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Abstract

In this report, we present analysis and prediction of building data using
recurrent neural nets. We first explain why a recurrent neural net is chosen
by analysing the static and dynamic characteristics of the data, and demon-
strating its prediction result. Two techniques are then developed to track
the non-stationary state and to catch the long-term memory structure of the
data to improve the prediction performance, which cannot be attained with
a large recurrent net due to its training difficulty.



1 Introduction
1.1 Task

Building data analysis and prediction is a competition organised by the ASHRAE meeting,
Denver, Colorado during December 1, 1992 to April 30, 1993, (Kreider and Haberl, 1993).

Two sets of energy and environmental data from real buildings are provided for this task.

1.2 Introduction to this report

In this report, we present the results of analysis and prediction applying recurrent neural nets
to data set A. We will first describe the data set and define a validation set and a criterion
measure. In Section 2, we analyse the linear and nonlinear, static and dynamic characteristics
of the data. We present the results using the linear regression technique and a nonlinear
prediction technique using feedforward neural nets, and explain why recurrent neural nets are
chosen to model the data. A recurrent neural net model is then given in Section 3. We will
describe the training process and demonstrate the prediction result. A recurrent neural net is a
general, nonlinear and dynamic model, but a large net is usually required to track the dynamic
state of non-stationary, complex signals. However, a large recurrent net will always result in
training difficulty. In the following two sections of this report, two techniques are developed
to alleviate the above difficulty. In Section 4, we train multi- recurrent nets to cope with the
non-stationarity of the data. In Section 5, we analyse the long-term memory structure of the
data, present a long-term prediction model and show an improved result. Finally, Section 6
concludes the recurrent neural net prediction model and discusses further modifications and

improvements.

1.3 Data preprocessing and error measure

Data set A (as shown in Figure 1) is a time record of hourly energy usage including electricity,
chilled water and hot water, for a four-month period in an institutional building. The task is
to predict these three data sets for the following two-months. Four environmental data sets
of temperature, humidity ratio, solar flux and wind speed, for the same six-month period are
also provided as side information.

The given samples are the continuous records from 2am on September 1 1989 to 9am on
February 23 1990. 2926 samples dated from September 1 1989 to December 31 1989 are pro-
vided as training data. We divided them into a validation set and a training set. Due to the non-
stationary nature of the data, a validation set covering samples between (200, 300), (450, 550),
(700, 800), (950, 1050), (1200, 1300), (1450, 1550), (1700, 1800), (1950, 2050), (2200, 2300), (2450, 2550)
and (2700, 2800) is chosen to keep the probabilistic distribution of the training set and that of
the validation set as close as possible. The sizes of the training set, the validation set and the

test set are therefore 1826, 1100 and 1282 samples respectively.
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Figure 1: Building energy and environmental data set A. From top to bottom, they are re-
spectively the four-month electricity usage data (kWh/hr), chilled water usage data (millions
of Btu/hr), hot water usage data (millions of Btu/hr), the six-month temperature (deg F),
humidity ratio (Ib water/lb dry air), solar flux( W/sq meter) and wind speed (mi/hr).



Two additional inputs have been considered, one is the time information and the other is
the date information. The time input is the hourly record and the date input gives working
or non-working information. The non-working information indicates if it is ordinary weekends
or long holidays such as Christmas and New Year holidays. We will see from the comparison
in the following section that considering these two additional inputs will greatly improve the
prediction precision.

Because the data sets are recorded in different measure units, they have respectively been
normalised to zero-mean and one-variation before being applied to a predictor.

The coefficient of variance, C'V, and the mean bias error, M BE, as described by Equation
1 and Equation 2 are defined as error measures. CVrp,., and M BFEr,, are defined as error
measures over the training set, C'Vy, and M BFEy,; are those over the validation set and

CVrravae and M BET,.v4 are those over both the training set and the validation set.

