74.09% accuracy after several thousand iterations of discrimi-
native training.

Woodland and Cole [109], performed experiments on the BTL E-set database in order to
evaluate a discriminative feature extraction scheme based on state specific input transfor-
mation. The best result achieved using MLE trained models was 91.1% accuracy using 24
parameters (12 MFCC + 12 delta), 15 state left-to-right models and full-covariance output
distributions. Using state specific input transformations with reduced parameter vectors of
16 features the result improved to 92.1% accuracy.

The same database was also used by Ayer [4] to evaluate the performance of a global
Whole-word Adaptive LDA (WALDA) transformation. The system used DTW templates
equivalent to a set of left-to-right HMMs allowing loop and skip transitions without penalty.
The application of the WALDA transformation improved the accuracy to 96.0% using 19
features. This is the best result published on this database to date.
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A.3 The ISOLET database

The ISOLET database is an isolated speech, alphabet database collected and distributed
by the Oregon Graduate Institute. The database was collected as part of the development
of the EAR system [42, 28, 41]. The database consists of two tokens of each letter produced
by 150 American English speakers, 75 male and 75 female. As used by the developers, the
data is divided into five sections of 30 speakers each. The first four sections are used for
training (120 speakers) and the last portion is used for testing (30 speakers).

The letters were recorded one at a time in random order in a single session lasting
approximately 30 minutes. The speech was recorded using a Sennheiser HMD 224 noise
cancelling microphone, low-pass filtered at 7.6KHz and sampled at 16KHz with 16 bit
resolution. During the recording session, each digitised utterance was played back to ensure
that the entire letter was captured into the recording buffer. In addition, each utterance
in the database was manually verified by listening to it and simultaneously viewing the
waveform. For the experiments described in this thesis, the speech data was parametrised
as described in section A.1. Each word in the alphabet was modelled by a left-to-right
HMM with 15 emitting states and no skip transitions.

For several years, English alphabet recognition has been a popular task in the study of
speech recognition. Early approaches [29] were template-based and achieved speaker depen-
dent recognition performance of 60% to 80%. The FEATURE system [30] was speaker inde-
pendent and demonstrated substantially improved recognition accuracy (89%) by combining
knowledge-based features and multivariate classifiers. Recently [39], improved recognition
accuracy of 93% has been obtained using hidden Markov models. As mentioned earlier, the
ISOLET database emerged from the development of the EAR system. The initial perfor-
mance of the EAR system on the speaker independent letter classification task was 86%.
This was later improved to 96% by optimising the feature sets and the overall classification
strategy. In the final version of the system [27], letter classification was performed using a
fully connected neural network with 617 inputs, 52 hidden units and 26 outputs. Recogni-
tion within the E-set was further refined using a specialised E-set recognition network.

A.4 The TIMIT database

The TIMIT corpus of read speech has been designed to provide speech data for the acqui-
sition of acoustic-phonetic knowledge and for the development and evaluation of automatic
speech recognition systems [65]. TIMIT contains a total of 6300 sentences, 10 sentences
spoken by each of 630 speakers from 8 major dialect regions of the United States. The text
material in the TIMIT prompts consists of dialect sentences (SA), phonetically-compact
sentences (SX) and phonetically diverse sentences (SI). The dialect sentences were meant
to expose the dialectal variants of the speakers and were considered unsuitable for train-
ing speaker independent phone recognisers. Thus, the full training set consists of 3696
utterances.

In the latest release, the speech material has been subdivided into portions for training
and testing. The test data has a core portion containing 24 speakers, 2 male and 1 female
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Figure A.2: Looped phonetic model for continuous phone recognition using bigram language
model.

from each dialect region. Each speaker read a different set of SX sentences. Thus, the
core test material contains 192 sentences, 5 SX and 3 SI for each speaker, each having a
distinct text prompt. No speaker appears in both the training and test partitions. The
texts corresponding to the test data were also checked to ensure that they included at least
one occurrence of each phoneme.

