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ABSTRACT

This paper describes techniques to improve the robustness

of the HTK large vocabulary speech recognition system to
non-ideal acoustic environments. The primary methods are
single-pass retraining using stereo training data; parallel
model combination which combines HMMs trained on clean
data with estimates of convolutional and additive noise; and
maximum likelihood linear regression which estimates a set
of linear transformations of the model parameters to the
current conditions. Experiments are reported on both the
1994 ARPA CSR S5 (alternate microphones) and S10 (ad-
ditive noise) spoke tasks and the 1995 ARPA CSR H3 task
(multiple unknown microphones). The HTK system yielded
the lowest error rates in both the H3-P0 and H3-CO0 tests.

1. INTRODUCTION

Most work on speaker independent large vocabulary contin-
uous speech recognition (LVCSR) has focused on the use of
speech recorded using a close-talking noise-cancelling micro-
phone i.e. clean speech. Furthermore, the recognition per-
formance of LVCSR systems trained on clean speech and
tested in other environments (e.g. different microphones
and/or additive noise) tends to be significantly degraded.

This paper investigates model compensation and adapta-
tion techniques to improve the the robustness of the HTK
LVCSR system, which gives state-of-the-art performance
under clean speech conditions, [8], to non-ideal acoustic en-
vironments. It is important that techniques are data ef-
ficient, i.e. only a small amount of data is required from
the new environment to adapt a pre-existing model set.
The methods investigated in the following sections include
single-pass retraining (SPR) which requires a stereo train-
ing database for the new environment (or an approxima-
tion to it); parallel model combination (PMC) [1, 2] which
combines estimates of convolutional and additive noise to
compensate an HMM set trained on clean speech; and max-
imum likelihood linear regression (MLLR) [5, 6] which, in
its original form, estimates a set of linear transformations
for the Gaussian mean parameters. Recently [3] we have
extended the MLLR approach so that the Gaussian vari-
ance parameters can also be compensated. Both PMC and
MLLR can be viewed as attempting to approximate a SPR-
based system in a data efficient manner.

This paper first gives an overview of the HTK LVCSR
system and then briefly describes SPR, PMC and MLLR.
The performance of these techniques is first evaluated using
the 1994 ARPA CSR S5 (alternate microphones) and S10
(additive noise) spoke tasks. Finally the HTK system de-
veloped for the 1995 ARPA Hub 3 evaluation is described.
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2. CLEAN SPEECH SYSTEM OVERVIEW

This section gives an overview of the clean-speech HTK
LVCSR system. The system uses state-clustered, cross-
word mixture Gaussian context-dependent acoustic models
and a back-off N-gram language model. More details of the
system can be found in [8].

In the standard system, each speech frame is represented
by a 39 dimensional feature vector that consists of 12 mel
frequency cepstral coefficients, normalised log energy along
with the first and second differentials of these values. Cep-
stral mean normalisation (CMN) is applied. For use with
PMC, the front end is slightly modified: the zeroth cep-
stral coefficient replaces log energy; no CMN is performed
and the regression-smoothed differentials are replaced by
simple differences. We have also investigated the use of a
PLP-based [4] parameterisation (see Secs. 4 and 5).

The HMMs are built in a number of stages. First,
the LIMSI 1993 WSJ pronunciation dictionary is used to
generate phone level labels for the training data. Then
in turn single Gaussian monophone HMMs, single Gaus-
sian cross-word triphone models and single Gaussian state-
clustered triphones are trained. The clustering is decision-
tree based to allow for the synthesis of triphone models that
don’t occur in training. After clustering mixture Gaussians
are estimated by iterative “mixture-splitting” and forward-
backward retraining.

The acoustic training for the clean-speech system con-
sisted of 36,493 sentences from the SI-284 WSJ0+1 data
sets. These data were used to build a gender independent
triphone HMM set with 6,399 speech states, with each state
having a 12 component Gaussian mixture output distribu-
tion. This system (the HMM-1 system of [8]) was used as
the basis for the S5 and S10 experiments.