Z (yz z (1)

_ 1
g i=1
MBE_fiz(yl_ z (2)

where y; is an original data value, §; is the prediction of y;, ¥ is the mean value of y; and N is
the number of data in the defined set.
Due to the time-limit, our study concentrates on the electricity usage data only. Our result

will extend to the water usage data in future work.

2 Data Analysis
2.1 Static Analysis

We first consider the point-to-point mapping between the electricity data and the environmen-
tal data. The mapping relationship may be linear or nonlinear. The cross-plots of Figure 2
show that a nonlinear mapping could be a better selection. This can further be seen from the
following comparison.

Using the linear-regression technique, e.g. (Draper and Smith, 1966), the linear correlation
between the electricity data and the environmental data can easily be found. Its predictive
error is shown in the first row of Table 2. This table also demonstrates the improvement of
prediction performance by considering the time information and the date information.

Using the nonlinear prediction technique with a feedforward neural net, as in (Lapedes and
Farber, 1987), the prediction error C'V decreases by about 11.5% as shown in the second row
of Table 2.

The prediction performance of a feedforward neural net relies on the size of the net. Here

we set the number of layers to three and determine the number of hidden units by comparing
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Figure 2: Crossplots between the building electricity usage and each environmental data and
the time and date information.
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Figure 3: Cascaded short-term and long-term prediction model.

Predictors CVrre | CVvar | CVrraval || MBET,q | MBEv, | MBET,.va
Py 0.0407 | 0.0437 | 0.0419 0.0069 0.0053 0.0063
P+ P 0.0315 | 0.0362 | 0.0334 0.0013 -0.0009 0.0004
P+ P+ P3| 0.0249 | 0.0313 | 0.0276 0.0007 -0.0017 -0.0002

Table 1: Predictive error of the cascaded short-term and long-term prediction model to the
electricity data.

the prediction error over the validation set. It was found that when the number of hidden units

was increased to ten, the prediction error over the validation set did not reduce obviously.

2.2 Dynamic Analysis

The electricity data is not a memoryless signal. We now observe its dynamic characteristics.
From the waveform shown in Figure 1, we can see that in addition to the short-term memory,
there are two types of long-term information, with periods of 24 (one day) and 168 (one week)
respectively.

With a cascaded short-term and long-term prediction model studied in (Wu and Fallside,
1992), one can get the predictive error as shown in Table 1 and Figure 4.

The cascaded short-term and long-term prediction model is formed by three predictors
Py, P, and P53 as shown in Figure 3. Each predictor is a recurrent neural net. The Py uses
several previous electricity data to predict a current sample. Its predictive residual is then
time-delayed by 24 hours and applied to the P,. The P, uses the predictive residual of P
to predict the current P; predictive residual. In sequence, the P3 predicts the P, predictive
residual using the predictive residual of Py with 168 hour-delayed.

For this analysis, we just used a very small size of recurrent neural nets. Each net consisted
of three layers with three units in the input layer, two in the hidden layer and one output unit.
The result in Table 1 and Figure 4 has shown that a very good prediction accuracy can be
obtained by using the contextual memories, both short-term and long-term, of the data. Better

prediction performance can be expected with larger nets. However, the cascaded short-term
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Figure 4: Predictive residual of building electricity usage data with a cascaded short-term and
long-term prediction model. From top to bottom, they are respectively: (a) the predictive
residual with a one-hour short-term predictor, (b) the predictive residual with a one-day long-
term cascaded predictor and (c) the predictive residual with one-day and one-week two long-
term cascaded predictors.

and long-term prediction model of Figure 3 cannot directly be applied to the task of building
energy data prediction, since the previous samples of data are not available in the test set.

From the above analysis of the static and dynamic characteristics of data, we conclude that
the mapping from the environmental data to the electricity data is nonlinear, and that the
electricity data is a state-dependent signal and its memory state should be explored to attain
good prediction performances.

