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Summary

Computer-assisted language learning (CALL) systems which are able to listen to a
student’s speech and to judge its quality would be very valuable for foreign language
teaching. However, currently it is difficult to integrate pronunciation teaching and
assessment in computer-assisted language learning systems. Two major problems
need to be addressed. Firstly, without improved acoustic modelling of non-native
speech, oral interaction between a language student and a CALL system is unduly
limited by poor recognition performance. Secondly, there are no reliable methods
to automatically score the pronunciation of a student and to localise pronunciation
errors. The research presented in this thesis investigates solutions to these problems
within the framework of hidden Markov model based automatic speech recognition.

The thesis begins by outlining those aspects of pronunciation teaching that are
important for computer-assisted language learning. This helps understanding of
what types of pronunciation exist and how they could be taught in an automated
system. Next the characteristics of non-native speech that degrade speech recogni-
tion accuracy are discussed.

In order to improve the acoustic modelling of non-native speech, two adaptation
algorithms have been developed called Linear Model Combination and Model Merg-
ing. These algorithms are based on the assumption that the mother-tongue of a
non-native speaker is known. The basic idea underlying most findings of this thesis
is that non-native speech can be modeled with a mixture of sounds of a speaker’s
native language and the target language. The newly developed speaker adaptation
algorithms combine the acoustic models of the source and target language of a non-
native speaker. The algorithms only differ with regard to the details how the model
sets are combined.

A database of non-native English was recorded for the purpose of testing these
adaptation algorithms. This database mostly consists of utterances of Japanese
and Latin-American Spanish accented English. The recordings were transcribed by
trained phoneticians to obtain transcriptions corresponding to the actual phoneme

sequence uttered by the student as opposed to canonical transcriptions obtained
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from a standard pronunciation dictionary. Evaluation of the two new speaker adap-
tation techniques based on speech from this database demonstrates the algorithms’
capability to reduce the recognition error rate by up to 40% relative to the baseline
and by up to 20% in comparison with standard adaptation methods.

Minimising the required amount of adaptation data is highly desirable in CALL.
Indeed the shorter the enrollment task, the more advantageous this is for commercial
applications. For this reason, we developed a set of three algorithms to improve
recognition of non-native speech. These algorithms are also based on combining
the acoustic models of the source and target language of a foreign speaker, but
they do not require any adaptation material. Evaluation of these algorithms with
Japanese and Latin-American Spanish accented English proved their capability to
improve recognition accuracy of non-native speech by up to 27% relative to a speaker-
independent system.

The second part of this thesis analyses the problem of automatic pronunciation
assessment. Because pronunciation assessment is highly subjective, it was necessary
to develop a set of four performance measures which compare human or computer-
based judgments of pronunciation on a phone-by-phone basis. These measures were
applied to compare the manually edited transcriptions of the non-native database
done by six different phoneticians. This analysis of human labelling characteristics
showed that even though human assessment of pronunciation can vary consider-
ably, there exists a common level of judgments. Therefore, the averaged assessment
similarity of different human judges is used as a benchmark against which the per-
formance of any automatic assessment method is measured.

Based on this analysis of how phoneticians assess pronunciation, an automatic
method of assessing pronunciation which we call Goodness of Pronunciation (GOP)
was developed. This method calculates a score for each phone in an utterance to lo-
calise pronunciation errors. The baseline algorithm was refined in several ways, with
the result that the optimal set of refinements yields an algorithm whose assessment
capability is comparable to human assessment.

The research findings of this thesis add a new direction to the future develop-
ments in research to improve CALL systems. The conclusions outline how these
findings could be developed further. For example, the techniques could be applied
to other languages and other types of recognition systems. The thesis concludes with
a discussion of possible ways of integrating these new algorithms into a computer-

assisted language learning system.
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Chapter 1

Introduction

1.1 Prolog

Imagine it is the year 2020. You have been told that you will have to head a project
in a far-eastern company. This requires learning the basics of the language of this
country within the next few weeks. Unfortunately, in the town where you live,
nobody can teach you the language. Fortunately however, there exists a software
package for computer-assisted learning of this particular language. So, you get the
software, install it and off you go! ... Or imagine that you’ve always wanted to learn
Spanish, but your working hours vary and tend to clash with the time of evening
classes. But there is a solution: You simply buy the Spanish language learning
software and go ahead ...

These two fictional scenarios give a good idea of the range of situations where a
good language learning software will be immensely useful. The research presented
in this thesis will attempt to contribute to the development of such software by
developing tools for pronunciation teaching employing speech recognition technology.
The newly developed algorithms address the two main challenges of pronunciation
teaching. Firstly, improved acoustic modeling of non-native speech and secondly,

assessment of the pronunciation quality of a student’s speech.

1.2 Outline

1.2.1 Problem

The rapid progress in communication and information technology during the past
decade combined with rising market globalisation has led to a steady increase in
the demand for foreign language teaching. Also, since the teaching paradigm within

language teaching has shifted towards more emphasis on the ability to communicate
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orally. Therefore, language teaching nowadays increasingly focuses on pronuncia-
tion skills. However, within a traditional classroom environment it is difficult to
focus on the needs of individual students. Conventional language teaching is also
expensive and facilities for teaching every language will not always be available in
any particular place. Often classes for different levels of fluency are also required,
making it even more difficult to find the right class for one’s needs. Self-study on
the other hand is currently limited to studying a book with accompanying tapes or
basic computer-based learning systems.

The performance of both computer hardware and speech processing technology
has improved rapidly over the last few years. These technological advances make
it possible and desirable to design computer-aided teaching software which exploits
speech recognition technology in order to either assist language teachers or to enable
self-study.

There already exist various commercial foreign language learning systems util-
ising hyper-text and multi-media, but within those systems interaction is generally
limited to written text or recorded speech output. Although considerable research
effort has been invested in the development of computer-assisted language learning
(CALL) systems, little attention has been paid to pronunciation teaching. The oral
component of such language teaching systems has the disadvantage that it is not
possible to process and evaluate any oral response of a student using the standard
means of interaction such as keyboard and mouse. Additionally, unlike grammar
or vocabulary exercises where there exist clearly defined wrong or right answers,
pronunciation exercises have no such yes/no answers. A large number of different
factors contribute to the overall pronunciation quality which are difficult to mea-
sure. Hence, the transition from poor to good pronunciation is gradual, and any
assessment of it must also be presented on a continuous scale. Thus, discourse and
pronunciation training are only rudimentarily possible in current CALL systems,
similarly limited are methods to monitor a student’s oral performance.

Another difficulty with the development of computer-assisted pronunciation teach-
ing is its location on the border of two very different research disciplines. On the
one hand, there are the research findings regarding pedagogical and phonological
aspects of pronunciation teaching, on the other hand, there is the knowledge of
automatic speech processing, in particular speech recognition. These two distinct
research disciplines need to be combined in order to develop systems which meet

user requirements.
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1.2.2 Goal

As outlined above, CALL systems which are able to listen to a student’s speech,
to judge its quality, and to train students individually would be highly useful tools
for language teaching. The goal of this thesis is to develop techniques based on
automatic speech recognition in order to enable or enhance computer-assisted pro-
nunciation teaching. This general goal can be divided into the following components

which will be addressed in this work:

1. Obtaining an understanding of those aspects of pronunciation teaching which
are important for CALL, i.e. the types of pronunciation which exist and how

pronunciation could be taught in an automatic system.

2. Improving the acoustic modeling of non-native speech in order to enable text-
independent recognition of foreign accented speech. Such improvement would
enable a dialogue between student and computer which again would create a

more natural learning experience.

3. Obtaining an understanding of how teachers assess pronunciation: This re-
quires an analysis of human assessment criteria based on human judgment of

non-native data.

4. Developing performance measures to compare the assessment of different hu-

man judges.

5. Developing computer-assisted pronunciation assessment methods on sub-word

level in order to localise and diagnose individual pronunciation errors.

1.2.3 Thesis contributions

The overall contributions of this thesis can be summarized as:

e Development of several algorithms for improved acoustic modeling of non-
native speech. Two of these algorithms are adaptation techniques especially
designed for non-native speech. Another three algorithms have been developed
which improve recognition performance of accented speech without requiring
adaptation data. The only requirement for these algorithms is a knowledge of
the mother tongue of the non-native speaker. This knowledge has to consist of
acoustic models of the native language as well as of typical mispronunciation

characteristics for the given source language.
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¢ Recording of a database of heavily accented non-native speech spoken by stu-
dents of English as a second language. This database also has been hand-
transcribed by trained phoneticians in order to annotate all mispronunciations

at the phoneme level.

e Development of a set of four performance measures in order to analyse and

compare human pronunciation assessment characteristics.

e Development of a computer-based scoring method of pronunciation, which
calculates a score for each phoneme in an utterance. These scores can be
used for assessment or as a basis for more detailed feedback on pronunciation

mistakes.

1.2.4 Thesis structure

In Figure 1.1, the structure of this thesis is shown in the form of a block-diagram.
Chapter 2 discusses design aspects of CALL systems especially with regard to pro-
nunciation teaching. This discussion is followed by an analysis of how speech recog-
nition could be integrated into such systems. Examples of existing integration efforts
are given with the review of the current state-of-the-art of computer-assisted lan-
guage teaching. The understanding obtain in this chapter influences the design of
the non-native database (Chapter 5) and the design of the pronunciation scoring
methods (Chapter 8 and 9).

After the discussion of the main pedagogic and phonetic issues regarding pro-
nunciation teaching, Chapter 3 provides an introduction to the other main branch
in this thesis, i.e. speech recognition technology. Furthermore, the characteristics
of non-native speech, which can severely degrade the accuracy of continuous speech
recognition systems are discussed. Such performance degradation due to accented
speech recognition can render unconstrained recognition within a dialogue almost
impossible. Therefore, the following chapter, Chapter 4, presents two adaptation al-
gorithms, called Linear Model Combination and Model Merging in order to improve
recognition of foreign accented speech. The main new aspect of these algorithms is
that knowledge of the mother-tongue of the speaker is exploited in order to improve
the acoustic modeling of accented speech.

Chapter 5 describes the database of non-native speech which has been recorded
in order to test these new techniques of non-native speech recognition. This database
consists of recordings of students of English as a second language. These record-
ings were then transcribed by trained phoneticians in order to obtain transcriptions

corresponding to the actual phoneme sequence uttered by the student as compared
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Figure 1.1: Block-diagram of how this thesis is organised. The arrows indicate how

the different chapters are linked by using knowledge from previous chapters.
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to canonical transcriptions obtained from a dictionary containing standard British-
English pronunciations.

This database is then used to test the algorithms derived in Chapter 4. Chapter
6 presents experimental results for the two adaptation techniques and compares their
performance with the performance of standard adaptation methods. The target of
this work is to keep the required amount of adaptation data to a minimum, in the
best case to zero, because the shorter the enrollment task, the more advantageous
it is for commercial applications. Such considerations motivated the development
of three further algorithms presented in Chapter 7. These algorithms are capable
of improving non-native speech recognition without requiring any adaptation ma-
terial provided that the accent of the test subject is known beforehand, i.e. there
is access to acoustic models of the native language and typical mispronunciation
characteristics are known.

Having addressed the problem of modeling and recognising non-native speech,
the thesis turns towards analysing the question of pronunciation assessment. Pro-
nunciation assessment is a highly subjective task, thus standard recognition error
measurements cannot be applied to compare the assessment of different judges. For
this reason, a set of performance measures has been derived in Chapter 8 which
compares two sets of judgments with regard to different aspects of pronunciation as-
sessment. These measures have been applied to the transcriptions of the non-native
database in order to analyse human labeling characteristics.

In Chapter 9 an automatic method of assessing pronunciation which we call
Goodness of Pronunciation (GOP) is developed. This method calculates a score
for each phone ! in an utterance. Different modifications of the baseline algorithm
are introduced. Comparison with the human labeling based on the performance
measures of Chapter 8 shows that the results of the automatic assessment technique
are comparable to human assessment.

Finally, the conclusions discuss possible designs of pronunciation teaching sys-
tems which would incorporate the results of this research about pronunciation as-
sessment and correction as well as the algorithms for modeling non-native speech.

Additionally, possible directions of future work are outlined.

'Tn this work a “phone” denotes a sound unit used to model speech with HMMs, which roughly
corresponds to a phoneme as defined by linguists.



Chapter 2

Pronunciation teaching and oral
interactivity in CALL

This thesis addresses two major challenges which arise when exploiting speech recog-
nition technology in a CALL system. The first challenge is to recognise a learner’s
speech within simulated dialogues in order to train conversation skills. The sec-
ond challenge concerns Computer-Assisted Pronunciation Teaching (CAPT), where
the learner’s speech is assessed and corrected. In order to comprehend the main
issues and challenges of both CAPT and CALL with regard to oral interaction, it is
necessary to understand the main issues in CALL and pronunciation teaching.

The next section discusses several important aspects of CALL systems with em-
phasis on how speech recognition technology can be incorporated into such systems.
Having discussed general CALL principles, Section 2.2 summarises the most impor-
tant characteristics and problems of pronunciation teaching. Then, the knowledge
from these two sections is used to categorise the existing state-of-the-art in both
CALL with oral interaction and in CAPT, see Section 2.3.

Before discussing the details of CALL and pronunciation teaching, one definition
has to be made, which will hold true throughout this thesis. The target language
of a language student is defined as the language he or she is trying to learn, whereas

the source language denotes his or her mother tongue.

2.1 Computer-assisted language-learning systems

2.1.1 Advantages and disadvantages of CALL

What is the motivation behind using CALL systems to teach foreign languages? At
the very beginning of this thesis, some example applications of CALL were men-

tioned. A more detailed understanding of the motivation behind CALL systems can
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be obtained by analysing the advantages and disadvantages of CALL systems. For
a more detailed discussion see also [72].

The advantages of a CALL system are that such a system can provide undivided
attention to the user as opposed to a classroom environment where a teacher has
to divide his attention among all students. CALL systems can also be designed for
automatic language assessment. In this case, such systems can administer language
tests which are more objective, cheaper and less time-consuming. Moreover, comput-
ers as opposed to human teachers are infinitely patient and usually available without
any time constraints. Additionally, computer-based systems permit a high degree
of individuality regarding the choice of material which is studied and the speed of
progress. Finally, computer-based learning can be less threatening for self-conscious
learners, who might be afraid of “losing face” in a classroom environment.

These collective advantages have led to an active interest in CALL by the lan-
guage teaching community. However, the high expectations were not met by the
performance of initial CALL systems, which often were only prototypes. Together
with the inherent disadvantages of CALL, these experiences led to some disappoint-
ment of language teachers in this new technology. Such disadvantages of CALL are,
for example, that human teachers will always be able to provide more motivation
and feedback than a computer system. Another disadvantage is that speaking a
language is a highly social process which can be best learnt through social interac-
tion. Additionally, a good teacher will be able to offer a larger variety of learning
activities and will be able to optimise which approach to use with which type of
student, at least for the foreseeable future.

Currently, commercially available CALL systems make no or only very limited
use of speech recognition. Mostly, these systems are limited to more exhortative
types of exercises such as vocabulary and grammar drills. CALL systems increas-
ingly incorporate multimedia, but predominantly show pictures and video clips or
play pre-recorded speech of native speakers. Because of the limited technology and
system complexity used in current commercial systems, most systems are aimed at
beginners. Only few systems are sophisticated enough to teach writing and speaking
to more advanced students.

One of the main reasons why the development of pedagogically sound CALL
software is still fairly rudimentary is the lack of a unified theoretical framework for
designing and evaluating such systems. It is therefore important to discuss how the
plethora of teaching approaches which already exists for second language teaching
can be applied to CALL. Chapelle, [17] discusses which type of research on second
language acquisition is relevant for multimedia CALL design. She proposes seven

criteria which should be fulfilled if a teaching approach is to be implemented in
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CALL.
1. The linguistic characteristics of target language input need to be made salient.

2. Learners should receive help in comprehending semantic and syntactic aspects

of linguistics input.
3. Learners need to have the opportunities to produce target language output.
4. Learners need to notice errors in their own output.
5. Learners need to correct their linguistic output.

6. Learners need to engage in target language interactions whose structure can

be modified for different contents.

7. Learners should engage in source language tasks designed to maximize oppor-

tunities for good interaction.

Relating these teaching principles to the task of incorporating speech technology
into CALL, the following classification can be made: Whereas issues 1, 2 and 5 have
to be addressed by research in the area of computational linguistics and natural
language understanding, issues 3 and 4 can be addressed by advances in CAPT.
Finally, issues 3, 6 and 7 can profit from progress in non-native recognition and
dialogue systems.

This classification indicates the important role speech recognition can and should
play in CALL systems. This classification also provides a way to combine both the
technical and pedagogical side when designing a CALL system. Given the current
state-of-the-art, the most urgent requirement for progress in incorporating speech
technology in a well-rounded CALL system is integration of language teaching and

speech technology.

2.2 Pronunciation teaching

2.2.1 What is pronunciation?

Before starting to derive statistical methods of pronunciation assessment and correc-
tion based on speech technology, it is necessary to obtain a basic understanding of
the main aspects and components of pronunciation teaching. This requires both the
discussion of what is to be understood by “correct” pronunciation in the content of
pronunciation teaching and the definition of all components of pronunciation. More-

over, it is important to understand the pedagogics of how to teach pronunciation.
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‘Correct’ pronunciation

There exists no absolutely “correct” pronunciation. A wide variety of pronuncia-
tions can be accepted by native speakers as being correct, for instance, consider the
multitude of dialects within most languages. Likewise, how accent is perceived de-
pends on a given situation and on the previous exposure of listeners to people with
accent. A wide range of psycholinguistic experiments has been executed in order to
investigate how listeners perceive foreign accents, see for instance [38].

While pronunciation can vary considerably within a language and each pronun-
ciation variant is accepted as “native”, language teaching should be restricted to
one type of pronunciation only, e.g. Standard Southern British English, so that
a language student will learn to speak in a consistent manner. Teaching a single
variant of a language is justified, because generally native speakers only speak one
variant of a language too, and in most cases they can still communicate with other
speakers of the same mother-tongue.

Apart from regional accents, further variations in the pronunciation and speaking
characteristics of any individual depend heavily on the physiology of the speaker.
For example, different lengths of the vocal tract can change the characteristics of a

person’s voice considerably.

Components of pronunciation

The accuracy of pronunciation is determined by both segmental and suprasegmental
features. The segmental features are concerned with the distinguishable sound units
of speech, i.e. phonemes. A phoneme is also defined as “the smallest unit which can
make a difference in meaning” [90]. The set of phonemes of one language can be
classified into broad phonetic subclasses; for example, the most general classification
would be to separate vowels and consonants. Each language is characterised by its
distinctive set of phonemes. When learning a new language, foreign students can
divide the phonemes of the target language into two groups. The first group contains
those phonemes which are similar to the ones in his or her source language. The
second group contains those phonemes which do not exist in the source language.
Teaching the pronunciation of segmental features thus means teaching the correct
pronunciation of the target language phonemes, both in isolation and in context
with other phonemes, i.e. within words or sentences. Even if a phoneme is known in
isolation, new languages often contain clusters of phonemes which do not exist in the
source language, so that the pronunciation of such clusters might require training
as well.

The suprasegmental features of speech comprise of intonation, pitch, rhythm

10
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and stress and require a different teaching approach than teaching the phonetics
of a foreign language. The work presented in this thesis will concentrate on the

segmental features of pronunciation.

2.2.2 How to teach pronunciation

Before automatic pronunciation methods can be developed, the main issues of con-
ventional pronunciation teaching need to be discussed. These are

1. Goals of pronunciation
2. Requirements of language teachers
3. Teaching techniques

4. Feasibility of automatic teaching

Goals of pronunciation

Depending on the reason why somebody is studying a foreign language, the learning
goals can vary considerably. Someone might want to learn the basics of a language in
order to be able to communicate during a vacation in a foreign country. Somebody
else might want to learn a language in order to be able to negotiate business deals.
Altogether, the desired level of fluency can vary to a large degree between bare
communication and native-like fluency. However, since it is well known within the
psycholinguistic community that achieving native-like pronunciation requires enor-
mous learning efforts of adult learners, a goal common to most learners of a foreign
language is to achieve comfortable intelligibility, [53, 2, 1]. Comfortable intelligibility
is defined as a level of pronunciation quality, where words are correctly pronounced
according to their phonetic transcription, but there are still subtle differences in how
these phonemes sound in comparison with native speakers. Moreover, the speech of
comfortably-intelligible non-native speakers might differ from native speakers with
regard to intonation and rhythm, but on overall their speech is understandable with-
out requiring too much effort from a listener.

As an aside, another aim should also be to teach a version of the target language
which is socially acceptable to the students. For example, in countries where English
is a language of business and administration, the aim would be to teach the local
variant of English and not the standard Southern British English.

Finally, any teaching goal has to be fine-tuned to the individual needs of the

student.

11



Chapter 2. Pronunciation teaching and oral interactivity in CALL

Concluding the discussion about pronunciation teaching goals, the aim of this
thesis is to teach the correct pronunciation of words of the foreign language according

to a previously decided language variant at a level of comfortable intelligibility.

Requirements for a language teacher

If we understand what is required of a language teacher in order to be able teach
pronunciation efficiently, it will help us to define what is required in an automatic
teaching system. In Abercrombie, [2], a teacher’s requirements have been classified
into theoretical and practical requirements. As theoretical requirements, Abercrom-
bie lists an understanding of the vocal organs and an understanding how a spoken
utterance can be analysed and described for teaching purposes. Also, a language
teacher should be acquainted with the phonetic structure of both the source and
the target language of a language student. On the practical side, a language teacher
needs an ear to distinguish pronunciation mistakes. He also should be able to pro-
duce the sounds of the target language in isolation as well as mispronounced vari-
ations of these target language sounds in order to illustrate the difference. Next, a
language teacher should be acquainted with an armory of teaching exercises in order
to match them to the individual requirements of a learner. For a more detailed

discussion see also [86].

Teaching techniques

Foreign language teaching represents an important research area within pedagogics.
Thus, literature on pronunciation teaching methods abounds. However, for this the-
sis it will suffice to mention only a few of the main principles. With the intention
to structure existing teaching approaches, Strevens, [86], introduces a rationale for
teaching pronunciation, which contains three basic and distinct teaching techniques,
covering the majority of existing exercise types. These are 1) exhortation, i.e. in-
structions to imitate and mimic; 2) speech training, which comprises of exercises to
practice particular sounds and sound sequences or prosodic features; and 3) practical
phonetics, which comprises of ear training, production exercises and the description
of speech organs and articulation. In general, most existing teaching techniques fall
into one of these categories. By classifying all exercises according to these principles

it can be assured that all areas of teaching are equally covered.

Feasibility

Before the development of techniques for computer assisted pronunciation teaching,

it has to be to be ensured that a computerised teaching approach is indeed capable
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of teaching pronunciation effectively. In a preliminary study Rogers et al., [78],
showed that computer-based pronunciation training improved the pronunciation of
Chinese subjects. Moreover, the authors observed that the subjects were capable of
generalising the pronunciations of words they had learnt to unseen words.

Accent and pronunciation mistakes can only be corrected if the difference can be
perceived by a student. Several studies, e.g. [55], have investigated the differences in
the perception of target language sounds by speakers with different source languages.
For instance, native Spanish speakers often cannot distinguish between /v/ and /b/
as an English speaker does. Therefore, teaching such sounds will require more effort,
than other sounds which are common in both languages. It might be necessary to
derive special listening training sessions to train the ear to distinguish unknown
sounds of the target language from similar sounds in the source language.

Anderson et al., [8], presented one of the first evaluations of speech recognisers
for speech training applications with special emphasis on utterance identification
and speech quality assessment. In particular, it was found that it is possible for
speech recognisers to identify disordered (i.e. also accented) speech as correctly or
incorrectly produced. Additionally, judgment scores from recognisers were found to
correlate well with human judgments of speech quality. These findings and others
indicate that speech recognition technology can indeed be employed successfully for

pronunciation teaching.

2.3 State-of-the-art in CAPT

The previous two sections described the main issues concerning both CALL systems
and pronunciation teaching. Combining the knowledge of these two sections will
help to understand the specific aspects of incorporating pronunciation teaching in a
CALL system.

Generally speaking, any automatic teaching system should mimic the tasks of
a language teacher. In addition to this, it should also exploit the advantages a
computerised system has to offer with regard to particular training types which can
be difficult for a human teacher to present. Speech recognition offers a powerful tool
for analysing the speech of a language student and for providing detailed feedback.
However, for this purpose, it is necessary to modify and enhance existing speech
recognition algorithms, because currently these are predominantly geared towards
the recognition of continuous, native speech. This situation yields the following

research and development challenges:

1. Need for improved recognition performance of non-native speech
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2. Development of robust language assessment tools:
Tools for segmental features

Tools for suprasegmental features
3. Development of stand-alone systems teaching all aspects of pronunciation
4. Development of methods to evaluate the effectiveness of CAPT systems

In this section, the current state-of-the-art of research according to these four
categories will be discussed with reference to the principles of CALL and pronunci-

ation teaching which have been outlined in Sections 2.1 and 2.2.

