The HTK Hidden Markov Model Toolkit:
Design and Philosophy

SJ Young

CUED/F-INFENG/TR.152
September 6, 1994

Cambridge University Engineering Department
Trumpington Street, Cambridge, CB2 1PZ

(sjy@eng.cam.ac.uk)

1 Introduction

HTK is an integrated suite of software tools for building and manipulating continuous
density Hidden Markov Models (HMMs). It consists of a set of library modules and a set
of more than 20 tools (programs). It is written in ANSI C and runs mainly on UNIX-
based systems although it can run under any modern OS. It is currently used in over
100 speech laboratories around the world and it is also used for teaching in a number
of Universities. A HTK-based recogniser was included in both the ARPA September
1992 Resource Management Evaluation and the November 1993 Wall Street Journal CSR
Evaluation, where in both cases performance was comparable with the systems developed
by the main ARPA contractors (see section 9).

HTK was designed to be a general-purpose platform for research, benchmark testing
and product development[Young et al 1993]. Its libraries provide an effective programming
environment for implementing new algorithms and its tools allow a variety of recognisers
to be built quickly and efficiently.

Although HTK is general-purpose, it also encourages a particular approach to building
speech recognition systems. Firstly, HTK is restricted to continuous density systems in
preference to discrete systems because, for the purposes of research, they have a number
of mathematically desirable properties and, for the purposes of practical application, they
are believed to be more robust. Secondly, parameter tying is regarded as being an essential
requirement and hence HTK provides a generalised mechanism which allows tying at all
levels. Thirdly, HTK fosters an incremental approach to model building whereby a system
of HMMs is refined through a number of stages involving interleaved model manipulation
and model re-estimation. Finally, HTK acknowledges that building a complex HMM-based
system involves manipulating a diverse range of data including speech, transcriptions, and
dictionaries. It therefore provides a rich set of integrated tools to facilitate these activities.

HTK is fully described by its user, reference and programmer manuals. However, these
do not address the underlying concepts of its design nor do they make any direct attempt
to explain its philosophy. The aim of this paper is to address just these issues.

The remainder of the paper is organised as follows. It begins in section 2 with a
general overview of HTK and this is followed in section 3 by a discussion of its core,
that is, the methods that are used to represent HMMs both internally and externally.
Section 4 discusses HTK’s incremental model building philosophy and section 5 describes
the design of the recognition tools. The user interface design is then described in section
6. HTK is designed to support large-scale system building and as such, optimisation is
an important concern. Section 7 describes the optimisations built in to HTK for both
training and recognition. Section 8 discusses some of the relevant software design aspects
of HTK and finally section 9 describes a number of the applications and systems which
have been built using HTK. This includes a summary of the performance results obtained
on the three major recognition benchmarks: phoneme recognition on the TIMIT database;
1000 word recognition on the Resource Management Database; and 5,000 and 20,000 word
recognition on the Wall Street Journal Database.

2 Overview of the HTK Toolkit

The HTK toolkit is designed to facilitate the construction of systems using continuous den-
sity Gaussian mixture HMMs[Liporace1982, Juang 1985, Juang et al 1986, Bahl et al 1987].
It consists of a number of tools (programs) and a comprehensive set of library interface

1

modules. The library modules ensure that all tools behave in a uniform way and they also
simplify the development of new tools.

2.1 The HTK Library

The HTK library consists of ten modules that provide a fixed interface between tools and
the outside world, and they also provide a variety of useful support functions. The library
modules are listed in Table 1.