A recurrent neural net is a general, nonlinear and dynamic system. We will first apply
a recurrent neural net to simulating the mapping function between the electricity data and
environmental data. The application of recurrent neural nets is then extended to model the

long-term memory of electricity data.

3 Prediction with Recurrent Neural Nets

A recurrent neural network is shown in Figure 5. There are six inputs, respectively corre-
sponding to four environmental data, the time information and the date information. The
outputs of hidden units are time-delayed and feed-backed to the inputs of hidden units. The
time-delayed units are set to one hour. There is only one output, which approximates the
electricity data. We use the gradient-based training approach, as in (Wu and Fallside, 1992).

The normalised environmental data and the time and date information are applied to the input



Figure 5: Recurrent neural net model for prediction of building electricity data.

units and fed forwarded from the input layer to the hidden layer, to the output layer. The
output is compared to the original electricity data. The difference between the output and the
electricity data is then fed back from the output layer to the hidden layer, to the input layer to
get the gradient-descent of each connection weight. To avoid under-training or over-training,
the number of hidden units and the training process are determined and judged by the change
of performance over the validation set

The response of a recurrent neural net depends on its inputs and its states. The current
states of a recurrent net are the hidden outputs of the last sample, which reflect the dynamic
characteristic of previous inputs. During training, both feedforward and backward processes
are carried out through the training and validation sets, but the weights are updated over the
training set only.

The gradient-based training approach cannot guarantee a global optimum. Its local prop-
erty depends on the initialisation of network weights. Usually, the weights are initialised by
random values. Different initialisations may lead to greatly different training results. To re-
duce the effect of initialisation, N recurrent neural nets with different initialisations have been
trained. M best nets (M < N) are then chosen and averaged to approximate the electricity
data.

The prediction of electricity data and its predictive residual are shown in Figure 6, which
is obtained by averaging ten nets chosen from twenty nets. All these nets contain only one
hidden layer. The number of hidden units varies from six to eight. The predictive error is given
in Table 2. Compared to the feedforward neural net, the prediction error C'V of the recurrent
net decreases by about 42.5%.

In some conventional prediction techniques, the differential signal é, = s, — s,—1, instead

of the original signal s,, itself, is predicted, and then the reconstructed signal §,, is estimated by
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Figure 6: Prediction waveform (top) and predictive residual (bottom) of electricity data with
a recurrent neural net.
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Figure 7: First-order differential signal of electricity data.

bn+ 6n—1. The first-order differential signal of electricity data is shown as in Figure 7. It seems
that it is more stationary and easier to predict than the original signal, but, actually, we found
that the reconstructed signal is far from the original one, because any previous predictive error

will be accumulated.

4 Prediction with Multi- Recurrent Nets

In theory, a well-trained recurrent net can automatically track the state of dynamic signals.
However, a large net is always needed to learn a transfer function of complex non-stationary
signals and, usually, a large recurrent net cannot successfully be trained.

We have simulated the data using a recurrent net as studied in the last section. To deal with
the non-stationarity of electricity data, more hidden units have been added to the recurrent net.
However, we found that, as the number of hidden units increased up to eight, the prediction
performance of the training set and that of the validation set were already saturated. The

most probable reason is that a large recurrent net cannot perfectly be trained and becomes
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Figure 8: Prediction waveform (top) and predictive residual (bottom) of electricity data with
double recurrent neural nets.

more easily trapped in a local minimum. In this section, we will try a modular approach to
avoid the training difficulty of large recurrent nets.

The modular approach consists of multi- recurrent nets with the same-architecture. The
size of the recurrent net is small so that it can successfully be trained using the gradient-
based algorithm. All nets receive the same inputs and the output of each trained recurrent
net is expected to cover a certain part of electricity data space. We divide the electricity data
into two classes, one class consists of weekdays’ data and another consists of weekends’ and
holidays’ data. After a net has been trained using the whole training data, its weights are
copied to another net with the same architecture and inputs. One net is further trained using
the weekdays’ data, and another is further trained using the weekends’ and holidays’ data.
When the training process is switched from one net to another, the outputs of the hidden units
are copied from the original net to the new net as current state variables.

