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Abstract

Condition mismatch in the training and testing conditions causes recognition accuracy
of Hidden Markov Model (HMM) recognizers to lower substancially. An Expectation-
Maximization (EM) framework is used for this problem on the set of baseline signal,
mismatched signal caused by car noise and the state sequence through an N-state HMM
source model. Non-iterative cepstral compensation schemes have been derived and im-
plemented to remove the existing mismatch caused by noise. The N-vector format word
modelling the baseline signal is characterized by the sample average of speech vectors in
the HMM state and the average state segmentation points. The Expectation step provides
the mean squared error (MSE) of the acoustic mismatch between the two types of speech
signals and the calculation of the state sequence. The Maximization step consists of the
calculation of N state-based compensation vectors.

State-based cepstral means compensation applied to the training material has brought
good results when applied to a noisy digit database. Because the compensation is word-
dependent, its application needs to be hypothesis-driven on the test material. Its appli-
cation has not yielded very useful recognition results, especially for low signal-to-noise
ratio noisy speech. Robustness of the method in terms of accuracy of the state seg-
mentation boundaries and the applicability of the state-based cepstral means deviation
vector at different signal-to-noise ratios is investigated. An iterative cepstral means shift
technique is attempted and shown to improve (error rate reduction of 45%) on the base-
line matched conditions. The implementation aspects of state-based compensation are
discussed throughout with possible extensions for further improvements. Previous ap-
proaches to tackling mismatch signal modelling in speech are also described.

1 Introduction

Normally, the sensitivity of a small vocabulary speech recognizer to the absolute noise level is
moderate when the system is trained and tested in the same acoustic environment. However,
a mismatch between the training and testing conditions weakens the performance of standard
Hidden Markov model systems. This mismatch condition arises when the recognizer does not
have access to training data associated with the noise conditions in which it will be tested or
the noise conditions are far too wide in range and severity that training must be effected for
just a selected range of those noise conditions.



The Viterbi scoring for discrete HMMs is governed by the equation below where the ‘a’
and ‘b’ parameters have been estimated from the training environment:

Slollj] = max{g[v][i] + a" ][]} +55(O). (1)

In an HMM, the output probability matrix connects the underlying states with the speech
measurements. This represents a direct dependence on the signal-to-noise ratio (SNR) and
the nature of background noise in which the recording is made. This directly affects the
output probability term b;J-(Ot) where Oy is the current observation frame.

In addition, because surrounding noise affects the way somebody articulates the words
(the so-called Lombard effect [1, 2]), this will have an adverse effect on the state transition
matrix of a conventional HMM system trained in a different environment — the state transition
matrix usually captures the different articulations of the vocal apparatus at a segmental level.
For concreteness, consider some 5-state HMMs (left to right with no skips) for a digit database
being obtained from clean speech and speech in a car at 100 Km/h (high-noise speech) and
the average normalized state durations (table 3 and 5). The normalised state durations vary
markedly in some regions between the two speech conditions e.g. for digit one the significant
differences are over states 4 and 5, for digit {wo the differences lie in states 3 and 4 and for
digit nine the differences are over states 2 and 3.

Conventional filtering in the spectral domain treats noisy speech on a frame-by-frame
basis with the noise suppression applied directly to the magnitude FFT-spectrum [3]. Sub-
tractive noise cepstral or spectral preprocessing generally improves SNR considerably [4], but
that does not imply a proportional increase in the recognition system performance. The
problem is that not all speech sounds are affected equally by subtractive-type noise reduction
techniques: lower energy sounds like nasals and plosives tend to be enhanced less than the
voiced portions of words with higher local SNRs. Therefore, every speech vector should not
be treated independently by ascribing a probability distribution which is situated in the in-
dividual vectors of the training data because speech is clearly not an independent identically
distributed (i.i.d.) source. Instead, the probability distribution of the entire training data for
a particular class is parametrically modelled by a (discrete) Hidden Markov source model.
In so doing, the Markov process present in an HMM is crucial because the speech vectors
are highly correlated over several frames and that correlation can be modelled by the state
statistics of the parametric Hidden Markov source model.

Finding a robust noise compensation technique so that the recognizer not only maintains
high performance under matched conditions, but does not suffer extensive degradation when
condition mismatch occurs, has become an important research thrust. By applying a simple
compensation vector (cepstral means shift) to the mismatched speech vector over the entire
utterance, an equalization of the condition of the reference and test material is being at-
tempted. Part of the motivation for doing this comes from the informal observation that for
many features, like the mfcc preprocessor, the major observable SNR-dependent effect is in
fact a shift in the mean value for most of the components of the vector.

Later, it will be shown how by using a priori or iteratively determined mapping vectors
over different regions of an utterance, equalization of the speech statistics of the training and
testing material can be attempted. These mapping vectors are obtained by using the HMM
as source model and, in particular, the property of fairly high correlation among frames
attached to a particular state. The links between this approach and other proposed methods
for mismatched speech recognition and, in particular, noisy speech recognition, will be delayed



until section 4 — more material from the next section will provide a better perspective.

The organization of this report is as follows. Section 2 briefly reviews the Expectation-
Maximization algorithm for solving Maximum Likelihood problems. In section 3, the theory
underpinning cepstral means compensation to the speech material is derived using the EM
framework. Various aspects of the state-based compensation scheme will be discussed along
with other possible compensation schemes. Links with other related techniques are mentioned
in section 4. Section 5 describes the baseline HMM set-up and recognition results. A simple
cepstral compensation experiment is introduced in section 6, followed by the more detailed
state-based one on the training material, but with pre-computed time boundaries in which
to apply these cepstral means shift. The state-based compensation scheme with known state
boundaries applied to the test material is described in section 7. Section 8 assesses the
robustness of the method for the two crucial aspects of accurate segmentation breakpoints
and applicability of cepstral means vector correction at various SNRs. The application of
means shift with unknown state segmentation points has been attempted in an iterative
way in section 9. And finally in section 10, discussions on the overall method and possible
extensions of the work are presented.

2 EM theory

The principle of Expectation-Maximization (EM) theory is briefly outlined here. The main
general references for this section are by Dempster and Redner [5, 6] The ones more specific
to HMMs are by Baum [7, 8] and by Liporace [9].

The EM algorithm is a general approach for maximizing a likelihood or posterior (Bayesian)
function when some of the data are ‘missing’ in some sense, and observation of that missing
data would greatly simplify the estimation of parameters. Without that missing data compo-
nent introduced in the likelihood function, the likelihood function of the original data may be
too difficult or impractical to maximize or simply not accurate enough for some time sequen-
tial problems. In the present HMM case which models sequences of measurement vectors,
data are ‘missing’ not because of any censoring or misrecording, but because of the superpo-
sition of the state sequence whose behaviour is governed by a first-order Markov chain. This
means that the more basic data — the state from which the observation is emitted at time ¢
cannot be observed.

Let Y be the observed ‘incomplete data’ which has the pdf P(Y|#), from which we wish
to estimate the parameter vector §. The maximum likelihood (ML) estimator of # based on
the available incomplete data, is given by

Oy = arg{max Ly (0)}= arg{maxlog P(Y[0)}, (2)

where Ly (6) is the likelihood function of the incomplete data.
At this point, it is assumed that the complete data X have been chosen in such a way
that computing the ML estimator of 8 from the complete data, i.e. solving

~

Ot x = arg{meax Lx(0)}= arg{m‘?xlog P(X16)} (3)

is significantly simpler than solving (2). Lx(8) is the likelihood function of the complete data.
The incomplete data is related to the complete data X through a non-invertible many-to-
one transformation:

Y = J(X). (4)



The transformation J(.) relating X to Y can be any non-invertible transformation. There
may be many possible complete data specifications that will generate the observed data — the
EM algorithm can therefore be implemented in many possible ways. The formulation of the
complete data is crucial because a good one will reduce the complexity and convergence time
of the algorithm. The pdf of X, which is also indexed by 8, is related to Y as follows:

P(Y|0) = /X 5, P10 X (5)

The probability distribution of the parameter vector # conditioned on the data vector Y
using Bayes rule is:

P(Y|6)P(0) 6)
PY) (
For Bayesian estimation, some a priori information is incorporated in the estimate by spec-
ification of the prior P(#). Since P(Y) is a constant for a given data vector belonging to a

particular class, Maximum a posteriori (MAP) estimation yields the following statement:

PO)Y) =

max B(6]Y) = log P(Y|0) + log P(0). (7)
The term B(6]Y') is known as the Bayesian or log posterior function.
It then follows that due to this many-to-one X to Y mapping

P(X,Y|0)  P(X|0)Iy(X) (8)
PYle) —  PXY|e)

P(X|Y:0) =

where Iy (X) is the indicator function which is equal to 1 if X results in ¥ and equal to 0
otherwise. For an HMM, this indicator is the state from which the observation is emitted.

Consider the denominator term of (8). For any é”, the parameter vector at the n-th
iteration in the reestimation algorithm, the following relationship applies:

Ex{log P(Y]0)|Y;0" }= /X ” log P(Y|9)P(X|Y;0™)dX = log P(Y|6), (9)

where Fx{.} is the expectation operator with respect to X, the complete data. P(X|Y; é”)
is the conditional pdf of the complete data, given the incomplete data and the estimate 6".
Combining (8) and (9) by taking log and then the expectation operator gives

log P(Y [6) = Ex{log P(X|0)|V;6" }— Ex{log P(X|Y,0)|Y; " }. (10)
Substituting (10) into (7) results in
B(OY ) = Q(016") — Ex{log P(X|Y,0)|v;6"}, (11)

where

Q(016") = Ex{log P(X|0)|Y;0" }+1og P(6). (12)

The first term is the conditional expectation of the log likelihood of the complete data, given
the observed incomplete data Y and 6™.
So, (12) can be re-written as:

Q816™) = L(816™) + log P(6), (13)



where

L(8]6") = Ex{log P(X|0)|Y;6"} (14)
From Jensen’s inequality [10] (pages 49-50) for any gr+1 # gr,

Ex{log P(X|Y,0"+")|y; 0" }< Ex{log P(X|V,0")

v;6}, (15)
with equality if and only if
log P(X|V;6™1) = log P(X|Y;6™). (16)

It follows that a sufficient condition for B(§"+!|Y') > B("|Y) is
Q(7+116™) > Q(6™9") since the second term of (11) is guaranteed not to decrease by Jensen’s
inequality.