2.3.1 Improved recognition of non-native speech

The teaching principles 3, 6 and 7, from Section 2.1, can only be implemented if
recognition of non-native speech and efficient design of spoken dialogues are possible.
This requires improvements in the acoustic modeling of non-native speech and ad-
vances in the design of spoken dialogues in the area of language teaching. However,
so far little work has been carried out in this field. Ehsani et al., [31], showed that
retraining speaker-independent models with non-native speech can improve recog-
nition significantly. However, in this case the need for non-native data represents
a bottleneck. Less training data is needed when applying speaker adaptation to
improve the acoustic modeling. In Thelen et al., [89], and Abrash et al., [3], speaker
adaptation has fairly successfully been applied to non-native speech, as well as in
Leggetter et al., [60], [103] and [29].

2.3.2 Tools for segmental features

Firstly, two text-dependent (i.e. any new teaching material requires additional data
recordings by a native speaker) tools will be discussed which train the pronunciation
of isolated and hand-selected words. One of the earliest developments of a tool for
teaching segmental features is presented by Hamada et al., [45]. Here, the pronun-
ciation of isolated words is scored by calculating the spectral distances between a
student’s utterance and a pre-recorded native utterance of the same word, using
vector quantisation and dynamic time warping.

Research on computer-based speech training for speech-impaired children and
adults has been shown to decrease the pronunciation errors caused by speech dis-
orders. This knowledge was utilised in the development of the HearSay system,
[25]. For this text-dependent tool, lists of minimal pairs for typical pronunciation

mistakes for a given language pair were collected and recorded by native speakers.

14



Chapter 2. Pronunciation teaching and oral interactivity in CALL

This material was then used to train isolated words and phrases with a system that
adapts automatically to a student’s performance by constantly recording successes
and failures of the subject.

Next, text-independent tools have been built which score the overall pronuncia-
tion quality of larger speech segments, i.e. sentences. Such tools have been presented
in a number of studies, see [68, 40, 24, 23, 84]. All these tools calculate a single score
per sentence using averaged a-posteriori log-likelihoods. The reliability of this ap-
proach has been proven by the high correlation of these automatic sentence scores
with the scores by human judges, which has been measured in several independent
studies. However, computing a single, overall score for a long segment of speech has
the drawback that it is not possible to localise individual mispronunciations or to
provide a detailed error feedback.

This problem has partially been addressed by Kim et al., [54]. Here phone-
specific scores based on likelihood-ratios, were introduced. This approach is similar
to the work of this thesis. However, each phone-specific score is based on an average
of the a-posteriori score of a large number of phone utterances. Thus, consistently
mispronounced phonemes can be detected, but individual mispronunciations cannot
be localised.

Whereas it has been shown that it is possible to develop text-independent tools
for sentence level scores, recent tools to detect phone-level errors have gone back
to text-dependent systems to make the task more tractable. Such tools have been
presented in [5, 49]. All these methods calculate log-likelihood based scores for
individual phonemes in order to measure the intelligibility and non-nativeness of a
phoneme. These tools vary in their definition and calibration of the pronunciation
scores as well as in the hidden Markov model sets used. In both approaches the error
is localised within a word or sentence, but both approaches have the disadvantage
of being text-dependent.

Another approach to localise and correct pronunciation errors at the phoneme
level is to incorporate networks with alternative pronunciations, [47, 40, 52]. In the
first case, alternative pronunciations were derived by hand for each taught word. In
the second case, the alternative for each phone consists of an acoustic model for the
same phone but trained on non-native speech. In the third case, networks based on
typical substitutions by speakers with the same source language were implemented
successfully.

Yet another possibility for teaching pronunciation at the phoneme level is to
develop a tool for teaching just one specific group of phonemes. In [50, 51], durational
information about models trained on non-native speech has been employed to teach

the contrast of phonemes which only differ in their duration by measuring phoneme
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durations. This approach again is text-independent, rendering it more applicable to

different teaching materials.

2.3.3 Tools for suprasegmental features

Tools for suprasegmental features generally deploy speech processing and visuali-
sation technology in order to train a student so that he or she learns how to pro-
duce a target intonation or stress pattern. Examples of such tools can be found
in [47, 64, 85, 70]. Visualisation examples are display of the FO contour or the
spectrum.

Among all suprasegmental features, fluency has attracted most attention. Tools
to train fluency have been presented in [24, 32]. In the first case, fluency is defined as
uttering all words within a pre-defined range of average native durations, whereas
in the second case, nine different features including segment durations have been
combined in order to measure fluency. Correlation of these automatic fluency scores
with fluency scores by expert judges proved that fluency can be reliably predicted

by computer-based scores.

2.3.4 CAPT systems

A1l the tools discussed so far will typically be useful as a supplement to classroom
teaching rather than as a direct replacement. In order to fully benefit from these
tools, they need to be integrated into an overall system which provides exercises
for all types of pronunciation errors, and which operates according to pedagogical
principles as discussed in Sections 2.1 and 2.2.

One of the first projects towards such a well-rounded system was presented by
Hiller et al., [47]. This system provides exercises for rhythm and intonation us-
ing pitch contours and speech recognition as well as vowel training exercises using
formant tracking. Similar systems have been presented by Murakawa et al., [64]
and by Yoram et al.,[100]. These systems, too, employ various speech processing
techniques such as, speech synthesis, to produce modified utterance of a student’s
speech with the purpose of highlighting intonational mistakes. Other speech pro-
cessing techniques are spectrograms and FO contours, which can also be used to
visualise speech.

A1l the systems mentioned so far might combine several pronunciation teaching
tasks. However, these tasks are usually not integrated into a well-rounded systems
which has been designed according to pedagogic guidelines as discussed in Section
2.2.2. Development of pedagogically more sophisticated systems which fulfill the

criteria discussed in Sections 2.1 and 2.2 are only slowly emerging. Some prototype
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developments which attempt to teach linguistic structure and limited conversation
are VILTS [68] and Subarashii [31]. The former aims at teaching French in the form
of engaging, flexible and user-centered lessons, where speech recognition is used to
provide feedback on a student’s fluency. The latter is a dialogue system aimed at
teaching conversational Japanese, where speech recognition is used to analyse the

student’s answer at each stage of the dialogue.

2.3.5 System Validation and Effectiveness measurement

In section 2.3.2, a range of tools to score segmental features of pronunciation have
been described. It is important to validate such automatic pronunciation scores
with scores taken from human judges. This has successfully been done by [68, 23].
Additionally, in [39], methods have been presented to calibrate different automatic
pronunciation scores in order to maximise their correlation with human scores.
The effectiveness of CAPT was formally evaluated in two cases: Murakawa et
al., [65], and Simoes et al., [85]. Here attempts to teach the fricative /s/ to Japanese
students of English demonstrated that visualising information of the phonetics and
the articulation of a particular sound as well as visualising an utterance of this sound
by both native speakers and students can help to improve the student’s pronunci-
ation. In [85], a study has been carried out which measures the contribution of
computer-assisted language learning software in the teaching of pronunciation. The
pronunciation of students has been evaluated before and after having been exposed
to these computer-assisted prosody exercises. Similar assessment can be done for

any type of planned exercises in order to determine their practicality and usefulness.

2.4 Summary

This chapter has discussed the main principles of CALL and pronunciation teaching
as well as their influence on the design of computer-assisted pronunciation teaching
methods. Moreover, the importance of the integration of technical and pedagogical
principles in order to create well-rounded systems has been highlighted. The final
section of this chapter discussed the current state-of-the-art in the field of computer-
assisted pronunciation teaching, organised according to the main areas of develop-
ment. The above information about current research challenges in CAPT provides

the framework for the development of the algorithms presented in this thesis.
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Recognising Non-native Speech

3.1 Introduction

This chapter provides an introduction to the state-of-the-art and the challenges
regarding non-native speech recognition. Since all algorithms presented in this thesis
employ hidden Markov models (HMMs), the basics of automatic speech recognition
using HMMs are outlined in Section 3.2. Next, in Section 3.3, the characteristics
of non-native speech in comparison with native speech are discussed with a focus
on phonetic, spectral and temporal differences. Building on the understanding of
foreign accented speech as obtained in Section 3.3, the final section of this chapter
analyses typical mispronunciations of Spanish and Japanese accented English. These

accent types are used for all the experimental work described in this thesis.

3.2 HMM based speech recognition systems

All automatic speech recognition systems consist of the components outlined in Fig-
ure 3.1. Firstly, the acoustic waveform is converted into feature vectors in the signal
processing front-end. Then, the decoder combines the hidden Markov model set
with the language model or grammar network and the dictionary into a recognition
network. Finally, the most likely path through the network yields the most likely

word sequence for the given input speech.

3.2.1 Front-end signal processing

The first step in the front-end unit of a recognition system is to sample the incoming
acoustic waveform at twice the maximum frequency which is desired for processing.
The raw digitised speech signal needs to be parameterised in order to extract that

information which has been found to be most useful for the statistical modelling.
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Figure 3.1: Block diagram of a typical recognition system

Methods have been devised which map a segment of 16bit speech samples, called a
frame, onto one feature vector. Typical values for frame length are in the range of
10-25 ms. For any frame length in this interval the effect of edge discontinuities when
calculating the spectrum of the speech segment is limited because the speech in a
frame usually covers at least one pitch period. A longer window length would risk
smoothing out rapid spectral changes which are relevant for the statistical modelling.
Additionally, in order to avoid discontinuities in the digital speech processing, each
frame is filtered with a window function, typically a Hamming window, [74], which
weights the samples at the centre of the window more than at the edges.

Given the windowed frames, the next step is to find a parameterisation of a
frame which represents the characteristics of sounds which are consistent over many
speakers, while throwing away redundant information. Speech parameterisation
algorithms are designed to extract phonetic information but not speaker-specific
acoustic characteristics. However, this goal can only be approximated. Therefore,
current speaker independent models can be seen as a generalisation of the acoustics
of all the native speakers which have been used in the training material. This has the
effect that non-native speech even if only slightly accented and perfectly intelligible,
can yield a considerably worse recognition performance, because the acoustics of

this type of speech differs considerably.
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Current speech parameterisation methods are mostly based in the spectral do-
main. The most common approach is to use Mel-frequency cepstral coefficients
(MFCCs) to represent the static information of the speech signal, see [74]. The Mel-
scale has been designed to model the higher sensitivity of the human ear to absolute
changes in the lower frequencies of the speech signal. Thus, the Mel-scale is roughly
linear until 1 kHz and it is logarithmic for higher frequencies.

MFCC parameterisation consists of the following steps: Assuming that the
speech waveform is stationary for the duration of a frame, each frame is trans-
formed into the spectral domain with the Fourier transform. Then, triangular filters
are spaced along the Mel-frequency scale. The output of this filter-bank is then
transformed into MFCCs by applying a discrete cosine transform to the logarithm
of each filter’s output. In order to model the speech dynamics, the first and second
order derivatives of the MFCCs are computed over several frames. Then they are
appended to the static MFCC features. Finally, subtracting the cepstral mean from
the MFCCs leads to cepstral mean normalization, see also [101]. This attempts to
reduce the acoustic differences among speakers as well as to compensate long-term

spectral effects caused by different microphones and audio channels.

3.2.2 Hidden Markov Models

Over the past decades a number of statistical modeling techniques have been applied
to speech recognition systems. However, during the last ten years hidden Markov
models have become a de facto standard on which most current recognition systems
are based. The work presented in this thesis is also based on a speech recognition
system consisting of HMMs. In this section, a short overview of the theory behind
HMNMs is given, for a more detailed description see [74]. Additional technical details
about the models used in this thesis can be found in [101].

A Markov model is a finite state machine which makes a state transition once
every time unit. Depending on the systems used, observation vectors are emitted
from each state or with each transition. The system used in this thesis uses a model
where one vector is emitted from each state. If the emission of an observation for
a given state is a probabilistic function, then the observation sequence is generated
by a statistical process and therefore, any generated state sequence is not directly
visible, i.e. it is hidden.

Let a HMM consist of N states, (see for example Figure 3.2), then the HMMs

used in this thesis have the following properties:

e The entry state S; and the exit state Sy are non-emitting.
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e The transition probabilities are defined by a transition matrix A = [a;;], with

a;j being the probability of moving from state ¢ to state j

aij = p(st+1 = j|s¢ = i) (3.1)
(s¢ denotes the state occupied at time ¢) with the following 2 constraints

e The transition probability from S; to S3 is a12 = 1, i.e. state Si is only
occupied at time 0. Likewise, the transition probability from Sy to Sy, is

aN,N =0.

e Each state has an output probability density function bj(o¢) consisting of a
single Gaussian or a Gaussian mixture with M components. The output prob-

ability of the ith state, b;, for a speech frame vector o is therefore given by

M
bi(or) = ) _ wixbix(0¢) (3.2)
k=1

The output probability of each mixture component is given by

1

We%(otﬂik)lcikl(otﬂik) (3.3)
2m)2 | Cip |2

bix(0¢) =

where p;; denotes the mean of mixture component k (vector of length n),
w;y, the mixture weight and C; the n X n covariance matrix. A full covariance
matrix models the correlations between elements of the feature vectors whereas
in the case of a diagonal covariance matrix the feature vector elements are

assumed independent.

Given these definitions, the probability of observing an HMM output string of
T speech frame vectors, O = {01,09,...,07} following the state sequence 6§ =
(9091 PN 9’1“) is

P(0,6) = ag,n TI7_; ag,_,6,b6,(0¢) (3.4)

Throughout this thesis each phone of a language is modeled by monophone
HMMs with 3 emitting states and one multiple componentGaussian mixture per

state.

3.2.3 Estimation of HMM parameters

The parameters of HMMs are estimated with the help of large amounts of train-

ing data, i.e. speech data for which the transcriptions are known. A standard
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technique of simultaneously estimating the transition probabilities and the output
probability function parameters is Maximum Likelihood Estimation (MLE), a de-
tailed description is given in [74]. The estimation task is equivalent to finding those
HMM parameters which maximise the likelihood of the HMMSs having generated
the training data. MLE will typically find a good local but not necessarily global
maximum. Generally, the ML function is very complex and has many local maxima,
therefore, good initial model parameters are important. Typically, initial values are
based on some globally averaged mean and variance. MLE is usually implemented
with the help of the Expectation-Maximisation (EM) algorithm. New parameters
are iteratively estimated to improve the likelihood of the training data, using align-
ments calculated with the current parameters. Then, the parameter set is updated
with the new estimates and the re-estimation step is repeated until the change in the
parameter estimates is less than some pre-defined threshold. The quality of the ML
estimate depends on both the number of parameters which need to be estimated and
the number of training data available. As discussed later in Chapter 4, adaptation
algorithms are either based on reducing the amount of parameters to be estimated
by applying estimation constraints to them, or they are based on introducing prior

probabilities to improve the estimation.

3.2.4 Speech Recognition based on HMMs

Speech recognition with hidden Markov models is based on finding that sequence of
units of speech which are most likely to have generated the given acoustics in a form
of a sequence of observation frames. Denote each unit of speech, which could be a
word, a phone or a syllable with w; (henceforth simply called word) and a sequence
of n units by W = w1, ws, ..., w,.

Then, a recognition system should decide on that word sequence W which sat-

isfies

A~

W =arg max P(W|0O) (3.5)
Using Bayes’ formula, the probability of a word sequence given the observations,
P(W|0), can be written as:

P(O|W)P(W)
P(0O)

P(W|0) = (3.6)

where P(W) is the probability that the word sequence W was uttered. This proba-
bility represents the language model, which is assumed to be independent from the
observation vectors and which is solely based on prior knowledge. P(O) is the av-

erage probability that O was observed. Since there is no other acoustic data beside

22



Chapter 3. Recognising Non-native Speech

the given observations, this probability is fixed. Thus, the recognition system has
to find

W = arg max P(O|W)P(W) (3.7)

If each distinct word w; is modeled by a HMM, then a word sequence, W, of

length N can be modeled by a concatenation of the HMMs corresponding to the

words in this sequence. The set © of all K possible states sequences, (%) of length
T is given by

0 ={M,... 0E)} (3.8)

Then, recalling equation 3.4 in Section 3.2.2., P(O|W) is equivalent to the summed
probability of all possible output states

P(O|W) = ) P(Ol6, W)P(6|W)
0cO
(3.9)

In practice this total maximum likelihood is approximated with the help of the
Viterbi algorithm, see also [74]. In order to reduce the computational load, this
algorithm calculates only the maximum likely state sequence. The likelihood of the
best state path to state j at time ¢ from the previous state ¢ at time £—1 is recursively

computed as
75(t) = max it — 1)ai;jbj(or) (3.10)

where 71(0) = 1, and ~;(0) = 0 if j # 1. The likelihood for a whole utterance of

concatenated HMMs then becomes

wW(T+1) = m?X’Yt(T)az‘,N

= max P(O|¢, W)P(6]W). (3.11)

This represents an approximation of equation 3.9 where the summation has been
approximated by its maximum.
All recognition experiments in this thesis are based on the HTK Toolkit, [101], which
provides tools for model parameter estimation as well as for recognition experiments.
This section gave an overview of the main principles of the acoustic modeling
in HMM-based continuous speech recognition. One of the aims of this thesis is to
investigate extensions of this technology to the challenge of recognising non-native
speech. This target requires an understanding of the differences between native
and non-native speech. Therefore, the following section discusses the characteris-
tics of foreign-accented speech with regard to its temporal, spectral and phonetic

components.
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Figure 3.2: An example of a HMM with 5 states, 1 and 5 being non-emitting and

with two skip states.

3.3 Characteristics of non-native speech

If asked, most people would be hard pressed to characterise non-native speech. How-
ever, any native speaker can easily tell whether somebody’s speech is accented or
not. Within the linguistic community it is known that in general learners of a second
language tend to apply articulatory habits and phonological knowledge of their na-
tive language. A range of studies on foreign accented speech have been undertaken
by phoneticians in order to analyse foreign-accented speech as opposed to native

speech. Typical questions in such studies are for example, see also [77]:

1. What are the acoustical properties of foreign accented speech, i.e. what are

the frequency and durational characteristics?

2. Which properties of target language speech by a learner are more or less diffi-

cult to understand by native listeners?

Answers to these questions are found by analysing non-native speech with regard

to its spectral, temporal and phonetic characteristics.

3.3.1 Spectral characteristics

Comparing spectra of non-native with those of native speech provides a method of
visualising differences with regard to intonation, formant structure and prosody. An
example of such spectral differences is given in Figure 3.3, where spectrograms of
the same word uttered by a native and by a non-native speaker are contrasted. In
the word “I” especially the second formant differs between the non-native and native
speaker. Whereas the non-native speaker has a fairly constant second formant, the
same formant of the native speaker contains a sharp rise towards the end of the vowel.
Similarly, in the second example, the second formant of the non-native speaker is

constant as opposed to a falling formant by the native speaker.
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Figure 3.3: Spectral comparison between a) non-native and b) native speaker for

the two example words “I” and “not”
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This spectral difference between native and non-native speech has been investi-
gated in more detail by Arslan, [10], and Flege, [35]. It has been found that one of
the major differences between these two types of speech lies in a different pattern of
the second and higher formants, even for fluent and intelligible non-native speech.
In [9] it has been shown that the second formant is the most significant resonant
frequency which aids the classification of foreign accent. In [35], an example of
such frequency differences is given. Here native French speakers speaking English
produced lower second formant frequencies for the sound /u/ than native English
speakers, because in French /u/ is realised with a lower second formant than in
English.

These formant differences can be explained through findings of Fant as described
in [9]. Fant showed that small changes in the tongue constriction centre ! can lead
to large shifts in the frequency location F5 and F3, whereas the frequency location of
F3 only changes if the overall shape of the vocal tract changes. Generally, non-native
speakers can master the overall shape of the vocal tract but they have difficulties
with more precise tongue movements. Again this observation was confirmed by
Flege, [35], where psycholinguistic experiments showed that phones of the target
language are generally perceived as having been produced more authentically if
these phones had similar sounding counterparts in the source language.

Given that these spectral differences exist, the question arises as to how impor-
tant these different formant patterns are for intelligibility. In [87], the influence of
spectral features as opposed to temporal features on the intelligibility of a foreign-
accented utterance was measured. It was found that spectral characteristics have
a significantly larger influence on intelligibility than temporal characteristics, which

are discussed in the next section.

3.3.2 Temporal characteristics

Speech by beginners of a foreign language is generally characterised by a much
lower rate of speech and by disfluencies such as stops and repetitions. Even speech
by considerably more fluent non-native speakers tends to exhibit different tempo-
ral patterns than the speech produced by native speakers. For fluent non-native
speakers, the main difference can be found in the voice onset time (VOT), [36], or
word-final stop release time, [10], the latter usually being much longer for non-native
speakers. Even if a similar sound exists in a speaker’s source language, this speaker
will — even after many years of speaking the target language — still produce the

target language sounds with the VOT of his mother-tongue. For example, Flege,

'narrowing of the vocal tract due to the tongue
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[36], reports that even highly experienced English learners of French produced a
significantly longer VOT of /t/ than native French speakers.

On the other hand, temporal differences can influence the intelligibility of ac-
cented speech. For example, Rogers et al., [77], and Tajima, [87], showed that intel-
ligibility correlates with vowel durations. In order to demonstrate this correlation,
Tajima conducted the following experiment. Chinese accented English was modified
with the help of LPC re-synthesis and dynamic time-warping in order to match the
durational pattern of the same word sequence uttered by a native speaker. In the
same manner, native English speech was modified to match the temporal pattern of
the Chinese-accented speech. Then, the intelligibility of the time-wise manipulated
speech utterances was judged by native speakers. It was observed that the intelligi-
bility of the modified Chinese stimuli was significantly higher than for the original
speech. Likewise, the time-warped version of the native English utterance was less

intelligible than the original.

3.3.3 Phonetic characteristics

The last class of non-native speech characteristics concerns the phonetic inventory
used by learners of a second language.

In general, research in second language acquisition differentiates the task of learn-
ing the sound system of a new language into modifying previously established pat-
terns of production and intonation and into learning how to produce new sounds
in the target language, [35, 37]. The first case is much more likely to occur than
the second. It usually requires a lot of time and/or effort until learners eventually
add phonetic categories to their existing phonetic inventory in order to accommo-
date second language sounds that differ substantially from any sound in the native
language.

An example of the difficulty of producing a sound which does not exist in the
source language is given in [35]. The stop /p/ does not exist in Arabic whereas /t/
and /k/ do. A listening test showed that a /p/ spoken by Arabs was significantly
less often identified as correct as /k/ or /t/ spoken by Arabs.

So far, only substitutions of inter-language or source language phones have been
discussed. However, non-native speech is also characterised by insertions and dele-
tions. Such patterns have been investigated in a study on inter-language phonology
by Tarone, [88]. The author observed that depending on the source language of a
speaker they tend to either insert vowels or delete consonants, in order to produce a
syllable structure related to the source language. For example, Portuguese speakers
of English tend to insert vowels whereas Cantonese or Korean speakers demonstrated

a tendency for consonant deletion. Further analysis of the errors produced by the
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non-native speakers in this study showed that on average 70% of the errors can be

regarded as being due to language transfer from the source language.

3.4 Typical error statistics of Latin-American Spanish

and Japanese

The purpose of the preceding summary of non-native speech characteristics was to
obtain an understanding of the characteristics and patterns of non-native speech.
Common to all the sources cited so far is the observation that the source language of
a language student significantly influences the types of mispronunciations that he or
she will make. This observation serves as the basic idea for the non-native acoustic
modeling techniques introduced in this thesis.

Because Spanish accented and Japanese accented English will be used for the
experimental evaluation of the algorithms developed later in this thesis, this section
analyses the patterns of typical mispronunciation patterns for these two accents.
Three approaches are introduced which allow the systematic collection of typical
mispronunciations in Spanish accented and Japanese accented English. Such lists
of typical substitutions can be incorporated in techniques for the detection of mis-
pronunciations or for improved acoustic modeling of non-native speech. The sub-
stitution lists based on these three approaches are summarised in Tables 3.1 and
3.2

3.4.1 Linguistic knowledge

The first approach to find typical mispronunciations, which does not require speech
data of a specific accent, is to search the linguistics literature on pronunciation
teaching for listings of typical mistakes. For example, in Kenworthy, [53], complete
listings of typical mispronunciations in English by speakers of various source lan-
guages can be found. These mispronunciations are described with statements like,
(see Kenworthy, [53], p.153)

There is a sound in Spanish which is a kind of combination
of /b/ and /v/. Learners tend to substitute this sound for

the two English consonants.