The training process is stopped when the prediction error over the validation set does not
decrease any more. Because the weights of multi-nets are initialised with the weights of a
trained single-net, the prediction performance of multi-nets is at least as good as that of a
single-net.

Based on the twenty trained single recurrent nets, which are randomly initialised as men-
tioned in the last section, twenty sets of double recurrent nets have been produced. After being
further trained, ten with best prediction performance are selected. Their average is shown in
Figure 8. Compared to the single recurrent net of the last section, the prediction error C'V, as
shown in Table 2, decreases by about 9.6%.

There are different classification methods in signal space. The classification of electricity

data into a working date class and a non-working date class is based on intuitive observation

10



of the electricity data waveform. Another classification approach is to group the data into
vectors and classify them using a vector quantisation technique. We will study and compare

different classification approaches in our future work.

5 Long-term Prediction Modelling

As discussed in Section 2, there exist two long-term memory structures in electricity data.
This can also be seen from the regular spikes in the predictive residuals of Figure 6 and Figure
8.

The outputs of hidden units are time-delayed by one interval between two successive samples
and fed back in the recurrent net we studied in the last sections. We have simulated a recurrent
net with three groups of time-delay, feedback connections. The first group of connections is
time-delayed by one hour, the second group by one day and the third group by one week.
Because the total number of feedback connections is twice more than the previous net, when
the number of hidden number increases, it is found that the recurrent net is more easily
trapped into a local minimum and cannot attain any better result than that with a single
group of time-delay, feedback connections.

Beside recurrent neural nets, we have also tested the prediction for this building energy
data with a time-delay neural net (Waibel et al., 1989). We used a three-layer feedforward
neural net with eighteen-input units. Six units correspond to the current inputs, six units are
the inputs with one day time-delay and the other six units are the inputs with a one week time-
delay. The number of hidden units is varied and determined by the prediction performance
from the validation set. It was found that the time-delay neural net could not achieve any
better performance than the recurrent neural net model.

In Section 2, a cascaded long-term and short-term prediction model has shown a very good
prediction accuracy on the training and validation sets of electricity data. However, this model
is not applicable to the test set because the original electricity data is not available during all
the segment of test set. In this section, we develop a new long-term prediction model formed
by two parallel recurrent neural nets. Instead of using the original data, its inputs receive the
estimation of electricity data obtained from the recurrent neural net predictor resulting from
the study of the last two sections.

As shown in Figure 9, the RN Ny is a recurrent neural net similar to that shown in Figure
5. Its inputs consist of four environmental data (21,23, 23,24), the time information x5 and
the date information zg. Its output y; is an estimation of the electricity data. The RN Noy4
and the RN Nqgg are two recurrent neural nets structured as RN Ny except that their inputs
are the sequentially time-delayed signal, Y1(t —T) = {ys(t =T — N), y2(t =T — N + 1), ...,
n(t—T+ N —1)and y1(t — T+ N)}. The RN Ny4 is trained to learn the long-term memory
structure in the period of 24 hours and the RN Nygg for that with 168-hour period. Z~T and
7~ T2 are two time-delayed units with Ty = 24 — % and T, = 168 — % — Ty, where N;

11
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Figure 9: Long-term prediction modelling for building electricity data.

and M; are respectively the numbers of input units of RN N9y and RN Nygg. The sum of the
outputs of RN Ny and RN Nigs, y24 + Y168, is trained to approximate the predictive error of
RN Ny as shown in Figure 8. The RN Noy and the RN Nygg are trained in sequence. First, the
RN Ny, is trained with the predictive error of RN Ny as a teaching signal, the predictive error
of RN Noy4 is then used to train the RN Nigg.