In general, if B(A|Y') is not unimodal, the EM approach at best assures convergence of the
sequence {6™} to a stationary value. The convergence point will normally not be the global
maximum of the object function for a complicated problem — several starting points in the
initial parameter vector space may be needed to locate the best maxima. For the finer points
of the convergence of the EM algorithm, refer to Wu’s work [11].

The EM algorithm is the application of those two steps below, in an iterative way, until
a pre-defined threshold is attained.

The E-step

Starting with an estimate of the parameter vector ™ for the n-th iteration of the rees-
timation algorithm, the EM algorithm for MAP estimation consists of the Expectation step
(E-step) whereby

Ex{log P(X|Y,0)|v;0"} (17)

is formed i.e. the expected value of the logarithm of the pdf of the complete data is evaluated,
where the expectation is with respect to the probability measure defined by the incomplete
data and the current parameters. The E-step thus finds the conditional expectation of the
suflicient statistic for the complete data log likelihood. Note that the E-step is not affected
by the prior term.

The M-step
The Maximization step (M-step) corresponds to the maximization of the log likelihood
function, L(0|6™) with respect to . This leads to a new parameter estimate g(n+1)

gt = arg{mng(ﬂé(”))}. (18)
For the posterior function, solve

arg{max Q(610")}, (19)

where

Q018™) = Ex{log P(X|0)|Y;0" }+1og P(8). (20)



The complete data log likelihood is maximized with respect to the unknown parameters, with
the conditional expectation of the sufficient statistics substituted in place of their unknown
values. The choice of the prior function will affect this maximization step of the EM algorithm
for the posterior function.

For the log likelihood function where Lx(6) is defined on the true complete data, L(6]6(")
uses the conditional expectation of the complete data. The maximization of L(8]§(")) with
respect to 0 is therefore of the same complexity as the maximization of Lx(6). Because of
this, the EM algorithm is an attractive alternative to the direct evaluation of (2) only if
the solution to (3) can be computed relatively easily. Solving the more general @ function
with the prior term depends on a judicious choice of this prior term. If components of the
complete data X are independent, the complete data likelihood function is a linear function
of the incomplete data — the M-step only requires the optimization of a set of those functions.
This decoupling is fundamental to signal mismatch problems, as will be seen in the subsequent
sections.

3 EM treatment

The statement of the problem is as follows. Given some speech samples of a baseline signal
and some speech samples of a mismatched signal (from the same class) where the mismatch
is caused by noise, how are the statistics of the mismatched signal to be modified in such
a way that the resulting statistical characteristics come as close as possible to the baseline
signal (in effect the training data)? On top of that, when carrying out the transformation,
how is the average timing information kept, in the sense that the sequence of low and high-
SNR regions in the two different speech conditions ought to correspond? The first question is
answered by using a simple cepstral means compensation vector applied to the mismatched
signal. The second question is answered by using the correspondence afforded by HMMs that
have been aligned to the two different speech conditions and the resulting HMM state-to-state
alignment. The EM framework will be used for this mismatch and, in particular, the noisy
speech recognition problem.

The techniques developed are expected to apply to cases such as different telephone sets
and microphones which result in acoustic mismatches between the gathered speech data,
different background noise conditions and room acoustics, and mismatches incurred in speech
recordings from different voice transmission systems. The mismatch can also arise from
different speakers’ utterances, stressed speech or different speakers’ codebooks. Although
discrete HMMs are used, most of the compensation techniques developed extend to continuous
density HMMs in a straighforward way, simply because the modification is applied to the
speech vectors before the intervening HMM training or recognition phase.

A speaker-dependent, digit vocabulary database will be the particular focus of the com-
pensation process. Two assumptions will be made about the nature and effect of the noise
disturbance on the speech that will subsequently yield a simplified compensation scheme.
Firstly, only slowly changing noise at a spectral level (car noise can be considered to fit into
this category) will be considered. Secondly, a nominal SNR treatment will be followed. The
SNR dependency will be global throughout all the experiments in that only the nominal
SNR of the speech needs to be known, despite the widely varying instantaneous SNR of the
individual speech frames.

Section 3.1 introduces the incomplete and complete data set for the mismatch problem,



the relationship between the incomplete and complete data and the parameter vector. The
E-step and M-step are applied to the different signals in the cepstral domain to derive state-
based compensation vectors, the state sequence and the length-normalized mean squared error
(MSE) of the two speech conditions. The overall effect of the compensation is to bring about
a length-normalized MSE reduction between the two types of speech conditions. Section 3.2
discusses some aspects of the state-based compensation scheme. Finally, by dropping and/or
relaxing the state-based mapping between the two different speech signals, other compensation
schemes are possible and this is described in section 3.3.

3.1 EM formulation

additive
noise
e(t)
hmm source clean + noisy
model speech s(t) \_' / speech  y;(t)
state sequence
x(t)

veil
Figure 1: Source and noise model used in mismatched speech recognition.

e1(t) can be regarded as the mismatch statistics between the input signal y;(¢) and the signal
from the Hidden Markov source model s(¢) with state sequence z(¢). The incomplete but
observable data Y is yi(t). The complete data X are postulated to be the set of signals
{s(t),z(t),y1(¢)} . In Ephraim’s work [12], in effect, a slightly different complete data set is
used (s(t), (), y1(t) and A(t), the mixture component from a continuous density HMM).
Dembo used a slightly different complete data set in analyzing the signal reconstruction of
data from noisy transforms [13]. The interactions between the different signals are shown
diagrammatically in figure 1 and the notations are listed below.

N total number of states in a Markov chain

T total number of frames in the utterance

y1(t) input speech mfcc vector

s(t)  corresponding baseline speech mfcc vector

z(t) state sequence through the Markov chain of the HMM (€ [1, N])
modelling the baseline signal s

e1(t) corresponding ‘noise’ mfcc vector

y1(t) is a vector but will not be denoted in bold. Instead, the whole sequence {y1(?)}
from t = 1 to t = T will be denoted by the bold font term y;. The same applies to the



sequences x(t), e1(t) and s(¢). The unknown parameter vector 8 is the sequence of cepstral
means deviation vectors {e1(¢)}. Assume, for the moment, that y; and s belong to the same
class. The following additive signal and noise model used in figure 1 has the relationship:

yi(t) = s(1) + ex(t) (21)

Suppose that the complete data are available. The corresponding complete-data likelihood
is:

LC(O) = 1Og fyl,x,s(YthS§0) (22&)
= log fy,jsx(¥1ls,x;0) + log fs x(s,x;6) (22b)
= log fey, x(sly1,x;0) + log fs x(s,%;0) + K, (22¢)

where K is a constant term likelihood. Bayes’ rule is used in the last step, i.e.

f(yl)f(slylvx)'

fly1ls,x) = 23)
( 1| . f(S) ( )
Note the decoupling of the Hidden Markov source model term and the signal term.
The E-step
By using the linear property of the Expectation operator,
E(A+ B)=E(A)+ E(B) (24)
and from (22), the E-step involves the calculation:
Ex{log P(X[0)V;0"} = Eqy, x{log fay, x(sly1, %, 0)ly1,0" | (25a)
+Es x{log fox(s,x[0)]s,0"}. (25b)

A Viterbi decoding is first carried out to obtain the most likely state sequence (6™ are the
parameter estimates at the n-th iteration). This is one of the key aspects of the E-step in
order to take advantage of the correlated property of frames attached to states in the HMM.
Thus,

x = x* = FE[x|y1;0"]. (26)
The second term in (25) can be simplified as follows:
ESX*{log fsyx*(s,x*|0)|s,é”} = ES,X*{log f(x*;é”)f(s|x*;é”)} (27a)
T
= H log ax?_lz?bz?(st) (27b)
t=1

with the ‘@’ and ‘0’ elements being those of the HMM modelling the baseline signal s. The
initial and final state transition matrix can be ignored for the current purpose.
Thus, (25) can now be re-written as:

Ex{log P(X|0)[Y;8"} = Fyy, xe{l0g fepy, xe(sly1, %", 0)ly1,0" } (28a)
T

+ H log axf_lz;%bxr(st) (28b)
=1



The first term of (28) is the mean squared error estimate of the acoustic mismatch between
the baseline speech s(¢) and the observed speech y;(¢) [14]. The second term in (28) is exactly
the HMM E-step but with a single dominant sequence through the Markov chain and has
already been shown to simplify to the calculation of the log likelihood of the observation [15].

The M step

The matching criterion between the two types of speech y; and s is chosen to be the
mean squared error because of its mathematical tractability. The noise vector sequence e; is
postulated to be the sequence of state-based vectors {c,,1 < p < N}, which is applied to the
input mismatched signal.

The update of the signal e4(?) is given (from (18) ) b

ooty = arg [m@aXEX {log P(xX|0)|Y;6"}] (292)
= arg [r%elmx{log fs|y17x(s|y1,x*,0)|y1,x*,é”} (29b)

T
+ I%?X{E log arf_lft*bf?(st)}] (29c¢)

T
= arg [Héiln{”yl —s|| | Y17X*,én}+ HglLX{H log ax;«_lgc;rbﬂ«(st)}] (29d)
t=1

= arg [mse(x*)] ) (29e)

where

mse(x*) = mln{z T & Z | (g1 (t)xex — €p) — s(t)xex |2 }—I— Hlog Az zxbrr(st).  (30)

T[p] is the number of frames for which p is the HMM state index among all the frames in the
speech material concerned.
By differentiating with respect to c,, the final state-based correction vectors can easily be

shown to be:
T[p] T[p]

Zyl( et — S s(ge 1< p< . (31)
Tlpl =
(31) applies for a single utterance but is easily generalized to multiple utterances since these
are independent of each other. Compensation vectors can be applied to the baseline signal
s(t) instead of the incoming signal yq(¢) and similar compensation vectors to (31) can be
derived with the signs reversed. Alternative ways of providing correspondence between the
mismatched and baseline signals will be explored in subsection 3.3. From (28), mse(x*)
(refer to (30) ) with ¢, plugged in represents the actual E-step and partly corresponds to the
length-normalized MSE between y; and s — this allows the iterative process to be monitored.
Combining the scores of the acoustic mismatch and the log likelihood is possible but depends
on a bias term to give equal weightings to the two terms. This avenue has not been investigated
in this dissertation.

