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ABSTRACT

This paper describes recent developments of the HTK large
vocabulary continuous speech recognition system. The sys-
tem uses tied-state cross-word context-dependent mixture
Gaussian HMMs and a dynamic network decoder that can
operate in a single pass. In the last year the decoder has
been extended to produce word lattices to allow flexible and
efficient system development, as well as multi-pass operation
for use with computationally expensive acoustic and/or lan-
guage models. The system vocabulary can now be up to 65k
words, the final acoustic models have been extended to be
sensitive to more acoustic context (quinphones), a 4-gram
language model has been used and unsupervised incremental
speaker adaptation incorporated. The resulting system gave
the lowest error rates on both the H1-PO and H1-C1 hub
tasks in the November 1994 ARPA CSR evaluation.

1. INTRODUCTION

This paper describes recent improvements to the HTK
large vocabulary speech recognition system. The system
uses state-clustered mixture Gaussian cross-word tri-
phone HMMs to allow an appropriate balance of acous-
tic modelling detail (model complexity) and parameter
estimation accuracy for a given training corpus. The
system decoder is able to integrate cross-word context-
dependent acoustic models and N-gram language models
(LMs) into a single recognition pass. The system was
evaluated using the Wall Street Journal (WSJ) corpus
and found to give very good performance [6].

Recently, our focus has been to optimise and further en-
hance the capabilities of the system. However experi-
mentation using our original system was computation-
ally very costly. Therefore the decoder has been ex-
tended so that it can produce a network of recognition
alternatives stored in the form of a word lattice for each
sentence. The information stored in these word lattices
can be used for many purposes including the optimisa-
tion of system parameters, or investigating the use of
alternative acoustic and language models.

This paper first gives an overview of the HTK large vo-
cabulary recognition system and then the process of gen-
erating word lattices is described. The further develop-

ment of the system for the November 1994 ARPA con-
tinuous speech recognition (CSR) evaluation is then de-
tailed, which includes the use of refined acoustic models,
a 65k word vocabulary, a 4-gram language model and the
integration of unsupervised incremental speaker adapta-
tion. The results show that the latest system continues
to give state-of-the-art performance.

2. SYSTEM OVERVIEW

This section gives an overview of the HTK large vocab-
ulary system described in [6]. The system uses mixture
Gaussian cross-word context dependent HMMs, each
with three emitting states. Speech data is coded us-
ing 12 MFCCs, normalised log energy, and the first and
second differentials of these parameters. Cepstral mean
normalisation is performed on a sentence by sentence
basis.

The HMMs are built in a number of stages. First, using
a pronunciation dictionary and sentence orthography a
phone level label string is generated by Viterbi alignment
to choose the most likely pronunciation variants. These
labels are used to generate single Gaussian monophone
HMMs, which are then cloned for every triphone context
that occurs in the training data, and the resulting single
Gaussian cross-word triphone HMMs trained.

To obtain good recognition performance, mixture Gaus-
sian densities are required, but for the majority of tri-
phone contexts there is insufficient data to train a mix-
ture Gaussian. Furthermore many of the cross-word tri-
phones needed during decoding do not occur in the train-
ing data (“unseen triphones”). To solve both of these
problems a tree-based state clustering procedure is used

[7].

A phonetic decision tree is built for every monophone
HMM state position to determine equivalence classes be-
tween sets of triphone contexts. The tree-growing proce-
dure uses questions about the immediate phonetic con-
text to repeatedly divide the triphones seen in training
into groups. The final clusters contain triphone contexts
that are acoustically similar but also have enough train-
ing observations for robust estimation of mixture Gaus-



sians. The single Gaussian state output distributions of
the members of each class are then tied to each other.
By using the decision trees, the tied-state labels needed
to synthesise any unseen triphones can be determined.
The number of mixture components in each tied-state
distribution is incremented using an iterative mixture-
splitting and retraining procedure. A final optional stage
in model building clones this HMM set and re-estimates
separate gender-dependent mean vectors, while retaining
the gender independent variances.

The system uses a time-synchronous one-pass decoder
that is implemented using a dynamically built tree-
structured network. This approach integrates the cross-
word context-dependent acoustic models and N-gram
language models directly into the search. The approach
saves computation and storage by using a tree-structured
lexicon since most search effort is in the first phones of
each word. However it does require tree copies for dif-
ferent acoustic and language model contexts. Details of
the decoder architecture are given in [5].