The full HTK LVCSR system also uses more complex
acoustic models which take account of the preceding and
following two phones (quinphone context) and also the posi-
tion of word boundaries. The gender independent version of
this HMM set (the HMM-2 system of [8]) had 9,354 speech
states with each state characterised by a 14 component mix-
ture Gaussian. Gender dependent versions of this system
are trained by using the data from just the relevant training
speakers and updating the means and mixture weights.

The HTK LVCSR system uses a time-synchronous de-
coder employing a dynamically built tree structured net-
work decoder [7]. This decoder can either operate in a sin-
gle pass or it can be used to produce word lattices which
compactly store multiple sentence hypotheses. The lattices
contain both language model and acoustic information and
can be used for rescoring with new acoustic models, or for
the application of new language models.
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3. TECHNIQUES FOR ENVIRONMENT
ADAPTATION

This section describes three techniques for environmental
adaptation. Referring to a system trained and tested on
data from the same environmental conditions as a matched
system, all of these techniques change the model parameters
to approximate the ideal matched system.

The first method, single-pass retraining, produces a
matched system assuming the frame/Gaussian alignment
doesn’t change between a clean system and a matched sys-
tem but requires a full stereo training data set. PMC and
MLLR need much less data to compensate or adapt the
models towards a single-pass retrained system.

3.1. Single-Pass Retraining

Given a mixture Gaussian HMM system trained on clean
speech, and assuming that the frame/state (Gaussian mix-
ture component) alignment is identical for any matched sys-
tem, and that a set of stereo training data exists (or can be
synthesised) SPR will produce a matched HMM system.

In a stereo database there are paired speech samples, one
clean and the other in the new environment, for the entire
HMM training set. In many cases of interest stereo data
will be not be available. However if the noise is purely
additive and it can be accurately determined, it is feasible
to synthesise a stereo training set.

SPR operates by finding the a posteriori probability of
mixture component occupation using the clean speech mod-
els and the clean speech vectors. Once this alignment has
been found, the Gaussian parameters are updated using the
corresponding observations from the new environment.

SPR provides a baseline against which to measure other
approaches which attempt to approximate a matched sys-
tem. Furthermore, although a stereo database might not
exist for the new environment, a more appropriate (than
clean) stereo data set may exist, and SPR can be used.
Other adaptation techniques (such as MLLR) might then
be used to model the new environment more closely.

3.2. Parallel Model Combination

PMC attempts to estimate the parameters of an SPR
trained matched system given the clean speech models, a
model of additive interfering noise and the frequency re-
sponse of the channel difference between clean speech train-
ing conditions and the test environment. It is assumed
that speech and noise are independent and additive in time
and (linear) frequency domains. Furthermore, it is assumed
that a Gaussian or mixture Gaussian model is sufficient to
describe the noise process in the log spectral or cepstral
domains. Although HMM modelling is performed in the
cepstral domain, compensation is performed in the linear
spectral and log spectral domains by using the appropriate
transformations.

In the log spectral domain, the ith component of the cor-
rupted speech observation vector, O;(7), is given by

Oi(7) = log(exp(H; + Si(7)) + exp(Ni(7))) (1)

where H; is the channel difference between training and
test, S;(7) the clean speech and N;(7) the noise at time 7.

Equation (1) can be used to generate “observations” in
the new environment which are used to update the static
HMM parameters. Similarly “mismatch” functions can be
defined for the 1st and 2nd difference parameters and obser-
vations generated that include these parameters [1]. Using

these new observations, both the mean and variance Gaus-
sian parameters are updated. This version of PMC will be
referred to as data-driven PMC or DPMC.