(31) implies that s(¢) has to be aligned by x* derived from the mismatched signal y;. But
normally many instances of the training material are present, so a more accurate segmentation



can be derived, namely

xtrain — flx|s; 6"]. (32)
Thus, (31) is modified into:
1 Tl Tlp]
% = 700 ; Y1 ()5 — 0l ; $(t)gtrain 1< p < N. (33)

If many utterances characterising the speech signal y; are available and the identity of the
class is known, x* can be computed from these samples. This allows the calculation of the
average state sequence (or the average normalized state segmentation points) and the average
state statistics for both signals y; and s (the training data). Thus, non-iterative compensation
schemes can be derived because of the a priori determined state-based compensation vectors
from (33).

If previous samples of signal y; are not available, an iterative compensation scheme is
required. The E-step consists of

1. The estimation of the MSE of the mismatch between the two speech signals i.e. (30) with
vectors calculated by (33) from the previous iteration plugged in. The bias introduced
by the HMM term is disregarded.

2. The calculation of the state sequence, or equivalently the state segmentation boundaries,
given the estimated cleaner speech signal §;(¢) from the previous iteration i.e. (26).

The M-step consists of

1. The calculation of the state-based compensation vectorsi.e. (33) with the state sequence
derived in the E-step.

By alternating between the E-step and the M-step, the statistics of the incoming signal are
brought closer to the statistics of the baseline reference signal. Better recognition results
ought to follow.

To summarize, the incomplete data are Y = {y1(¢)}, the complete data are
X = {wi(t),s(t),z(t)} and the parameters to be estimated § = {e1(¢)}, 1 < ¢t < T. The
relationship between X and Y is through these two elements:

1. The baseline signal s(t) is related to the HMM state sequence x(¢). This link has already
been discussed by Wong [15].

2. An additive signal and noise model is used:
n (1) = (1) + ex(2). (34)

The E-step and M-step have been derived in the discussion above.

Implementation details of the collection of state-based compensation vectors necessary
for non-iterative compensations schemes will be given in subsection 6.2 after some baseline
experiments (section 5) that have been carried out are described. The next section (3.2) de-
scribes some aspects and implications of using a state-based compensation scheme in tackling
mismatch speech recognition caused by noise.

10



3.2 State-based compensation scheme

The operation consisting of the use of a word-dependent and state-dependent cepstral means
shift vector in compensating for the mismatched speech condition will henceforth be called
state-based cepstral (means) domain compensation (SBCDC). At the mel-scale cepstral vector
level, the following transformation is applied at a particular SNR:

(i)y=st+ec, 1<p<N (35)

where (§1), is the compensated mfcc vector, s; is the ‘clean’ mfcc vector, all at time ¢, and ¢, !
is the state-based compensation vector. This implies that armed with some knowledge of the
compensation vector a simple vector subtraction is enough to recover the clean speech vector
at each frame. Conversely, the noise disturbance vector can be added to some ‘clean’ vector to
eventually give a sequence of vectors whose distribution and overall statistical characteristics
correspond to that of the noisy speech.

Because of the state dependency, (35) is assumed valid over a partial region of the speech
associated with the frames in between the segmentation points achieved by an HMM in
dividing the speech into quasi-stationary regions. This should be contrasted to the work
by Chen [16] whereby the so-called additive stress component is constant throughout the
whole utterance. The first-order Markov property of the HMM state transition process and
the correlated frames it encompasses, even for noisy signals, makes the speech estimates
in adjacent frames state-dependent. The validity of this approach is further made more
realistic by consideration of these two limits: often, up to 3-4 frames across parts of the
vector quantization (VQ) encoded speech for speaker-dependent digit vocabulary and fairly
low-order codebook are identical and for a larger portion of speech covered by a phoneme the
associated speech vectors might be affected equally by the disturbance vector.

The compensation vector ¢, can be considered to depend on the speech sound concerned.
It is reasonable to hypothesize that fricatives, for example, will be affected differently in
noise at the spectral/cepstral level than say, vowels. Generally speaking, this implies that
the different phonemes comprising the different digits are affected differently by (car) noise.
Certainly, work by Stanton and Pisoni [1, 2] shows different patterns of energy migration
in the frequency domain for English phonemes in clean and Lombard conditions. A similar
conclusion can be postulated to hold for noisy speech as the Lombard effect is inherent in the
process. Because the dependency implies some subword detection, and the different digits
have sufficiently distinctive sequences of phonemes, this disturbance vector can be assumed
to be word-dependent. More specificity will be present in using these statistics later on.

In the EM framework, the source model generating the clean speech signal is an HMM,
and it seems natural for SBCDC to directly use HMM B probabilities and a knowledge of
the codevectors to derive a compensation vector rather than the sample average of the terms
present in (33). However, this is possibly ill-advised, and shown experimentally to be so later
on, even when the original derivation requires the HMM as source model. The argument runs
as follows: Because each HMM state represents distributions of feature vectors over several
frames, the training data speech vectors belonging to state ¢ of the reference model in SBCDC

1Depending on the application, cp without the state dependency has variously been known as compensa-
tion, correction, adaptation, equalization, deviation, shift, reconstruction, adjustment, restoration, restitution,
normalization, mapping or ‘stress component’ vector in the various noisy speech, speech enhancement, spectral
mapping, stress compensation, codebook adaptation and speaker adaptation literature.
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could be averaged by:
M
vector; = Zbiﬁ/}, (36)
i=1

where b;; is the probability of the j-th codeword emitted from state 7, V; is the j-th codeword
and M is the number of codevectors. But that HMM is normally trained by a total likelihood
criterion, which is a sum of probabilities over all possible state sequences. In contrast, the
‘best’ state sequence imposed in the E-step derivation of SBCDC allows for an approximate
but simplified cepstral compensation scheme. The discrepancy between these two ways of
traversing the Markov chain may explain why representing the average vector in a state by
the above summation consistently gives marginally lower recognition results (section 7).

In addition, errors arising from VQ encoding and inadequately trained or incorrectly
modelled B parameters make it preferable to pick vectors pertaining to a state from the
actual training vectors and do the averaging thereafter. Besides, the parametric Hidden
Markov source model is invoked in the derivation only to simplify the systematic calculation
of correlated quasi-stationary regions of speech and their boundaries.

The probability distributions of the speech baseline signal and the input mismatched
signal statistics will first be estimated from long training sequences from the two processes by
estimating average vectors over some pre-calculated regions (section 6) or regions subsequently
found in an iterative process (section 9). Then, estimation of the attempted closer matched
speech signal is obtained by doing a means shift in the corresponding mapped regions of
the two speech conditions. Correlation among frames belonging to an HMM state and the
average timing information is preserved in this way. The investigation and specific use of
the means shift directed on the training data is described in subsection 6.3, on the test data
in section 7 and on both train and test data simultaneously in subsection 7.5. Robustness
of these pre-calculated state segmentation points is dealt with in section 8. Applicability of
the cepstral means information in the pre-calculated regions to speech with different SNRs is
investigated in the same section (8).

3.3 Discussions of other compensation schemes

Other possible correspondences between the baseline and mismatched signal are possible.
The state dependency can be dropped, in which case the equivalent normalised MSE (30) is
modified to:

1 T
mse = I%%H{T; I (s (1) = <) = s(2) |I* . (37)

By differentiating with respect to ¢, the final correction vectors can easily be shown to be:

1 & 1 & ‘
d == Z n(t) — = Z s(t). (38)
T Ti=
This word-based, whole-utterance compensation thus applies an average correction to the
sequence of input vectors. Normally, the sample average of the reference or noisy vectors are
obtained from many utterances. Experimental results using this simple technique are given
in subsection 6.1. However, the piecewise treatment of SBCDC to reduce the mean squared
error will be shown in subsection 6.3 to result in better recognition results compared to the
simple treatment of a constant vector over the entire utterance.
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This algorithm has been undertaken for mismatched training and testing microphones
where a fixed additive correction vector is applied to the cepstral coefficients [17]. The com-
pensation vectors are estimated with a minimum mean squared error criterion by computing
the average difference between cepstral vectors for the test condition versus the standard
acoustic training environment. This technique provides a considerable improvement when
the system is trained and tested on different microphones.

The state-based mapping can also be relaxed in the following way. A VQ-based mapping
has been postulated by Feng for a complex modelling of the two cepstral spaces [18]. However,
a warping function ¢ = (i(t), j(¢)) needs to be defined now between the two speech signals by
using a Dynamic Time Warping algorithm. In effect, the reference (or mismatched) vector
sequences can be shifted by a set of VQ-dependent vectors {cy,---,¢y, -, cy} where Y is
the total number of codevectors present in the codebook. Let T[y] be the total number of
frames for which y is the VQ index among all the frames in the speech material concerned.
Analogous to (30), the normalised MSE term will be:

L Ty
mse() = min{ 3 7o 30 1l (D — ) = sl I (39)
y=1 t=1

By differentiating with respect to c¢¥, the final correction vectors can easily be shown to be:

1 Tly] 1 T'ly]
"= T Dity = 7 t); 1<y<Y. A0
- O R 15 w

The timing of the mismatch statistics is captured by the rate of variation of the VQ indices.
The correction vector will be different for every codebook vector.