All these listed typical mistakes can be translated into a table where the first
column contains all target language phones, and where the second column contains
all possible substitutions. However, such listings as in Kenworthy, [53], usually
only refer to major mistakes. For all those target language sounds which are not
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mentioned, it can usually be assumed that the correct target phone is produced in
some approximate way.

An example of the above analysis based on linguistic knowledge is shown in the
first and second columns of Tables 3.1 and 3.2. For those fields containing a dash no
typical pronunciation error is mentioned in the literature. In the case of the above
example typical error description, the Spanish /b/, here denoted by /bs/, has been
listed as a possible substitution for the British phones /b/ and /v/.

3.4.2 Transcription analysis

Another method of obtaining listings of typical pronunciation mistakes is based on
non-native recordings which have been hand-transcribed by trained phoneticians.
Such transcriptions describe the phone sequence which has been uttered as opposed
what should have been said according to transcriptions derived from a standard
pronunciation dictionary. From the comparison of these two types of transcriptions,
statistics can be collected about how often each individual phone has been substi-
tuted by another phone. That phone which has been substituted most often is then
the one which will be listed as the most likely substitution.

The results of this method are listed in the third column of Tables 3.1 and
3.2. Again, in the fields containing a dash no statistically significant amount of
corrections has been been made by the human judges. In the case of our example,
the British English /v/ has been listed as the most frequent substitution for the
British English /b/, whereas the British English /b/ and /f/ have been listed as
frequent substitutions for the British English /v/.

3.4.3 Source language alignment

The final approach to obtaining substitution statistics utilises a small amount of
accented speech data in order to calculate two recognition passes over the non-
native speech data. In the first recognition pass, the non-native speech is recognised
in forced alignment mode using transcriptions derived from a standard pronunciation
dictionary. The second recognition pass applied to the same data uses a phone loop
consisting only of the phone models of the mother-tongue of the speaker, i.e. in
this example Latin-American Spanish or Japanese HMMs. Next, the two resulting
alignments are compared in order to count how often each source phone has been
aligned with a given target phone. For instance, if the forced alignment of an
utterance identifies the phone /a/ between frame 0 and frame 10 and the phone
loop then identifies the source phone /os/ from frame 0 to 8, then the source phone

/os/ is included in the substitution statistics for target phone /a/. An example of
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Figure 3.4: Example statistics of how often each Spanish phone was aligned with
the British phone /a/

the resulting statistics for the British phone /a/ can be seen in Figure 3.4. Here, the
Spanish source phone /a;/ has been recognised most often in those time segments
corresponding to occurrences of the British phone /a/ in the forced alignment pass.
However, in about another 30% of the occurrences of the British /a/, the Spanish
phone /os/ has been aligned with /a/ instead of the Spanish phone /a;/. This
indicates, that the Spanish phone /a,;/ is the most likely substitution for /a/, and
that the next likely substitution would be the Spanish phone /o;/.

Based on such statistics, the most frequently aligned source phones for each
target phone are listed as the most likely substitutions in the fourth column of
the two tables. With this approach one most likely substitution can be found for
each target phone. Therefore, this column does not contain any dashes for missing

information.

3.4.4 Automatic mapping derivation

Looking forward to the development of the accent adaptation techniques presented
later, it is desirable to derive such substitution statistics automatically without re-
quiring a large amount of time, effort and training data. For instance, the sub-
stitution patterns shown in Tables 3.1 and 3.2 are based on about 300 training
sentences. Therefore, the third method based on alignment comparisons has been

30



31

Chapter 3. Recognising Non-native Speech
Alignment of accented test data with Alignments of accented test datawith
the source language models the target language models
using a phoneme loop using the dictionary based transcriptions

\/ \/

Comparison of the alignments: Count how often each target model has been
aligned with each source model

For each target phone choosethat  source phone as a mapping phone
with which it has been most often aligned.

Y

Verify mapping manually with given phonetic knowledge

'

Final mapping with one mapped source model for each target model.

Figure 3.5: Block-diagram for automatic calculation of a mapping

converted into a program which — with a small set of accented speech data as input
— automatically outputs a substitution pattern. The block-diagram in Figure 3.5
describes the structure of this program. After the calculation of the two recognition
passes, comparison of the alignments yields the substitution statistics. Based on
these statistics, the most likely mapping is chosen and optionally manually verified
with phonetic knowledge. Thus, if a few hundred sentences of accented speech are
given, a mapping can be calculated. Once a mapping exists, it is independent of
the type of models used, and it is independent of the recording setup or the task.
In other words, the mapping is independent of all those factors on which a general
recognition system depends and which therefore make it quite difficult to transfer a

recognition system from one task to another.

Summarising this section, the following two conclusions can be drawn. Firstly,
the comparison of the predicted errors derived by these three different methods
shows fairly high agreement among them. For example for Spanish accented British
English, Kenworthy, [53], mentions that people with a Spanish accent tend to sub-
stitute the British /b/ with their native /bs;/ sound, which is somewhere between the
English /b/ and /v/. In Table 3.1, the Spanish /bs/ is listed as an error mentioned
in the literature (second column), the human judges often marked the /b/ with

/bv/, their made-up symbol for this in-between sound (third column) and finally, in
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the alignment with Spanish models, the Spanish /b/ was most often aligned for the
English /b/ (forth column).

Secondly, there exist no absolute truth about which is the single the most likely
substitution for each target phone. Therefore, none of the above methods can claim
to yield more reliable substitution patterns than the others. Additionally, it can
be the case that there is no single most likely substitution but that there might be
several equally likely substitutions for a given target phone. Thus, if a mapping for
a new language pair is needed, the necessary information can be found with the help
of this automatic method, possibly augmented by linguistic knowledge. In the case
that no accented data is available at all, only the method based on linguistics can

be applied.

The same techniques as outlined above have been applied to obtain typical error
statistics for Japanese accented speech. In Table 3.2 the results of such an analysis
are shown. For example, it can be seen from the table that the Japanese /r-1/
sound is often substituted for the English /r/ sound. This is a very typical error for

Japanese speakers of English.

3.5 Summary

This chapter presents the foundation for the acoustic modeling algorithms which will
be presented in the following chapters. After a discussion of HMM-based continuous
speech recognition, the main differences of non-native speech as opposed to native
speech have been analysed with regard to its temporal, spectral and phonetic char-
acteristics. It is the combination of these characteristics of non-native speech which
causes a large degradation of recognition performance when using speech recognition
systems trained on native speech. This observation motivated the development of
the algorithms presented next in Chapter 4. In the last section of this chapter, three
techniques have been developed which allow the tabulation of typical substitutions

or mispronunciations of non-native speakers coming from the same source language.
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Table 3.1: Typical error statistics for Spanish accented English, using three difference

sources of knowledge

British Phone | Phonetics Literature || Correction based | Native Substitutions
al - ae as
ae e al A ag
A 9D 9D as Oy
2! - DT 0y
av - - 0s
9 - aeeD ul sd €5 Ty
al - I ag
b b, v b,
t - - tfs
d o} 0 del dt
0 - d ds ts
e er es ag
e el ae - e; ag dg
3! r as rg ds 04
el e al e o e, 11,
f - - fs
g - ds gs
h del x Xg
Io I is js €s
I il 9 il e e, ig
N I 91 e, ig
& tfsy - tfs
k del g del ks
1 - - I og
m - - m; ng
n - del py n,
i n n n,
) - A ae 9 05
eI - 2D 0 0s
a1 - - 0s
p Ps - Ps ts
r Iy IT, - Iy IT,
s Sz 7z del Ss Z s
J ts tfs - tfs
t del ddelo t tfs ts
0 fs - fg 8,
29 - - Us Wy
U ul ul Us Og
ul (§] 2 9 ug
v b, bf b, t,
w b g+w - Ws
y - & del ig 1l
Z S s del Ss
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British Phone | Phonetics Literature || Correction based | Native Substitutions
al o a; ae a;
ae - - a;
A aj al aj
2! a; D 00;
au at+u - a;
) ? ae a;
al - - aj
b b; - pj
t t - ch;
d d; - ch;
d z d zZ t; ch; s;
e - - ee;
e iel - ee; e;
31 ar av al aa;
el el e ee;
f h - Sj fj
g gi - kj
h h; - h;
Io - 9 ii; e;
I i e ij
i1 i I ii;
& & - ch;
k k; - k;
1 1; r r; 00;
m m]' - m]-
n Ilj - IlIlj
D | - nn;
D 0; - 0;
eI D 00;
a1 0; - 00;
1Y P - bj
r 1d del r; aj
S s - s; sh;
1) I s sh; gsh;
t t - Ch]’
0 st - sh; s;
P - - uuy
U u - uu,
ul ul - uu;
A\ bv b bj dj
w - W
y - yYi
Z Z & S;
34

Table 3.2: Typical error statistics for Japanese accented English, using three dif-
ference sources of knowledge, “-” denotes that no info was available, —j denotes

Japanese sounds



Chapter 4

Adaptation to non-native speech

4.1 Introduction

Current speaker independent recognition systems are known to perform considerably
worse when recognising non-native speech. The large performance drop in recog-
nition accuracy of non-native speech in comparison with native speech, as shown
in [44, 14] demonstrates the need to improve the acoustic modelling of non-native
speech. In Chase [18], it was shown that such performance deterioration is due to
bad acoustic modeling.

One way to improve non-native recognition accuracy is to retrain speaker-inde-
pendent acoustic models of native speech with non-native speech. In [30], retraining
speaker-independent models of American English with Japanese accented English
yielded a large improvement in recognition performance, bringing it up to the level
of native recognition. However, this approach still requires a fairly large amount of
non-native speech, and this is usually not available.

If a recognition task is restricted to recognising a single speaker, recognition ac-
curacy can be improved with speaker adaptation techniques. In this chapter, two
adaptation techniques are developed which deploy additional information about a
non-native speaker’s source language. These techniques are based on speech recogni-
tion using hidden Markov models as explained in Chapter 3. For such HMM-based
recognition, a number of speaker adaptation algorithms have been developed. In
Section 4.2, an overview of the state-of-the-art in speaker adaptation is given in
order to provide the framework within which the new algorithms can be located.

These two new adaptation techniques are based on the observation that non-
native speech contains phones which represent a mixture of phones of the speaker’s
target language and source language. Therefore, these new algorithms combine

the acoustic models of a speaker’s source and target language. Their derivation is
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presented in Sections 4.3 and 4.4.

These algorithms require a mapping based on typical substitution patterns be-
tween the source and target language of a speaker. The final section of this chapter
will describe how to obtain such mappings by exploiting the knowledge of substitu-
tions typical for speakers with the same source language as discussed in Section 3.4.
Performance results for these new adaptation techniques will be presented later in
Chapter 6.

4.2 State-of-the-art of adaptation

Within the last decade a lot of research effort has been devoted to the development
of adaptation algorithms. The driving force behind these efforts has been the well-
known fact that speaker-dependent recognition systems tend to perform considerably
better than speaker-independent systems. Furthermore, adaptation can be required
for varying channels, environmental noise or varying speaker characteristics. This
section outlines the main groups of adaptation algorithms in order to provide the
theoretical framework for the novel adaptation algorithms of foreign-accented speech
presented in this chapter. The summary below does not represent an exhaustive
discussion of all approaches published; rather it attempts to provide an overview of
the current state-of-the-art in speaker adaptation.

Because the work in this thesis uses speech recognition systems based on hidden
Markov models with output probability functions modeled by continuous Gaus-
sian density functions, the following discussion is mostly restricted to algorithms of
speaker adaptation for systems with continuous density HMMs.

Approaches to speaker adaptation can be grouped into two major classes: feature
space algorithms which apply a transform to feature vectors, often called speaker
normalisation, and model space algorithms which transform HMM parameters. In a

more detailed classification the latter group of algorithm can be divided into:
e Transformation based adaptation
e MAP (Maximum A Priori) adaptation

e Predictive adaptation

4.2.1 Feature space algorithms

Feature space algorithms have often been called speaker normalisation, because their
target is to normalise physiological differences among speakers such as varying vocal

tract lengths and the size of the mouth or the nasal cavity. Furui, [42], introduced
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cepstral-mean based normalisation, which is nowadays widely used. In this tech-
nique, inter-speaker variability in the logarithmic spectral domain is modeled an
unconstrained parameter alteration. A related normalisation technique, [57], com-
pensates variations in the length of the vocal tract by applying a linear frequency
warping factor to rescale the Mel-frequency scale which is used to parameterise
a speaker’s speech. There also exist many other methods for computing spectral
transformations. For example, Choi et al., [19] present three different techniques,
minimum mean square error, canonical correlation analysis and multi-layer percep-
trons to transform the feature vectors of the input speech to the spectral space of
the training speakers. Most recently, a new normalisation algorithm has been intro-
duced by [63]. This algorithm represents a generalisation of the vocal tract length
normalisation technique mentioned above, see [67]. The main difference between
this technique and the frequency warping technique is that speaker normalisation is
realised with linear transforms in the logarithm spectral domain instead of a single
warping factor.

In general, speaker normalisation has been found to yield only fairly small im-
provements in recognition accuracy. However, it has been shown, see for instance
[33] or [73], that applying feature space and model space adaptation in sequence can

yield higher performance than either method on its own.

4.2.2 Model space algorithms
Transformation based adaptation

The basic principle of transformation based adaptation is to use adaptation data
to estimate transformation matrices. These matrices are applied to the codebook
entries in vector quantisation or to HMM mean and variance vectors in order to move
all these vectors to a new spectral space which is better suited to model the speech of
a particular speaker. For global adaptation, a single matrix is used to transform all
HMM parameter vectors or codebook entries. More detailed adaptation is possible
if different transformation matrices are used for different groups of codebook entries
or HMM parameter vectors. Existing transformation based adaptation schemes vary
in the way that the transformation matrices are calculated as well as in the manner
by which the parameter vectors are grouped for partial transformation matrices.
Two transformation based adaptation schemes for recognition systems using vec-
tor quantisation were introduced by Schwartz et al., [83], and Nakamura et al., [67].
A codebook entry of a vector quantisation codebook can be interpreted as a quan-
tised spectrum. Thus, a transformation matrix can be regarded as a transformation

from the quantised space of the input speech to the quantised space of the pro-
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totype speaker’s spectrum. Different techniques can now be used to calculate a
spectral mapping from the prototype codebook to the codebook of a new speaker.
In [83], the matrix of probabilities that a new speaker will produce one quantised
spectrum given a codebook entry of a prototype speaker is calculated. Addition-
ally, the idea of using different transforms for different phones was introduced in
this work, too. In [67], the mapping from input speaker to standard speaker has
been computed using neural networks and fuzzy vector quantisation as opposed to
a matrix of probabilities. Bellegarda et al., [12], introduced the following interest-
ing notion: Rather than normalising a new input speaker to the training speakers,
with the consequence that only one global transform can be estimated for each new
speaker due to limited adaptation data, they propose the use of a phone-based piece-
wise linear mapping from the normalised speakers of the training data to the new
speaker’s spectral space.

The last paragraph described adaptation techniques for speech recognition sys-
tems using vector quantisation. All following references use recognisers based on
continuous density HMMs. For example, in Zhao, [104], spectral variations for each
phone are modeled with phone-dependent transforms which adapt Gaussian means
and covariance matrices. Another method to calculate spectral transformations
called Maximum Likelihood Linear Regression (MLLR), was proposed by Leggetter
et al., [58]. Here, transforms are used to update the means of speaker-independent
HMM Gaussian mixture components to make them speaker-dependent. This tech-
nique has been shown to significantly increase recognition accuracy even with rel-
atively little adaptation data. The transformation matrices estimate the rotation
and the shift of the speaker-independent spectral space to the speaker-dependent
spectral space. With few adaptation sentences only a single global transformation
matrix can be estimated. If more adaptation data are available, more transforma-
tions can be estimated; at most, one transformation for each Gaussian component.
A very similar approach of reducing the mismatch between the acoustics of a new

speaker and a HMM set was also introduced in [80].

MAP adaptation

Whereas MLLR has been shown to perform well for adaptation with relatively few
adaptation sentences, Maximum a Posteriori (MAP) adaptation, as derived in [43],
has been shown to slightly outperform MLLR for larger amounts of adaptation
material. MAP adaptation uses the training data of the speaker-independent models
to estimate the parameters of the prior densities. These are then used to estimate the
newly adapted HMM parameters. The largest gain was obtained when updating the

means of a HMM model set, additional adaptation of variances yielded only small
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improvements. Therefore, the algorithms presented in this chapter only update the
means of HMMs, not the variances.

Because of these reciprocal adaptation characteristics of MAP and MLLR, both
Thelen et al., [89] and Ishii et al., [48], proposed combining these two methods. By
computing the MAP estimate after the MLLR transformation has been carried out,
additional performance gains were obtained. A combination of MAP and MLLR can
also improve rapid adaptation if a subset of MLLR adapted training speakers which
are close to the test speaker is used to increase the amount of available adaptation
material for MAP estimation, see [71].

Predictive adaptation

In recent years several publications introduced methods for rapid adaptation based
on a combination of MAP and predictive techniques, see [21, 4]. Here linear re-
gression models are built to model the relationship between different phones. These
regression models are used to predict sounds which do not occur in the adaptation
material. This scheme employs correlations to find the best estimate of an unheard
sound, using either Maximum Likelihood or MAP estimation. These approaches are
driven by the assumption that previously unheard sounds can be predicted with the
help of models of related sounds. This assumption is the basis of the new algorithms

introduced in the next sections, too.

4.2.3 Adaptation of non-native speech

Several of the above described adaptation techniques have been applied to the non-
native speech recognition task, too. Firstly, the combination of MLLR and MAP
adaptation by Thelen et al, [89], was tested on non-native speakers, and shown to
give a significant reduction in the word error rate. On the other hand, in [91],
adaptation based on a combination of MLLR and MAP yielded no significant recog-
nition improvements for Italian-accented German, due to a large acoustic mismatch,
whereas adaptation for native Italian or German speakers yielded significant im-
provements.

In [3], a nonlinear transformation was implemented using multi-layer percep-
trons, in order to model the mismatch between native and non-native speech. This
approach yielded only modest improvements over linear transformation techniques.
Additionally, Neumeyer et al., [69], compared a range of feature and model space
adaptation algorithms with regard to their performance on non-native data. The
authors observed that using a full transformation matrix to adapt Gaussian mixture

component means, followed by a stochastic update of the variance and finally, a
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MAP estimation of all these parameters can reduce the non-native WER down to
the level of native speech. However, the results required at least twenty adaptation
sentences. Similarly, Leggetter et al., [60], Zavaliagkos et al., [103] and Digalakis et
al. [29] reported significant improvements inrecognition accuracy onthe same Spoke
3 corpus of the DARPA 1994 evaluation. Also, the non-native speech in this exper-
iment was taken from the Wall Street Journal Corpus and contained fairly fluent

non-native speakers, not “beginner level” students of English.

The above overview highlighted several aspects which are important for the suc-

cess of any new adaptation system:
e Capability for fast adaptation
e Use of phone-dependent transforms
e Combination of speaker normalisation followed by model-based adaptation

All these three aspects were taken into consideration in the development of two
new adaptation algorithms: Linear Model Combination and Model Merging. These
are both schemes to adapt the means vectors of HMMs. They are described in
Sections 4.3 and 4.4, respectively. Both techniques use a mapping to combine each
HMM of the target language with a HMM of the source language. The difference
between these two techniques lies in the manner in which each pair of acoustic
models of the target and source language are combined. Section 4.5 describes how to
calculate different types of mappings. Both methods incur the same computational
load as the standard MLLR algorithm once a mapping between the two respective

languages has been found.

4.3 Linear Model Combination (LMC)

Transformation based adaptation schemes, such as for example MLLR, transform
speaker-independent models into speaker-dependent models by using a transforma-
tion matrix which shifts and rotates HMM mean vectors. Usually, maximum likeli-
hood estimation is employed to find a transformation matrix which transforms the
speaker-independent space to a locally optimal space of the new speaker.

The approach presented here also updates HMM mean vectors, but constrains
the transformation to a linear shift along the space which lies between the model
sets of the two languages, see also Figure 4.1. Incorporating information from both
languages provides more direction in the acoustic space, which might be especially

helpful in the case of a bad acoustic match between the speaker-independent models
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and the non-native speech. It is hoped that this additional constraint helps to find
better local maxima than in the case of an unconstrained transform. Additionally,
due to the constrained search space, the LMC algorithm requires the estimation of
fewer parameters which may allow faster adaptation with small amounts of data.

In addition to a speaker-independent model set of the target language, the LMC
algorithm requires a speaker-independent model set of the source language and a
mapping between the two languages. This mapping defines which HMM mean vector
of the source language has to be combined with each HMM mean vector of the target
language.

This combination of two mean vectors is expressed as a weighted linear combi-
nation of each vector element. The combination weights are estimated with the help
of the adaptation data. Define By as a diagonal matrix for state s in order to map
from target language mean vector ur, of state s to source language mean vector ug, .
Then, the jth diagonal element b, ;; represents the linear combination weight of the
combination between source and target mean vector. In Figure 4.1 the combination
of mean vectors has been illustrated for the case of HMMs with a Gaussian mixture
output density per state. It can be seen that the mixture component mean vectors
of the newly combined mixture are located on a straight line which combines a mean
vector of a target language mixture with a mean vector of a source language mixture.

With this definition of the combination matrix, Bg, a new estimate of a mean

vector is defined by

/IS = BS(I’I’Ss - I’I’Ts) -I_ I’I’Ts (4'1)

Given this definition of a new mean vector estimate, the remainder of this section
will derive the estimation formula of Bs for HMMs with a single Gaussian output
density as well as for HMMs, where the output probability function of each state is

modeled with a Gaussian mixture.

4.3.1 Derivation of the combination matrix for single Gaussians

The mean vector of a single Gaussian output probability function will be adapted
by a linear combination of a mean vector of the source language and a mean vector
of the target language. It is assumed that the mapping of target language means to
source language means is calculated according to the methods discussed in Section
4.5.

Let M7 be a model set of the target language which contains Q7 models, and Mg
a model set of the source language with Qs models. Assume a continuous density

HMM with N states, each state having a single Gaussian output probability function.
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Figure 4.1: Linear combination of mixture component mean vectors

The transition probability between two states ¢ and j is a;; and the Gaussian output
probability is b;(0), see also Section 3.2.2.

Denote the current set of HMM model parameters by A and a re-estimated set of
model parameters as A. Thus, the re-estimated transition probabilities and output

distributions are defined as aj; and bs(0¢) respectively. The sequence of states used

to generate O is given by
0 = (661 ...6r) (4.2)

where 6 = 1. The probability P(O, 8|\) of generating the observed speech frame

sequence O while following the state sequence 8 is

T

P(0,6|)) = ag,.n [ [ 20,1600, (01) (4.3)
t=1

If all possible state sequences of length 7" are denoted by the set ©, the total
probability of the model set generating the observation sequence is

P(0[)) =) _P(0,6|)) (4.4)
6co

This is the objective function to be maximised during adaptation. This max-
imisation can be achieved using an iterative procedure such as the Baum-Welch

algorithm, a specific instance of the Estimation Maximisation (EM) algorithm, for
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a more detailed description see [74]. It is helpful to define an auxiliary function

QN N), [28]:

QAN =) P(0,6]\)log(P(0,6|X)) (4.5)
6co
Estimating the diagonal elements of the combination matrix By is now based on iter-
atively maximising this auxiliary function by improved estimates of Bg and forming
a new auxiliary function with the improved estimates of Bs.
A re-estimation expression for the diagonal elements of Bg is found through
differentiating Q(\, \) with respect to B using equation 4.1. To do so, define the
probability of occupying state s as:

s (t 0|>~ ZP 0,6; = s|\) (4.6)

In [58], it has been shown that the auxiliary function can be rewritten as:

N T

ZQa, N {ai i + > POIN) Y v;(t)log bi(oy) (4.7)

i=1 j=1 t=1

where

Qa; [N\ {8 }i1] =
T N
Y P(0,6r =ilNlog @iy + > Y > P(O,0,_1 =1,0; = j|\)log a;;(4.8)

6co 0cO t=1 j=1
To estimate the matrix By, it is necessary to differentiate Q(\, \) with respect to
Bs and equate it to zero (us and Cs denote the mean and covariance of the output
density function bs(0¢)). Because only the second part of equation 4.7 is a function
of the output probability function and thus of the combination matrix, the derivative

of the auxiliary function has the following form

dQ(A, N
~dB., P(O[}) Z’Ys log bs(o4)

= P(O|)) nys [n log(2m) + log|Cs| + h(os,s)]  (4.9)
with the definition of h(o¢, s) as

h(ot,s) = (0¢ — fis)'Cs~*(0¢ — fis) (4.10)
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This scalar is the only part of the derivative which contains the re-estimated
mean, fis. Thus, h(0y, s) is the only component of the derivative which is a function of
the combination matrix Bs. Assuming a diagonal covariance matrix, the derivative

becomes

N
dhc(icf);j) - d]is Zcii(ot(i) — fis(3))? (4.12)

Substituting equation 4.1 for fi; in equation 4.11 gives the derivative of this with
respect to each diagonal element of Bs (cj; denotes the diagonal elements of the
inverse covariance matrix C; 1)
oh
8bjj
Plugging equation 4.12 into equation 4.9 yields a set of NV equation for the N diagonal

= ¢jj [0(5) = bjj(1s(7) — wr(9)) + pr ()] (ks (5) — pr(5)) (4.12)

elements of Bs. The equation for the j-th element is

sz — bjj {ps(i) — ur(i)} — ()] {ps(i) — pr(i)} cj; =0

sz ) [00(5) — pr(N] {rs () — nr()} =Y vs(®)bjj {ns() — pr()}* (4.13)

ThlS yields the re-estimation formula for each diagonal element of By

b — i vs(t) [onld) — pr(5)] (4.14)
ji = ; ; :
S s (s () — pr(3)
Once B has been estimated using the adaptation data, the new estimates of the

HMM mean vectors are found using equation 4.1.