A simpler PMC implementation essentially assumes that
that the speech and noise models have zero variance. If a
compensated Gaussian mean component in the log spectral
domain is denoted as fi; then

fri = log(exp((H; + pi) + exp(fii))

where p; is the clean speech mean and fi; the noise mean in
the log spectral domain. This approximation ensures that
compensation is very fast but only the mean parameters
can be updated. It will be referred to as Log-Add PMC.

3.3. Maximum Likelihood Linear Regression

MLLR was originally developed for speaker adaptation [5, 6]
but can equally be applied to situations of environmental
mismatch. A set of transformation matrices are estimated
which are applied to the Gaussian mean parameters. We
have recently extended the approach so that the Gaussian
variances can also be updated [3].

The matrices are estimated so as to maximise the likeli-
hood of the transformed models generating the adaptation
data. The technique is implemented using the forward-
backward algorithm and has close links with standard
Baum-Welch training. The mean parameters are usually
transformed by a full (in this case 40 x 39) matrix or a
block-diagonal matrix which accounts for only the corre-
lations between the statics, 1st differentials and 2nd dif-
ferentials as appropriate, while the variances are normally
transformed by a diagonal matrix.

When only a small amount of data is available each set
of Gaussian parameters (means and variances) are trans-
formed by a single matrix (single regression class case). As
more data becomes available more specific matrices can be
computed using only the data that is aligned with that class.
In the systems used here, all the speech Gaussians are clus-
tered into a set of 750 base classes, these are then arranged
into a hierarchy and the most specific class is generated that
has enough observations to robustly estimate the MLLR
matrix parameters. The Gaussians for the silence models
usually form a separate regression class.

MLLR can be applied in a number of different modes in-
cluding unsupervised incremental in which the system gen-
erates the labelling and updates the model parameters af-
ter every utterance (or after each small block of utterances)
and transcription mode which processes complete sessions
on block (static unsupervised adaptation).

4. S5/S10 EXPERIMENTS

In this section the performance of the above techniques on
the 1994 ARPA CSR Spoke 5 (S5) and Spoke 10 (S10) eval-
uation data sets is explored. S5 and S10 are 5k word tasks
and use a standard 5k trigram language model. All results
have been generated using the official NIST scoring soft-
ware.

To save computation, some results were generated using
pre-computed word lattices. Since the lattices were gener-
ated by systems that were well-matched to the test-data,
optimistic results may be generated for poor systems. In
the tables results in parentheses were generated with inter-
mediate lattices from a different system.

In all PMC experiments, the channel mismatch, H;,
was estimated in the manner described in [2] using a 30-
component Gaussian mixture model and the first sentence
from each speaker.



4.1. S10 Experiments

S10 concerns additive noise: the test data consists of clean
data with car noise added at different overall SNRs. The
experiments here use the S10 level 3 evaluation data which
had an A-weighted SNR of 10dB, which was the lowest SNR
available. The data consists of 113 sentences from 10 speak-
ers. Since the test data is only corrupted by additive noise
and a noise sample was available, it is possible to synthe-
sise a stereo database for SPR to evaluate the PMC and
MLLR approaches. PMC used a noise model built using
the background noise sample provided with the dataset.
Table 1 shows that performance with the clean models
is very poor: the error rate on the corresponding clean
data with the standard MFCC parameterisation is 5.8%
and 6.7% with that used with PMC. SPR is very effective
in reducing the error rate and updating just the Gaussian
means (shown in Table 1 as SPR (Mean)) is nearly as effec-
tive as updating both the means and variances. The MLLR
(Class) results give the error rates using multiple MLLR re-
gression matrices and different amounts of data while the
MLLR (Global) uses a single regression matrix for all data.
The MLLR systems were trained on subsets of the stereo
SPR data. MLLR is effective in producing models that ap-
proximate the SPR models with much less data.