4 Links with other methods

Some of the works described briefly below attempt to find a probabilistic, empirical or deter-
ministic method for mapping the mismatched speech vectors caused by stressed conditions,
environment noise, different speakers or different microphones into the space of the baseline
material. For example, if noise is the main cause of the mismatch, the mapped estimates are
then used to correct back a given noisy speech sequence into a cleaner one.

No attempt is made in this work to divide the utterances into their phonemic constituents,
unlike Bocchieri’s work [19] in which an explicit time template of the acoustic events charac-
terizing a particular word has to be pre-defined. The cepstral changes, as monitored by the
HMM states, guide the selection of marked acoustic events rather than their relationship with
the traditional, but more linguistically relevant phonemic context. On the other hand, the
utterance could be divided linearly into 5 sections as in Shore’s work [20], but the segmental
properties associated with HMM state breakpoints will be missed.

A correspondence between the clean and the noisy signal can be established through
spectral mapping [21]. Here, in effect, a VQ-dependent mapping is provided, and the mapping
is a deterministic one. The inverse mapping produces the restored spectrum. The approach by
Nadas [22] is to provide a piecewise mapping which is encoded by a linear model. The model
parameters change in the two different speech conditions from one fairly stationary region to
another. In SBCDC, the quasi-stationary region is covered or presumed to be covered by an
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HMM state and the mapping from the two different speech conditions is just a means shift
in the preprocessing parameters.

The work by Gish merits special attention because the state dependency and the amount
of correlation that exists among nearby frames are not put to use explicitly [23]. Instead,
a VQ-dependency and SNR-dependency is presupposed with a more general mapping in the
form of a linear model. The relation between the clean and noisy vectors was defined as:

e = A(k,y;)xn + b(k,v;) + €, (41)

where z. and z, are the clean and noisy vectors respectively, € is the zero mean Gaussian
vector, 7; means that the SNR is in the j-th quantization region and £ refers to the VQ bin.
The same transformation is used in Roucos’s work [24] to improve the match between the
reference and the input speakers for vocoding purposes.

Acero attempts a probabilistic mapping as well, although now the VQ-dependency is
dropped in favour of all the codewords supplying an amount of information to correct the
mismatched speech vectors [17]. In Porter’s work [14], an empirical mapping is carried out — a
clean speech database and a simulated noisy version is used to construct a function that maps
a noisy spectral component at each single frequency to a noise-suppressed value. Using the
ratio of sample averages to approximate the optimal estimator has the significant practical
advantage that the a priori distribution of the uncorrupted speech vectors need not be known.

Explicit noise compensation is possible. Noisy speech vectors can be modified from a
priori estimated noise and speech signal pdfs and their camulative pdfs by the key assumption
that at each time frame either the speech or noise is the dominant signal. The MIXMAX
model [25] involves creation of noise-compensated pdfs which are then used to facilitate VQ
labelling of each noisy spectral vector. Essentially, the same task is attempted by Varga
[26]. The problem is to obtain the best estimate of the likelihood of an input observation
conditioned on a particular HMM state which models the clean speech, and given an estimate
of the amount of noise present from a noise estimator.

The objective of using compensation techniques in speaker adaptation is to establish
mapping rules for each test speaker which will change the test utterance spectra to resemble
the reference set spectra. In codebook adaptation, the test utterance represented by a string
of VQ indices remain untouched whereas the codebook which clusters the reference speech is
modified. In Roe’s work [27], the spectral shape of each codevector is modified to simulate
the Lombard effect and an estimate of the background noise is added to each codevector.
The work by Furui attempts to hierarchically modify the codebook for a new speaker by a
series of mean shifts [28]. The key aspect in his procedure was to keep the continuity of the
adjacent clusters in order to preserve the phonetic information as much as possible and to
keep some timing information as well.

The major effect of stress conditions (like being angry, talking loudly, etc.) is considered
to be a spectral tilt relative to normal speech, and so by capturing the amount of tilt, the
original normal spectrum can be restored. Multi-style training explicitly uses the stressed
speech to create HMMs [29] . Chen assumes that the stress component modelling the loud
or shout condition of speech remains unchanged within the word interval [16]. A slightly
modified relationship to (35) is used:

yi = X + ng + 6, (42)
where y; is the noisy vector, x; is the ‘clean’ vector, n; is the noise vector (called the stress

component) and the last term é; simulates the randomness of the clean speech parameters.
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The stress component is derived from the sample average of the observation sequence and from
a weighted sample average governed by state occupancy over all the states of a hypothesised
HMM reference word. Explicit formant compensation has been carried out by Hansen [30].

There are several points of similarity between SBCDC and the speech enhancement scheme
by Ephraim [12]. The scheme centers on using the correlated property of frames associated
with an HMM state to apply a set of Wiener filters to correct the corresponding noisy speech
frames. The filtering of a noisy region of speech depends on the decoded state sequence of
a CDHMM which models all the vocabulary set at once. The particular state (and mixture
component) dictates the choice of a particular Wiener filter out of a finite set which has been
trained on clean speech. The filtering depends as well on the knowledge of the noise process
which has been modelled separately, whereas in SBCDC the ‘noise’ component is modelled
empirically on a digit-dependent and region-dependent (covered by an HMM state) vector,
which is an estimated sample average rather than from an assumed parametric distribution.
Ephraim uses a Wiener filter to enhance the noisy sequence whereas SBCDC attempts the
equalization of the two speech conditions in the cepstral domain.

The region over which to apply Wiener filtering or SBCDC can be determined a prior:
given some samples of the clean speech or iteratively given that the only bootstrap is the
mismatched signal in the first place. However, because of the word-dependent nature of the
compensation in SBCDC, application to the test material is more problematic. Moreover,
speech recognition objectives are different from those of speech enhancement. As long as
the pattern and level of distortion introduced by the several stages from preprocessing, VQ
and Hidden Markov modelling inaccuracies are the same during training and testing of the
recognizer, discrimination can be left largely unaffected.

5 Baseline set-up

This section describes briefly the whole set-up for conventional digit HMM recognition. This
includes preprocessing, vector quantization, HMM training and recognition, and the baseline
results obtained.

5.1 Speech database and Hidden Markov Model details

In the absence of widely available noisy databases, a locally recorded one was used. The
database contains ten digits, recorded by one speaker in three different noise environments:
36 examples of each digit in a noise-free environment (referred to as clean speech), 18 examples
in a stationary car with the engine running (referred to as low-noise speech) and 18 examples
in a car being driven at nominally 100 Km/h (referred to as high-noise speech) and at an
estimated SNR of -7 dB. The sampling rate is 16 KHz and the speech material has been
hand-segmented.

A single mel-frequency scale cpestral coefficient (mfec) codebook was used [31]. Unlike
in phoneme and word recognition tasks, inclusion of the unmodified intensity value in each
vector or as an independent preprocessor may reduce noisy speech recognition performance
as, for instance, demonstrated by Noll [32]. The inclusion of differential mfcc coefficients
through another codebook or affixed to the current vector will generally reinforce recognition
rate. However, for simplicity, this inclusion has not been put into effect.

The variations in speech mel-frequency scale cepstral coefficients of clean and noisy speech
have first been studied. When examining the distribution of mfcc for the three types of speech
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considered, a higher variance is noted that is associated with the clean speech mfcc relative
to the low-noise and high-noise cases. In addition, Gaussian type behaviour is noted for all
the coeflicients, except for the first one where a bimodal distribution is apparent.

non-emitting
exit state

Figure 2: 5-state HMM with no skip transitions and non-emitting states at both ends.

A 5-state, discrete probability density HMM (figure 2) is used with an exit to a degenerate
state. About 4500 10-th order mfcc training vectors are used to train the codebook by a
clustering algorithm [33] into 64 prototype vectors. Mansour’s beta distortion measure is used
[34]. The baseline experiments described below using this distortion metric show its slight
superiority over the Fuclidean measure for real noisy speech. Each HMM is trained from 9
instances of a particular digit by the Forward-Backward algorithm [35]. Only 3 iterations
are deemed sufficient for convergence. Recognition is done using the Viterbi algorithm [35],
modified to take into account the exit to the non-emitting final state. The test set consists
of 90 utterances, nine from each digit.

Because every experiment uses the same training and testing data sets, all the results are
directly comparable. The experiments are carried out to see how various mismatch conditions
affect the recognition results. Later, when different compensation schemes are applied to the
different situations, the improvement in performance relative to those baseline results and
the effectiveness of SBCDC in correcting that mismatch condition can be assessed. It can be
argued that the mismatch situation high-noise train data/clean test case, to take an example,
is an unrealistic task. However, the objective here is to apply SBCDC in such cases to find the
performance limit of the transformation. In other related fields, an analogous situation would
be a system trained on speech recorded by a low-quality microphone but then tested on a
higher-quality microphone or in speaker adaptation a recognition system trained on ‘difficult’
speakers but then tested on a ‘standard’ one.

5.2 Baseline experimental results

The results (table 1) fall in line with other published results on this database [36, 37]. Best
results are obtained when the train and test conditions match. The higher the SNR, the
better the recognition results are. The terms in brackets show some of the results achieved
for a Euclidean distortion measure in the VQ process with the other results barely affected,
save for a 1% variation. Thus, the beta distortion metric will be used throughout whenever
VQ is carried out.
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clean test | low-noise test | high-noise test

(010-019) |  (046-055) (064-072)
clean train data (001-009) 100.0 64.5 20.0 (16.7)
low-noise train data (037-045) 80.0 90.0 18.9 (15.6)

high-noise train data (055-063) | 43.3 (32.3) | 35.6 (33.4) | 74.5 (67.8)

Table 1: Baseline results using mfcc as preprocessor and VQ beta distortion measure. The
values in italics give the results using a VQ Euclidean distortion measure. The numbers in
brackets identify the specific training and testing examples used throughout the experiments.