Tied combination matrices

Given the problem of data sparseness, it is desirable to extend the above derivation

to the case of tied combination matrices.
If a combination matrix Bs is shared by R states {s1,s2...sg} equation 4.13 be-
comes:

Z Z%T ) [01(7) = bjj {ns, (§) — pr, ()} = pr, ()] {us, (5) — pr, ()} ery; =0

r=1t=1

Solving for b;;

R
Do s Oer; [01G) = w7, (5)] (s, () = pr, (7)) = (4.15)

r=1t=1

R T
DD s (Bery; (s, () = pr, (7))

r=1t=1
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Therefore

b _ L1 L1 Yo Bery; [00G) — pr, (1)) (5. (G) — 11, (5)
" SR Y Vs, (e, (s, (5) — pr, ())?

(4.16)

4.3.2 Extension to Gaussian mixtures

The above derivation of the estimation of the combination matrix can be extended
to the case of Gaussian mixtures in a straightforward way, because each weighted
mixture component can be pictured as one weighted state, where all these weighted
states are connected in parallel. For an equivalent derivation see [58]. The change
affects only the indices in equation 4.16.

4.4 Model Merging (MM)

This section proposes a second adaptation technique which is also based on the
idea of combining the model sets of source and target language of a non-native
speaker. Similar to LMC, the additional requirements of this algorithm are a
speaker-independent model set of the source language and a mapping between the
two languages. Instead of combining HMM mean vectors to obtain better acoustic
models as it is done in LMC, in this method the Gaussian mixture of each state of
the target language is merged with a state of the corresponding model of the source
language according to the given mapping. This merging of two Gaussian mixtures
yields a new mixture with twice as many components as in the original mixtures.
A related adaptation technique is described in [66]. Here the size of a Gaussian
mixture associated with a state is inflated by copying mixture components from other
mixtures. The choice of which mixture components to use for the inflation is based
on a criterion of minimised frame-level errors. Finally, the weights of all mixture
components are re-estimated with Baum-Welch re-training. Recently, similar work
has been carried out by Saraclar et al., [81]. There, too, two model sets were
combined to form a new model set by merging Gaussian mixtures. However, in this
case the two model sets which were used for merging had been trained for the same
language. The difference between the two model sets was that each set was trained

with a different phone-level transcription of the training material.
This MM algorithm consists of the following steps:

1. Combine each adapted target mixture m; with M; components with its cor-
responding Gaussian mixture m, containing M, components according to a

mapping. Then, the new output probability density function for state 7 is
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given as
M; M,
bi(0) = @ > Wy kbmy,k(0¢) + (1= @) Y Wi, 1bm, 1(0r) (4.17)
k=1 =1

with the initial value for « as a;,; = 0.5. Experiments in Section 6.5.3 will
show that the initial value of o does not influence the recognition performance

significantly.
2. Use MLLR adaptation to adapt the mixture component mean vectors.

3. Use the same adaptation sentences to re-estimate the weights of the new mix-
ture with the standard re-estimation expression for Gaussian mixture weights
([74], p. 351):

Zle ’Yt(ja k)
Z?:l Zkle Y(4, k)

where (7, k) denotes the probability of occupying mixture k of state j at time
t.

w}k = (4.18)

4. Cut off all mixture components whose weight is below a given threshold.

The reason for taking out all mixture component with a weight below a given
threshold is that the re-estimated weights of these mixture components can vary by
several orders of magnitude. In Figure 4.4 an example distribution is given of the
re-estimated weights for state 2 of the HMM modeling the British-English phone
/b/. It can be seen that the weights vary within four orders of magnitude whereas
the original weights typically only vary within one order of magnitude. Given this
large range of the re-estimated mixture component weights, it is likely that reducing
the number of mixture components by cutting of the components with minimal
weight will not decrease the performance significantly. The performance might even
increase slightly because the resulting output probability functions become narrower
due to the reduced number of mixture components. Thus, the discrimination ability
of the newly merged models can be increased. Note that in the case of extending
the model merging technique to triphones, weight re-estimation can be difficult due

to data sparseness.

4.5 Mapping from target to source language

Both algorithms, LMC and MM, as derived in the past two sections, require a

mapping between the target and source language. This section discusses how to
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Figure 4.2: Distribution of re-estimation mixture component weights

obtain these mappings. Altogether, three different levels of mapping have been
tested. Each of these three levels combines different components of the model sets.
The first level, mizture mapping, finds for each target language mixture component
mean vector the corresponding mean vector from the source language. On the next
higher level, state mapping, a relationship is found between two states; i.e. for each
state of the target language model set a corresponding source state is found. Finally,
on the third level, model mapping, a source model is found for each target language

model. In the following, the calculation of mappings on all three levels is described.

4.5.1 Mixture mapping based on acoustic distance

A mapping on the mixture component level is calculated by finding for each mixture
component mean vector of the target system that mixture component mean vector
of the source system, which has minimal acoustic distance to the target mean vector.
Note that the approach using minimal acoustic distance is problematic, as it might
cause a distorted mapping between the wo mixture distributions. In this work,
mappings based on two different acoustic distance measures have been compared.
These are the standard Euclidean distance measure and a divergence measure, which

measures the separability of two Gaussians N (ua,C4) and N (up,Cg).
1. |Cs|

1 10, ) 4 s — ) TO= ua — 1,,1C8]
Dy = 2t7‘ace (Cg'Cua I)+2(uA uB) Cg (pa ,uB)+2ln|CA| (4.19)

Such a mapping of mean vectors is solely based on acoustic information and does

not contain any phonetic knowledge.
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4.5.2 State mapping based on acoustic distance

The state mapping method maps each state of the target language to the closest state
of all the states in the model set of the source language, irrespective of which model
a state belongs to. A state distance measure, see equation 4.20, which measures the
distance between state ¢ and state j, is employed in order to find the nearest state
of the source language for each state of the target language (S denotes the set of all

states, Mg the total number of mixture components).

1 M
d(i, §) = 57 D_ 1oglb; (im)] + Log[bi(ijm))

m=1

(4.20)

Some examples of a state mapping between Latin-American Spanish as the source
language and British English as the target language are listed in Table 4.1. Once a
state-to-state mapping has been found, all mixture components of the target state
are mapped to the closest mixture component mean of the corresponding source

state using the divergence distance measure.

B Phone State | Sp Phone State | B Phone State | Sp Phone State
ae 2 as 3 ae 4 as 4
A2 05 2 A3 as 4
0 2 es 3 o 4 ng 3
04 0s 4 h3 js 3

Table 4.1: State mapping from British English (B) models to Spanish (Sp) models
using the state distance measure. The subscript ’s’ denotes a Spanish model. TPA

symbols are used to describe the phones.

4.5.3 Model mapping based on phonetic knowledge

The last mapping approach finds a model-to-model mapping. The two previous
mappings are solely based on acoustic distance measurements and do not include
phonetic knowledge about likely mispronunciations of a language student. On the
other hand, this third mapping approach is based on the idea that either a given
target model is likely to be substituted by a source model, or that the models of
an accented model set can be considered to model a sound somewhere in-between a
source and a target model, see also the discussion in Section 3.3. Consequently, the
task is to find a model of the source language corresponding to each model of the
target language, see also Figure 4.3. Such a mapping does not need to include all

source models nor is it a one-to-one mapping. A source model can be a substitute
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Figure 4.3: Model mapping from target to source language

sound for several target sounds. In Section 3.4 three methods for obtaining a set of
substituted source language phones for each target language phone were described
based on knowledge about likely substitutions. For the model mapping, the most
likely phone of each substitution pattern is taken as the source language phone. Such
a mapping represents how a foreign language student moves between the phonetic
space of his mother tongue and the phonetic space of the target language.

Once a source model has been found for each model of the target language,
a strategy for mapping between the states and mixture components of these two
models is needed. The states are mapped sequentially, i.e. the first state of the
target model maps to the first state of the source model. Within each state the
closest source mixture component is found for each target mixture component using
the divergence measure, see equation 4.19, in the same way as when calculating the

mixture-level mapping.

4.6 Extension to triphone models

Both algorithms developed in this chapter can also be applied to recognition systems
using triphones instead of monophones. This requires that the mapping strategy is
extended to deal with triphones.

Let the name of a target language triphone, phy,, be described by the sequence
of the names of three monophones of which the triphone consists, see [101] for a

more detailed description of the notation:
phir = ph1 — pha + phs

For each target language triphone, the mapped source language triphone is found

by translating each of the three monophone names of the target language triphone
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to the name of it’s mapped monophone in the source language. Combining these
three monophone names to the mapped source triphone name yields the respective
source triphone.

No other adjustment for the transition to triphones is necessary. For instance,
each triphone consists of a Gaussian mixture, too. Thus, the re-estimation equation
for LMC for tied Gaussian mixtures, equation 4.16 can be applied in the same way
as for monophones. However, since all the work presented in this thesis is based on

Gaussian mixture monophones, this approach was not tested.

4.7 Summary

In the first section of this chapter an overview of the current state-of-the-art in
speaker adaptation was presented with emphasis on adaption to non-native speak-
ers. Then, two new adaptation techniques for non-native speech, Linear Model
Combination (LMC) and Model Merging (MM) were derived.

Both of these schemes are based on the assumption that speaker-dependent mod-
els of non-native speech can be found through the combination and adaptation of
models from the source and the target language of a non-native speaker. However,
the two methods differ in the way the models are combined. LMC assumes the mean
vector of a mixture component of a model for accented speech can be found as a
linear combination of the corresponding mean vectors of the source and the target
language. The adaptation data are used to estimate the combination weights. On
the other hand, MM assumes that the output probability function of a state of the
accented model can be modeled by merging all mixture components of one state of a
target model with all mixture components of the corresponding state from a model
of the source language.

The final section of this chapter presented a set of different levels of mappings
between source and target language models. Such mappings are necessary for both
novel adaptation algorithms presented here. The performance of these algorithms is
evaluated in 6. Moreover, experiments will be conducted to find out which type of

mapping is the most suitable.
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A Non-native Database

5.1 Introduction

The research presented in this thesis is concerned with recognising non-native speech
spoken by beginners of English. However, since there is little corpus data avail-
able for this domain, a database of hand-transcribed non-native speech has been
collected. This chapter describes in detail the collection and transcription of this
database. The database was recorded for the purpose of developing methods to
detect mispronunciations in non-native speech for interactive spoken language edu-
cation, and for improving acoustic modeling techniques of such speech. Therefore,
the target was to collect recordings of fairly heavily accented speech.

The creation of the accented database consisted of the following three steps.

1. Design of the test material
2. Recording of the data

3. Annotation of the data by phoneticians

The actual recording of non-native data can be administered by non-experts
in phonetics and can be completed in a comparatively short period of time. The
bottleneck in creating such a database lies in the annotation of the data by trained
phoneticians, because for each recorded utterance a detailed phonetic transcription
is required. This transcription should correspond to the actual sequence of phones
spoken as opposed to the transcriptions of the utterance according to a pronunciation
dictionary. Additionally, each word and sentence should be rated according to its
pronunciation quality. These annotation types are required in order to be able to
calibrate and validate the pronunciation scoring methods presented in Chapter 9.

Section 5.2 describes the methodology for collecting the database with regard

to the choice of prompting material, speakers and recording setup. The majority of
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Mother-tongue No. of Female Speakers | No. of Male Speakers
Latin American Spanish | 1 2
Japanese 3 0
Korean 2 1
Ttalian 0 1

Table 5.1: Origin and gender distribution of the subjects in the database

the technical details about recording equipment, data structures etc. can be found
in Appendix A. In Section 5.3, the transcription of the data by trained phoneticians

is discussed with emphasis on the difficulties of transcribing non-native speech.

5.2 Database design and collection

5.2.1 Subjects

Given the target to record heavily accented speech, the criteria for choosing recording
subjects was that they had to speak English as a foreign language at beginner
and intermediate level. This ensured that on the one hand the subjects were able
to understand the prompting texts and instructions, and that they were able to
read the sentences aloud with a limited amount of hesitation and repetition. On
the other hand, the spoken English of the subjects had to be elementary enough
so that they were likely to produce a large number of easily detectable phonetic
mispronunciations.

The subjects were recruited from several language schools in the Cambridge area.
There were 10 speakers; 6 females and 4 males in an age range of 17 to 34 years.
Between them, these speakers spoke Latin-American Spanish, Japanese, Korean and
Italian as their mother tongue. The exact distribution of origin and gender of the

subjects is given in Table 5.1.

5.2.2 Prompting material

In order to obtain recordings of speech data as it would typically be produced in a
language learning environment, the prompting texts were extracted from Penguin
readers [34, 16]. These are books especially written for the purpose of teaching
English as a foreign language. They use a simplified grammar, simplified sentence
structures and a limited vocabulary. For instance, in [34] the vocabulary has been
restricted to 1050 words.
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The prompting material for each reading session consisted of the following three

groups of sentences:

e discard: 3 sentences for warming up and for training the subjects on the read-

ing task. These sentences were discarded and not used in the final database.

e adapt: 41 sentences for adaptation or training. The same 41 sentences were
read by each subject. The selection of these sentences was such that they

contained phonetically balanced text.
e test: 80 test sentences, which were different for each speaker.

For example, a prompting file would look like:

## discard (sentence label)
I originally wanted to be a mechanic, (actual prompt)
## adaptil

I did not want to be employed in a company and be indoors all day.

## test80
Redhead laughed happily. "Any time, Mr Marlowe."
## last

Since all these prompting texts consist of stories, they contain sentences asso-
ciated with all the types of intonation patterns, such as declarations, questions,

exclamations etc., which are likely to occur in language education.

5.2.3 Recording setup and equipment

All recordings were made in a quiet room measuring 2m X 4m with a low noise level,
located in the speech laboratory of Cambridge University Engineering Department.
The subjects sat on a stable chair in front of a desk with a computer monitor.
On the monitor screen, a window displayed the prompts. In order to coordinate the
display of the prompting text and the actual recording, the same recording software
tool was used as for the WSJCAMO corpus, see [41].
The recording equipment consisted of the following components (a more detailed

description is given in Appendix A.1):
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¢ A head-mounted Sennheiser HMD 414 microphone
e A SX202 Dual Mic Preamp from Symetric

e The SGI line-level analogue input with sampling rate of 16 kHz and A/D

Converter.

The recordings were made with a Sennheiser microphone which was attached to a
pair of headphones, worn by the subject. Then, the acoustic signal was passed from
the microphone, through the pre-amplifier, to the SGI analogue line input and the
SGI A/D converter. Finally, the signal was stored in the HTK format on the hard
disk of the SGI machine.

5.2.4 Recording session

After the arrival of the subject the recording administrator would explain to the
subject what he or she was expected to do. Then, the subject had the opportunity
to practise before starting the actual recording session. After the recording the
speaker was asked to sign a disclaimer form and fill in a small questionnaire, see
Appendix A.6. Appendix A.7 contains a written version of the instructions for
the subject. Usually these instructions were given orally. This way the recording
administrator was able to ensure that the subject understood the task. On average
each recording session lasted for about 45 minutes.

After each session the data were processed and stored on a computer hard drive

as described in Appendix A.2.

5.3 Data annotation

The task of accurately transcribing non-native speech on a phone-by-phone basis
is a challenging task in itself. Since there exists no such thing as a ’correct tran-
scription’, any transcription will always depend on the subjective judgments of the
transcriber. Therefore, the initial instructions and training given to the transcriber
can significantly influence the resulting transcriptions. Human assessment of whole
sentences has been analysed in several literature sources. For instance, Flege et al.,
[38], observed a fairly high reliability of foreign accent judgments in a series of exper-
iments, where native listeners had to identify the accent type for a given utterance.
The dependency of the reliability of accent assessment on the type of judge has been
investigated in more detail by Cucchiarini et al., [24]. Here, the grading of foreign-
accented Dutch by three different groups of expert judges (1 group phoneticians, 2

groups of speech therapists for non-native speech) was analysed. Even though a high
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correlation of sentence level scores was observed among the three different types of
judges, the correlation of automatic likelihood scores with human judges depended
significantly on which expert judge group was used for comparison.

As discussed in the preceding paragraph, high correlations have been reported
for the task of scoring whole sentences. However, little literature is available about
pronunciation assessment on a sub-sentence level, e.g. the phone level of an utter-
ance. Only, in [13] a similar project of annotating non-native speech, executed at
SRI, was discussed. However, this type of annotation is important for the database
described here. Precise transcriptions and assessments of the recorded non-native
speech are necessary in order to be able to evaluate the output of algorithms which
detect phone-level mispronunciations in non-native speech. The labeling by trained
phoneticians for this database consisted of the following three components:

1. Each sentence was scored on a scale of 1 to 4. A score of 1 denoted native like

speech, and a score of 4 denoted barely intelligible, highly accented speech.
2. Each word in a sentence was scored on the same scale of 1 to 4.

3. The initial transcriptions according to the BEEP Dictionary, representing
Standard Southern English, were corrected and marked regarding any mis-

pronunciations that occurred.

This annotation task was aided by an interface especially written for this purpose.
For an example of a typical screen of the interface, see Figure 5.1, which shows the
window structure as it looks when a phone is corrected. Appendix A.4 lists the
instructions which were given to the phoneticians before they started to transcribe.

The correction of phone-level transcriptions represents both the most important
and the most challenging component of the data annotation. The initial transcrip-
tions were derived with the help of a pronunciation dictionary, which is described in
the next section. Then, Section 5.3 describes the guidelines according to which the
phoneticians corrected these initial transcriptions in order to create transcriptions

which correspond to the actually produced phone sequence.

5.3.1 Pronunciation dictionary

For initial transcriptions, a pronunciation dictionary based on Standard Southern
British English was used. This dictionary is predominantly based on the British
English Example Pronunciation Dictionary (BEEP), see [41]. Only, those few words
which did not occur in this dictionary such as names have been added using hand-

derived pronunciations. The complete set of phone symbols used in this dictionary
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Sentence: labfadapt3.lab, Mum samples 108000, HTK sampling rate: 16.000KHz

( PE ) [(BEEN ) [(ALL ) [OVER ) (THE ) [WORLD ) [ JAPAN | [ CHINA | [ RUSSIA ] THROUGH |
DIVING |

ay v biy nao |l owy ax dhax wer | djh axpaenchaynaxrglshaxaolthruwdayvih

[ Load ][ Mext ][ s ][ -2 ][ play ][ Yol B [ Sent )

Mark Unmark )

[ Help ][ Quit ][ Zin ] [ Z.0ut ][ Mark ][unmm(p:’W " o=
Deme
[ Judgement ][ Jurmp ] R Mark a phone, then correct
. Cel ) Bad )
(COnds )

Figure 5.1: Example screen of the assessment interface when correcting the given

transcription
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is shown in Appendix A.3. Below an example section of the BEEP dictionary is

given:

COLD kowld sp

COME k ah m sp

COMMERCIALLY k ax m er sh 1 iy sp
COMPANY k ah m p ax n iy sp
COMPLETELY kaxmpl iyt 1 iy sp
CONTROLLING k axntrowl ih ng sp
COOKING k uh k ih ng sp

In order to account for typical pronunciation variants, this pronunciation dictio-
nary also contains multiple pronunciations, corresponding to the accepted variations
in standard Southern British English.

5.3.2 Labeling mispronunciations

The two main problems of labeling mispronunciations are, firstly, the subjectivity of
human transcribers and, secondly, the fact that non-native speakers produce sounds
which cannot be described by the target language phone set alone. Often, these non-
native sounds are a mixture of target and source language sounds or even source
language sounds only.

The problem of subjectivity has been addressed by holding an initial meeting
with the phoneticians. There, the labelling instructions were elaborated and dis-
cussed in order to ensure a labeling as homogeneous as far as possible. Additionally,
each transcriber was asked to transcribe a common set of twenty calibration sen-
tences. In Chapter 8, the transcriptions of these calibration sentences by all judges
were evaluated in order to analyse how similar or dissimilar the transcribers tended
to annotate the data.

The second problem of how to describe or label those phones which cannot be
classified with the help of the target language phone set has been addressed by intro-
ducing new names for such sounds. Because at the start of the annotations it was not
known what type of mispronunciation would be encountered, the transcribers were
asked to introduce new names for new types of sounds and to use these new names
consistently. They were also asked to give the database administrator a description
of these new names. In the case that the sound of a non-native speaker was a mix-
ture of the phone given in the transcription and of another target language phone,
the transcription strategy was to substitute the other target phone. For instance,
a phone might sound like a mixture of /v/ and /b/. If the correct transcription

would have been /v/, but the speaker said something in-between /v/ and /b/, the
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original phone label would be substituted with /b/. In this way, the location of a
mispronunciation has been marked, without using new phone symbols. Finally, the
transcribing judge was also free to use phone labels of the phones as used in the
source language but not the target language, for instance the palatal fricative /x/
instead of /h/ in “here” as it is used by Latin American Spanish speakers.
Altogether, the correction of the dictionary transcriptions consisted of the fol-

lowing options:
e Insertion: The assessed speaker pronounces a word with an additional phone.
e Deletions: The assessed speaker deletes a phones.

e Substitutions: The speaker uses an incorrect phone, i.e. a mispronunciation

occurs.
e Bad : The speaker substitutes a sound which can not be identified.

In addition to this detailed labeling the phoneticians were told to add extra
comments as to the overall quality of the sentence’s pronunciation, for instance
commenting on a speaker’s characteristics.

Finally, for the purpose of pronunciation assessment, where the main information
required is whether a phone was pronounced correctly or not, the transcriptions
annotated by the phoneticians were additionally converted into binary strings. These

strings only contain two symbols, one for correct and one for incorrect pronunciation.

5.4 Summary

This chapter describes the collection and annotation of a database of speech recorded
from foreign language learners with different source languages. The database was
designed to mirror the type of speech which is typically produced by beginners
of English. Therefore, the prompting texts contained a simplified vocabulary and
grammar. All collected speech was read aloud, i.e. it is not conversational speech.
However, because the prompts were based on stories, these prompts contain sen-
tences with all types of intonation patterns. This non-native speech data was an-
notated by trained phoneticians in two ways. Firstly, pronunciation scores were
assigned for each sentence and word. Secondly, a phonetic transcription was cre-
ated for each utterance, which corresponds to the phone sequence which has been
uttered by the language student. These annotations were aided by a transcription
tool which enabled the phoneticians to modify the given standard transcription of
an utterance. The target was that the resulting transcriptions mirror the phone

sequences produced by the subjects as closely as possible.
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This database enables both the evaluation of the adaptation algorithms derived

in Chapter 4 and the pronunciation scoring algorithm presented in Chapter 9.
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Chapter 6

Evaluation of Non-native

Speech Adaptation

6.1 Introduction

The non-native database described in Chapter 5 provides data for testing the non-
native adaptation algorithms as derived in Chapter 4. This chapter presents ex-
perimental performance results for both the Linear Model Combination algorithm
(LMC) and the Model Merging algorithm (MM). Each algorithm has been tested
on two different types of foreign accented English: English spoken with a Latin-
American Spanish accent and English spoken with a Japanese accent. The experi-
ments have been designed to demonstrate the influence of several design parameters

such as
e Choice of mapping between source and target language;
¢ Amount of adaptation data,;

e Choice of initialisation parameters;

6.2 Experimental setup

The non-native database contains three speakers whose mother-tongue is Latin-
American Spanish as well as two speakers whose mother-tongue is Japanese. The
raw speech was encoded into feature vectors with 13 Mel-frequency cepstral co-
efficients, 13 delta and 13 acceleration coefficients. Additionally, all speech data
was normalised with cepstral mean normalisation. The recognition system con-
sists of 45 speaker-independent Gaussian mixture monophone models trained on
Standard British English from the Wall Street Journal Corpus of British English
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(WSJCAMO), [41], as target language models. Each model has five states including
the non-emitting start and end states. The models of the source language have been
trained on Latin-American Spanish and Japanese data respectively ! . Each state
was modelled by a Gaussian mixture with twelve components. The HTK Toolkit,
[101] was used both for generating the model set and for the recognition experiments.