Training Adaptation % Word
Type Sentences | Error Rate
Clean — 54.3 (33.9)
SPR 36493 10.1 (9.9)

SPR (Mean) 10.5 (9.9)
2000 (10.5)
MLLR (Class) 200 (10.6)
40 (11.0)
MLLR (Global) 40 (12.1)
DPMC 10.3
DPMC (Mean) — 10.7
PMC Log-Add 10.7 (9.6)

Table 1. Performance on S10 Level 3 data.

PMC gives similar results to MLLR, but has the advan-
tage of not needing any stereo training data to be synthe-
sised. Again there is only a small degradation for updating
only the mean parameters. Note that even in the case of
purely additive noise, an H; term is estimated that performs
gain matching and simple speaker adaptation.

Updating | Updating | Word Error (%)
Means Variances
X X 10.7

VA % 9.3
Vv Vv 8.9

Table 2. Unsupervised incremental MLLR on PMC Log-Add
S10 system.

Table 2 shows how incremental adaptation on the PMC
Log-Add system further reduces the error rate by about
17% with variance adaptation contributing 4%.

4.2. S5 Experiments

The S5 data consisted of 200 sentences from 20 speakers.
For each speaker one of 10 alternate microphones was used.
The A-weighted SNR was typically 20dB.

In this case it isn’t possible to produce a paired stereo
training dataset (since the channel effect and additive noise
is unknown) but results from a roughly matched system
trained on the “secondary channel” data of the SI-284 train-
ing set are reported. This secondary channel data was
recorded using a selection of 13 different microphones and
low noise conditions. None of the microphones used for the
SI-284 secondary channel data are of the same type as used
in the test data. Preliminary investigations had shown that
a perceptual linear prediction (PLP) [4] speech parameter-
isation was more robust to mismatched environments than
standard MFCCs, so a PLP-based secondary channel ver-
sion of HMM-1 was trained by SPR.

For the S5 PMC-based experiments, both the channel
distortion and the background noise was estimated using
the first sentence from each speaker.

Model Baseline Incremental MLLR
Set Means | Means+Vars
Clean 17.4 12.1 —
PMC Log-Add 10.6 8.6 8.0
PLP 2nd channel 9.0 7.4 7.1

Table 3. % Word error rates for S5 data.

Table 3 shows that the channel distortion causes a large
increase in error. It should be noted that even though the
standard system includes CMN, in the presence of back-
ground noise it is not particularly effective. Both PMC and
particularly the PLP 2nd channel system reduce the er-
ror rate significantly. Incremental MLLR adaptation again
provides improvements with variance compensation further
decreasing the error rate by about 5%.

5. NOV’95 H3 EVALUATION SYSTEM

5.1. Test Data

The Nov’95 ARPA H3 task was to recognise speech data
read from US newspaper articles published in August 1995.
The data was not filtered (unlimited vocabulary test). The
speech was collected in a noisy environment with simulta-
neous recording from a number of far-field microphones as
well as a close-talking microphone. For each speaker one
far-field microphone was chosen as the test material for H3-
PO, and the same speech captured by the close-talking mi-
crophone used for the H3-C0 test. Each of 20 speakers read
15 sentences from one news article. The test was defined so
that data for each speaker (or session) could be processed
as a block (“transcription mode”). This permits multiple
unsupervised adaptation passes through the data. The A-
weighted SNR of the H3-P0 data from each speaker varied
from about 7dB to 23dB.

5.2. HTK H3 System

The HTK system developed for the tests had two paths: one
for high SNR signals typical of the H3-CO data and one for
low SNR data typical of the H3-P0 data. First the data for
a session was classified as either high or low SNR and then
processed accordingly. Both paths included similar pro-
cessing: the main difference being that the HMMs used for
high SNR were trained using the Sennheiser SI-284 training
data and the low SNR data used models trained using the
secondary channel data. Gender independent versions of
both HMM-1 and HMM-2 [8] systems were trained for both
paths using the PLP representation by SPR from the corre-



sponding clean MFCC based systems. Furthermore gender
dependent HMM-2 high SNR models were also trained.