Name Module Function

HDbase | Training token database
HGraf | Interactive graphics interface
HLabel | Label file i/o

HMath | Additional math support
HMem Memory management
HModel | HMM definitions & i/o
HParse | Grammar support

HShell | Operating system interface
HSigP | Signal processing routines
HSpIO | Speech data file i/o

Table 1: HTK library modules

Figure 1 illustrates the way in which these modules are used by a typical training
tool which reads a set of existing HMM definitions and some training data, and then
produces new HMM files. The input and output of HMM definitions is performed by
HModel which converts between the external textual representation of a HMM and the
internal memory representation. Speech data is input via HSpIO. This module can read
both waveform and parameterised data in most standard data formats. It can also perform
automatic parameter conversions. For example, first and second difference coefficients can
be automatically appended on-the-fly to reduce external data storage requirements with
minimal computational overhead. The module HDBase gives efficient access to speech
segments for tools that need to cyclically process the training data examples, and handling
of the data transcription files is performed by HLabel. HShell provides command line
argument handling and other facilities that enable HTK tools to work in a uniform manner
across a range of operating systems, HMem provides facilities for efficient memory allocation
and de-allocation, and the module HGraf supplies a simple event-driven graphics interface.
Finally, HParse converts a set of syntax rules (including word-pair grammars, simple loops,
optional terms etc.) to a network representation and is used primarily by the recognition
tools.

2.2 HTK Tools

There are over 25 tools in the current HTK distribution and table 2 lists a selection of
them. The way that these tools are used to build HMM-based systems is discussed in some
detail in section 4 and this varies, of course, depending on the type of HMMs required.
However, as a brief example, the construction of a continuous speech sub-word recogniser
would involve the following steps.

HMM Definition File

'

HModel
Data + Command
File — HSpIO\ / HShell <—Ar Lulrl’T]](Znts
Label HTK g
File —®|HLabel %] 700l HMath
HDbase7 + § HSigP
Graphics
HMem HModel HGraf — npiglay
HMM Definition File
Figure 1: Typical HTK Tool and Library Interactions
Name Tool Function
HAlign Perform forced alignments
HCode Speech analysis (LPC, MFCC etc.)
HDEd Batch mode dictionary editor
HERest Embedded Baum-Welch re-estimation
HHEd Batch mode HMM editor
HInit Isolated unit segmental k-means for model initialisation
HLEd Batch mode label file editor
HList List the contents of a data file
HRest Isolated unit Baum-Welch re-estimation
HResults | Results analysis
HSLab Simple interactive label file editor
HSnor2Lab | Convert SNOR orthography to label files
HSnor2Net | Convert SNOR dictionary to HParse network
HSource generate data using a HMM as statistical source
HVite Viterbi decoder (isolated & connected)

Table 2: The main HTK tools

Firstly, the speech data is parameterised using HCode and phone level transcription files
are prepared. The latter may be derived from a dictionary and a set of SNOR! format
orthographic transcriptions using HSnor2Lab and subsequently modified using the label
editor HLEd. If necessary, the dictionary itself may need editing using HDEAJ.

Initial monophone (i.e. context independent) models are created from a small amount
of transcribed bootstrap data using the tools HInit and HRest. Alternatively, if no tran-
scribed data is available, it is possible to use a flat-start procedure whereby all models are
given the same initial parameters and embedded training is used straightaway.

HTK has an incremental build philosophy at the core of which is the HMM Editor HHEd
and the embedded re-estimation tool HERest. Starting with the initial monophone models,
the HMMs are repeatedly edited and re-estimated until the required level of model complex-
ity and performance is reached. Typical edit operations include cloning, tying/untying,
adding/removing transitions, modifying the input data vector sizes, and mixture compo-
nent incrementing.

HERest is the main training tool. It provides an embedded training facility that does
not need a time aligned transcription—only the sequence of models in each training utter-
ance is required. HERest also has a facility for training optional units by allowing models
to have a direct transition from the non-emitting entry state to the non-emitting exit state.
This can be used to allow optional silence between words. HERest is designed to support
large training databases and includes pruning on the forward and backward passes, and
parallel operation over a number of machines. It also allows many different types of tied
structures to be trained.

If the dictionary used has multiple pronunciations, then new label transcriptions should
be generated once reasonable models have been obtained and then all the models should
be re-estimated using the new more accurate transcriptions. A suitable HParse word
pronunciation network can be generated automatically from a SNOR format dictionary
using HSnor2Net and then a realignment can be performed efficiently using this network
by HAlign to yield the mostly likely pronunciation for each training file.