As language model, a word-pair grammar is used which is based on textbooks
for learners of English as a second language, see [34, 16]. A word-pair grammar with
perplexity of about 5 was chosen because it corresponds to the level of complexity
of style and grammar which can be expected from typical exercise texts in a typical
CALL system. Additionally, since heavily accented non-native speech is difficult to
recognise accurately, tight constraints on the language model side are necessary, too.
Moreover, the word insertion penalty has been adjusted for non-native speech, in
order to balance insertion and deletion errors.

In all experiments, recognition performance is measured by word error rate
(WER). Let N denote the total number of word labels, I the number of inserted
words, S the number of substituted words and finally D the number of deleted

words. Then, the word error rate is defined by

I+D
WER = +T+S (6.1)

Thus, when optimising the setup of the algorithms evaluated here, the aim is to
minimise the word error rate.

The adaptation sentences used for all experiments in this chapter are taken from
the 41 adaptation sentences of the three Latin-American Spanish speakers as well
as the two Japanese speakers. The averaged word error rate in the experiments is

based on the average of the WER of 80 test sentences of each of the five speakers.

6.3 MLLR adaptation

As previously mentioned in the overview of current adaptation technology, Section
4.2, the MLLR technique by Leggetter, [59], is an effective and widely used speaker
adaptation algorithm. The recognition performance of MLLR will therefore be used
as the benchmark against which to measure the performance of LMC and MM. In
Figure 6.1 the recognition performance of MLLR is illustrated for different param-
eter setups. The recognition accuracy of MLLR heavily depends on which type of
transformation matrix and on how many transformation matrices have to be esti-

mated. The minimal number of HMM parameters has to be estimated in the case

!The author would like to thank Entropic Cambridge Research Lab for generously providing
these data and models.
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Figure 6.1: WERs for baseline setup and for different MLLR configurations.
‘global’= global diagonal transformation matrix, 'full’=full transformation matrix,
‘tree’=regression tree and ’block’=block-diagonal transformation matrix, ’iter’= 5

iterations.

of a single global, diagonal matrix. The best possible performance for this setup
is found with three adaptation sentences. An increase in adaptation data does not
yield any performance increase. If more data are available more parameters can be
estimated reliably. In the case of more data, block-diagonal or full transformation
matrices yield significantly lower word error rates. Moreover, with more adaptation
data several transforms can be calculated for groups of HMMs instead of a single
global transformation matrix only.

In this experiment, three different types of transformation matrices were used,
a diagonal matrix, a block-diagonal matrix and a full matrix. These transformation
matrices were tested with one global transform for all models and with a regression
tree with groups of transforms. In Figure 6.1, it can be seen that an increase in adap-
tation data beyond the minimum of 5 sentences does not improve the performance
for most setups except for the case of a full matrix re-estimated with 5 iterations.
This effect arises from the large acoustic mismatch between the accented test data
and the models trained on native speech, which causes inaccurate alignments. Mul-
tiple iterations however help to reduce the misalignments. A summary of the actual
word error rates for both rapid adaptation, i.e. 6 or 9 adaptation sentences and full
scale adaptation (24 sentences) is given in Table 6.1. The performance of the new

algorithms will be measured against these results.
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Baseline | MLLRigg 1 | MLLR fyi1 g1 | MLLR fop gi.iter
6 Sent. | 28.3 27.9 22.8 21.7
9 Sent. | 28.3 27.5 22.0 20.5
24 Sent. | 28.3 27.7 21.8 19.2

Table 6.1: WER Summary for a) Baseline, b) MLLR with global, diagonal transform,

c¢) with global, full transform and d) with global, full transform with iterations

6.4 Linear Model Combination

This section discusses the performance of LMC depending on different design pa-
rameters. In the case of CALL applications, mainly rapid adaptation with a few
sentences is of interest because students cannot be expected to spend a long time
recording adaptation sentences.

Therefore, the target of this work is to develop adaptation algorithms which
both improve non-native recognition and enable rapid adaptation. For the latter
reason the performance of LMC will be evaluated with regard to how fast recognition
accuracy can be increased. All experiments with LMC estimate a single global
transformation matrix which is applied to all models, because this is the setup

where the minimal amount of parameters has to be estimated.

6.4.1 Effect of different mapping techniques

In Section 4.5 several mapping approaches between source and target language were
discussed. The first experiment to evaluate LMC for rapid adaptation measures
the WER of LMC using 6 adaptation sentences. Given this setup, the influence
of choosing mappings on different levels such as state-level or model-level on the
performance of LMC is shown in Table 6.2. Both the mixture-level mapping, LMC,,,
and the state-level mapping, LMC;, were calculated using the divergence distance
measure, see equation 4.20, in order to map the mixture components between two
mapped states. The first experiment with model-level mapping, LMC 4, uses the
Euclidean distance measure to map between the mixture components within a state,
whereas the second model mapping, LMCp, uses the divergence measure.

As can be seen in this table, model-level mapping which is based on phonetic
knowledge yields recognition improvement over the baseline. In the case of model
mapping using the divergence distance measure, LMCp, a relative improvement of
13.3% compared to the baseline was measured for the Latin-American Spanish data,

whereas for Japanese accent the improvement is 13.2%. On the other hand, those
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mappings which are solely based on distance information, i.e. state and mixture
mapping do not perform significantly better than the baseline. For both accent
types, it can be seen that a distance measure which incorporates information about
the variance of mixture components, i.e. the divergence measure, is more effective
than a distance measure which only incorporates information about the means of
mixture components, i.e. the Euclidean distance measure. Based on these results, all
the following experiments will use model-level mapping with the divergence measure
as the standard distance metric.

The observation that mappings based on phonetic knowledge yield better per-
formance than acoustically based mappings indicates that knowledge about likely
phone substitutions of a non-native speaker can improve the acoustic modeling of
non-native speech. Finally, comparing the performance of LMC for speakers with a
Latin-American Spanish accent with the performance for speakers with a Japanese

accent, it can be seen that the algorithm works equally well for both types of accent.

Spkr (Accent) | Base | LMC,, | LMC, | LMC4 | LMCp
FL (Span) 20.3 | 19.1 19.0 17.9 14.8
PC (Span) 29.4 | 30.1 30.3 28.4 26.0
TS (Span) 2.7 | 260 |260 |247 |25.1

MK (Jap) 193 | 219 [197 |188 |187
SS (Jap) 458 | 445 |444 |438 |[39.1
| Avg. |28.3 [283 [279 [267 [247 |

Table 6.2: WER for the baseline, for LMC with mixture-level mapping, LMC,,, and
with state-level mapping, LMC;. LMC4 denotes LMC with model-level mapping
using Euclidean distance and LMCp denotes model-level mapping using the diver-
gence measure. All experiments use a global transform and 6 adaptation sentences.

Given that model-level mapping is most effective for LMC, the next experiment
investigates how much of a difference in recognition performance can be caused by
variations in the model-level mapping, i.e. how large is the effect of not choosing
the “best” substitution model from the source language for a model from the target
language. Since the substitution patterns of non-native speakers can still vary among
individual speakers, there exist no “correct” mapping. In Table 6.3 the results for
the automatically derived mappings for Spanish and Japanese accent are contrasted
with the performance results for two slightly different mappings. In the mapping
used in the experiment denoted as LMC,, six vowels have been changed in places
where the automatic mapping suggested several likely substitutions (see Tables 3.1
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and 3.2). Likewise, in the mapping used in LMC3, five consonants have been varied
in a similar manner. In both cases the performance decreases only slightly. This
leads to two conclusions: firstly, the automatic mapping technique, see Section 3.4.4,
yields a suitable and reliable mapping. Secondly, changing the mapping by using
alternative substitutions of source language models leads to a small performance
decrease of only 2 — 4% relative. This renders the automatic mapping calculation a

reliable tool in order to create model mappings without much effort for any accent

type.

Mapping | Base | LMC; | LMCs | LMCjy
WER 28.3 | 24.7 25.7 25.4

Table 6.3: Word error rate for baseline and different model mappings, LMC; (the
original map), LMC;y (6 changed vowels) and LMCj3 (5 changed consonants), all

experiments use a global transform and 6 adaptation sentences

6.4.2 Amount of adaptation data

The improvements obtained by employing speaker adaptation also depends on the
amount of adaptation data used for the re-estimation of the model parameters. In
Figure 6.2, the word error rate of LMC is plotted together with the WER, of two
MLLR configurations (block matrix and full matrix with 5 iterations) as a function
of the number of adaptation sentences. This comparison shows that LMC performs
similar to MLLR using a block-diagonal transformation matrix. On the other hand,
LMC performs significantly worse than MLLR with a full matrix and 5 iterations.
Note also that LMC shows no performance increase when the amount of adaptation
sentences is increased beyond the minimal three sentences. This might be due to
the limited number of parameters that are estimated in LMC.

Another explanation for the fact that more data do not cause further perfor-
mance increase is the acoustic mismatch between native and non-native speech. For
instance, as described in Chapter 3, the speakers of the non-native database speak
about 20% slower than native speakers. Moreover, these speakers speak with differ-
ent intonation patterns and occasionally stop or hesitate. Under these circumstances,
the alignment which is required for adaptation tends to be faulty. Thus, additional
adaptation material might confuse instead of confirm the re-estimation process. All
these observations about the difficulties of adaptation led to the development of the

accent prediction methods described in Chapter 7.
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Figure 6.2: LMC: Word error rate dependency on the number of adaptation sen-

tences. 0 sentences denotes the baseline WER

6.4.3 Combination of LMC and MLLR

In the experiments presented so far, it has been shown that LMC performs better
than MLLR with a diagonal transformation matrix, but not better than MLLR with
a full transformation matrix. On the other hand, the best performance of LMC is
already found for the minimal amount of 6 adaptation sentences. For these reasons,
this experiment uses LMC and MLLR adaptation in sequence. Thus, the improved
model set estimated with LMC serves as the initial model set for MLLR provid-
ing a better initial alignment for estimating the MLLR, transform. The results in
Figure 6.2 show that providing a better initial model enables a small improvement
of 3% relative in the case of rapid adaptation, i.e. 6 adaptation sentences. Oth-
erwise, comparing MLLR and LMC+MLLR for varied amounts of adaptation data
in Figure 6.2, shows basically equal performance. However, closer examination of
the recognition results for each speaker revealed that there exist performance gains
for those speakers which had lower initial error rates. In Figure 6.3 the results for
MLLR versus LMC+MLLR, are shown, both averaged over the four best speakers
(fl,pc,ts,mk) and averaged over the three best speakers (fl,ts,mk). In the latter case
the average improvement is 11% relative for rapid adaptation.
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Figure 6.3: WER for MLLR and LMC+MLLR. ’best 4 = WER averaged only over
best 4 speakers, ’best 3’ = WER averaged over the best 3 speakers.
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6.5 Evaluation of Model Merging

In this section the second adaptation scheme for non-native speech, MM, is evalu-
ated. As described in Section 4.4, MM combines the Gaussian mixtures of each pair
of target and source language states and merges them to a new Gaussian mixture
with twice as many mixture components as before. This technique has the advantage
over LMC that no mapping at the mixture component level is required.

The first experiment with MM evaluates the effect of reducing the amount of
mixture components by applying a cut-off threshold for their weights. After an
optimal threshold has been determined, this threshold has been used in the following
experiments to test the influence of the choice of the mapping and of the initial

combination weight a.

6.5.1 Decreasing the number of mixture components

This experiment applies a cut-off threshold to the weights of the mixture compo-
nents in order to remove all mixture components whose weights fall below the cut-off
threshold. In Table 6.4 the WER is presented for a range of such thresholds. The
number in brackets indicates the percentage of mixture components kept after ap-
plying the cut-off threshold. Keeping on average 50% of the mixture components
is equivalent to the number of mixture components in the original models. For low
cut-off thresholds the performance varies only slightly even though the average num-
ber of mixture components is decreased to less than 60%, i.e. almost the original
amount of model parameters. For the largest threshold, 7' = 0.03, the percentage is
consistently below 40% for all test speakers, while the performance decreases by only
5% relative. The results of this experiment indicate that the improved performance
of MM might be due to the incorporation of phonetic knowledge as opposed to an
increase in the number of model parameters. In all following experiments a threshold
of T'= 0.0005 has been applied. For this threshold and 9 adaptation sentences, the
recognition accuracy for MM decreases by 42% relative to the baseline. Moreover,
MM is better than the optimal MLLR setup by 24% relative.

6.5.2 Mapping

As was observed for LMC, model mapping with the divergence measure also yields
better performance for MM than state mapping using an acoustic-distance based
metric, see Table 6.5. The same table also demonstrates that varying the mapping
in the same manner as in Section 6.4.1 only has a small effect on the overall perfor-
mance. The small performance decrease with small changes in the mapping makes

MM stable against non-optimal mappings.
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Spkr | MM M Mr—9.0005 | M Mr—0.001 | MMr—0.005 | M Mr—0.01 | M M1-0.03
FL | 11.1 (100) | 10.4 (70) 104 (67) | 10.6 (59) | 9.8 (53) | 9.2 (37)
PC | 17.8 (100) | 17.1 (74) | 17.3 (70) | 16.6 (62) | 16.8 (56) | 17.5 (39)
TS |17.1(100) | 16.7 (73) | 16.8 (70) | 17.0 (61) | 17.5 (56) | 18.0 (39)
MK | 9.5 (100) | 9.4 (60) 9.7 (52) | 9.4(48) | 9.0(47) |127(21)
SS | 28.7(100) | 285 (65) | 28.4 (56) | 27.2 (52) | 28.6 (51) | 31.0 (21)

| Avg. | 16.8 (100) | 16.4 (68) | 16.5(63) | 162 (56) | 163 (53) [17.7(31) |

Table 6.4: Using a cut-off threshold to decrease the amount of mixture components.
Bracketed numbers indicate average percentage of mixtures per model. 9 adaptation

sentences and a full MLLR transformation matrix are used.

Base
28.3

MMstate
25.9

MMmodel
16.4

MMmodel2
17.8

MMmodel3
16.9

WER

Table 6.5: WER for MM (M M4se = state mapping, M M, 41 = model mapping.
M M odet, = model mapping with 6 changed vowels, M M, 04¢1, = mapping with 5

changed consonants, 9 adaptation sentences.

6.5.3 Choice of the initialisation parameter «

For this experiment the value of the weighting factor «, which is used for the initial
combination of the two model sets (see eq. (4.17)), is varied. The small variations
in WER for different values of o show that the value of a does not significantly
influence the performance as long as «a lies within the interval 0.2 < o < 0.8. In
order to illustrate the meaning of this parameter, assume an initial value of a = 0.5.
Then, this means that both mixtures are equally weighted. A larger « represents a

higher weight of the source language mixture and vice versa.

Spkr
Avg.

M Mg—o.2
16.8

Base
28.3

MMy—o5
16.4

MMy—o.3
17.5

Table 6.6: Word error rate for model merging 6 adaptation sentences, varying the

initial merging weight a.
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Figure 6.4: Model Merging: WER dependency on the number of adaptation sen-

tences. 0 sentences denotes the baseline error rate.

6.5.4 Amount of adaptation data

Next, the effect of varying the amount of adaptation data is shown in Figure 6.4.
Especially, for the case of rapid adaptation, i.e. 3 to 6 adaptation sentences, MM
outperforms MLLR significantly. For example, for the minimum of 3 sentences,
MM is better than MLLR with block matrix by relative 20%. For 24 sentences,
the relative improvement reaches 22% in comparison with MLLR with a full global

transformation matrix and 5 iterations.

6.6 Summary

In this chapter, two novel adaptation techniques for non-native data were evaluated.
These algorithms, LMC and MM, are based on combining each Gaussian mixture of
the target language model set with the corresponding Gaussian mixture of the source
language model set. Both schemes have low computational requirements and have
been proven to be effective for even small amounts of adaptation data. A summary
of the results for rapid adaptation (i.e. 6 adaptation sentences) can be seen in Table
6.7. For the combination of LMC and MLLR as few as 6 adaptation sentences yields
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Spkr | Base | MLLR | LMC+MLLR | MM
Avg. | 28.3 | 21.7 21.0 16.6

Table 6.7: Summary of rapid non-native adaptation: WERs for baseline, MLLR
(full matrix), LMC+MLLR and MM, always using 6 adaptation sentences.

a relative improvement of 26% over the baseline. In addition, relative to the MLLR,
algorithm which is used as a benchmark, performance is increased by 3%. The final
set of experiments demonstrated that MM can perform better than the baseline and
MLLR. by relative 41% and 24% respectively.

Both LMC+MLLR and MM require a mapping between the source and target
language model sets. Since this mapping is crucial for the performance of the algo-
rithms presented here, the influence of several mapping approaches was discussed.
Experimental results show that a mapping which incorporates phonetic knowledge
about likely mispronunciations of a non-native speaker yields the largest performance
increase. Furthermore, small changes in the mapping did not lead to significant per-
formance losses. This indicates that these techniques are stable for applications.

Because LMC only requires adaptation of the diagonal elements of the combi-
nation matrix, few adaptation sentences suffice to achieve the best possible perfor-
mance. Similarly, the WER, for MM decreases rapidly with few adaptation sentences.
However, in this case an increase in adaptation data still gives small additional im-
provements, mainly because adapting the means and re-estimating the weights yields
a much larger number of parameters to be updated. The results presented in this
chapter are based on a fairly small test database. In future work these experiments

should be verified on a larger scale.
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Chapter 7

Accent Prediction: Off-line
Acoustic Modeling of

Non-native Speech

7.1 Introduction

In contrast to the two non-native adaptation techniques, LMC and MM, as derived
and evaluated in Chapters 4 and 6, this chapter introduces an approach which yields
improvements in the recognition of non-native speech without requiring adaptation
data. The improvement is found solely through exploiting the knowledge of the
mother tongue of a language student. These accent prediction methods only
require an additional model set for the source language and a mapping between
the source and the target language in order to improve the recognition of foreign
accented speech: they do not require adaptation data.

This approach is of practical importance because even though HMMs and train-
ing data for the major world languages are nowadays generally available, the tran-
scribed non-native speech needed for adaptation will often be hard to obtain. Section
3.4 discussed methods for deriving the necessary mapping between two languages,
either by using phonetic literature or by automatic calculation with the help of rel-
atively little training data. These accent prediction techniques make it easier and
cheaper to set up a CALL system.

In the following three sections three methods for accent prediction are presented

and evaluated. These algorithms are called
1. Parallel Bilingual Modeling

2. Linear Model Combination with a-priori weights b;;
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3. Model Merging with a-priori o

All three methods combine acoustic models of the source and target language.
They only differ in the way that the models are combined. This again influences
the number of parameters which have to be estimated a-priori. The experiments
will demonstrate the dependency of the performance on the choice of these a prior:

model parameters.

7.2 Accent Prediction using Parallel Bilingual Modeling
(PBM)

The simplest way of combining models of the source and target language into new
bilingual models is to combine each model of the target in parallel with it’s mapped
model of the source language. Choosing such models is equivalent to substituting
models of the target language with models of the source language, if the source lan-
guage models have a higher acoustic likelihood. Parallel Bilingual Modeling (PBM)
combines each pair of acoustic models of the source and target language into a par-
allel model according to a given model mapping. An example of such a bilingual
model is shown in Figure 7.1. This HMM combination requires the adjustment of

the transition matrix. Let the transition matrix A of a three state HMM be

0 1 0 0 0
0 a2 Qg3 0 0 (71)
0 0 aszs as4 0

0 O 0 aga ags

and define another matrix B in the same way. Then the transition matrix C of

the parallel-combined model combines the transition coefficients of the two matrices
A and B :

0 aj, O 0 s O 0 0

0 az22 Q23 0 0 0 0 0

0 0 aszs asq 0 0 0 0
C=]10 0 0 au 0 0 0 oags (7.2)

0 O 0 0 by b3 O 0

0 O 0 0 0 b33 b3y O

0 O 0 0 0 0 baa bss

with the restriction that

bl =1—ajy (7.3)
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Figure 7.1: Bilingual HMM as a parallel combination of a source and a target

language model

Thus, the only parameter to be estimated a-priori is a],. This parameter repre-
sents the probability with which either the model of the target or source language
is chosen.

Given these bilingual models, each phone in the transcription of a word will be
extended in the lattice for recognition to two phones in parallel, the correct phone
and the possible substitution. Table 7.1 gives the WER of each test speaker for
recognition with acoustic models which were calculated using PBM. The a-prior:
estimate of the transition probability was aj, = 0.5. The Spanish-English and
Japanese-English mappings used in these experiments were calculated with the au-
tomatically derived model-level mapping, see also Section 3.4.4. Table 7.1 shows
that applying PBM improves the recognition performance for each speaker indepen-
dent of the accent type. On average, a relative improvement of 30% over the baseline
can be achieved.

The next experiment investigates the influence of the value the transition proba-
bility aj, on the recognition performance. Table 7.2 demonstrates that the recogni-
tion accuracy, averaged over all test speakers, does not change significantly for any
value of a}, as long as it is within the range of 0.3 < aj, < 0.7. Only for values
at the edges of the interval [0, 1] does the average WER decrease. If the value of
aj, lies at the edges of this interval, then there exists a strong bias towards using
the acoustic models of either the source or the target language only. Interestingly
enough, if the probability of choosing an acoustic model of the target language is
as low as 10% (i.e. aj, = 0.1 ), the overall recognition rate is higher than if this

probability is 90%. This observation is another indicator that the use of acoustic
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Spkr Accent | Base | PBM

FL Span | 20.3 | 15.5

PC Span | 29.4 | 23.1

TS Span | 26.5 | 21.1

MK Jap 19.1 | 16.5

SS Jap 45.8 | 38.2

WERgyg - 28.22 | 22.9

Table 7.1: WER results for accent prediction with PBM contrasted with the baseline

results. (ajy = 0.5).

aly 0.1 | 03|05 |07 |09
WERGy, | 23.4 | 23.0 | 22.9 | 22.9 | 24.2

Table 7.2: Averaged WER Results of PBM for different values of a], demonstrating
the relative performance independence of PBM from the choice of aj,

models of the source helps to improve recognition accuracy.

7.3 Accent Prediction using Linear Model Combination
(predicted LMC)

In this section another technique is proposed which predicts accented speech based
on LMC adaptation as derived in Section 4.3. These LMC-predicted acoustic models
are estimated by combining models of the source and target language in the same
way as in the LMC adaptation algorithm. However, whereas for LMC adaptation
the combination weights b;; of the combination matrix Bs are estimated based on
the adaptation data, for predicted LMC these weights are estimated a-priori. In
other words, the predicted weights are chosen empirically.

In order to see what are typical estimates of these weights in the case of LMC
adaptation, Figure 7.2 shows example estimates of b;; for two non-native and one
native speaker. All weights have positive values. This indicates that the linear
combination approach can provide the correct direction in which to move in the
acoustic space. For the first non-native speaker significantly higher combination
weights were estimated than the second one, this means that the second speaker
is likely to be more fluent than the first one. This figure also shows that acoustic

models adapted with LMC adaptation are likely to have combination weights b;; in
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nth feature
Figure 7.2: Example of model combination weights for two non-native speakers and

one native speaker

the range of 0.0 < b; < 0.7. Thus, any a-priori estimates of these weights should be
within this interval, too.

The choice of a-priori combination weights is important for the success of this
approach. However, since there exist no closed form solution for finding optimal
weights, the only possibility is to choose weights by trial and error. The following
two experiments measure the recognition performance of predicted LMC for two

types of guesses of the b;;.

7.3.1 Constant a-priori values for the combination weights b;;

In this experiment the same constant value is used for all combination weights b;;. In
Figure 7.3, this constant weight has been varied in the interval of [0, 1]. bapriori; = 0
means that only models of the target language are used. The WERSs of all speakers
follow a similar pattern. First, the error rate decreases with increasing weight b;;
until a minimum has been reached. Any further increase of b;; beyond its minimum
causes an increase in the recognition accuracy. For all tested speakers this minimum

is found for weights within the following interval
bapriori; € [0.20,0.70] Vj€0,...N. (7.4)

The WER minima for each speaker have been listed in Table 7.3 together with the
optimal constant weights for which the minimum is achieved and with the relative

recognition improvement. The relative improvements are quite significant, they
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Figure 7.3: WER dependency on the choice of a-priori weights. Weight 0.0 denotes

the baseline error rate

vary in the range of 26 — 50%. However, the drawback of this LMC based prediction
algorithm is that the performance heavily depends on the guess of the combination
weight bj, ..., and on the speaker, because in this case the newly combined mixture
components will be more similar to the mixture components of the source language.