One of the recurring features of these preliminary recognition experiments seems to be
that the digit siz is never recognized for the low-noise case as training data. The most
probable cause is segmentation errors during the hand labelling 2 and besides the digit siz is
notoriously difficult to segment in low SNR conditions. A look at the VQ distortion given by
a representative set of vectors on a clean codebook indicates that the digit siz suffers more
than others in terms of average VQ distortion, especially for the low-noise data.

6 State-based cepstral domain compensation — a priori seg-
mentation

This section starts by describing a simple digit-based compensation scheme, later extended to
a more detailed state-based one. The details of the collection of state-based speech statistics
and general points about the compensation scheme and its practical implementation are
given. Empirical cepstral means shifts are derived from aligned HMMs of the corresponding
clean and noisy speech. The potential benefits in carrying out SBCDC are enumerated. It
should be emphasized that all the developments in this section are carried out under the
implicit assumption that the segmentation points at which different sets of cepstral means
shift operate are known a priori, and then used a posterioriin the handling of the mismatched
speech vectors.

6.1 Simple whole-utterance cepstral means adjustment scheme

The combined Lombard and surrounding noise effects can be compensated, to some extent, by
applying a simple cepstral compensation to the corresponding speech. For instance, average
speech statistics for clean and noisy speech can be collected in a word-dependent fashion and
used to disturb the clean training material to make it resemble noisy training material by
applying a cepstral means shift on a vector-by-vector basis.

By using the whole utterance scheme described in section 3.3, the results in table 2 are
obtained. A set of 10 adjusted HMMs are derived and are then aligned by the Viterbi algo-
rithm to the test material. For the low-noise training material, we subtract low-noise means
shift to obtain clean ‘look-alike’ speech. The same principle is applied to other train/test

2Recognition has been attempted using a one-state silence HMM at the beginning and end of the 5-state
word model. There is hardly any improvement over the baseline [38]. Even after the silence models are removed
and in the expectation that the speech material has been under-segmented, the utterances are segmented from
a previous run of the Viterbi algorithm to get rid of the presumable begin and end silences (usually found to
be no more than 3 frames) but the results are not improved.
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conditions. The nominal SNR is assumed known for the test material. Calculation of Percent
Recovery or error rate reduction (e.r.r) is given from the error rate (E.R) by:

E-RBaseline - E-RCOmpensated

43
E-RBaseline - E-RMatched ( )

Percent Recovery = 100%

Compared to the baseline performance, table 1, there is a measurable improvement in per-
formance with better results for the high SNR test material than with the low SNR test
material.

clean test | low-noise test | high-noise test
clean train data 100.0 71.1 31.1
low-noise train data 87.8 90.0 33.3
high-noise train data 68.9 51.1 74.5
clean train data 26 20
low-noise train data 39 26
high-noise train data 45 28

Table 2: Recognition results in the upper half using digit-dependent whole-utterance cepstral
means adjustment of training material. The lower half indicates the error reduction rate
relative to the baseline matched training and testing conditions.

6.2 Collection of state-based cepstral means shift

The word-dependent, state-dependent statistics are collected as follows: Word HMMs are
trained on the clean and noisy speech material separately. The corresponding observation
sequences are then time-aligned with the corresponding word HMM using the Viterbi algo-
rithm. Speech vectors associated with each state of the HMM are collected. The relatively low
variances associated with the average normalized state duration suggest that the speech ma-
terial, whether clean or noisy, divides itself well into stable regions of each state of the HMM.
Averaging of the mfcc vectors in each state and subtraction of the clean from the noisy av-
erage yields a digit-dependent and state-dependent cepstral means shift vector. Whenever
cepstral means adjustment is applied to the speech material, the average normalized duration
of a particular state multiplied by the total number of frames in the observation sequence for
that particular word yields the number of frames that a particular set of cepstral means is
applied. Some speaking rate normalization is achieved in the same step. The whole process
is summarized in figure 3.
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Figure 3: Implicit state-to-state alignment for the estimation of average mfcc vectors and

state durations.

Table 3, 4 and 5 show for some digits the actual average normalized duration in each state

for each of the three types of speech.

digit dur. var.

zero || 0.26,0.18,0.22,0.20,0.15 | 0.012,0.006,0.005,0.010,0.002
one || 0.28,0.18,0.16,0.33,0.05 | 0.006,0.001,0.000,0.005,0.001
two || 0.26,0.13,0.30,0.19,0.12 | 0.002,0.002,0.002,0.002,0.006
nine || 0.23,0.12,0.19,0.16,0.14 | 0.012,0.002,0.011,0.003,0.008

Table 3: Average normalized state durations and variances for clean speech for a 5-state

HMM.

digit dur. var.

zero || 0.26,0.16,0.03,0.40,0.14 | 0.010,0.001,0.000,0.025,0.012
one | 0.28,0.15,0.14,0.27,0.16 | 0.014,0.002,0.003,0.011,0.010
two | 0.28,0.10,0.24,0.15,0.23 | 0.003,0.007,0.003,0.005,0.008
nine | 0.24,0.08,0.13,0.10,0.24 | 0.010,0.000,0.003,0.003,0.008

Table 4: Average normalized state durations and variances for low-noise speech for a 5-state

HMM.
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digit dur. var.

zero | 0.24,0.15,0.19,0.29.0.12 | 0.008,0.013,0.015,0.016,0.004
one || 0.22,0.24,0.18,0.10,0.27 | 0.009,0.012,0.020,0.008,0.043
two || 0.29,0.14,0.12,0.32,0.13 | 0.014,0.002,0.006,0.015,0.007

nine || 0.21,0.30,0.11,0.18,0.22 | 0.006,0.004,0.001,0.008,0.032

Table 5: Average normalized state durations and variances for high-noise speech for a 5-state
HMM.

Viterbi decoding applying N-state HMMs to an observation sequence allows the identity
of particular frames that are attached to each of the /V states to be known. Each of these
N states will presumably represent statistical regions of speech that will be different from
the adjacent states. The objective of state-based cepstral (means) domain compensation
(SBCDC) is to change each mfcc vector attached to a particular state, or hypothesized to be
attached to a particular state, to that value that might have been observed if the underlying
speech event had occurred in different ambient conditions and noise levels. On the other
hand, the generalization to other SNRs may at first seem restricted and those cepstral means
may be too data-dependent and speaker-dependent. These concerns will be addressed in the
coming sections except the speaker-dependency of the cepstral means.

This state-to-state alignment has been implemented in an identical way in Shinoda’s work
[39]. Standard speaker’s HMMs are used in Viterbi algorithm to segment training data for a
new speaker. The feature vector for each frame period is time-aligned with an HMM state,
and the mean vector for each HMM state is replaced with the average of those feature vectors
which have been time-aligned to the state.

training material recognition results
on training material
clean:(001-009) 100.0
low-noise:(037-045) 100.0
high-noise:(055-063) 100.0

Table 6: Recognition tests on training material.

The recognition results when doing the state-to-state alignment on the training material are
shown in table 6. Because the results are perfect, high confidence can be placed in the Viterbi
decoded state sequence. This method of state-to-state alignment has been made possible
because of the relative low confusability of the digit vocabulary — had there been a wrongly
decoded model (i.e. an incorrect recognition), the state-to-state alignment for that particular
observation sequence would have to have been modified by either forgetting that sequence or
else going to its correct model but incorrectly Viterbi decoded and then collecting the state
information. Three different types of cepstral means deviations, acting as a measure of the
noise in the mel-scale are derived, namely clean-high means shift, clean-low means shift and
low-high means shift.

An informal visual observation of the digit-dependent, state-dependent means shift has
revealed some interesting points:
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¢ More detailed variation of means shift for each state, as compared to only digit-dependent

case. It is precisely the detailed nature of these means shift that will allow a more ac-
curate compensation to a particular condition of speech.

The same pattern of increase and decrease is observed along the mfcc index number
for both high-noise speech and low-noise speech relative to the clean speech, although
the absolute changes of these means shift tend to vary. This suggests a simple scheme
to attack noisy speech recorded in a car between 0 and 100 Km/h by interpolating the
cepstral means shift values obtained. A later experiment confirms the plausibility of
this approach.

To summarize, the potential benefits of SBCDC will be:

1.

2.

Speaking rate normalization. Lombard effect is implicitly accounted for.

No localized frame by frame SNR calculation — only the nominal SNR of incoming signal
needed.

. Means shift is a simple vector subtraction (addition).

Averaging of vector statistics and state duration to calculate HMM segmentation points
smooths out ‘outlier’ vectors in a particular utterance.

. Correlation among frames connected to a particular HMM state is approximately pre-

served. The average timing information is kept in the compensation process.

If training data is present, further benefits may apply like:

1.

No need to know subword boundaries explicitly. Suitably emphasized acoustic events
are systematically captured by Viterbi alignment.

. Collection of speech vectors is carried out in such a way that is effective for recognition

on the training data.

. Compression of information is very significant. Each word is characterized by N (5 used)

sample averaged cepstral vectors and N average normalized state segmentation points.
If 9 utteranes from a particular digit is used, this represents an average reduction factor
of about 90 from the frame vectors to this format.

. Averaging statistics over several utterances smooths out some ‘outlier’ utterances over

the whole data set.
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6.3 Cepstral means adjustment on train data
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Figure 4: SBCDC on training material (clean train/high-noise test case).
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Figure 5: Detailed operations involved for SBCDC on training material (clean train/high-

noise test case).

A schematic overview is given in figure 4 and the detailed operations in figure 5. Table
7 is obtained when the method described is directed to the training data. To review the
techniques once more, consider the high-noise training data from which is subtracted the
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high-noise means shift to obtain training material that ‘resembles’ clean speech (third row,
first column of results in table 7). Also, from the high-noise train data is subtracted the high-
low means shift to obtain a low-noise speech prototype (third row, second column in table 7).
The recognition improvement is highly significant now, especially the low-noise train/clean
test and high-noise train/clean test cases. The recognition improvement is not as great for
the clean train/high-noise test case.

clean test | low-noise test | high-noise test
clean train data 100.0 80.0 51.1
low-noise train data 98.9 90.0 60.0
high-noise train data 100.0 74.5 74.5
clean train data 61 57
low-noise train data 95 74
high-noise train data 100 72

Table 7: Digit-dependent state-based cepstral means adjustment of training material in an
attempt to match the speech condition of the test material; testing material unchanged. The
lower half indicates the error reduction rate relative to the baseline matched training and
testing conditions.