The experimental conditions are similar to those used by Lee and Hon in their baseline
TIMIT experiments [67]. The 61 phone TIMIT label set was mapped down to a 48 phone
set. The reduced phone set is given in table A.2. For scoring purposes only, the 48 phone
is folded into a reduced 39 phone set as it was done in [67]. All results are stated in terms
of percentage correct and percentage accuracy defined as

H
%Correct = N x 100%

and
H-1T
x 100%

%Accuracy =

where H is the number of correct labels, I is the number of insertions and N is the total
number of labels in the recognition file. The number of correct labels is defined as

H=N-(S+D)
where S and D are the number of substituted and deleted labels respectively as computed

by the dynamic programming algorithm by matching the recognised transcription against
the correct label file.
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Phone | Example | Allophones | Phone | Example Allophones

/iy/ | meat /en/ | lesson

/ih/ | hit /ng/ | sing /eng/

/eh/ set /ch/ church

/ae/ | hat /jh/ | judge /3/

/ix/ | roses /dh/ | they

/ax/ the /ax-h/ /v/ bob

/ah/ | butt /d/ dad

/uw/ | root /ux/ /dx/ | Seattle

/uh/ | book /g/ gag

/ao/ thought /p/ pope

/aa/ | cot /t/ tot

/ey/ | main /k/ kick

/ay/ | bite /z/ zap

/oy/ toy /zh/ | treasure

/aw/ bough /v/ very

/ow/ | moat /£/ field

/1/ lead /th/ | thief

/el/ | logical /s/ size

/r/ red /sh/ shed

/er/ year /axr/ /hh/ hay /hv/

/y/ yet /cl/ | (voiced cl.) /p/, /t/, /k/, /q/-cl
/w/ wet /vcl/ | (unvoiced cl.) | /b/, /d/, /g/-cl
/m/ make /em/ /epi/ | (epin. cl.)

/n/ non /nx/ /sil/ | (silence) /h#/, /#h/, /pau/

Table A.2: 48 phone TIMIT set

For all recognition experiments, except when stated otherwise, a phone bigram language
model was used. The language model was computed using the HLStats tool from HTK.
The language model scores were raised to the power of 2.0 before being combined with
the acoustic scores in the Viterbi recognition. Recognition was performed using a looped
phonetic model with structure shown in figure A.2.

The TIMIT database has become a benchmark test for scoring continuous phone recog-
nition systems. The first HMM results on this task were provided with the phone recog-
nition version of the SPHINX system [67]. The authors achieved performance of 66.1%
accuracy/73.8% correct using 1450 right context-dependent discrete phone models with
multiple code-books. Young [112] reported results of 59.9%/73.7% using 807 generalised
triphone models with continuous mixture density output distributions. Robinson [98]
achieved 75.0%/78.6% using a recurrent error propagation network. Using a slightly dif-
ferent phone set Ljolje [73] obtained 69.4%/74.8% using single mixture continuous density,
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“quasi-triphonic” models with durational constraints and a trigram language model. Most
recently, Young and Woodland [116] achieved 72.3%/76.7% using 1176 state clustered right
context dependent bi-phone HMMs assembled from a library of 1142 different states with
9 mixture components per state.

A.5 E-set spectrograms

This section contains example spectrograms for the members of the American-English E-set.
The examples were taken from speaker “fcmc0” in the ISOLET database. The spectrograms
aim to show that accurate classifications requires making fine phonetic distinction over the
short initial section of each utterance. Due to the relatively short part of the utterance
which corresponds to the consonant sound, it is also necessary to precisely model each
segment’s duration. This is usually achieved by using word-level HMMs with large number

of states.
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Figure A.7: Spectrogram fcmc0/G Figure A.8: Spectrogram fcmc0/P
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HMM Parameter Derivatives

This appendix presents the derivatives of the likelihood function with respect to the various
HMM parameters.