Even if the LMC-based prediction algorithm is not very suitable for improving
the recognition accuracy of any speaker of given accent group, it might be possible to

- which minimises the

apriori

use such weights as a measure of fluency. That value of b;
WER for a given set of test sentences can be interpreted as a measure of the degree
of foreign accent. A higher weight would indicate a less fluent speaker. For example,
listening to random speech samples indicates that the Japanese speaker ’SS’ is less
fluent than speaker 'MK’. This agrees with the observation that the minimal WER
for ’SS’ is found around bj,,,,,,;
b; = 0.4. On the other hand, the WER changes fairly slowly with changing

weight. Therefore, a suitable a-priori weight could be chosen for a group of subjects

= 0.6, whereas the minimum for "MK’ is found at

apriori

with similar degrees of fluency.

7.3.2 Influence of the choice of the source language

This experiment checks whether it is indeed the inclusion of phonetic knowledge that

helps to improve recognition. The experiment is based on using a model set of a
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Spkr FL |PC | TS | MK | SS
b; best 0.43 | 0.40 | 0.26 | 0.26 | 0.50
%WER | 31 15 10 13 27

Table 7.3: Relative WER, improvements for optimal predicted combination coeffi-

cients bj pest

Spkr | Base | LMCyp5 | LMCgypan,0.5
MK | 19.1 | 18.5 23.3
SS 45.8 | 33.5 45.6
Avg. | 32,5 | 26.0 34.5

Table 7.4: Word error rate for accent prediction using models combined for a different

accent.

different language other than the source language to calculate a combined model set.
Thus, the Spanish and the English models have been combined with the a-priori
weight bjapriori = 0.5. These Spanish-English models are then used to recognise
Japanese accented speech. The results are shown in Table 7.4. Using LMC adapted
models based on Spanish as the source language yields worse recognition than the
baseline, whereas the performance of LMC with Japanese source models increases
by 20%. This is a clear indication that knowledge about the source language is the

reason for the improvements achieved with LMC based accent prediction.

7.4 Accent prediction using Model Merging (predicted
MM)

The final accent prediction method presented in this chapter is based on MM adap-
tation. The models are combined in the same way as before, but the adaptation and
re-estimation steps of the MM technique are skipped, since in this case no adapta-
tion material is available. However, the results in Figure 6.4 demonstrated that even
few adaptation sentences yield significant recognition improvement. So, it can be
assumed that even if no data are available in order to reestimate means and weights,
the use of acoustic models based on predicted Model Merging might still yield some
improvements.

The only variable to be estimated in this case is the weighting factor . This
factor has been varied between a = 0.0, i.e. using only the target models and

a = 1.0, i.e. using solely the source models. In Figure 7.4 the WER is shown as
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Figure 7.4: WER for predicted MM with dependency on merging weight a. o = 1.0

denotes target models only.

Spkr | FL |PC | TS |MK |SS | Avg
Base | 20.3 | 29.4 | 26.5 | 19.3 | 45.8 || 28.3
MM | 12.1 | 19.6 | 18.9 | 17.5 | 34.9 | 20.6

Table 7.5: Word error rate for baseline and A-priori model merging (a = 0.5)

a function of the merging coefficient . For any 0.1 < a < 0.9 the performance
of predicted MM is roughly constant for all speakers. This renders the algorithm
almost independent of the value of a. Thus, predicted MM can be implemented
without requiring any additional fine tuning. Because of this characteristic, this
algorithm is well suited for any kind of recognition system, where non-native speech
of one type of accent has to be recognised.

It can be seen from Table 7.5 that predicted MM reduce the word error rate from
WER = 28.3% for the baseline of speaker-independent native models to WER =
20.6 for predicted MM with a = 0.5. This error rate reduction represents a relative

improvement of 27.2% in recognition accuracy.
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Spkr | Base | MM | MM 4,
MK | 19.1 |17.5 | 19.1
SS 45.8 | 34.9 | 39.0
Avg. | 325 | 26.2 | 29.1

Table 7.6: WER for accent prediction using models merged for a different accent.

7.4.1 Influence of the choice of the source language

The importance of using the correct source language models when merging models
has been tested in the same manner as for LMC, see Section 7.3.2. Again, a model
set of a different language other than the source language has been used to calculate
a merged model set. Here, the Spanish and English models have been merged
to recognise Japanese accented speech. The results are shown in Table 7.6. As
with LMC, the performance of MM with Japanese source models increases by 17%
compared to the baseline as opposed to the performance with Spanish source models
where a lower, but still significant improvement of 10% is achieved.

Probably, it is the additional information provided by the second model set
which enables recognition improvement for even the wrong model set. Because
the additional modelling “material” is adapted to the speaker’s characteristics by
updating the weights and adapting the means, higher accuracy is possible. Closer
examination of the results in Table 7.6 also shows that the improvement for the
wrong model set is only obtained for speaker “ss” who has a much lower overall

performance than speaker “mk”.

7.5 Summary

This chapter presented three different techniques which are capable of improving
the recognition accuracy of foreign accented speech without requiring adaptation
material. The improvement is gained solely by exploiting the knowledge of possible
substitution errors. This knowledge is incorporated in a mapping between a given
pair of source and target languages. These algorithms also require an additional
model set of the source language.

In Table 7.7 the recognition performance of predicted PBM, LMC and MM is
compared. The largest performance increase is obtained for predicted MM, whereas
predicted PBM and LMC perform roughly the same. The relative improvement
obtainable with MM is as high as 27.2%. In other words, with this algorithm the

recognition performance can be increased by a factor of one third if the source
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Spkr | Base | PBM | LMC 3,046 | MM
FL 20.3 | 15.5 14.1 12.1
PC 29.4 | 23.1 25.5 19.6
TS 26.5 | 21.1 24.1 18.9
MK | 19.3 | 16.56 | 16.7 17.5
SS 45.8 | 38.2 | 34.7 34.9
| Avg. [ 28.3 [ 2209 [23.0 | 206 ||

Table 7.7: Results summary for accent prediction using bilingual models: WER for
baseline, predicted PBM with a7, = 0.5, LMC with optimal b;; pest per speaker, and
MM with a = 0.5

language of a speaker is known but no adaptation data are available.

Even though both predicted PBM and LMC yield similar improvements of up to
19% relative, they differ significantly in their dependency on good initial estimates.
The recognition accuracy of predicted PBM varies only a little with varying the
transition probability a], between the source or target language model. On the
other hand, the performance of predicted LMC heavily depends on the weights
bj apriori- Because of this characteristic, it would be difficult to implement predicted
LMC in a CALL system. However, the value of the optimal a-priori weights could
be used to measure the fluency of a language student.

As with predicted PBM, predicted MM is quite independent of the choice of the
merging parameter. Given its significant performance gains and its easy implemen-
tation, predicted MM appears to be the most suitable algorithm to implement in a
CALL system in order to improve overall recognition accuracy without the need for
non-native adaptation data. However, indirectly a small amount of data is required
in order to build a mapping between the source and target langauge. Note also that
a small bias might has been introduced in these experiments due to the fact that

the test data were also part of those data that were used to derive the mapping.
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Chapter 8

Measurement of Pronunciation

Assessment

8.1 Introduction

It is relatively easy to calculate scores, which assess pronunciation, but it is far more
difficult to derive methods to validate any scoring or assessment of accented speech;
for a discussion of this topic see also [72]. As outlined in Section 2.3, previous
work on automatic pronunciation scoring mainly concentrates on calculating word
or sentence level scores, [40, 68, 23]. In order to validate such scores, the non-native
data used by these research groups were annotated with similar scores on word or
sentence level by human judges — either language teachers, trained phoneticians or
native speakers without extra training. In all these cases it was possible to relate and
validate the scores with a standard correlation measure. For example, in Neumeyer
et al., [68], comparison of the scoring behaviour of the human judges yielded a
correlation of 0.76 on sentence level. In another study, [54], where individual phone
segments have been scored, this inter-judge correlation decreased to 0.55. This
example indicates how difficult it is even for human judges to consistently judge
pronunciation on a detailed level. It also demonstrates the subjectivity of the rating
task.

However, in this work the target is to compare strings of phones which have been
marked as to whether they have been mispronounced or not. This involves compar-
ing strings of binary decisions rather than scores. Furthermore, these strings are of
differing lengths due to insertions and deletions. Thus, standard correlation coeffi-
cients cannot be used directly to determine whether or not two different judgment
agree. Therefore, this chapter presents a set of four performance measures to com-

pare any set of two judgments. These two judgment can be two human judgments or
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one human and a computer-based judgment. In the latter case, these measures can
be used to assess the effectiveness of the GOP scoring for detecting pronunciation

€rrors.

8.2 The transcription of pronunciation errors

The non-native database used for assessment consists of target transcriptions based
on a pronunciation dictionary and of transcriptions which have been annotated by
human judges to contain the phone sequence which had actually been spoken. The
utterance transcriptions marked with corrections will be referred to as corrected
transcriptions and the transcriptions derived directly from the pronunciation dictio-
nary will be referred to as the dictionary-based transcriptions. Finally, transcriptions
in which each phone correction has been replaced by a single rejection symbol are
referred to as rejection-marked transcriptions.

Two corrected transcriptions of the same utterance are difficult to align with
each other due to insertions and deletions of phones. Therefore, all performance
measures which are presented in this chapter compare transcriptions on a frame
by frame basis. With this approach, measuring the similarity of two differently
corrected transcriptions of the same utterance becomes equivalent to comparing the
rejection/acceptance marking of corresponding speech frames.

Based on the rejection-marked transcriptions, the frame level markings are cal-

culated as follows:

1. The phone level segmentation for each sentence is calculated by forced align-

ment of the acoustic waveform with the corrected transcriptions.

2. All frames corresponding to substituted, inserted or deleted phones are marked
with “1”7, all other ones with “0”. This yields a vector x of length N with

z(i) € {0,1}. These vectors will be called transcription vectors.

3. The transitions between “0” and “1” in the transcription vectors are abrupt
whereas in practice the precise location of the boundaries between correctly
and incorrectly pronounced speech segments is uncertain. Moreover, segmen-
tation based on forced alignments can be erroneous due to the poor acoustic
modeling of non-native speech. For these two reasons, the vectors representing

corrected transcriptions are smoothed by a Hamming window

N/2

#'(n)= > a(k)w(n - k) (8.1)
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Figure 8.1: Smoothing effect of the windowing. Overlapping regions denote areas

where both judges decided to reject the pronunciation of a phone

Using a speech frame period of 10msec, the length of a vowel tends to extend over
6-20 frames, whereas consonants can be much shorter. Also, if rejected frames in one
transcription are immediately followed by rejected frames in the other transcription,
the rejections can be considered to have been caused by the same pronunciation
error. Based on these considerations, a window length of N = 15 was selected for

all experiments. The effect of the smoothing window is illustrated in Figure 8.1.

8.3 Performance measures

This section defines the four performance measures used to compare transcriptions
corrected by two judges or one judge and the automatic GOP scoring system pre-
sented in Chapter 9. These measures are based on similarity measurements between
two reference transcriptions. Since the production of reference transcriptions must
be done by human judges and is highly subjective, the same performance measures
are also used to cross-validate the judges. Note that the performance measures are
only concerned with the detection of pronunciation errors. They do not take account
of the type of error which has occurred.

To cover all aspects of performance, four different dimensions are considered

e Strictness - how strict was the judge in marking pronunciation errors?
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o Agreement - what is the overall agreement between the reference transcription
and the automatically derived transcription? This measure takes account of

all phones whether mispronounced or not.

e (Cross-correlation - what is the overall agreement between the errors marked
in the reference and the automatically detected errors? This measure only
takes account of phones for which an error has been marked in one or both

transcriptions.

o Querall phone correlation - how well do the overall rejection statistics for each

phone agree between the two references?

8.3.1 Strictness

Firstly, human correction of the pronunciation of non-native speakers depends on
subjective personal judgment. There will always be a large number of phones whose
pronunciation is on the borderline between correct and incorrect; a stricter judge
might declare more borderline cases as incorrect than another judge who is more
benign. In the case of computer-based scoring, the choice of a rejection threshold
determines how strict the scoring system will be. This strictness of labeling, S, can

be defined as the overall fraction of phones which are rejected, i.e. relative strictness

_ Count of Rejected Phones
~ Total Count of Phones

(8.2)

As an example, the database used for assessment, see Chapter 5 contains a set of
calibration sentences which were labeled by six different judges. Figure 8.2 shows the
strictness of the judges for these calibration sentences where the mean and standard
deviation are ug = 0.18 and og = 0.05, respectively.

A simple way to compare the strictness of two judges J1 and J2 is to use the

difference between strictness levels for the two references, i.e.

6s = S51— Sz | (8.3)

8.3.2 Agreement

The overall Agreement (A) between two rejection marked transcriptions is defined
in terms of the city-block distance between the corresponding transcription vectors,

l.e.
1
Anje=1- N | x51 — %72 |lc (8.4)
N-1 .
where || x ||[c= 0.1 | z(3) |-

85



Chapter 8. Measurement of Pronunciation Assessment

86

0.25

0.2

0.15

relative strictness

0.1

0.05

Figure 8.2: Relative strictness for all human judges measured on the calibration

sentences

8.3.3 Cross-Correlation

Agreement measures overall similarity of two transcriptions by comparing all frames
of an utterance. In contrast, the Cross-Correlation (CC) measure takes into account

only those frames where either of these frames has a rejection marking.

T
CCr,2 = X1 %2 (8.5)
I %71 ||Ell %72 ||E
where || x ||g= 1/ 2N, #(i)? is the standard Euclidean norm.

In other words, Cross-Correlation measures similarity between all segments which
contain rejections in either of the two transcriptions. Because similarity of the rejec-
tion patterns with a human judge is the main design objective of the GOP scoring

system, this measure has the highest importance.

8.3.4 Phone Correlation

Finally, Phone Correlation (PC) measures the overall similarity of the phone rejec-
tion statistics of all M phones in the given models set. Given a vector ¢ of length M

whose elements contain the count of rejections for each phone in a complete model
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A CC | PC | ds
0.91 | 0.47 | 0.78 | 0.06

Table 8.1: Averaged A, CC, PC and dg results based on correlating all possible pairs
of judges. These values are the baseline against which automatic scoring performance

will be measured.

set, phone correlation is defined as

S (e (m) = ey )(era(m) = peyy)
PC = 8.6
T T M Jei(m) — e ) (€1 (m) — fey,)? (56

where p. denotes the mean rejection counts.

8.4 Inter-judge labeling comparison

With the above derived set of performance measures it is now possible to compare the
ratings of the human judges. Similarly as in [68], we measure inter-judge correlation
based on the corrected transcriptions for the 20 calibration sentences.

In order to properly interpret the results of assessing a computer-based pronunci-
ation system using manually-derived transcriptions as the reference, it is necessary to
measure the inter-judge labeling consistency and to obtain an understanding of how
the judges label the data. Their labeling is characterised by the phones they con-
sider important for good pronunciation and thus tend to correct, by the consistency
of the rejection patterns across different judges and finally by their strictness. In
this section, the four performance measures described above are used in conjunction
with the 20 calibration sentences to determine these characteristics.

Figure 8.3 shows averaged results of all the measures for each judge. These
results have been calculated by averaging A, CC, PC and ds between the respec-
tive judge and all other ones. All results vary within an acceptable range, that is
0.85 < A < 0.95, 0.40 < CC < 0.65, 0.70 < PC < 0.85 and 0.03 < d5 < 0.14.
Therefore, the labeling by different human judges can be considered as being rea-
sonably consistent. However, Judge 5 is a slight outlier in that he has a lower
average cross-correlation with the other judges. The total mean values over all pairs
of judges of all four measures are shown in Table 8.1. These mean values will be
used as benchmark values against which the performance of the automatic scoring
as presented in Chapter 9 is measured.

Table 8.2 shows the similarity between the human judges and the baseline GOP

scoring method (see Chapter 9) for each non-native speaker in that judge’s group. It
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ccC
as

Jai J2 J3 Ja Js J6
Judges

Figure 8.3: A, CC, PC and ds for each judge based on averaging the measures

between the respective judge and all the other judges.
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‘ Judge ‘ Speaker ‘ Strictness ‘ CC ‘ PC ‘
J1 Cal. 0.25 0.51 | 0.77
ss 0.25 0.56 | 0.73
ts 0.21 0.49 | 0.84
J2 Cal. 0.19 0.53 | 0.81
yp 0.16 0.49 | 0.62
J3 Cal. 0.21 0.50 | 0.68
mk 0.13 0.38 | 0.57
J4 Cal. 0.13 0.37 | 0.62
sk 0.07 0.12 | 0.61
as 0.11 0.37 | 0.50
J5 Cal. 0.16 0.22 | 0.71
ay 0.19 0.50 | 0.61
il 0.16 0.43 | 0.56
pc 0.19 0.50 | 0.62
ky 0.23 0.48 | 0.34

Table 8.2: Similarity results between judges and the baseline GOP scoring grouped
according to the judge who labeled the respective speaker sets. The speaker name

Cal. denotes the calibration sentences.

can be seen that the intra-judge results are quite consistent. However, Judge 4 had a
high acceptance level of non-native pronunciation, and thus corrected a significantly
smaller portion of the data.

Figure 8.4 shows the C'C and PC measures for each speaker grouped according
to their native languages. Also shown on this figure are the genders of each speaker.
From this figure and the data shown in Figure 8.3, it appears that the labeling of
the human judges does not depend significantly on the mother tongue or the gender
of the subjects, but mostly depends on the variability of human judges.

Finally, the rejection patterns for all judges are shown in Figure 8.5, which
depicts the rejection counts for all phones for the judges. The strong correlation

between the rejection pattern of all judges is clearly evident.

8.5 Summary

In this chapter four performance measures were developed in order to assess the

quality of the phone level pronunciation scoring, both by human judges and by an
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Japanese Subjects
1 T

0.81 cc |4
PC
0.6 ]
0.41 8
0‘2 7 I I |
O L L L
as(female) ss(female) mk(female)
Korean Subjects
1 T
0.81 cc |4
PC
0.6 ]
0.41 8
0‘2 7 I I |
0 L L L
sk(male) ay(female) yp(female)
Spanish Subjects
1 T
0.8 |- CC |
PC
0.6 ]
0.41 8
0.21 .
0 L L L
fl(male) pc(male) ts(female)

Figure 8.4: CC and PC results grouped according to each student’s mother-tongue.
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Phone rejection count for the calibration sentences
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Figure 8.5: Rejection counts of all phones for all judges based on the calibration

sentences to show the correlation between the rejection pattern of different judges.
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automatic scoring system as described in the following chapter.

The analysis of human judgment characteristics showed that although there is
significant variability in the labeling of each judge, there is nevertheless sufficient
common ground to form a basis for assessing the performance of the various auto-
matically derived pronunciation scoring methods. The averaged values for human
judges of these four performance measures provide the baseline against which the

performance of the automatic scoring technique has to be measured.
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Chapter 9

Pronunciation Assessment: The
GOP Scoring Algorithm

9.1 Introduction

In this chapter a family of newly developed pronunciation scoring techniques will be
presented and experimentally evaluated. This family of techniques consists of a base-
line algorithm which calculates an individual score for each phoneme in an utterance
of a language student. Then, several modifications are developed in order to refine
the baseline technique. These refinements also build upon the non-native modeling
techniques of the previous chapters. This chapter is organised as follows: Section
9.2 describes the current state-of-the-art of confidence scoring in automatic speech
recognition applications, since the algorithms here proposed are based on confidence
scoring. Next, Section 9.3 gives the theoretical foundation of the new pronunciation
scoring algorithms. Then, Sections 9.4 and 9.5 discuss the performance of these
algorithms. First, the algorithms are tested with speech where pronunciation errors
have been artificially introduced. Following this, they are applied to data from the

non-native database discussed in Chapter 5.

9.2 State-of-the-art of confidence scoring

The task of assessing the pronunciation quality of individual phones can be com-
pared to the task of calculating the confidence that a phones has been correctly
recognised. Based on this comparison, the target of the work in this chapter is
to develop a scoring algorithm which obtains high confidence scores for correctly
pronounced phones and low scores for non-standard pronunciation. This section

presents an overview of the state-of-the-art in confidence scoring which will serve as
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the theoretical foundation of the new scoring techniques. Existing confidence scoring
algorithms can be grouped into two main classes: either the algorithms are based
on a-posteriori likelihoods or on binary classifiers. Additionally, there exist more
confidence scoring techniques. For example, [18] developed a technique to combine

acoustic and language model scores.

9.2.1 A-posteriori based confidence scores

A large number of confidence calculation techniques uses a-posteriori recognition
probability scores. However, depending on the setup of a recogniser such a-posteriori
scores can often only be approximated yielding slightly different actual implemen-
tations of confidence measures.

The algorithms proposed in [56, 76, 22] differ only in the approximations of
the calculation of the a-posteriori based confidence scores for keyword spotting. In
all these approaches the confidence score of having spotted a keyword is given by
an approximation of the a-posterior: probability of the keyword. Additionally, in
[22], these confidence measures are combined with other confidence related features,
such as the number of strong recognition hypotheses available, in order to build a
post-classifier. This classifier has been used in a second recognition pass to decide
whether a keyword has been spotted correctly or not. With this two-pass approach
an increase in the decision accuracy from roughly 1/2 to 2/3 has been reported for
deciding whether a word was correct or not. Likewise, Caminero et al., [15], and De
la Torre et al., [26], proposed to combine a-posteriori probability scores with garbage
model likelihood scores after a first recognition pass using confidence tests based on
linguistic information. Other approaches to confidence scoring, too, have been based
on combining a range of different knowledge sources into feature vectors which are
put through a classifier yielding a tag for each hypothesised word, see for example
[82]. In general, this idea can be extended to combine a-posteriori scores with other
knowledges sources. For example, knowledge of a speaker’s native language will be

employed to refine the baseline algorithm, see Section 9.3.4.

9.2.2 Classification based confidence scores

Confidence scoring can also be interpreted as a binary classification task where the
amount of false acceptances has to be minimised while maximising the amount of
correct acceptances and correct rejections. Along this line of thought lie the con-
fidence scoring approaches described in [75, 102]. Here, the acoustic confidence
score for a phone is presented as the ratio of the likelihood that a phone was cor-

rectly recognised given its recognition likelihood score versus the likelihood that a
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phone was incorrectly recognised given its recognition likelihood score. Similarly, in
[20, 79, 61], a neural net classifier using a range of features such as likelihood ra-
tios and durations was built. The results of a first recognition pass are fed into the

classifier, whose output then determines whether a keyword has been spotted or not.

However, in all cases where detectors or classifier are built, correct transcriptions
are required in order to collect the likelihood score statistics on which the classifier is
based. Therefore, it is difficult to apply these measures to the task of pronunciation
assessment because it is not possible to find correct transcriptions of non-native
speech. It is only possible to obtain approximations of these transcriptions, see
also Chapter 8. Thus, the algorithm developed in the next section is based on a

a-posteriori confidence score.

9.3 “Goodness of Pronunciation(GOP)” Scoring

In the case of pronunciation scoring, the underlying assumption is that the tran-
scription of an utterance spoken by the language student is given. For example, a
typical task is to ask the student to read out a given text prompt or to choose an
answer from a small number of choices. In this section, a family of “Goodness of
Pronunciation(GOP)” scoring methods is presented which calculate an individual
score for each phone of an utterance for which the dictionary-based transcription is
known.

These GOP algorithms have to be seen within the framework of the research
regarding pronunciation assessment in CALL done by other research groups, as de-
scribed in detail in Section 2.3. In particular, during the period of time when the
research of this thesis was executed, other research groups have developed related
pronunciation scoring techniques. Although few of them attempt to score pronun-
ciation on the phone level, Neumeyer et al., [68], and Cucchiarini et al., [23] have
shown that a-posteriori phone probabilities can be applied to pronunciation scores

on the word and sentence level or even selected phones, see also [54].