Both the RN Noy and the RN Nqgg are controlled by the date information zg. As described
in Section 2, zg is actually a state variable. It consists of two states, working state and non-
working state. When using a group of time-delayed signals Y;(t—T) to predict yo4(t) or y1es(t),
z6(t — T') and x¢(t) should lie in the same state. During prediction, when zg(t — T') is not
equal to zg(t), both the RN Nyy and the RN Nygg are switched off. Their state variables, i.e.
the outputs of hidden units in the RN Noy and the RN Nqgg, are also re-set to zero.

The RN N4 and the RN Nygg are defined as three layers with two hidden units. Determined
by the prediction performance from the validation set, the numbers of input units of RN Nog4
and RN Nqgg are set to nine. The waveforms of o4, ¥16s, ¥ and its predictive residual are
plotted in Figure 10. Compared to the recurrent net model studied in the last section, the
prediction error C'V, as shown in Table 2, decreases by about 9.8%.

In Figure 9, each of three recurrent nets are trained in sequence. It is possible jointly to

re-train and fine-tune the network weights so as to further improve the prediction accuracy.

12
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Figure 10: Prediction waveform and predictive residual of electricity data with a long-term
prediction model. From top to bottom, they are respectively the prediction waveforms of ya4,
Y168, ¥ and its predictive residual.
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Model | CVrq | CVyay | CVrravar | MBET:q | MBEy, | MBET:qva
A 0.2063 | 0.2019 0.2047 0.0137 0.0256 0.0212
B 0.1205 | 0.1114 | 0.1172 0.0604 0.0562 0.0588
C 0.1028 | 0.1052 0.1037 0.0273 0.0261 0.0269
D 0.0613 | 0.0570 0.0597 0.0032 0.0034 0.0033
E 0.0540 | 0.0536 0.0539 0.0008 0.0006 0.0007
F 0.0483 | 0.0490 0.0486 0.0023 -0.0024 0.0004

Table 2: Comparsion of predictive errors, where model A is a linear regression with four
environmental inputs; model B is a model A adding the inputs of the time and the date
information; model C is a nonlinear predictor with a feedforward neural net; model D is
a nonlinear, dynamic predictor with a single recurrent neural net; model E is a nonlinear,
dynamic predictor with double recurrent neural nets and model F is a model E with a long-
term prediction model.

6 Concluding Remarks and Discussion

Based on the analysis of the data, a recurrent neural net has been chosen as a model to predict
the building energy data. A recurrent net, in theory, can model any kind of data without
making any assumption on the data. Its only disadvantage is the training difficulty for nets
of large sizes. We have reported a modular approach which avoids training a large recurrent
neural net. The main principle of approach is to divide the whole task into several related
sub-tasks and attain each sub-task with a rather small recurrent neural net.

Because the electricity data in the test set is not available, we do not know the prediction
error over the test set at the moment. Figure 11 shows cross-plots between the prediction
of electricity data and the environmental data in the test set. Compared to Figure 2, the
cross-plots in the training data set, both the distributions in the training set and the test set
are very similar.

In this prediction task, we have used a priori knowledge, the date information, as one of the
inputs of the predictor. The date information is identified by two states of working and non-
working days. The data set does not provide such a priori knowledge. We have assumed that
the Thanksgiving holidays started on Thursday the 23rd of November and ended on Sunday
the 26th of November and that the Christmas holidays started from Thursday the 21st of
December and ended Monday 1st January 1990.

If there were other holidays which happened during the test set, for example, Martin Luther
King Day on Monday of the 15th of January in 1990 and Washington’s Birthday on Thursday of
the 22nd of February in 1990, (referred to “Hints to Exporters, The United States of American,
1989/90” by British Department of Trade and Industry), a different prediction in the test set
will result.

We suppose that providing the information on public holidays in prediction is practical

14
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Figure 11: Crossplots between the prediction of electricity data and each environmental data
and the time and date information in the test set.
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and applicable since which holidays will be observed in a given building should certainly be a

priori knowledge.
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