The low-noise train/clean test and high-noise train/clean test (remember that means
shift vectors are subtracted from the training material and VQ re-applied to the compensated
training material) are highly remarkable results. Firstly, the SNR has been considered nominal
even though the actual frame-by-frame localized SNR can be highly varying. Secondly, the
non-negligible variances associated with the HMM segmentation points imply that even after
cepstral compensation is incorrectly applied to a particular region of the utterance concerned
for a few frames, it does not affect the modified statistics of the compensated material and
its modelling by an HMM when time-aligned with the test material. This suggests a certain
robustness of SBCDC provided the right set of digit-dependent cepstral means shifts is applied.

The e.r.r for clean train/low-noise test, clean train/high-noise test and low-noise train/high-
noise test are fairly respectable but this time the noise vectors are added to the training
material and VQ re-applied to the compensated material. When noise in the form of cepstral
means shift vectors are added to the clean or low-noise speech, an attempt is made to mask
some of the low-amplitude speech events. Significant probabilities are then assigned to all
VQ labels corresponding to the silence-type acoustic space. This will hopefully include those
labels that are not observed during the training session. Overall, the results are very satisfy-
ing because the more detailed state-based scheme gives a higher normalised MSE reduction
(figure 6) than the whole-utterance compensation of the last subsection 6.1.
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Figure 6: Normalised MSE reduction for whole-word compensation and state-based com-
pensation for the different digits in the application of cepstral means shift on the training
material. The high-noise train/clean test case is considered here.

Lack of training data usually entails too much sharpness in the estimates. This is always
the inevitable fact in speech recognition that the statistical properties of the training data
cannot be guaranteed to be that of the test data. This is made worse at low SNR. One
important point to verify is to compare the recognition rate when the HMM is used on both
training and independent test data. The difference in recognition accuracy obtained is large
— 100% recognition for the training set and 74.5% for test set in the case of clean train/high-
noise test baseline case. It implies that there is not enough data in the training phase. This
should be contrasted with 100% recognition from the training set and 100% on the testing
set for the matched clean train/clean test case. This point is further belaboured by the fact
that reversing the role of the training and testing set the same imbalance in the recognition
results is achieved (100% from the training set formerly the test set, and 73.3% from the test
set formerly the training set). This small sub-experiment preempts the claim that consistent
‘bad’ data can be said to exist in the current high-noise test set.

7 Cepstral means adjustment on test data — a prior: segmen-
tation

Application of cepstral means shift to the testing material is more problematic. Because the
test speech is by definition unknown, which digit-based means shift to apply is unknown,
whereas for the training material the identity of a given utterance is known. A hypothesis-
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driven method is needed: To an unknown test utterance, all the word-dependent means shifts
are applied giving rise to V' hypothesised but acoustically compensated utterances (where V'
is the number of words in the vocabulary). A Viterbi alignment is carried out against the
reference model of the hypothesis. The overall maximum likelihood result is selected. Because
the identity of the applied word means shift is known, the unknown utterance identity is
inferred. A schematic overview is given in figure 7 and the detailed operations are given in
figure 8.
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Figure 7: SBCDC on test material.
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Figure 8: Detailed operations of SBCDC on test material.

Although the hypothesised utterance might deviate from the desired cepstral means com-
pensated utterance, as long as the separation between this hypothesised utterance and the
remaining ones is large in the cepstral domain, it will be possible for it to be better time-
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aligned and better matched against the hypothetical reference HMM than the remaining
hypotheses and thus provides the highest likelihood score. The crux of the matter lies in the
fact that the identity of the given speech is unknown and the best conjecture is that a given
transformation will drive the correctly matched noisy cepstral vector (argument for clean
train/high-noise test case) to a cepstral space that is highly different from the transformed
incorrectly matched noisy cepstral vectors and closer to the cepstral space of the correctly
matched digit. Nadas argued similarly for his adaptive labeling algorithm [22].

7.1 Experimental results

clean test | low-noise test | high-noise test
clean train data 100.0 84.5 40.0
low-noise train data 92.2 90.0 56.7
high-noise train data 56.7 80.0 74.5
clean train data 56 25
low-noise train data 122 53
high-noise train data 43 114

Table 8: Training material unchanged; digit-dependent state-based cepstral means adjustment
of testing material in an attempt to match the speech condition of the training material. The
lower half indicates the error reduction rate relative to the baseline matched training and
testing material.

An artificial situation is assumed whereby the a priori SNR is known i.e. whether the test
material comes from clean, low-noise or high-noise speech is known.

The improvement brought about by SBCDC on the training data cannot be directly
compared to SBCDC on the test material. Consider the high-noise train/clean test case.
SBCDC on the training data yields the compensated clean train/clean test situation. This
result is contrasted with the matched clean train/clean test case. On the other hand, SBCDC
on the test data will yield high-noise train/compensated high-noise test case. This result is
contrasted to the matched high-noise train/high-noise test case.

Remember how SBCDC on test material is carried out — a hypothesis is made about
which digit-dependent shift is applied and the compensated speech is aligned with the HMM
of the hypothesis. The clean train/low-noise test and low-noise train/high-noise test case
performance holds remarkably well. There is a complete dip in performance for the clean
train/high-noise test case, and this is disappointing because it corresponds closer to real-life
application. SBCDC using state points and means shift derived from the training material
works less well when directed on the high-noise test set. The lower performance of the clean
train/high-noise test case relative to low-noise train/high-noise test is partly explained by
the fact that the low-noise train material contains some information about the engine noise
whereas the clean train material contains no such knowledge in either the VQ codewords and
in the HMM B probabilities modelling the training material.

As mentioned in the discussion part of section 3, the reference HMM B matrix can provide
the average mfcc vector needed in each state by using (36) in subsection 3.2. 37.7% has been
obtained for clean train/high-noise test case. This is marginally lower than the 40% obtained
for the same set of data when SBCDC is carried out in the usual way.
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7.2 Beyond simple means shifting

In doing the means shift operation, the transformation is attempting to maximize the sim-
ilarity between the noisy and clean speech. Second-order statistics in the form of variance
information can also be used. A more general transformation where some form of variance
equalization is performed before means shift can be applied to a speech vector y is represented
by:

T(y)=Ay+b. (44)

Observe that the above equation reduces to simple means shifting with A being the identity
matrix. Roucos showed how to estimate A and b from the covariance matrices of the two
different types of speech [24].

A preliminary experiment whereby a simple variance ratio equalization (a naive state-
based simplification of (44) with non-unity diagonal elements) followed by the means shift for
the clean train/high-noise test case of SBCDC on the test material leaves the recognition score
(40% from table 8) unchanged. Although the above transformation is more sophisticated,
there are several reasons which might make it inappropriate for use. For example, densities
are not really Gaussian and increasing the overlap in cepstral space may not necessarily
yield more similar V(@ segments. But above all, proper calculation of the covariance matrix
necessitates a fair amount of data and the matrix probably has to be pooled across all the
digits thus losing the specificity of the simple digit-dependent means shift transformation.

7.3 Use of more states

Perhaps finer cepstral means adjustment by using more states can lead to higher recognition
accuracy for SBCDC on the testing material. Finer segmentation into more states may
augment the better-tracking and detailed characteristics of the noise process. On the other
hand, influence of inaccurately estimated state segmentation boundaries will increase. Indeed,
over-segmentation of some unvoiced sounds such as phoneme /s/ for digit siz will lead to
a large segment length variance and outlier speech vectors will be more common affecting
adversely the averaging of the associated speech vectors. This is verified by the experimental
evidence for clean train/high-noise test in which state-based compensation is applied to the
test material resulting in:

No. of states | Recognition accuracy (%)
3 38.9
5 (table 8) 40.0
7 37.7
10 34.4

Table 9: Recognition accuracy with increasing number of HMM states (clean train/high test
case).

A priori cepstral means vector collection has to be carried out again for the other cases.
When doing the collection of data, the average variance of state occupancy is, as predicted,
larger per number of states.
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7.4 Correct hypothesization

To obtain a performance limit to this type of adjustment on the test material, the following
additional experiments were carried out (refer to figure 9). Experiments on the matched
training and testing conditions were not pursued. The objective is to assess what difference
a correct hypothesis makes to SBCDC on the test material, and ultimately to find the upper
limit of SBCDC on the test material.

precomputed
state durations

cepstral means

Known ajJ usiment known Compensated if model =z
Utterance z forz E— st of 10 hmms

andvg

correct recognition

Figure 9: SBCDC on test material (ideal case) and correct hypothesization scoring. The set
of 10 HMMs are from the reference training material.

clean test | low-noise test | high-noise test
clean train data 90.0 100.0
low-noise train data 92.2 95.6
high-noise train data 63.4 81.1
clean train data 72 100
low-noise train data 122 108
high-noise train data 64 117

Table 10: Training material unchanged; digit-dependent SBCDC on test material (ideal case)
in an attempt to match the speech condition of the training material. The lower half indicates
the error reduction rate relative to the baseline.

The results are shown in table 10. The recognition results are obviously better than
in table 8. Consider the clean train/low-noise test case whereby the low-noise test digit
is correctly compensated, but this time the e.r.r is 72% compared to 56% for SBCDC on
test material. To some extent, cepstral compensation is not adequate and some correctly
compensated digits align themselves better against incorrect reference models. A similar
conclusion holds for the high-noise train/clean test case. This result is reversed for the low-
noise train/high-noise test case where the correctly compensated high-noise test digit, when
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matched against the reference HMMs, perform better than the matched low-noise train/low-
noise test condition (108% e.r.r). Some pre-empting of the test conditions has been achieved
by SBCDC on the high-noise test material.