9.3.1 Basic GOP algorithm

The aim of the GOP measure is to provide a score for each phone in an utterance. In
computing this score it is assumed that the orthographic transcription is known and
that a set of hidden Markov models is available to determine the likelihood, p(O|g;),
of the acoustic segment O corresponding to a phone g;. Under these assumptions,
the quality of pronunciation for any phone g; is defined to be the duration normalised

log of the posterior probability P(g;|O) that the speaker uttered phone g; given the
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corresponding acoustic segment O. That is

Il

GOPi(g:) | log (P(¢:|0)) | /NF(O) (9-1)

~ p(Olai)P(a:) 0 _
| log (Z;Llp(Olqy-)P(qg-)) | /NF(O) (92)

where J is the total number of phone models and N F(O) is the number of frames

in the acoustic segment O which starts in frame f; and ends in f..
Assuming all phones are equally likely (P(g;) = P(g;) for any j and ) and that
the sum in the denominator can be approximated by its maximum, the basic GOP

measure becomes

p(Olgi)
ma,szl p(Olg;)

GOP(g:) = |10g< ) | /NF(0) (9-3)

log(p(Olgi)) maxy_; log(p(O|g;))
NF(O) NF(O)

(9.4)

The acoustic segment boundaries and the corresponding likelihoods are deter-
mined from Viterbi alignments. Firstly, the numerator of equation 9.3 is computed
using a forced alignment in which the sequence of phone models is fixed by the
known transcription. Secondly, the denominator is determined using an uncon-
strained phone loop. This is the same arrangement as commonly used in word
spotting, see also [66]. One difficulty in equation 9.3 is that if a mispronunciation
has occurred, the alignments of the phone loop will differ from the alignment in the
forced alignment. Hence, the denominator score is determined by simply summing
the log likelihood per frame over the duration of the segment O. In practice, this
will often mean that more than one phone in the unconstrained phone sequence has
contributed to the computation of maxJJ:1 p(O|g;). If N phones contribute to this

likelihood, the actual computation will take the following form

log(p(0lg;) _ = log(p(Olgji)
NFO) "2 fu fa 09

where f;s and f;. denote start and end frame number for the ith phone occurring
during the current interval from f; to f.. An illustration of these alignments is given
in Figure 9.1.

With this GOP score, a system to score pronunciation on the phone-level is easily
implemented. A block diagram of the resulting GOP scoring mechanism can be seen
in Figure 9.2. The front-end feature extraction converts the speech waveform to a
sequence of frames with mel-frequency cepstral coefficients (MFCC) and these are

used in two recognition passes: the forced alignment pass and the phone recognition
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Figure 9.1: Contribution of several phones in the phone loop to the GOP score of
phone g¢;

pass where each phone can follow the previous one with equal probability. Based
on these results, the individual GOP scores are calculated for each phone as defined
in the previous equations. Finally, a threshold is applied to each GOP score to
reject badly pronounced phones. The choice of the threshold depends on the level
of strictness required. The selection of suitable thresholds is discussed further in
Section 9.5.

9.3.2 Speaker adaptation

The reliability of the GOP scoring procedure described above depends on the qual-
ity of the acoustic models used. Since the aim of the GOP measure is to assess
pronunciation quality with respect to native speaker performance, it is reasonable
to use native speakers to train the acoustic models. However, non-native speech is
characterised by different formant structures compared to those of a native speaker
for the same phones, see also Section 3.3.1 and [9]. This can lead to phone recog-
nition errors. Hence, some degree of speaker adaptation may be justified. To test
this hypothesis, the GOP measure can be computed using models whose Gaussian
means have been adapted using Maximum Likelihood Linear Regression (MLLR),
[68]. In order to achieve speaker normalisation without adapting to specific phone
error patterns, this adaptation is limited to a single global transform with a full
transformation matrix and several iterations.

The adaptation or prediction methods as developed in the previous chapters
could be applied, too. However, all the techniques of foreign-accent adaptation
as presented in Chapters 4 and 7 already incorporate knowledge about systematic

mispronunciations. Therefore, using such adaptation would have a counter-effect on
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Figure 9.2: Block-diagram of a pronunciation scoring system: phones whose scores
are above the predefined threshold are assumed to be badly pronounced and are

therefore rejected.

the desired capability of the GOP scoring to detect mispronunciations.

9.3.3 Phone dependent thresholds

So far a single acceptance/rejection threshold for all phones has been assumed.
However, in practice, the acoustic fit of phone-based HMMs differs from phone to
phone. For example, fricatives tend to have larger variability in their realisations
than vowels suggesting that a higher threshold should be used in the latter case.

A simple phone-specific threshold can be computed from native GOP statistics.
For example, the threshold for a phone g; can be defined in terms of the mean p,,
and variance o4, of all the GOP scores for phone g; in the training data of native

speech

Ty, = pq; +aog, + B (9.6)

where 0.8 < a < 1.3 and —1.0 < 8 < —2.0 are empirically determined scaling
constants, yielding thresholds on a similar scale as the global threshold, but adapted
to individual phones. The assumption here is that averaging native GOP scores will
reduce the effect of errors in the phone recogniser.

A reasonable target for an automatic pronunciation system is to perform as well
as a human judge. One way to approximate human performance is to learn from
human labeling behaviour. Let ¢, (g;) be the total number of times that phone g¢; ut-

tered by speaker n was marked as mispronounced by one of the human judges in the
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training database, see also Section 8.3.4. Then, a second phone dependent threshold

can be defined by averaging the normalised rejection counts over all speakers

Ty, = logy. > (cn<qz~>/ > cn<m>> (9.7)

where M is the total number of distinct phones and N is the total number of speakers
in the training set. Due to the normalisation the average counts are in the range
of 0 to 1 so that the resulting logarithmic values yield thresholds on a similar scale
to those defined in equation 9.6. In Figure 8.5 the rejection counts for each speaker

can be seen.

9.3.4 Explicit error modeling

Pronunciation errors can be grouped into two main error classes. The first class
contains individual mispronunciations which occur if a student is not familiar with
the pronunciation of a specific word. The second class consists of substitutions of
native sounds for sounds of the target language which do not exist in the native
language. This latter error type will be referred to as systematic mispronunciations.
Because the GOP method described so far does not employ models for the phones
of a student’s native language, incorrect acoustic modeling of the non-native speech
will occur especially in the case of systematic mispronunciations. Therefore, the
detection of these errors might be improved if knowledge of the native tongue of the
learner can be included in the GOP scoring. This idea is similar to the underlying
principle used in all the algorithms for the acoustic modelling of non-native speech
as presented in the previous chapters.

For this purpose a recognition network has been implemented incorporating both
correct pronunciation and common pronunciation errors in the form of error sub-
lattices for each phone, using the phone model sets of both the target and the source
language. Concatenating these sub-lattices according to the target transcriptions
yields the desired error network for any utterance. For example, Figure 9.3 shows
the resulting network for the word “but”. The list of possible errors of a Spanish
speaker learning English has been taken from [53], some examples of which are listed
in Table 9.1. Alternatively, the substitution patterns derived in Section 3.4 can be
used as well. The recognition output of such an error network will be a sequence of
phones corresponding to the target transcription g; = ¢;, in the case that the target
pronunciation was more likely or to an error phone ¢; = g;, otherwise.

A straightforward detector of systematic mispronunciations based on an error

network could consist of rejecting all phone segments where an error phone has
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b

ah t
v ae
—> ' > ' > —>»
b_s as ts
aw

Figure 9.3: Example error-network for the word ‘but’, created through concatenating

the sub-lattice of possible errors for each phone, the topmost phones correspond to

the target transcription. (Phone names with subscript ‘s’ denote Spanish models.)

British | Expected Errors British | Expected Errors
/b/ /b/, [v/, [bs/ /k/ del, /k_s/

/d/ /dh/, [d_s/ /1 [ls/

[th] | /], /8], [f-s/,[s-s/ | [ah/ | [as/, [aw/, [ae/
/s/ /hh/, del Juh/ Juw/, [u_s/

/ch/ /ch_s/ Jae/ /eh/, [e_s/

[ih/ | [ch/, [ch-s/ [oh] | [o-s/

Table 9.1: Expected errors of a Spanish speaker for some British-English phones.

(Phone names with subscript ‘s’ denote Spanish models).
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been recognised. However, such an approach would ignore the information about
the likelihood of the occurrence of such an error. Hence, the posterior likelihood of
each error phone P(g; |O) is computed by normalising the likelihood of the likely
phone in the output of the error network with the recognition results of a phone
loop network including acoustic models of both the target language and the source
language applying equation 9.3.

Knowledge of P(g; |O) allows the posterior probability of the target phones g;,
to be calculated in all phone segments containing systematic mispronunciations:

P(gz|0) = 1- ) P(q;0)

J#4i,
~ 1— max P(g;|0)
97,
= 1-P(¢.|0) (9.8)

Again the assumption has been made that the above sum can be approximated by
its maximum. Thus, scores for systematic mispronunciations GOP,(g;) are defined

as

| log(1 = P(¢i.|0)) | if ¢i = g,

; (9.9)
0.0 otherwise

GOP, (%) = {
Combining the basic GOP; with GOP, yields a second GOP metric which includes
additional penalties for scores of phone segments where systematic errors were recog-

nised.
GOPy(q;) = GOPi(gq;) + K GOP.(q;) (9.10)

where K is a scaling constant.

9.4 GOP Experiments with artificial speech

Before evaluating this new GOP scoring algorithm with the non-native database,
see also Chapter 5, some preliminary tests have been executed with artificial data.
This artificial data was taken from the Resource Management (RM) database, which
consists of continuous speech spoken by a variety of North American speakers. The
dictionary used was based on a dictionary from Carnegie Mellon University using a
set of 48 phones for the phonetic transcriptions, including two silence models. Based
on these RM data, the artificial data was created by manipulating the pronunciation
dictionary so that the pronunciations are changed to contain different phones. For
instance, all occurrences of the sound /aa/ have been changed to /iy/ and so forth.

Thus, speech data with known locations of pronunciation errors has been created.
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Because these error locations are known, it is now easier to measure the reliability
of GOP-based error detection with these artificial data than with non-native speech,
where the judgment from the phoneticians are coloured by subjectivity.

In order to enable a more detailed analysis of the GOP scoring reliability for the

artificial data, the following four decision types are defined:

1. Correct Acceptance (CA): A phone was pronounced correctly and is detected

to be correct;

2. False Acceptance (FA): A phone was pronounced incorrectly and is detected

to be correct;

3. Correct Rejection (CR): A phone was pronounced incorrectly and is detected

to be incorrect;

4. False Rejection (FR): A phone was pronounced correctly and is detected to be

incorrect.

For a given threshold, statistics of all these four decision types can be collected.
Let the accuracy of making the correct decision of accepting or rejection the pro-
nunciation of a phone be defined as scoring accuracy, SA = CA+ CR. Then SA
can be plotted as a function of F'A for a range of thresholds. Such plots allow a
system to be designed for optimal performance, which is defined as optimal scor-
ing accuracy for a given acceptance level of false acceptances. In Figure 9.4 the
performance results of an experiment with speaker-independent Gaussian mixture
monophones, measuring scoring accuracy versus the false acceptance rate, can be
seen. For comparison, the performance using speaker-independent tied-state tri-
phones, which model more closely context and coarticulation is given as well. The
poorer performance of triphone models is perhaps due to the fact that there are far
fewer monophones (49) compared to the 112849 logical (6900 physical) triphones re-
sulting in the monophones being more discriminative. Both model sets were trained
on 73 speakers of the RM database; each speaker set consisted of 40 sentences. For
the Gaussian mixture monophones a scoring accuracy of 90% at a false acceptance
rate of 8% can be achieved when choosing a suitable threshold. These results show
that — at least for this setup with artificially generated pronunciation errors — the
GOP scoring method is a viable assessment tool.

In addition to the above experiment with monophones and triphones, different
choices of spectral feature vectors have been tested as well, see also [94]. In the
above described experiment, a feature vector consisting of 13 Mel-frequency cepstral
coeflicients together with 13 delta, 13 acceleration and 3 energy coefficients was used.

In Table 9.2, results for Mel-frequency cepstral coefficients (MFCC), Mel-frequency
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Figure 9.4: Scoring accuracy versus false acceptance for monophones and triphones

Model SA in % for fa= 8%
MFCC 80
MFCC-E-D-A 88
MFCC-E-D-A-Z 90

Table 9.2: Scoring Accuracy for different feature vector selections

cepstral coefficients together with energy, delta and acceleration coefficients (MFCC-
E-D-A), and the same vector with mean cepstral normalisation (MFCC-E-D-A-7Z)
can be seen. The feature vector which includes delta and acceleration coefficients
performs best of all different feature vector types.

Based on these experimental results, Gaussian mixture monophones will be used
in all following experiments with the non-native data together with feature vectors
consisting of 13 Mel-frequency cepstral coefficients ( with cepstral mean normalisa-

tion) plus 13 delta, 13 acceleration and 3 energy coefficients.

9.5 GOP experiments with non-native speech

This section presents performance results for both the basic GOP scoring method
and its refinements as described in Section 9.3. The recognition setup consists of
Gaussian mixture monophone HMMs trained on the British English corpus WSJ-
CAMO [41]. These hidden Markov models were built using the HTK Toolkit, [101].

For automatic GOP scoring, the values of agreement A, cross-correlation CC

and phone correlation PC vary according to the level of strictness applied, which
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Segment: Nobody wanted to carry the envelope

GOP Score

10 Threshold

N B~ (o) (0]
\

Dictionary: nowvba diy wohnt jh dta ke riydniyen n va | ow p

Judge: s s
GOP(10): ss s

Figure 9.5: GOP Scoring results for first example sentence, ’ss’ denotes the location
of a rejection, the automatically rejected phones correspond to GOP scores above
the threshold.

again depends on the choice of a threshold.

Three examples of GO P scoring are depicted in Figures 9.5, 9.6 and 9.7. Varying
the threshold determines the number of rejections. In the first example sentence,
Figure 9.5, complete agreement between the human judge and the GOP scoring can
be found for a threshold of 10.0. The subject, a female speaker with Latin-American
accent, pronounced “nobody” more like “nobory” and the vowel in “want” like /ah/.

The next example in Figure 9.6 demonstrates that swallowing or deleting of
sounds can be detected as well. In this example the student, a female Japanese
speaker, says “visibily” instead of “visibility”. In order to demonstrate the influence
of varying the strictness of the GOP scoring by varying the threshold, the accep-
tance/rejection pattern for two thresholds, T = 4 and T = 5.5 are shown. Variations

in strictness mainly affect sounds which are not that clearly pronounced, but which
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Segment: zero visibility and every thing

GOP Score
=
N
|

55

Threshold =

Dictionary: z iarowvih zab ihlih t iyaan derv rih th ih ng

Judge: SS ss Ss SS ss SSss
GOP(4): SS SS sS ss SS ss ss ss
GOP(5.5): S s ss SRS

Figure 9.6: GOP scoring example sentence,

are not exactly wrong either. In the stricter case, i.e. T' = 4, the computer score in-
dicates a mediocre pronunciation of the /v/ in visibility, whereas the judge accepted
it as correct. The same applies to the /d/ in “and”. The judgments for “every” are
an example of the difficulty in precisely locating mispronunciations. Both judgments
detect a mistake. However, the judge does not accept both the /r/ and the /ih/
whereas the automatic scoring only rejects the /r/.

The previous example demonstrated that obvious mispronunciations can be re-
liably detected by the automatic scoring. In this last example, Figure 9.7, the male
Latin-American speaker does not know the pronunciation of the word ’pint’ and
therefore pronounces the vowel in this word as /ih/ instead of /ay/. Additionally,
this example again shows that due to bad alignments in the recognition passes the
GOP scoring can be inprecise in the localisation of a mispronunciation. The sub-

ject mispronounces the /v/ in 'very’, however, the automatic scoring attaches a bad
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Segment: But it’snot avery nice pint, just apint of beer.
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Dictionary: pbah t ihtsnohta verriynaspantihts jharstapantohvobiar
Judge: ss ss Ss ss
GOP(5): Ss ss ss s s

Figure 9.7: GOP Scoring results for third example sentence. Student pronounce

pint’ as 'peent’.

score to the following sound /eh/.

These examples demonstrate how the automatic scoring operates. In the fol-
lowing sections the optimal setting of variable parameters will be discussed in more
detail. The performance measures, which have been derived in Chapter 8, will be
applied to compare the automatic scoring with the scoring by human raters. These
measures will be used for the baseline method as well as for its modifications. All
scoring methods share one main parameter which influences the pronunciation as-
sessment. This is the threshold. Additionally, some of the refinements also have

scaling constants which have to be optimised, too.
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9.5.1 Varying the threshold

The value of the rejection threshold can influence the scoring performance consid-
erably. Because the experiments in this section attempt to achieve an automatic
scoring that comes as close as possible to the scoring made by human judges, the
target here is to find a rejection threshold which yields a rejection/acceptance pat-
tern similar to the judges. Therefore, the range of rejection thresholds, as studied
in this experiment, is restricted to be within one standard deviation of the judges

strictness, see also Section 8.3.1 for the definition of Jg,
|0s]| < og with og = 0.05. (9.11)

In Figure 9.8 the values of the three performance measures, agreement (A), cross-
correlation (CC) and phone correlation (PC) as derived in Chapter 8, are given for
a single speaker as a function of the rejection threshold. In this figure the vertical
lines denote the acceptable range of threshold settings. It can be seen, that the
performance values do not vary greatly within this range. Thus, the performance
of an automatic assessment system will not degrade significantly if a non-optimal
threshold is chosen. This finding renders the GOP scoring suitable for commercial
applications, because any threshold is always going to be less suitable for some
students than for other students. Also, in a commercial system it would be a good
idea to automatically adjust the threshold to the proficiency level of a student. A
beginner might be less frustrated if he or she is judged more benignly than a more

fluent student.

9.5.2 Results for the basic GOP algorithm

The previous section discussed the choice of the rejection threshold which influences
the degree of strictness of the automatic scoring system. This section will now
analyse the performance results for the baseline GOP algorithm in more detail.

In Table 9.3 the scoring of the baseline GOP for the calibration sentences has
been compared with the labeling pattern of those six judges, who labeled the cali-
bration data, too. For the example threshold of T = 4.5 high similarity between a
judge and the automatic scoring can be achieved, see, for instance, Judge 2 versus
GOP(4.5). On the other hand, there also exists some disparity, see for instance
Judge 4 or 5. This result confirms the observation in Chapter 8 that the rejection
pattern among human judges can vary considerably, especially with regard to the
cross-correlation measure. In Table 9.3 it can also be seen that CC has a significantly

higher standard deviation than the other measures.
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Judges A cC PC 0s

J1 vs GOP(4.5) | 0.86 0.51 0.77 0.01

J2 vs GOP(4.5) | 0.87 0.53 0.80 0.06

J3 vs GOP(4.5) | 0.86 0.50 0.68 0.05

J4 vs GOP(4.5) | 0.86 0.36 0.67 0.13

J5 vs GOP(4.5) | 0.86 0.23 0.75 0.10

J6 vs GOP(4.5) | 0.86 0.50 0.67 0.01

Mean (o) 0.86 (0.01) | 0.44 (0.11) | 0.72 (0.05) | 0.06 (0.04)

Table 9.3: Performance of baseline GOP versus each judge. The results are based
on the assessment by the judges and the GOP scoring of the calibration sentences

(o = standard deviation)

Next, Table 9.4 shows the optimal values of A, CC and PC which are achievable
for each speaker when using the basic GOP scoring technique within the allowed
threshold range. As can be seen, the optimal threshold is speaker dependent. How-
ever, apart from speakers ‘sk’ and ‘as’, a threshold of T' = 4.5 is close to optimal for
all speakers. Because ‘sk’ and ‘as’ were the two speakers whose transcriptions were
annotated by the very strict judge (Judge 4), see Section 8.3.1, these two speakers
are not included in the averaged results presented in the remainder of this chapter.

The performance results for the automatic GOP scoring metrics as discussed
in Section 9.3 are summarised in Figure 9.9. The first bar on the left marked
“Baseline” shows the performance of the basic GOP; metric with a fixed overall
threshold as discussed in Section 9.3.1. The final bar on the left shows the human-
human performance on the calibration sentences used as the benchmark values. As
can be seen, the scores for A and C'C are similar between human and automatic
scoring whereas for PC, the automatic scoring is worse by about 20%. The second
bar marked “MLLR” shows the effect of applying global speaker adaptation. An
improvement of 5% has been obtained for PC at the cost of a small decrease in CC.
The third and fourth bars show the effects of using individual thresholds for each
phone based on averaging native scores Tj,, and on averaging the judges’ scores T,.
As can be seen, thresholds derived from the statistics of the judges’ scoring yield the
best performance. This is probably so because these thresholds are directly related
to desired rejection statistics, that is the individual thresholds are based onrejction
patterns which were obtained from data which included the test data.

In the next experiment, MM adaptation is contrasted with MLLR adaptation.

In Table 9.5 the averaged results are given for the three Spanish accented as well as
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D | Thres | A | CC [ PC |45 |
i 5 0.91 | 0.43 | 0.56 | 0.02
pc 4.5 0.87 | 0.50 | 0.62 | 0.04
yp 4.0 0.90 | 0.49 | 0.62 | 0.02
ts 4 0.8710.49 | 0.84 | 0.03
ky 5 0.84 | 0.48 | 0.34 | 0.04
sk 7 0.90 | 0.12 | 0.61 | 0.06
Ss 4.5 0.85 | 0.56 | 0.73 | 0.05
as 7 0.90 | 0.37 | 0.50 | 0.07
mk 4.5 0.90 | 0.38 | 0.57 | 0.07
ay 4.5 0.90 | 0.50 | 0.61 | 0.05
jl 4.5 0.86 | 0.51 | 0.77 | 0.01
j2 5 0.87 | 0.53 | 0.81 | 0.04
33 4.5 0.86 | 0.50 | 0.68 | 0.05
j4 7.5 0.91 | 0.43 | 0.62 | 0.00
35 5.5 0.88 | 0.22 | 0.71 | 0.05
j6 4 0.85 | 0.52 | 0.65 | 0.03
GOP Mean 0.88 | 0.47 | 0.60 | 0.05
Human Mean 0.91 | 0.47 | 0.78 | 0.05

Table 9.4: Thresholds yielding optimal performance for all non-native speakers of

the database (using basic GOP scoring).
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Figure 9.9: Comparison of the A, CC and PC performance measures using (a) the
basic GOP scoring (Baseline), (b) basic GOP with adaptation (MLLR), (c) indi-
vidual thresholds based on average native GOP scores (Ind-Nat), (d) individual

thresholds based on human judge statistics (Ind-Jud), and (e) Human-human aver-

age performance (Human).
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Speaker ID A CC | PC

Baseline 0.89 | 0.47 | 0.67
MLLR 0.89 | 0.46 | 0.71
MM adapt. 0.88 | 0.46 | 0.66

MLLR + Ind-Jud | 0.88 | 0.49 | 0.77
MM + Ind-Jud 0.89 | 0.46 | 0.72

Human Mean | 0.91 | 0.47 | 0.78 |

Table 9.5: Performance results of the individual speakers when using MM predicted

models

for the two Japanese accented speakers. In order to enable a comparison, the results
for the baseline and for GOP scoring with incorporated judge statistics (Ind-Jud)
are given, too. MM adaptation adapts individually to each model as opposed to
the global transformation applied by MLLR. Therefore, MM adaptation adapts to
likely errors whereas MLLR only adapts to the global vocal characteristics. This
effect causes the worse performance of MM compared with MLLR.

Finally, Table 9.6 summarises the effects of incorporating error modeling into the
GOP algorithm. The British English hidden Markov models were augmented by a
set of similar Spanish HMMs trained on a database of Latin-American Spanish. The
data from the three Spanish speakers in the database is analysed using the extended
GO P, metric with the scale factor K adjusted to give optimal performance. Instead
of averaging over all eight speakers, the results shown in this table are only averaged
over the three Spanish speakers in the database. The averaged baseline performance
of these speakers is shown in the first line of Table 9.6. Comparison of these results
with those for the metric GOP, demonstrate that a slight improvement in C'C and
PC can be obtain through including extra information for the detection of systematic
mispronunciations. Finally, the results of combining all proposed refinements of the
baseline algorithm, i.e. global MLLR adaptation, judge-based individual thresholds
and error modeling, are as high as the human benchmark values. This leads to the
conclusion that GOP scoring can approach the reliability of human scoring. These
results correspond to the findeings by other researchers, see also, [24,38].

This section contains one more experiment. A recognition pass using the error
networks can be regarded as an automatic detector of systematic mispronunciations.
Table 9.7 compares human rejections with all automatically detected systematic mis-
pronunciations, i.e. all rejections at phone segments where a native phone had been

more likely that the target phone. The relatively high values for CC and PC indicate
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Experimental Setup ‘ A ‘ CC ‘ PC ‘
Baseline 0.89 | 0.46 | 0.71
Ind-Judge 0.89 | 0.48 | 0.76
Error modeling 0.88 | 0.48 | 0.72
Ind-Judge + Error Modeling | 0.90 | 0.49 | 0.78
Human Mean | 0.91 | 0.47 [ 0.78 |

Table 9.6: Scoring performance with and without Error Modeling averaged over the

three Spanish accented speakers (all experiments include MLLR adaptation).