Once trained, the models are tested using HVite. This is a general purpose Viterbi
recognition tool that recognises word sequences according to a given HParse syntax. HVite
features include a beam search (pruning) mechanism; support for word-recognition using
sub-word units (pronunciation graphs defined by any HParse network); bigram support
at both the phone and word level; control of insertions via either a fixed penalty or a
grammar scale factor; and also a number of computational optimisations for shared pa-
rameters. The label files produced by HVite can be scored by HResults which uses a
dynamic programming string matching procedure which is compatible with the standard
NIST scoring software. HResults provides a number of output formats and options includ-
ing overall statistics, confusion matrices, and per speaker analyses. It will also generate
Receiver Operating Characteristic (ROC) information and Figure of Merit (FOM) scores
for word-spotting applications.

3 The Representation of Hidden Markov Models in HTK

This section discusses the way that Hidden Markov Models are represented within HTK,
both externally and internally. Intrinsic to these representations is the mechanism for

!Standard normal orthographic representation used by NIST.

parameter tying. Hence this will be described in some detail including the associated
re-estimation process.

3.1 The HMM Parameter Set

A HMM in HTK consists of an arbitrary number of states N where the entry state 1 and
the exit state N are non-emitting confluent states. The output distribution associated
with each state may depend on one or more statistically independent streams and the
probability of each independent stream can be exponentially weighted by a set of stream
weights {vs}. If o4 is the input observation vector of dimensionality V in stream s at
time ¢ and b;s(0s) is the probability of that vector in state j, then the total probability
b;(o;) of the composite input vector o; at time ¢ in state j is

S

bj(or) = [] bis(os)™

s=1

Each individual stream probability b;s(0s¢) is represented by a mixture Gaussian so that,
if there are M mixture components in stream s then

M,
bjs(ost) - Z stmN(ost; Hjsms stm)
m=1

where ¢y, is the weight of mixture m in stream s of state j and N (o; p, X) denotes a
multivariate Gaussian of mean g and covariance X, that is

1
Vv (2m)" X

In addition to the state output distribution parameters, there are a number of ancillary
parameters. Firstly, the transition probabilities between states are represented by a single
N x N matrix {a;;}. Secondly, each state may have a duration probability distribution
associated with it represented by the parameter set {dx}. Also, the complete model may
have a duration probability distribution associated with it represented by the parameter
set {D;}. Note however that HTK does not prescribe the form of these parameters beyond
allowing them to be named (e.g. Poisson, Gamma, etc.) and none of the standard HMM
tools support them.

N(ojp, %) = e~ 50-p) T (0-p)

There are very few limits in HTK beyond those imposed by available memory. Thus,
for example, any model can have any number of states and any number of components per
mixture. The very general formulation of the output probability distributions is designed
to support a number of different modelling paradigms and be flexible enough to satisfy
future needs. HTK fully supports standard single-stream and multiple-stream mixture
Gaussians, and multiple stream tied mixture systems. However, the HMM representation
also encompasses features which are not directly supported by the supplied tools but are
included for those who wish to use HTK as a basis for research. For example, multiple
streams can be used to model disparate sources of data and the state-based stream weights
can be used to combine these sources discriminatively. As alluded to earlier, various forms
of durational model can be incorporated both at the state level and the model level.
Covariance matrices can be full, diagonal or non-square. The latter form is provided to
allow arbitrary sub-space transformations to be used.

3.2 The External Representation of HMMs

The full set of parameters which constitute a HMM definition can be arranged in a hier-
archy as shown in Fig 2 in which the top of the hierarchy is on the left descending to the
leaves on the right.

hmm
® ~d
[model o {D;}
dur
state 2
4._ ~W
2 —o—{VY4
stream #1] -m
mix #1 & mean U
Cou —@ o
~V
) -3,
mix #2 .m mean U
Cop @ U
var 2
~ L= e
sream#2 -m 212
mean Y
Co L—” M221
~

| state o {dy}

dur
sae 2 .
e W
3 —o—{VYg}
stream #1] ~-m
mix #1 & mean U
Cau @ Han
~V
mix #2 g" » Zan
—~"—@®7 mean Y
~ Cap @ Uz
e
v /\\/
transition ¢
matrix {a'l}