The perfect score obtained for the clean train/high-noise test case indicates that whenever
state-based means shift is done on a particular digit, it is well recognized but that, in reality,
other digit-based transformations may yield higher likelihood ratios. A known high-noise
test digit is mapped by SBCDC into an absolutely certain (identity-wise) compensated clean
digit. The latter always aligns to the correct reference HMM, but table 8 indicates that an
incorrectly matched, hypothesized compensated speech sequence, aligned with its incorrectly
matched reference HMM may yield a higher likelihood. The compensation, as currently
implemented, even with correct hypothesization is simply not accurate enough.

7.5 Cepstral means adjustment simultaneously on both training and test-
ing material — a priori segmentation

Some channels in a filterbank speech spectrum that are of low amplitude levels will be more
affected by noise than other channels. Klatt proposed substituting the channel outputs below
a certain threshold by a mask noise level in both the reference and test speech frames [40].
This will attenuate the acoustic distortion accumulation. Moreover, the addition of noise
masks out most of the silence-like speech frames which are dependent on the ambient noise
level and also may mask out low-level events present in a clean environment but absent in a
noisier one [41].

All the previous experiments are concerned with bringing the statistics of either training
material to its matched testing material and vice versa. Bringing the statistics of both
the training material and testing material to a nominally common SNR level represents a
way to ensure robustness because the commonness of the statistical transformations on the
two sets of speech material can bring some regions of the utterance to identical cepstral
shapes. Furthermore, for the test material some VQ regions not observed during training are
mapped to those common cepstral shapes. Because of the average values associated with the
segmentation points and means shift in SBCDC, the common mapping will be from a varying
distribution statistics to a more compact one. Whereas Klatt [40] and Compernolle [42] added
‘noise’ to both test and training material, one work where both speech train and test data sets
are brought iteratively by autoregressive filtering to a higher SNR level is Ephraim’s earlier
work [43]. The following results are shown in table 11.

clean test | low-noise test | high-noise test
clean train data 100.0 84.5 40.0
low-noise train data 98.9 100.0 45.6
high-noise train data 100.0 84.4 51.1
clean train data 0.0 56 25
low-noise train data 95 +10.0 33
high-noise train data 100 76 -23.4

Table 11: Digit-dependent SBCDC simultaneously on both train and test material to clean
condition. The lower half indicates the error reduction rate relative to the baseline score of
matched clean train/clean test condition. Bold term in lower half indicates absolute level of
recognition relative to its proper matched condition.

29



The low-noise train/clean test and the high-noise train/clean test are left untouched because
that represents the objective and results are simply quoted from table 7. Similarly, the clean
train/low-noise test and clean train/high-noise test have been carried out (results in table 8)
as there is no further need to apply SBCDC to the clean training material.

When the low-noise train/low-noise test case is mapped to
compensated clean train/compensated clean test, the longstanding misrecognition of digit siz
disappears — the recognition results are even better than the matched low-noise train/low-
noise test conditions. Thus, for low-noise speech material (medium SNR), SBCDC on both
material gives better results by mapping them to some common compensated higher SNR. level
statistics. However, the mapping from low-noise train/high-noise test to compensated clean
train/(hypothesised) compensated clean test is now low (33% e.r.r) compared to the baseline
matched clean train/clean test condition. This result is amplified with compensation on the
matched high-noise train/high-noise test where a reduction of 23.4% absolute recognition
accuracy is observed.

Many factors may account for this poor behaviour at such low SNRs: it is already apparent
from the previous sections that SBCDC on the test material does not provide substantial
correction. What happens for the low-noise test (second column) is that maybe at a medium
SNR, a mapping of the speech material to a higher SNR would be advantageous: more data at
mild conditions ought to be analyzed before a definitive conclusion can be raised. A quirkiness
of the implementation of SBCDC to give 100% for low-noise train/low-noise test may not be
discounted; compensation applied to digit siz that has been erroneously segmented might have
corrected some boundary effects and perhaps no significant breakthrough can be expected in
this direction.

8 Robustness of the cepstral means shift technique

This section will investigate the applicability of the cepstral means shift to other SNRs. Be-
cause noisy speech at arbitrary SNRs is not available, the basic set of noisy data compensation
vectors at 0 Km/h is used to predict the compensation at 100 Km/h and recognition results
assessed to check the validity of the approach. Similarly, the state segmentation points along
the utterance are SNR-dependent and have been calculated by averaging over the entire train-
ing set. The fact that cepstral means adjustment to the training material works remarkably
well especially for the non-matching noisy train/clean test conditions, even if those segmen-
tation points are average quantities with non-zero variances confirms the robustness of those
pre-calculated segmentation points. Indeed, fairly good results even with uniform segmenta-
tion points, as demonstrated later, is further evidence to support this. The experiments will
be restricted to applying the compensation to the test material as high recognition accuracy
has been achieved through the compensation scheme directed to the training material. The
clean train/high-noise test case will be the particular focus as it represents a more realistic
scenario.

8.1 Fitting regression lines to cepstral means shift

An attempt is made to check whether the cepstral means adjustment is applicable at various
SNRs (to some extent speed-dependent) by having a basic set of values and adjusting those
values by a factor proportional to the SNRs — because the variations of cepstral means devia-
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tion relative to the clean speech, either for the whole digit or state-based, follow roughly the
same pattern along the mfcc coeflicient index.

It will be very convenient if to the cepstral means shift at 0 Km/h can be added some
SNR-dependent but constant value for coincidence with the one at 100 Km/h. However, in
practice, this does not apply and the next best attempt for best fit after addition of some
SNR-dependent value is straight line regression analysis. From the cepstral means shift at 0
Km/h on the x-axis and the ones at 100 Km/h on the y-axis, the regression lines (gradient
s, and intercept é;, for state ¢) for each of the five states are estimated:

Yy = Mg X + Cs,.

Averaging all the gradients and intercepts from each state gives the average gradient and
intercept denoted by 7hs,, and &, respectively. The final digit-dependent transformation
applied to a cepstral means shift at 0 Km/h to yield the predicted cepstral means shift at 100
Km/h is given by:

y = m-‘)‘avx —I_ C-Sa'u‘

The averaging is done to make the prediction of cepstral means shifts more general and the
resulting values are applied to the cepstral means shift of the test material to check how well
those values perform. The results for the low-noise train/high-noise test case are obtained
using the low-noise train material as the base (table 12):

Training/testing conditions | Recognition accuracy (%) | Recognition accuracy (%)
using predicted shifts using empirical shifts
clean train/high-noise test 35.6 40
low-noise train/high-noise test 53.3 56.7

Table 12: Recognition accuracy using digit-dependent predicted cepstral means shift on the
test material (first column) compared to the empirically determined cepstral means shift
(second column).

The recognition results are marginally lower relative to the ones with empirical means
shift but are encouraging. This subsection as well can easily be evolved into a simple method
for indicating approximately the overall energy shifts in each of the states if SBCDC for log
energy shifts is monitored.

8.2 Robustness of the segmentation boundaries

In general, the pre-determined state segmentation points vary over quite a wide range at
the different SNRs. In addition, some of the normalized state durations have non-negligible
variances associated with them. But some small subset experiments suggest that even with
uniform linear segmentation i.e. into five equal durations, the recognition results are not
affected that adversely. A similar conclusion is obtained using segmentation boundaries from
the clean training set and applied on the noisy test material. This implies a robustness of
the segmentation points that could be used over different SNRs and crudely implies that the
duration of the region covered by a state of the HMM is, in the main, independent of the
SNR condition, at least as far as the particular speaker-dependent digit experiments show.
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Clean train/high-noise test conditions | Recognition accuracy (%)
Baseline 20.0
SBCDC on high-noise test (table 8) 40.0
Linear segmentation 32.2
Segmentation from clean train set 36.7

Table 13: Recognition accuracy using differing segmentation boundaries (clean train/high-
noise test case).

Similar conclusions are reached for the low-noise train/high-noise test case, as attested by the
following results in table 14.

Clean train/high-noise test conditions | Recognition accuracy (%)
Baseline 18.9
SBCDC on high-noise test (table 8) 56.7
Linear segmentation 47.8
Segmentation from low-noise train set 52.2

Table 14: Recognition accuracy using differing segmentation boundaries (low-noise
train/high-noise test case).

The results imply that Lombard effects associated with low SNR speech are not that sig-
nificant when carrying out the Viterbi decoding equations although the differences in average
state durations in clean and high-noise speech varies markedly. More data are required for
the generalization of this finding.

9 Cepstral means compensation — unknown segmentation

Application of means compensation technique to test data has, so far, required a hypothesis-
driven approach, known a priori segmentation points and speech samples characterizing the
test signal. This section presents an algorithm whereby the state segmentation points and
compensation vectors are determined from a single test sequence. The method is iterative
but still requires a hypothesis-driven treatment of the data. It corresponds to the full imple-
mentation of the E-step and the M-step described in subsection 3.1.

9.1 [Tterative cepstral means shift algorithm

For the testing utterances, a copy of both the mfcc vectors and the VQ counterparts are
required. For a schematic overview, refer to figure 10. The detailed operations are shown in
figure 11.
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Figure 10: Iterative SBCDC on test material.
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Figure 11: Detailed operations involved in iterative SBCDC on test material.

The iterative SBCDC algorithm involves the following operations:
e VQ encode the unknown test token using the codebook provided by the training data.
e For each of the reference HMM digits, a Viterbi alignment is done against the unknown

VQ token. By using a particular reference HMM, a hypothesis is made that the unknown
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VQ token has the identity of that reference HMM. For each of the hypothesised reference
HMM, calculate the state segmentation points for that token to stay in the different
HMM states. Keep track of the log likelihood in the Viterbi alignment. If the threshold
for collected MSE is attained, stop iteration and infer identity of unknown token by
maximum likelihood criterion.

e Otherwise, collect the cepstral means from each state (obtained from the cepstral vec-
tors from the utterance and the specific region covered by that state). Calculate the
cepstral means for each state in the hypothesised HMM. Calculate the cepstral means
disturbance vector and from the specific region covered by that state, subtract the dis-
turbance at the vector level. Repeat for all the ten hypotheses. Keep track of the
length-normalized MSE.