3. WORD LATTICES

Although the dynamic network decoder can operate in
a single pass, for many purposes, including system de-
velopment, word lattices are of great utility. A word
lattice forms a compact representation of many alter-
native sentence hypotheses. The lattices contain a set
of nodes that correspond to particular time instants and
arcs connecting these nodes that represent possible word
hypotheses for the time period between two nodes. An
example lattice is shown in Fig. 1.
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Figure 1: An example word lattice.

Associated with each arc are (optionally) both language
model and acoustic model scores. Since the acoustic
models include cross-word context, the lattice may con-
tain copies of each word, and further copies can be re-
quired to encode the full language model constraint.

Once these lattices have been constructed they can be
used for a number of different purposes. Language model
scores can be scaled to optimise language model weights
and/or word insertion penalties; a new language model
can be applied using the same acoustic scores and recog-
nition performed using an A* search through the lattice;
and N-Best sentence hypotheses can be generated. Also,

new acoustic models, and optionally a new language
model, can be used with the lattice operating as a word-
graph to constrain the search in which case the initial
acoustic and language model scores and word start/end
times are not required. Of course a word lattice may
also form the ideal interface to pass a hypothesis set to
further stages of processing.

3.1. Lattice Generation

Lattice generation only requires minor modifications to
the basic search strategy since multiple copies of each
word are kept during the search. Information about
which words end at each node in the search at each
time are recorded and retained, but only the best hy-
pothesis is extended. The multiple hypotheses can be
recovered at each word-end node at the end of the utter-
ance. This procedure will not generate exact solutions
for any but the locally best path since it implicitly as-
sumes that the start-time of each word is independent of
all words before its immediate predecessor (the “word-
pair approximation”). This procedure is similar to the
lattice generation described in [1] except that here it has
been extended to cross-word acoustic models and lat-
tices can be generated with arbitrary N-gram language
models.

It has been found that the lattices generated in this man-
ner can be pruned without adversely affecting lattice cov-
erage. For each arc, the score of the best complete path
through the lattice which includes that arc is found. If
this score is more than a threshold from the globally best
path, then the arc is deleted. This pruning strategy can
be efficiently implemented using an A* algorithm.

In practice, we have found that initial lattices generated
using a bigram LM are adequate. For rescoring with
higher order N-gram LMs it is convenient to expand the
lattice to encode the new language model constraints
along with the associated probabilities, and then apply
a further stage of lattice pruning. The expanded lattice
can then be used for acoustic rescoring without requiring
the full LM to be available in memory.

3.2. Lattice Error Rates

To measure the lattice quality, two lattice error rate mea-
sures are computed. The first determines whether a path
corresponding to the true sentence exists in the lattice
(lower bound on the sentence error rate), and the sec-
ond is a lower bound on the word-error rate from rescor-
ing the lattice, where the word-error rate is found by
the usual dynamic programming string alignment proce-
dure. Both measures are complicated by the possibility
of out-of-vocabulary (OOV) words in the utterance. Lat-
tice sentence error is only computed for sentences that



don’t contain OOV words, while for the lattice word er-
ror rates no account of OOV words is taken (i.e. OOV
words are counted as incorrect). Therefore, if the OOV
rate is subtracted from the lattice word error rate, an
estimate of the lattice error rate for non-OOV words can
be found.

Test Set Density | S. Err. | % OOV | W. Err.
Nov’92 5k 73 0.3 0.00 0.02
si_dt_05.0dd 134 3.6 0.00 0.29
Nov’93 5k 135 6.5 0.29 0.73

Table 1: Lattice densities and % lattice sentence/word
error rates for WSJ 5kec nvp test sets, and bigram lat-
tices.

Test Set Density | S. Err. | % OOV | W. Err.
1994 Hl-dev 265 12.3 2.68 4.05
Nov’'94 H1 327 8.9 2.38 3.44

Table 2: Lattice quality for unlimited vocabulary test
sets, 20k word vocabulary and bigram lattices.

Test Set Density | S. Err. | % OOV | W. Err.
1994 H1-dev 289 16.2 0.31 1.53
Nov’94 H1 341 10.7 0.65 1.50

Table 3: Lattice quality for unlimited vocabulary test
sets, 65k word vocabulary and bigram lattices.