Speaker ID | A CC | PC | Sip | ds

fl 0.90 | 0.34 | 0.42 | 0.18 | 0.01
pc 0.88 | 0.39 | 0.57 | 0.23 | 0.04
ts 0.89 | 0.27 | 0.40 | 0.19 | 0.02

Table 9.7: Performance results of the individual speakers when using an error net-

work to detect systematic mispronunciations only.

that a large proportion of pronunciation errors are due to systematic mispronunci-
ations and that a significant proportion of these can also be detected by the use of
error networks. Additionally, the results of this experiment can be used to collect
statistics about how often each phone was systematically mispronounced. These
results also provide information about which phones of the source language are typ-
ically substituted, i.e. these results provide statistics of typical mispronunciations.
This metric provides information about which type of mispronunciations oc-
curred and whether the pronunciation of a given phone sounds more Spanish than
English. This information might be used in future work to provide additional feed-
back about error types in addition to detecting error locations within an utterance

or a word.

9.6 GOP demonstration software

In order to demonstrated the ability of the GOP algorithm to localise pronunciation
errors, a Java-based demonstration program has been designed. This software has
functions to record and playback a student’s speech, just as a traditional pronunci-
ation teaching system. However, the new component of this system is that a GOP

score is calculated for each phone in an utterance. Because a rejection threshold is
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Figure 9.10: Typical window of the demonstration software. Below the waveform of
the utterance the scores are given for each phone. The higher a bar, the worse the

pronunciation.

already built in, all phones which have been rejected as incorrect are shown with a
bar. After being provided with this localisation information, the student can listen
to his own pronunciation repeatedly in order to obtain an understanding of his or
her mistake(s).

The main window displays the utterance which the student is asked to read out,
the actual waveform and the scores for each phone in the utterance together with
the phonetic transcriptions. An example of the analysis of an utterance is shown in
Figure 9.10. Initial user testing of the pronunciation of a few random native and

non-native speakers showed that generally mispronunciations can be detected.

9.7 Summary

This chapter was dedicated to the development and verifications of techniques to
detect and localise pronunciation errors on the phone level within an utterance. For

this purpose, a group of algorithms was presented and evaluated on two sets of data.
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Firstly, artificial data were used in order to determine which type of feature vector
and which type of HMM are most suitable for the task at hand. Next, the GOP
algorithm together with all modifications was tested using the heavily accented non-
native speech of the database described in Chapter 5. The experimental results
have shown that the automatic scoring techniques can produce pronunciation as-
sessments approaching the reliability of human judges. A similar result has been
found by Franco et al, [38]. Furthermore, incorporating knowledge about the source
language in the form of alternative pronunciations helps with the task of locating

pronunciation errors.
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Chapter 10

Conclusions

This thesis began with a discussion of the current state of the art in the usage of
speech recognition in CALL. In this thesis, a set of new algorithms have been derived
and evaluated. These algorithms address two major challenges in CALL. The first is
to improve acoustic modeling of heavily accented non-native speech either with the
help of adaptation or off-line modeling techniques. The second is to automatically
score and assess the pronunciation of individual phones in a student’s speech.

This chapter will discuss and review the results of this research. Sections 10.1
and 10.2 reflect on the findings regarding acoustic modeling and pronunciation scor-
ing, and Section 10.3 discusses the design criteria for a well-rounded pronunciation
teaching system based on the insights gained from the research of this thesis. Finally,

Section 10.4 concludes this thesis outlining possible directions of future research.

10.1 Acoustic modeling of non-native speech

The large decrease in recognition accuracy when recognising non-native speech, es-
pecially if the speech was produced by novice speakers, motivated the development
of a family of new algorithms to improve recognition of non-native speech. The
main advantage of this new bilingual approach to acoustic modeling lies in the fact
that such adaptation and off-line model prediction do not require large amounts of
non-native speech of a particular type of accent. The only requirements for these
algorithms are a mapping between the source and the target language and a set of
native, speaker-independent models of the source language.

These new algorithms fall into two groups: adaptation and prediction, but all of
them share the idea that non-native speech can be modeled through a combination
of models from both the target and the source language. This idea is based on the

theory that non-native speech consists of sounds which are a mixture of the source
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and the target language of a non-native speaker. A technique was developed which
automatically creates a complete list of substitution patterns in order to obtain
a mapping. Once a mapping between a language pair has been calculated, it is
independent of any specific task or model set.

The effectiveness of this bilingual modelling approach was proven in a com-
prehensive set of experiments. If adaptation material is available, Model Merging
adaptation can decrease the baseline WER by 42% relative. Comparison with the
standard adaptation technique MLLR demonstrated that Model Merging can also
outperform MLLR by about 20% relative. On the other hand, the second adaptation
algorithm, LMC, has proven to be less effective. Both accent adaptation techniques
were tested on two different types of accent, Latin-American Spanish and Japanese,
in order to demonstrate that these new algorithms yield performance improvements
independent of the accent type.

The experimental evaluation of these new adaptation algorithms led to two ob-
servations. Firstly, even little adaptation data can yield significant performance
improvements. Secondly, an increase in adaptation data does not create large addi-
tional improvements. Therefore, off-line model prediction methods which combine
the models of the source and target language by a-prior: estimating the combina-
tion parameters can be almost as effective as re-estimating these parameters using
adaptation data. This approach enables us to improve the acoustic modeling of
non-native speech without requiring adaptation sentences. Indirectly, however, non-
native data are required, in order to build the mapping.

The first of the three off-line modeling algorithms, parallel bilingual modeling
(PBM) creates a new non-native model by combining each target language model
in parallel with its most likely substituted model of the source language. It is
interesting to note that the performance gain of this technique is fairly independent
of the value of the transition probability which determines how likely it is that
the source or target model is chosen. The second method is based on the LMC
adaptation technique, the only difference being that the elements of the diagonal
combination matrix are estimated a-priori and not with the help of adaptation data.
Unlike PBM, the performance of this technique is highly dependent on the fluency of
each individual speaker. However, a-priori LMC can be used for measuring overall
fluency of non-native speakers.

The last of the prediction techniques is predicted Model Merging. Similar to the
case of adaptation, predicted MM proved to be most successful. Firstly, this method
achieved a relative improvement of 27% over the baseline. Secondly, experiments
with different values for the weighting between the two models showed that the

overall performance gain is independent of this a-priori combination parameter, as
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long it is within a given interval. This fact combined with the low computational
cost of Model Merging renders it a very powerful technique for applications using

non-native speech recognition.

10.2 Pronunciation scoring on phone level

The overview of the state-of-the-art in pronunciation teaching in Chapter 2 noted
the fact that even though several sentence and word level pronunciation scoring tech-
niques have been developed, there are very few techniques to automatically assess
pronunciation on a phone level. Therefore, this work focused on the development
of an algorithm, called Goodness of Pronunciation(GOP), which analyses a whole
utterance and then returns scores for each phone in this utterance. In conjunction
with an acceptance/rejection threshold, this method is well suited to localising the
pronunciation errors within an utterance.

Before being able to assess this automatic scoring technique, it was necessary to
develop measures which can compare phone-by-phone judgments of an utterance.
Four performance measures were developed which incorporate different aspects of the
characteristics of pronunciation assessment. These measures were used to analyse
how human judges rated non-native speech on a phone-level. The averaged judg-
ment similarity among several human judges served as the baseline against which to
measure the GOP performance.

Several enhancements to the basic GOP algorithm have been introduced. These
include individual thresholds for each phone as well as the use of error networks.
These networks compare the recognition likelihood of the phones which should be
recognised with the recognition likelihood of phones which are typical mispronun-
ciations. The combination of the baseline algorithm and all the enhancements has

been shown to localise pronunciation errors as reliably as human judges.

10.3 Design criteria for an overall pronunciation teach-

ing system

The techniques of pronunciation scoring and non-native speech recognition as devel-
oped in this thesis are designed to be embedded within an overall computer-assisted
language teaching system.

A CALL system should cover all four dimensions of language, that is reading,
writing, listening and speaking. Regarding the speaking skill, this work provides the
pronunciation scoring method to identify regions of bad pronunciations. Once an

pronunciation error has been identified, error feedback could be provided through

118



Chapter 10. Conclusions 119

multiple sources of textual, audio, and/or visual materials. For example, in [62]
it has been shown that learners tend to utilise the information of a visual signal
about specific segments and timing characteristics of speech, but it was also shown
that learners primarily rely on the acoustic signal. Examples of visualisation are
explained in [7, 6, 27], where tools have been proposed for the visualisations of
intonation and prosody.

In all situations where oral interaction is desired, it will be necessary to imple-
ment some form of non-native adaptation in order to obtain a level of recognition
performance which is capable of sustaining an interactive dialogue. Such recognition
tasks will need to be very constrained in terms of the language model used — i.e.
such a task should use a limited vocabulary and simplified grammar. Additionally,
the implementation of keyword spotting techniques could be helpful to test whether
crucial words within a dialogue were spoken. Acoustic modeling of non-native speech
could be improved by the model combination techniques developed in this thesis.

Another important aspect of a CALL system is to provide means of monitoring
the progress of a user. In [92] a system is described which maintains an evolving
model of what the user knows in order to direct the course of further interaction. This
approach is based on applying dialogue modeling techniques in combination with
speech recognition. A similar approach can be applied to a system using the GOP
scoring technique, where the scores from each session are recorded and evaluated in
order to determine which study material to present next to the user according to
his progress.

At the time when the research described in this thesis was undertaken, a group
of university laboratories and publishing houses started work on a project called
“Interactive Spoken Language Education” , [11]. This project aims at introducing
speech recognition technology into new CALL products for adult learners of English.
One of the main goals of this project is to provide appropriate levels of specific
feedback in order to guide the student to improve her pronunciation. Such feedback
requires localisation and diagnosis of pronunciation errors on a phone level. This
project encounters exactly those challenges for which the algorithms presented in
this thesis have been derived. Therefore, this project provides a good example how
this research could be incorporated within a comprehensive language learning system
that addresses all components of oral instruction as discussed in the section above.

The ISLE systems consists of a language tutoring system with an ISLE monitor
which mediates the communication between the tutoring system and the four mod-
ules concerned with pronunciation training. These four modules are recognition,
error localisation, pronunciation diagnosis and word-stress diagnosis. The work of

this thesis could be incorporated into the first three of these modules. For the
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recognition module, the Model Merging adaptation algorithm could be used. The
GOP technique can be used for error localisation. The error networks of Section
9.3.4 could help with error diagnosis, and in fact, such networks are already being

incorporated into the ISLE system.

10.4 Future work

The solutions to two major challenges of using automatic speech recognition in
computer-assisted language learning systems which have been developed in this the-
sis, can only be regarded as the beginning of further research. This section will

briefly outline possible directions of future work.

Further development of accent modeling techniques

Further improvements in acoustic modeling of non-native speech could be in the
direction of modeling speech disfluencies as well as durational and intonational dif-
ferences between native speech and heavily accented speech by beginners.

Also, it would be worth investigating how the model combination and model pre-
diction techniques perform when applied to triphone models. Another idea would
be to determine whether these model combination approaches for foreign-accented
speech can be applied to other tasks, such as accent identification or dialogue mod-
eling. For instance, current accent identification systems usually train several model
sets with data from different accents, see also [46]. Instead of training several accent-
specific HMM model sets, model sets based on accent prediction could be used. By
doing so, the need for accent-specific recordings would be eliminated.

Another area of research concerns experiments testing whether accented speech
by speakers of a source language can be better recognised by a model set which
combines the target language with a closely related source language. For example,
it would be interesting to see, if Danish accented speech would have a higher recog-
nition rate when using a Swedish-English combined model set instead of an English
set alone. Such grouping of languages might be a means to reduce the number of

mappings and source model sets required in order to cover a large range of accents.

Further development of automatic pronunciation teaching

Like the acoustic modelling of non-native speech, the GOP scoring techniques could
be refined too. In Section 9.2 different types of confidence scoring were described.
Variations of these algorithms could be applied to phone pronunciation scoring as

well. Moreover, the work presented here has predominantly been concerned with
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the localisation of pronunciation errors. Future work could investigate extensions
of these techniques to error correction methods. For example, instead of just pro-
viding the answer that the /b/ in ’but’ has been pronounced incorrectly, it would
be desirable to have an algorithm which reliably returns the phone which has been
produced instead. For this purpose, the error network developed for enhancing the
GOP algorithm can be useful. In those instances where a source phone was more
likely than a target phone, this information can be used for error feedback.

Finally, the acoustic modeling techniques could also be used for the develop-
ment of various pronunciation fluency measures. For example, the optimal a-priori
weight of the LMC algorithm can be interpreted as an indicator of fluency. Another
possibility would be to use the percentage of mixture components of the target mix-
ture which is retained in the re-estimated merged model set of the Model Merging
algorithm as an indicator of fluency. This percentage can be found by summing
all mixture component weights of those mixture components which belongs to the
original target language Gaussian mixture. The lower this percentage, the lower the
fluency of the subject will be.

The results of this thesis as well as the results from other groups showed signifi-
cant progress during the past three years. Viable solutions have been proposed for
almost every aspect of automatic pronunciation teaching, but the remaining chal-
lenge is to combine all these techniques into well-rounded CALL systems based on

both technical and pedagogical findings.
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Appendix A

Recording specifications for the

Non-native Database

A.1 Technical specifications of recording equipment

A.1.1 The head mounted close-talking microphone

Name: Sennheiser 414-6

Frequency Response: 50Hz-12kHz

Mode of Operation: Pressure gradient transducer for close talking
Directional Characteristic: super-cardioid

Rejection at 120 and 1000 Hz: 20dB-2dB

Impedance at 1000 Hz: 20092

Sensitivity: 1pV/50mG =~ 1uV/5uT

A.1.2 The Head-mounted Microphone Pre-amplifier: Symetric SX202
Dual Mic Preamp

Frequency Response: 20 Hz - 20 kHz, +0dB, -1dB
SNR: 95dB(—50dBV, 1501)

Max. Gain/ Min. Gain: 60/20 dB
The signal from the Sennheiser is fed into the Symetric and then into the analogue

input. Average measured close-talking microphone SNR in speech after digitisation,
see [41], was roughly 35-45 dB.
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A.1.3 Silicon Graphics IRIS Indigo’s stereo line-level analogue in-
put

Nominal Input Impedance: 5k
Input Signal: Max. Amplitude: 10 Vpp
Minimum Level: 1 Vpp (for full-scale input)

A.1.4 Silicon Graphics IRIS Indigo’s A/D converter

Resolution: Stereo 16-bit
Modulation: delta-sigma
Sampling Rate Used: 16 kHz

Over sampling: 64 kHz

Official SNR at 48 kHz: ; 80dB (20 Hz - 20 kHz)
Recordings were made directly onto the IRIS Indigo’s hard disk.

A.2 Data structure

For each subject a directory was created with the following structure:

id
/ | \ \

wav mfc lab cor

Generally the initials of each speaker were used to identify the data from one
person, here denoted by “id”. The directory “wav” contains all waveform files, which
are stored in the HTK waveform format, see [101]. Each recorded sentence is stored
in a separate waveform. The naming structure is such that the first 40 adaptation
sentence are called “adaptl.lwv” to adapt40.lwv, the remaining sentences “sl.lwv”
to s80.lwv”. The file names are the same for each speaker, because the data for
each speaker is stored in separate directories. The same naming structure is used
for the encoded files in directory “mfc” using the suffix “.mfc”, for the corrected
transcriptions in directory “lab”, using suffix “.lab”. Finally the comment files are
stored in the directory “cor” using the suffix “.cor”.

The encoded data in directory “mfc” are encoded as the Mel-frequency cepstral

coefficients with the following script being responsible for the encoding:
HCopy -A -C ~/nncorpus/sabre/gop/wav2mfc.cfg -5 idwav2mfc.scp

with the following parameters set in the config file wav2mfc.cfg
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SOURCEKIND = WAVEFORM
SOURCEFORMAT = HTK
SOURCERATE = 625
ZMEANSOURCE = FALSE
TARGETKIND = MFCC_E_D_A_Z
TARGETFORMAT = HTK
TARGETRATE = 100000
SAVECOMPRESSED = TRUE
WINDOWSIZE = 250000.0
NUMCHANS = 24

The “lab” directory contains the files with the transcriptions as they were cor-

rected by phoneticians. The “cor” directory contains word and sentence level score

and also additional comments. Furthermore, each “id”- directory contains the fol-

lowing files:

id.scp : scriptfile of all waveform files

id.mlf : word level mlf file

idmono.mlf : phoneme level mlf file

id.ptx : prompting file for this speaker

idlabs.mlf : phonetic transcriptions according to BEEP dictionary

id.txt : ascii file with basic information about speaker

An example for a “id.txt” file is given below:

SJK:

- from Korea

- 34 years

- male

- English for 1 year

- intermediate to advanced

The word level mlf file was create from id.ptx with script: ptx2mlf.pl. From the

word level mlf the phoneme level mlf was created by:

HLEd -1 ’#%’ -i idmono.mlf -d new.dct ~/dep/lib/labs/mono.hled id.mlf
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A.3 Examples of how the BEEP Phone set is used

BEEP ‘ Examples ‘ BEEP ‘ Examples

aa After, bArs, chAnce, 1AUgh 1 weLL, whiLe

ae mAn, sAck, sAt, tAxi m aMong, caMe, criMe

ah tOUch, Under, amOng, anOther n corNer, crowN, daNger
ao bOred, cOUrse, dOOr, fOUr ng cuttiNG, fiNGer

aw fOUnd, hOUse, nOW, OUr oh gOt, jOb, 10ng

ax ovEr, pErfect, pOlice, quiEt ow mOst, nO, Only

ay qulet, sAY, sIde, wAY oy pOlInted, rOYal, vOIce
b aBout, Bad, Back, elBow ) accePt, comPany, couPle
ch inCH, muCH, quesTIOn, temperaTure | r diveR, eveRy, faR

d tiDe, toDay, tolD, Day S faSt, faCe, handSome
dh furTHer, oTHer, THat sh inspecTion, oCean, selfiSH
ea thERE, awARE, cAREful t fronT, sTared, shouTing
eh clEver, dEAdly, Elbow th teeTH, THanks

er EArn, fIrst, fURther, gIR1 ua you're

ey gAve, grEAt, 1Ater, holidAY uh carefUl], cOUld, gOOd

f leF't, oFF, saFer uw grEW, intO, jEWel

g toGether, younGer, aGain v I’Ve, leaVe, moVe

hh beHind, Had, Hard w Once, QUarter, Waited
ia EAr, fEAr y Year, allen, bEautiful

ih fIsh, fIt, gettIng z buSiness, carS, cloSe

iy friendlY, hE, 1EAve zh expoSure

jh Just, stranGE, oriGinal

k taKe, thanK, tooK

Table A.1: Examples of the BEEP Phone Set
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A.4 Usage of the assessment software

Before starting to work, change to the directory of the subject you are going to label.
Then start the program with : ../Assess & Once the program is started you have
to load the subject data by clicking on Load and then typing the subject ID in the
line where it says: Load filelist:.

Then, the first waveform can be seen together with the word and phone level
transcriptions. The Help button contains some help regarding how to do the pro-
nunciation judgments. Generally, for each sentence you click the judgment button,
score the sentence and then the word level. Following this, you should modify the
phonetic transcription.

In order to score the whole sentence, listen to the sentence with play, then click
the Sent button in the Judgment panel and choose that score which you think
best describes the current sentence.

To score each word of a sentence, click the Word button in the Judgment
panel. Next, click the word you want to judge, use play to listen to it and use
score for scoring.

The main task is correcting the given phonetic transcription based on Standard
Southern British English so that they reflect what actually has been spoken by the

language student. The following options exist to modify the transcriptions:

1. Subs: Substitutes a given phoneme with the correct one. First click on the
phone you want to change, then on Subs in the Phoneme menu. Then you

get asked to type in the correct phone.

2. Bad: Sometimes a phoneme might sound wrong but there is no phoneme

which would describe the sound correctly. Then you can mark it as bad.
3. Del: For a deletion, click on the respective phoneme and then on Del.

4. Ins: For an insertion click on the phoneme, after which you want to insert
something, then click Ins and type in the phone you want to insert. It can
happen that the student repeated a word where he or she was unsure about
the pronunciation, you would have to insert all these phonemes and add a

comment that there was a repetition in the sentence.

The last judgment option is Comment which allows you to note down anything
special about the sentence, i.e. a repetition or some odd ways of pronouncing a
sounds which doesn’t really fit in the given phoneme set.

The remaining buttons in the main window, i.e. Z.in, Z.out, Mark, Unmark,
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Play, —;, i— allow you to mark, zoom in and zoom out different parts of the wave-

form, depending on whichever part you are transcription at the moment.

A.5 Some additional comments:

e I will assign each one who is doing the labelling a set of student data to label.
Each Data set is marked by an two-letter id, the initials of the foreign language
student. The data are organised in one directory for each subject, named with
the respective ID. Each of these directories contains subdirectories called wav
(this one contains the waveforms), cor (this one contains the sentence scores,
the word scores and the comments for each sentence) and lab, which contains
the corrected transcriptions, again one file per sentence. If you want to see
the modifications you have done so far, you can have a look at these files, the

program itself does not allow you to see any of your changes.

e You can use any other phone names to describe foreign sounds for the correc-

tions but I will need a list describing them.

e The scoring scale on the word and sentence level is such that “good” represents
almost native like speech, i.e. only slight accent, whereas “Very Poor” denotes

close to unintelligible speech.

e In order to evaluate these judgments, there will be 20 calibration sentences

which each of you would have to judge.

e You can use the comment section to note down if there were any stops or
repetitions in the sentence or for added or missed words of the desired tran-

scription.

e The word boundaries are based on alignments with British English models.
Since that performs really bad for non-native speech, it happens that you
don’t hear the word you actually want to listen to in the Word Menu. You

can get around this by using Mark in the appropriate part of the waveform.

e You have to be in the speaker’s directory whose data you are to analyse
when starting up the program, which you could do by typing something like :

../Assess & .

e If you start a session, but want to finish before doing all sentences, just quit.
When you restart use Next or Jump to get to the sentence where you left

off. When using Jump it asks you for the sentence name where you what to
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start. These names you can see in the top line of the program window. For

sentence “adaptl.lab” you would have to type “adaptl”, etc.

e The window does not refresh automatically, i.e. if you minimise it or have
another window on top, you get only white space back. If you go to the next

sentence it refreshes.
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A.6 Questionnaire about subjects
Reader’s Questionnaire

We would be grateful if you could complete the questions below. None of the
information will be distributed except information about your sex, age and mother
tongue. Thank you for volunteering !

ID (for experimenter’s use only): .....ccocovoiiiiiiiieiiiiniceinnenne

Please print

Do you have any speech or hearing impairment? ...
What is your mother tongue? ..ot
For how long have you been studying English? ............c.ccccciiiiii..
Where did you live between 4-167 ..........cccociiiiiiiiiiiiiiieeceen et
Do you speak other languages and what level of fluency? ..........................
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A.7 Recording instructions

Dear Speaker,

We thank you for taking part in our project. Your recorded speech will be used
for non-native speech recognition research. Everything will be explained to you, but

if you do get lost, read this or contact the administrator.

You are going to talk into the microphone attached to the headphone that you
wear on your head.

When you start, a box will appear on the screen that will show the text to be
read. These texts have been extracted from simplified stories for students of English
as a second language.

First read the sentence on the screen in silence. Then to start recording that
sentence, you move the cursor to the RECORD square and press the left mouse
button. The square will now say STOP and time will start running. Now repeat
the sentence aloud into the microphone. If you press the left mouse button again
with the cursor on the STOP, the recording will stop. Don’t click STOP before you
finish the sentence! You can now click PLAY on the screen to hear your recording
of the sentence. If everything is all right, go on to the next sentence by clicking
CONTINUE. However, if you said a different word than in the text on the screen,
then click RECORD and the recording starts again. After a session is over you can
click on the QUIT button that will come up after the last sentence and find the
administrator.

Your recording will consist of three parts. First you can practise on three sen-
tences, which will not be stored. Then there will be a story about a diver for about
40 sentences and after that another story for about 80 sentences ( at the top of
the recording box you will see a number saying how many of the total number of
sentences you have recorded so far).

The basic things that you have to think about are to try to speak as naturally and
clearly as possible and to speak at normal loudness. Don’t worry if you mispronounce
a word, we expect and want this to happen.

If you have any questions now or during the recordings, please do not hesitate

to ask the administrator what to do. Thank you and Good Luck!

Silke Witt (Test Administrator)
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