In summary, the iterative SBCDC algorithm can be interpreted as a removal of the existing
mismatch caused by car noise between the input signal and a N-vector format word model
representing the (clean) baseline speech signal by state-based cepstral subtraction. Because
the conditions of the unknown VQ token from low or high noise case are so different from the
clean reference HMMs, there will be gross segmentation errors in the splitting of the state
track in the first pass. If the identity of the input VQ token is known, the above iterative
procedure can easily be shown to converge locally and the problem crops up in many speaker
normalization techniques.
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Figure 12: Recognition accuracy and average MSE with iteration number for iterative SBCDC
on test material: low-noise train/high-noise test case. Overall recognition accuracy is 51.1%.

Figure 12 is concerned with the monitoring of MSE with the number of passes for a
correctly recognised digit zero. One pass is sufficient in practice as the overall recognition
accuracy hardly changes afterwards. Even when an input token is aligned against an incor-
rectly matched reference model, the decrease in MSE occurs, although not sharply. There
is an improvement of (51.1 — 18.9)/(90.0 — 18.9) = 45% in error reduction rate for the low
train/high-noise test case. But still a slightly higher error rate reduction has been achieved
with SBCDC on test data with a priori state segmentation points (53%).
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The results obtained with the recognizer trained and tested in similar environments pro-
vide an approximate upper bound on the potential of the noisy speech recognition task. It
is possible to envisage a situation whereby noisy speech recognition operating in a dynamic
mode could exceed the matched noisy speech recognition results simply by being able to
gather more data. However, for all the reported experiments, the amount of data available
for the noisy speech recognition in iterative SBCDC (1 utterance) is never more than that
available for non-iterative SBCDC (9 utterances), therefore the upper bound mentioned is
absolute in this case.

In Furui’s work [28], effectiveness of adaptation has been mainly evaluated using spec-
tral distortion. He found that the spectral distortion and recognition error rate are highly
correlated. A comparable observation is obtained here. The lower recognition results with
only one utterance to determine the state segmentation points and cepstral means shifts rep-
resent a finding which is not surprising. The statistical distribution of the corrected speech
(hypothesized) cannot be guaranteed to be close to that of the training set and hence that
of the reference HMMs. In Acero’s work [17], the equalization and noise factor estimates
required for the correction of mismatched speech vectors are found to exhibit a large variance
for short utterances. Similarly, in Ephraim’s speech enhancement scheme [12], good quality of
the enhanced speech is obtained when decoding is done using the clean speech to obtain the
state sequence and sometimes bad quality of the enhanced speech is obtained when decoding
is performed using only low SNR speech as bootstrap.

10 Discussions

Because of the limited data for both training and testing, the low confusability of a clean
digit vocabulary set and the speaker-dependent restriction, only broad generalizations can
be offered. Omne thing must be emphasized at the outset: the speech database that has
been used is a particularly difficult one. The high-noise speech is estimated at a nominal -7
dB level whereas if the study in the ARS report [36] is referred to for baseline recognition
performances on other similar databases, higher levels of performance have been obtained.
Possible extensions of the work are also mentioned.

An EM framework is used on the complete data consisting of the set of baseline signal,
mismatched signal and the state sequence through an N-state Hidden Markov source model.
The incomplete data consists of the observed mismatched signal. The parameters to be
estimated are the set of state-based compensation vectors. The relationship between the
complete and incomplete data is through an additive signal and noise model and an HMM
state sequence z(t) through a Markov chain that generates the baseline signal s(¢). Non-
iterative and iterative cepstral compensation schemes have been derived in an attempt to
equalize the source characteristics of the mismatched signal and what is effectively an N-
vector word modelling the baseline signal (assuming signal representation by an N-state
HMM). The latter is characterized by sample average of speech vectors in the HMM state
and the average state segmentation points. Effectively, the E-step consists of the calculation
of the length-normalized mean squared error between the two types of speech condition and
the estimation of the state sequence. The M-step involves the calculation of the set of vV
state-based compensation vectors.

The problem of adapting the cepstral means to nominally arbitrary SNRs speech has not
been dealt with comprehensively — the two levels of noise (low-noise and high-noise) have
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been the only preoccupation. Nevertheless, these two levels of noise are at the extreme of
what would be expected in a real-life noisy car database and so constitute a good test. No
prior knowledge of the noise cepstrum shape is explicitly used but is inferred from statistics
of the different types of speech to reconstruct similar statistical distributions in the training
and testing material.

Whole utterance averaging achieved by digit-dependent cepstral means collection is not
sufficiently detailed and accurate compared to that achieved by digit-dependent, state-based
cepstral means collection. The cepstral means adjustment on the training material gives
better results than the cepstral means adjustment on the testing material. Noise immunity
to low-noise speech (e.g. stationary noisy car environment) can be increased by cepstral
means adjustment of the training material to resemble ‘clean’ speech together with cepstral
means adjustment of the testing material given the a priori SNR. This breaks down for
high-noise data. Application of SBCDC on the speech material has done better on the low-
noise data (i.e. the higher SNR material) than on the high-noise data (i.e. the lower SNR
material). The low-noise training data/high-noise testing case always gives better results
than the clean training/high-noise testing case because the V@ codebook and subsequently
the HMM contains some information about the engine noise.

Application of cepstral means compensation techniques when the identity of the speech to-
ken is the same as the reference model, whether iterative or non-iterative, can easily be shown
to reduce the normalized MSE. Indeed, this procedure is commonplace in some speaker nor-
malization algorithms or speech enhancement techniques. Difficulties arise for non-matching
input token and reference model, and we have to rely on the modification of the non-matching
token by SBCDC to yield a likelihood score worse than if the token and reference model match.
The hypothesis-driven approach to applying SBCDC on the test material is not guaranteed
to bring the acoustically compensated material to its correctly matched reference HMM all
of the time.

The robustness of cepstral means adjustment to the imprecision associated with the state
breakpoints is quite solid, as evidenced by the results obtained when a prior: normalized
duration points for a particular SNR is used for a different SNR. Detailed variation of the
state-based cepstral means shift is necessary for proper reduction in the accumulated MSE
but even gross variations achieved by extrapolation from data at another SNR do not affect
the recognition accuracy too adversely.

Most of the experiments carried out could have been stopped at either just after the pre-
processing or after the VQ encoding process, assuming that some means shift operation has
been applied to the speech vectors. Indeed, the monitored MSE and the corresponding great-
est reduction can provide a basis for recognition, as could be the minimum distortion recorded
by the VQ process. However, the recognition process is carried one step further because of
the benefits associated with implicit duration modelling in the Viterbi alignement which is
different for each of the digits concerned. Nevertheless, from the present experiments, it has
been found that the VQ distortion with beta distortion measure (and/or length-normalized
MSE) and recognition error rate are in fact highly related.

Although SBCDC copes with some variations of the speaking rate and articulation by
the time normalization, the method could be sensitive to unusually high or low speaking
rate because of the greater variances associated with the state segmentation points and the
collection of speech vectors in each state from the Viterbi alignemnt. Statistics of cepstral
distributions retain the property of being invariant under linear distortions. However, there
are many nonlinear distortions to the uncorrupted speech cepstral vector and, in extreme
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circumstances like the high-noise speech, SBCDC as currently carried out is not flexible
enough.

It is hoped that this study contributes to the implementation of robust recognition sys-
tems that will continuously update the statistics of signal, noise, VQ codebook and HMM
parameters for successful mismatched speech recognition caused by additive noise. The ulti-
mate objective is for developing an algorithm that dynamically adapts to changes in acoustic
environments, noise characteristics and level, introduction of new speakers and different mi-
crophones. It is also desirable to avoid the need, if possible, for collecting a prior: statistics
about these new conditions.

10.1 Future work

SBCDC can be adapted for other problems where there is a need to model mismatch statis-
tics such as in speaker adaptation, codebook adaptation, stress compensation and speech
enhancement. Conceptual problems remain to be studied before a full generalization of the
method is possible. It is unclear whether state-based means shift is highly speaker-dependent,
and if means shift is equally effective for delta-mfcc vectors and whether the beta distortion
metric is applicable to delta-mfcc information. Second-order statistics have not been sys-
tematically collected and analysed because accurate estimation of the covariance matrices
requires a larger database, and the process of estimating covariance matrices at various SNR
would substancially increase the computational complexity required for the compensation
process. SBCDC can also be modified in such a way that depends more on a localized SNR
level. Real-time implementation problems need to be looked at more closely because of the
additional memory storage and computation involved.

SBCDC needs modification for unlabelled continuous speech or unsegmented speech be-
cause of pauses which will result in the incorrect alignment of silence-type speech to the ref-
erence speech. To achieve correct alignments for input noisy connected or continuous speech,
a silence HMM has to be inserted between each word HMM. In the stochastic segment model
[44], a segment is transformed into a shorter resampled segment for known phoneme bound-
aries. For an unknown segmentation of phonemes, a Dynamic Programming algorithm is
used with tentative re-sampling every other two frames to maximize the total likelihood score
of the observation sequence. For a known digit identity, the utterance is effectively trans-
formed by SBCDC into a 5-frame segment when using a 5-state HMM. The application of a
future enhanced SBCDC to strings of noisy digits can follow a similar Dynamic Programming
algorithm.

Multiple models per class are common to model in-class variability more accurately. Its
usage is commonplace in statistical models, not least in hidden Markov modelling. This can
be translated into a similar idea for SBCDC applied to words. The criteria for the calculation
of multiple sets of state-based cepstral means shift per state for a particular word can be
based upon the normalized state duration or the normalized Viterbi state likelihood score. In
this way, multiple statistical means vectors in each state will characterize a particular word
and provide more accurate in-class modelling.
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