B.1 Likelihood differentiation

The log likelihood of the training set O given a model M is

LA(O|M) = ZlogpA (O M) (B.1)
r 1
For a given model M we proceed to derive the partial derivatives of £ (O,| M) with respect
to each individual HMM parameter. The computation of these derivatives is facilitated by
the chain rule and the differentiation rules given in appendix C. Differentiating equation
B.1 gives
d 1 & 1 d

ajﬁA(OM/l) = R;WajPA(OJM) (B.2)

The HMM parameter set A is partitioned into transition parameters, mixture weights,

Gaussian mean vectors and variance vectors/covariances matrices. Using these parame-
ters, P\(O,|M) can be computed as

Py(O M) = ZZ% )B; (t) (B.3)

t=1j5=1

where a;(t) and (;(t) are the forward and backward probabilities of state j, time ¢ (see
section 2.2.3). In order to expose the individual model parameters, the above expression
can be reformulated as

(OM) =YY {Zaz } bj(0r,)53;(t) (B.4)
t=1j5=1
For the transition parameters at state ¢ we have

0
Oa; ;

(O,|M) = Zazt—l (0r.0)B() (B.5)
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The probabilistic interpretation of a; ; is maintained by the following two constraints
0 S aj,j S 1 and Zai,j =1

After updating at each iteration, a simple way to enforce these constraints is to set any
negative transitions to zero and then re-normalise to ensure the sum-to-one constraint. An
obvious problem occurs if all transitions have been reduced to zero prior to normalisation. A
more robust method of enforcing the stochastic constraints is to transform the constrained
set {a; ;} into an unconstrained set {h; ;}, via a mapping of the form

S fa(hi)
Y Yk falhig)

where f,(x) is a monotonically increasing function. A possible choice is to use f,(z) = €, as

(B.6)

discussed in [19], and optimise the objective function with respect to {h; 1 }. Differentiating
equation B.6 produces

0
By " = @i j(Ok,; — Qi) (B.7)

where Jy, ; is the Kronecker delta. Using the chain rule

0 0
- i B.
iy PAOMM) = T 5O M) (B5)
Substituting equations B.5 and B.7 into equation B.8 yields
0
5 A M) = S5 ault = Dy g — asa)by(0n0)5 (0 (B.9)

t=1 j=1

For the output distribution b;(0,+) we have

) T N
sy PO = 3 {S et i 510 (510

For continuous mixture densities (section 2.2.2)

i (0r 1) Z ¢jmbj.m(0rt) (B.11)

where

]. _1 _ /W'_l _
b.m o, — Q(Or,t I“l’j,m) J,m(OT,t I“l’j,m) B]_2

where p; ., W and cj, are the mean vector, covariance matrix and mixture weight
bl

th

respectively for the m*® mixture components at state j. Differentiating equation B.11 gives

0
(0pt) = Ci B.1
6bj, (jr,t)b](o ,t) Cj,m ( 3)
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Differentiating equation B.12 with respect to the mean vector p;

0 _
5 bjm(0rt) = bjm(0n) Wi (0rt — Hjm) (B.14)
Ot m ’
When W, is diagonal, e.g.
03m1 O 0 0
0 03ne 0 0
Wim=1 0 0 o2, ¢ 0 (B.15)
0 0 0 D ol.p

we can reformulate equation B.14 as

15} (Or t,d — Hjm d)
— = bim(0rt) = bim(Oy ke Fysm,aj B.16
e nlon) = binor) { 240 310

where 0;,,q is the standard deviation of the d™ component in the observation vector.
Similarly, differentiating equation B.12 with respect to W;Tln yields

1o}

———b; (O t) =

_1 J’m /r7
3Wj’m

1 1 ,
= §bj,m(or,t)wj,m - §bj,m(or,t) [(Or,t - l"j,m)(or,t - ll’j,m) i|
1
= bjm(0r8) 5 (Wim = (0r = Hjm)(0rs = Bjm)') (B.17)

The covariance matrix W is positive definite. In order to ensure this, we use Choleski

decomposition
-1 _ 5
Wim = LjmLjm

and perform updates on the lower Choleski factor L;,,. Hence the derivative

0 _
mbj,m(or,t) = bjm(0rt) {(Ljﬂln)’ — (0t — Nj,m)(or,t - /J’j,m),ijT} (B.18)
Since L; ., is lower triangular, the elements above the leading diagonal in (L;Jln)' are not

needed, hence

1 1 1 1
LYY = dia {————}
(L) g Li1" Laa Laq Lpp

where Lgq are the diagonal elements of L;,,. When W is diagonal (equation B.15), we

have )
0 1 (Or t,d — Mjm d) 1
——b; =b; — = ymal B.19
507 jsm(Ort) = bjm(0nt) { (020" 7 (B.19)