The lattice sentence and word error rates for several test
sets and systems using both 5k word, 20k word and 65k
word vocabularies are shown in Tables 1, 2 and 3. The
set si_dt_05.0dd contains alternate sentences from the
1993 WSJ 5k Hub development test after sentences with
OOV words were removed. The other 5k test sets are
from the November 1992 and 1993 5k evaluation tests.
The test sets used with a 20k and 65k word recogniser
are from the 1994 H1 development test and November
1994 H1 evaluation test data, and the figures are given
for unadjudicated references.

The lattices were generated with either a 5k/20k/65k
word bigram language model as appropriate. The lattice
density figure is the average number of lattice arcs per
spoken word. As noted earlier, the lattices can contain
many arcs for the same word, either with slightly differ-
ent start/end times, with differing contexts, or different
pronunciation variants. If the lattice arcs are merged to
produce a finite-state syntax ignoring these differences
the number of arcs is reduced by a factor of between 10
and 20.

Although there is some variability among the test sets,
the lattice word error rates for non-OOV words is less

than 0.5% for 5k test-sets and around 1% for the un-
limited vocabulary data. These values imply that very
similar error rates should be obtained for both rescoring
the lattices and performing the full search. For acoustic
rescoring the computation is reduced by approximately
a factor of 20 by using the word lattices.

4. NOVEMBER 1994 SYSTEM
DEVELOPMENT

This section describes the the development of the system
for the November 1994 ARPA CSR evaluation.

The Nov’94 ARPA evaluation H1 hub test consisted of
two main parts: H1-C1 in which the acoustic training
data was specified as well as a particular 20k word tri-
gram (3-g) language model trained on 227 million words
of data (CSRNABI text corpus) and provided by CMU;
and H1-PO in which any acoustic or language model
training data could be used. In H1-C1 each sentence had
to be recognised independently of any other, whereas in
the H1-PO test the speaker boundaries were known and
hence it was possible to use unsupervised incremental
speaker adaptation techniques. Both sets of H1 acous-
tic test data, (1994 development test and Nov'94 eval-
uation) contained about 15 sentences from each of 20
talkers. Experiments on the evaluation test data were
run just once—either for the evaluation itself or after-
wards for comparison. All results reported in Table 4
were scored using the final adjudicated transcriptions
and phone-mediated alignment.

The texts that provided the prompts for the evaluation
data were drawn from five different sources of North
American business news from June/July 1994. The data
for development test was drawn from the same sources
earlier in 1994. This data was unfiltered (unlike earlier
CSR material) and is hence referred to as unlimited vo-
cabulary data.

4.1. Baseline System

Initially an HMM system was constructed using the tech-
niques outlined in Sec. 2. The system described in [6]
used the Dragon Wall Street Journal Pronunciation Lex-
icon version 2.0 with some local modifications and cor-
rections. However, the new baseline system was built
using the 1993 LIMSI WSJ Lexicon and phone set. Pre-
liminary experiments showed that on average this change
gave about a 4% word error rate reduction.

The acoustic training data used for both the baseline
system and all subsequent HMM sets consisted of 36493
sentences from the SI-284 WSJ0+1 data set. These data
were used to build a gender independent (GI) triphone
HMM set with 6399 speech states, with each state hav-



Vocabulary System GI/GD Grammar Word Adaptation % Word Error
Size Type Type Penalty Hil-dev’94 H1 Nov'94
20k HMM-1 GI 3-g n n 12.77 11.68
20k HMM-1 GI 3-g y n 12.59 11.67
20k HMM-1 GD 3-g y n 12.12 11.30
20k HMM-2 GI 3-g y n 11.85 10.58
20k HMM-2 GD 3-g y n 11.60 10.49%
65k HMM-1 GI 3-g y n 9.52 9.18
65k HMM-1 GD 3-g y n 9.17 8.57
65k HMM-2 GI 3-g y n 9.15 8.41
65k HMM-2 GD 3-g y n 8.72 8.22
65k HMM-2 GD 4-g y n 8.30 7.93
65k HMM-2 GD 4-g y y 7.28 7.18%

Table 4: % word error rates for different vocabulary sizes, acoustic model types, grammars etc. using the 1994 H1

development and evaluation test data.

ing a 12 component Gaussian mixture output distribu-
tion. This HMM set is referred to as HMM-1, and the
performance of this system with the standard CMU 20k
trigram grammar is given in the first line of Table 4.
The word lattices used for all results in Table 4 were
generated using the GI HMM-1 set with the appropriate
bigram LM.