The language models were trained on a total of 406 mil-
lion words of text from the 1995 reprocessed CSRNABI text
training corpus, the 1994 development text corpus, and the
H3 and H4 text data sets. All texts predated August 1
1995. A word list with 65,478 entries was derived from the
most frequent words used in a subset of the data and back-
off bigram, trigram and 4-gram language models built. The
OOV rate of the test data was 0.56%. Pronunciation infor-
mation came from the LIMSI 1993 WSJ Lexicon augmented
with pronunciations generated by a text-to-speech system,
along with some hand-generated corrections.

Decoding operated on a session by session basis in a num-
ber of stages. All stages used the dynamic network decoder
[7] which allows single-pass decoding, lattice generation and
lattice constrained decoding. All adaptation stages com-
pensated both means and variances by MLLR and used
block diagonal MLLR matrices for the means.

First, two preliminary passes were performed on the data
using the HMM-1 models with tight pruning to give a rough
initial transcription. The first of these used the original
models and the second uses global MLLR adaptation (i.e.
a single transformation for all Gaussians) and the trigram
language model. Using the transcriptions from the second
preliminary pass, global MLLR adaptation was again per-
formed. These models were used to generate word lattices
using a bigram language model.

The bigram lattices were expanded to trigram and using
the HMM-1 models with more specific MLLR adaptation,
the final HMM-1 output was derived. This was then used
to adapt the HMM-2 models using 4-gram lattices.

For the high SNR path, the gender of HMM-2 models
for subsequent passes was found using the likelihoods from
forced alignments of the final HMM-1 output with the male
and female model sets—gender independent models were
used if there was inconsistency within a session.

Finally the 4-gram lattices were iteratively rescored using
the HMM-2 models. The final HMM-1 transcriptions and
global adaptation (with a separate transform for silence)
were initially used and then on each subsequent iteration a
larger number of regression classes were created. There were
5 such HMM-2 passes for the low-SNR data and 3 passes for
the high SNR data. The final pass gave the system output.

5.3. H3 Results

The last line of Table 4 gives the actual HTK results in the
Nov’95 H3 evaluation. These were the lowest error rates
achieved in both the H3-P0O and H3-CO tests. The results
use the adjudicated transcriptions and map files.

The other lines of Table 4 show the result of using the
HMM-2 models with the 4-gram lattices derived above with
either no adaptation or mean-only MLLR. Although the
lattices were derived using mean and variance MLLR, we
expect the figures to be an accurate estimate of the error
rate since the lattices are large. Also it should be noted
that the grammar scale and word-insertion penalties were
not tuned for these contrasts.

The use of mean and variance adaptation gives a large
decrease in error rate: 39% on H3-P0 and 22% on H3-CO
data, while mean adaptation alone produces reductions of
31% and 17% respectively. These percentage decreases in
word error rates due to MLLR for the H3-P0 data are nearly
double those given for the S5 data because of the increased
mismatch between the secondary channel training data and
the H3 test data and also the use of multiple iterations

[ Adaptation | H3-P0 Data | H3-C0O Data |

None 22.12 8.54
Means 15.22 7.11
Means+ Vars 13.507 6.631

Table 4. % Word error rates on Nov'95 H3 data. { denotes
the systems actually used for the Nov'95 H3 evaluation.

of transcription mode adaptation. Variance adaptation is
particularly important for noisy data since noise reduces
the speech variance. Mean and variance MLLR provided
a fairly consistent improvement (relative to mean MLLR)
across speakers: for both H3-P0 and H3-CO0 only 2 speakers
gave more errors with the addition of variance adaptation.

6. CONCLUSION

The techniques described, used both singly and together,
have been shown to produce a large decrease in word error
rate when a LVCSR system is used in environmental acous-
tic conditions that aren’t matched to the training data. The
resulting systems give state-of-the-art performance on data
with both additive noise and channel effects.
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