In the diagonal case we have to enforce the constraint that all variances are positive. In the
case of transition probabilities we used a mapping which transformed the constrained set into
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an unconstrained set. Similarly, for the variance parameters we will apply a transformation

function

O3ma = fo2(2jm.a) (B.20)

Young [111] suggests using f,2(x) = 22 and an alternative choice is f,2(z) = e*.The latter
is preferable since it results in a simpler expression. Differentiating equation B.20 and
combining with equation B.19 yields

0 0 0
—binm(0 = ———bim(0p ) =——02
azjﬂn,d ],m( 7"775) 80—]2‘7m,d ],m( T,t) 8Zj,m,do.]’m’d
1f(o td_lj"md)Z 1 2
— b.7 (0 ,t){ L, J,m, _ o2 d
TR (0mad)” Tma) "
1 [ (ortd — tjma)?
= bim(ont); { (O, g L (B.21)
9jm.d
For the mixture weights c; ,, we have
8Cj,m b] (OT‘,t) = b]am (Or’t)
Subject to constraints
M
0<ecim<1 and Z cim =1
m=1
Similar to the transition parameters, we define a mapping
fe(ujm)
Cim = =5, (B.22)
Pk felugg)
where f.(z) = e”. Differentiating equation B.22
0
aTjJ{:CLm = ijm(ék’m — Cj’k) (B23)
Hence
d M9 d
—bi(o = bi(0q¢) =——c;
M
= D bim(0re)cim(Okm — ci) (B.24)
m=1

The final derivative expression for different HMM parameters and multiple training utter-

ances are given in section 4.4.1.



Appendix C

Differentiation Rules

This appendix presents a list of differentiation rules used to calculate the derivatives of the
likelihood function (appendix B) with respect to the HMM parameters.

C.1 Notation
W a symmetric positive definite matrix with elements W;;.
(W™1)  the inverse of W with elements (W ™1);;.
W’ the transpose of W with elements W';;.
|[W|  the determinant of W.
cofij(W)  the cofactor of W;; in W.
L the lower Choleski factor of W, e.g. W = LL', with elemnts L;;.

A a matrix with elements A;;.

u,v column vectors with elements u; and v; respectively.

C.2 Rules

1. Let f(W) = |W]|, find 9f(W)/OW .

Wl = Zcofij(W)Wij
1y cofii(W)
W =
J —1y/
8Wijf(w) = cofij(W) = |W|(W )Z_j
) - _
S /W) = [WI(W™) = w|(w)
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9. Let f(L) = |LL'|, find 0f(L)/8L.

f(L) IL|IL'| = |L?

0 Ly
LR A6 2y
0 Ly

Sl = 2AW(L Y

3. Let f(v) = v"Ww, find df(v)/0v.
ﬁf( ) = QZi W ._QZW oy
dvg v) = -~ avkvz ijVj = - k,jUj
0
%f('v) = 2Ww
4. Let f(W) =u/Wo, find 0f(W)/OW.

FW) = > uiWiju;
i

0
8Wijf(W) = Uy,
o I(W) = !

5. Let f(L) = w'LL'v, find 8f(L)/0L.

u'LL’v = Z lz uiLij] lz UiLij]
J 7 12

0

8Likf(L) = Ui;ijjk + i ;Uijk

%f(L) = wv'L+vu'L
6. Let f(v) = (Av+ u)W(Av + u), find 0f(v)/0v.

0 0
v - 95 %A Wi (A .
aka(v) %: 6vk( v+ u);Wii(Av + u);
= 2 ApWij(Av + u);
5]
= 2 Z A,kiWij (Av + u)j
ij
0

a—vf(v) = 2A'W(Av + u)
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Appendix D

Transformation Definitions

In HTK [117], HMM definitions reside in external files. The HMM structure and parameters
are described using a definition language. Each HMM can reside in a separate file. Alter-
natively, all HMMs used in an application can be stored together in a single Master Model
File (MMF). Parameters shared amongst several HMMs are kept in a separate "macro” file.
Processing of HMM files and associated macro files is carried out using the HModel library
module from HTK. This appendix describes the extended HMM definition language which
is used to define the input transformations.