4.2. Word-Insertion Penalty

The baseline system used a grammar scale factor but
without a word-insertion penalty. With word lattices it
is very quick to compute the optimal values for both the
grammar scale and word insertion penalty, although in
fact the system has been found to be fairly insensitive to
the exact values used. It was also found that one set of
word insertion penalty/grammar scale was suitable for
all 20k tests and another pair of values for all 65k tests.
The first two lines of Table 4 show that the use of a word
insertion penalty decreased the word error rate by about

1%.

4.3. Improved Acoustic Models

The tree-clustering used in constructing the HMM-1 set
considers only the immediate neighbouring phonetic con-
text (triphone context). To investigate the use of wider
phonetic contexts a model set was constructed in which
the tree clustering could ask questions about the preced-
ing and following two phones (quinphone context) and
also the position of word boundaries. To facilitate this, a
new implementation of the tree clustering software was
required that directly used state-level Viterbi alignments
of the training data to compute the necessary statistics
rather than first building a set of single Gaussian con-
text dependent HMMs and saving the state occupation

1 denotes systems used for the ARPA November 1994 WSJ evaluation.

counts. The model set with quinphone context (denoted
HMM-2) had 9354 speech states, and each state char-
acterised by a 14 component mixture Gaussian. Hence
HMM-2 contained about 1.7 times as many parameters
as HMM-1. Taking into account all the contrasts in Ta-
ble 4, it can be seen that on average the decrease in error
rate due to HMM-2 is about 6%.

Gender dependent (GD) versions of both HMM-1 and
HMM-2 were built. In each case the gender independent
system was cloned and the means and mixture weights
of each set retrained using a single iteration of Baum-
Welch re-estimation with only the training data from
one gender. The variances were left fixed at their gender
independent values and tied to save memory. Compar-
ing results for the corresponding GD and GI systems in
Table 4 it can be seen that gender dependent models im-
prove performance by about 3%. A system in which the
gender independent and gender dependent systems were
all in run parallel was also investigated (the system used
for the evaluation was actually of this form). However
this didn’t change the results of the GD system for either
the 1994 development or the 1994 evaluation data.

A comparison of the HMM-2 system (quinphone context,
LIMSI dictionary & word insertion penalty) with the SI-
284 GD system described in [6] is shown in Table 5.
Nov’92 refers to the 1992 20k nvp evaluation test set,
si_dt_20.0dd refers to alternate sentences in the 1993 H1
development test data and Nov’93 to the 1993 H1 eval-
uation test data. Note that for these tests the 1993 20k
word list and Lincoln Labs 20k trigram grammar were
used. The HMM-2 system reduces the word error rate
by about 11%, and this system gave the lowest error rate
in the H1-C1 test of 1994 ARPA evaluation.



System Nov’92 si_dt_20.odd Nov’'93
From [6] 9.46 13.71 12.74
HMM-2 GD 8.19 12.34 11.61

Table 5: % word error rates comparing the GD SI-284
system from [6] and GD HMM-2.

4.4. 65k Word Vocabulary

If the CMU 20k word-list is used, 2.68% of words are
OOV in the 1994 Hl-dev and 2.38% in the Nov'94 H1
data (before adjudication). Since on average 1.6 errors
occur for each OOV word in the test data, OOV words
have a significant impact on the overall recognition rate.
Therefore to reduce the OOV rate, a recogniser with a
65464 (65k) word vocabulary was developed. The word-
list was chosen by taking the most frequent words in
the CSRNABI1 corpus and filtering to remove mis-spelled
words etc. and then adding the the most frequent extra
words from the 1.4 million word 1994 LM development-
test text corpus. This procedure resulted in an OOV
rate of 0.31% on the acoustic development test data
and 0.65% on the evaluation data (before adjudication).
Note that the acoustic development test OOV rate would
have been approximately 0.6% if the entire development
test data had not been used for the wordlist construc-
tion. The adjudication process reduced the OOV rate
with the 65k vocabulary and Nov'94 H1 data to 0.4%.

The additional pronunciation entries needed by the
recogniser for a 65k vocabulary were generated using
a text-to-speech system and then those entries were
mapped to the LIMSI phone set. It was found that this
approach to expanding the dictionary was as effective
as mapping entries from other large publicly available
sources of pronunciation information and had the addi-
tional advantage that entries could be generated for an
arbitrary wordlist.