D.1 New features

The HTK support for hidden Markov models was enhanced to incorporate the following
additional features

e FEach emitting state in an HMM can have an associated input transformation which
transforms the input vector before it enters the output distribution for that state.

e Each transformation consists of a single or multiple layers which computed pre-selected
output functions.

e Transformations can incorporate recurrent connections implementing unit time delay.

e The output of the transformation can be used to directly provide the probability of
the input vector.

e Transformations can be shared amongst states and layers can be shared between

multiple transformations.

D.2 Definition language

This section describes the added syntax to the HMM definition language for the definition of
the input transformations. Following conventions in the HTK [117], the syntax is described
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m/ﬁed Transitions

7N\ N\ N\ N\
o

Gaussian Mixtures

Tied States

@ @

Tied Means Tied Variances/Covariances

O00000O0O

S
e ;

Figure D.1: Enhanced HMM parameter hierarchy and potential sharing points

using an extended BNF notation in which alternatives are separated by a vertical bar |,
brackets [ ] denote options, and braces { } denote zero or more repetitions. The top level
syntax of an HMM definition is given by the following rule

hmmdef = <BeginHMM>
[<Use> "macrofilename"]
{ option } { mlp-option }
state {state}
transP
[duration]
<EndHMM>

The extra options provided by { mlp-option } describe the utility of the input transfor-
mations for the given HMM according to the following rule

mlp-option = <mlpEnable> | <mlpDirect>

The presence of <mlpEnable> enables the transformations and <mlpDirect> allows the
output of the transform to bypass the corresponding output distribution and become the
emission probability for the parent HMM state. In the absence of the latter option, the
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output from the transform will be fed to the output distribution of the corresponding state
which, in turn, will provide the probability of generating the observation vector.

Each HMM state has its own transformation definition. The definition of a state is given
by

stateinfo = “s macro | [mixes] [weights]
stream {stream} [duration] [mlpdef]

The structure of the transformation and its parameters are described by the syntax

mlpdef = “a macro | <BeginMLP>
{mlp-struct}
layerdef {layerdef}
<EndMLP}

The second part of the rule is the usual definition of an input transformation. However,
as an alternative, a “"a macro can be used to select a transformation macro definition from
the loaded macro file.

The MLP structure is described in terms of the number of layers, the number of input
units, and and the number of recurrent connections if any.

mlp-option = <numLayers> int | <numInUnits> int | <numRecurrent> int

If these parameters are not specified, the number of input units will be set to the observation
vector size, the number of layers! will be 2 and no recurrent connections will be setup. If
non-zero, the number of recurrent units will be used to setup unit time delay connections
between the last n units of the output layer of the and the last n units of the first layer.
The definition for each layer consists of the number of units, function type, the connection
matrix between the current layer and the previous one, and the bias vector. This is given
by the syntax

layerdef = "1 macro | <Layer>
<numUnits> int int functype
<weights> matrix

<biases> vector
Three self-explanatory function types are supported

functype = <Linear> | <Quadratic> | <Sigmoid>

D.3 Example definition

The following is an example definition of a single layer recurrent input transformation with
13 inputs, 4 outputs and 4 recurrent units.

L All transformations must have at least 2 layer. The first layer of the transformation is implicitly defined
as the input observation vector.
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“a "theMLP"

<BeginMLP>

<numLayers> 2 <numInUnits>

<Layer> 2
<numUnits> 8 <LINEAR>
<Weights>

1.0 0.

0.
<Biases>
0.0 0.

<EndMLP>

The transformation is initialised to output the first four components from (o; + 0;_1).

OO OO0OO0OO0O0OOO0OO OO O
O 0000000000000 O

OO OO0OO0OO0O0O0OO0OO0O0 O OO R

C 0000000000000 OO

O OO0 00000000 OO R OO

OO0 0000000000000 O O

0

0

F O 00000000000 R OO O
OO0 0000000000000 O O
O 0000000000000 O O K
OO0 0000000000000 O O
O 000000000000 OO R O
C 0000000000000 O OO
O 00000000000 OO R OO
C 0000000000000 O OO
OO0 00000000000 R OO O
OO0 0000000000000 OO

13 <numRecurrent> 4
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