A 65k backoff trigram [4] language model was estimated
from the CSRNABI training texts and the development
test data. The LM used for the development test data
excluded the articles from which the prompts for the
acoustic data was taken, but the LM used for the Nov’94
evaluation test included all articles. To model the differ-
ences between the spoken data and the canonical form
of the text data, particularly for numbers, some of the
text data were modified to reflect the forms seen in the
acoustic training data. The most important modifica-
tion is to have LM training data with the word “AND”
appearing after “HUNDRED”. Variants of words such as
“CORP.” and “INC.” were added to the lexicon and used
the LM entries for the corresponding expanded forms

(e.g. “CORPORATION").

Comparing the entries for 20k and 65k vocabularies in
Table 4, the error rate reduction was on average 24%
with the 65k trigram. It was found that about a 0.25%
(absolute) reduction in error rate was due to modelling
the effect of spoken numbers, and that 0.4% (absolute)
was gained from adding the development texts on the
development data but only 0.1% on the evaluation data.
This difference is believed to be due to the fact that arti-
cles with a similar content to those used for the acoustic
development test prompts were included in the LM de-
velopment test material (even after the actual articles
were removed).

4.5. 4-Gram Language Model

The use of a backoff 4-gram (4-g) LM was investigated
to see if the extra span would be beneficial with a large
amount of training data. The test-set perplexity of the
65k 3-g and 4-g LMs are given in Table 6. These were
measured with the unadjudicated references. The 65k 4-
g LM contained 6.3 million bigrams, 9.9 million trigrams
and 10.1 million 4-grams as well as the various backoff
weights. This corresponded to excluding bigrams that
only occured once, while trigrams and 4-grams were ex-
cluded that occured less than three times in the training
data. The 4-gram LM yielded a 9% perplexity reduction

Test Set % OO0V | 3-g perplex. | 4-g perplex.
1994 Hl-dev 0.31 145.2 132.7
Nov’94 H1 0.65 145.3 131.8

Table 6: Test set perplexities for 65k 3-g and 4-g LMs

and Table 4 shows that it resulted in an average decrease
in word error rate of 4%.

4.6. Speaker Adaptation

Although speaker independent systems can have good
overall performance, some speakers are poorly modelled
by such a system. If a sequence of utterances are from
the same speaker then the system may be able to be
adapted to better model the current speaker. This pro-
cess should ideally be unsupervised (i.e. the true tran-
scription for each adaptation utterance is not required),
and incremental so that performance will gradually im-
prove as more adaptation data is available. The GD
HMM-2 HMM set contains around 15 million parame-
ters, and a key issue is adapting the parameters of such
a system using a small amount of adaptation data. The
approach adopted here is an extension of the maximum
likelihood linear regression (MLLR) technique [2].



MLLR estimates the parameters of a set of full (40 x 39)
transformation matrices which are used to transform the
Gaussian mean vectors. The matrices are estimated so
as to maximise the likelihood of the transformed models
generating the adaptation data. The technique is imple-
mented using the forward-backward algorithm and has
close links with standard Baum-Welch training.

When only a small amount of data is available all Gaus-
sian means are transformed by the same matrix (single
class), and as more data becomes available more spe-
cific matrices are computed using only the data that is
aligned with that class. The number of classes used at
any stage depends on the available adaptation data. All
the Gaussian means are clustered into a set of 750 base
classes, these are then arranged into a heirarchy and the
most specific class is generated that has enough observa-
tions to robustly estimate the MLLR matrix parameters.
Further details of the method are given in [3].

The adaptation was implemented in an acoustic rescor-
ing pass using the 4-g word lattices. The gender of the
current speaker was found from the first two utterances,
and then only the model set for the recognised gender
adapted. The model means were updated after every
two sentences. It can be seen from the final two lines
of Table 4 that MLLR speaker adaptation reduced the
error rate between 9% and 12%, and moreover had the
greatest effect on the speakers that were most poorly
modelled by the original system. For the development
test and evaluation test sets taken together, adaptation
decreased the error rate for more than three times as
many speakers as it increased and furthermore the size
of the error rate decreases were generally larger than the
increases.

The 65k GD HMM-2 4-g system with unsupervised in-
cremental speaker adaptation gave the lowest error rate
in the H1-PO test of the 1994 ARPA evaluation.

5. CONCLUSION

The use of word lattices in the HTK large vocabu-
lary recognition system has enabled a number of new
techniques to be investigated including wider context
phonetic models, 4-gram language models and unsuper-
vised speaker adaptation. The resulting system has been
shown to give state-of-the-art performance.
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