Figure 2: The Hierarchy of HMM Parameters

Externally, HMM definitions are stored in text files using a simple formal language
whose structure mirrors this hierarchy. The full syntax and semantics of this language are
defined in the HTK Reference Manual, here it will be sufficient to just give a flavour of
it by means of a few examples. Figure 3 shows a HMM definition file which represents
a single-stream single-mixture diagonal covariance left-right HMM with 5 states (3 emit-
ting). Keywords are indicated by surrounding angle brackets and the whole definition is
bracketted by the keywords <BeginHMM> and <EndHMM>. The notation is meant to be easily
readable by humans whilst being efficient to parse by machine. The general structure is
that global parameters are given first followed by the parameters for each state. Thus,
in the example, the HMM has 5 states (<NumStates>), a vector size of 8 (<VecSize>),
diagonal covariance (<DIAGC>), no duration parameters (<NULLD>) and data parameterisa-
tion consisting of Mel-Frequency Cepstral Coefficients (<MFCC>). The data for each state
consists of an 8 dimensional mean vector followed by an 8 dimensional variance vector.
Finally, the keyword (<TransP>) introduces the 5 x 5 transition matrix.

Referring back to Fig 2, it can be seen that the layout of the above definition file

<Begi nH\\W>
<Nuntt at es> 5 <VecSi ze> 8
<DI AGC> <NULLD> <MFCC>
<State> 2
<Mean> 8
-5.949 4.748 2.095 3.653 0.587 -2.360 1.752 -1.277
<Variance> 8
31.68 1.131 0.696 0.606 1.321 0.366 1.642 2.285
<State> 3
<Mean> 8
-0.032 5.125 1.868 3.430 1.017 -3.460 1.622 -0.881
<Vari ance> 8
3.261 9.365 1.603 2.043 1.336 3.887 2.380 0.215
<State> 4
<Mean> 8
1.357 1.428 -2.536 3.976 1.035 -5.003 -0.651 0.152
<Variance> 8
6.035 12.07 2.617 4.613 0.973 3.095 0.991 1.097
<TransP> 5
0.000 1.000 0.000 0.000 0.000
0. 000 0.628 0.372 0.000 0.000
0. 000 0.000 0.699 0.301 0.000
0.000 0.000 0.000 0.526 0.474
0. 000

0. 000 0.000 0.000 0.000
<EndHVM>

Figure 3: External Definition of a Single Gaussian 5 state HMM

follows the parameter hierarchy diagram except that the middle stream and mixture layers
have been omitted and the defaults of a single stream and single Gaussian distributions
have been assumed. Figure 4 shows a fragment of a more complex HMM definition in
which most of the options are used. Notice that it is not necessary to have the same
number of mixture components in each distribution. For each state, the number of mixture
components in each stream is given by the <NumMixes> keyword. Thus, in the example,
state 2 has 2 mixture components in stream 1 and 3 components in stream 2. Notice also
that stream weights may be set individually for each stream but the number of streams is
fixed across all states of all models.

The above two examples give the general flavour of the HMM definition language
and they also demonstrate its flexibility. There is, however, still one major feature of
the HTK HMM definition language left to explain. Referring back to Fig 2, each large
black dot on this diagram represents a parameter tie-point. Any pair of similar dots
can be joined so that the entire sub-structure to the right of the dots is shared. This
mechanism is implemented within external HMM definitions by using a simple macro
definition mechanism whereby the shared sub-structure is given a macro name and defined
separately in a macro definition file. Each time that the shared sub-structure is used in
the actual definition file, the macro name is given instead. Every macro name consists
of a type identifier followed by a user-defined name. Type identifiers consist of a tilde
followed by a single mnemonic character, the various kinds are shown in Fig 2. As an
example of this mechanism, Fig 5 shows the same HMM definition as in Fig 3 except that
all of the variance vectors are shared, the single shared variance vector being defined in
the separate macro definition file called macros. When this HMM definition is used (e.g.
in a recognition tool), it behaves as if each variance had been replicated in the definition

file. However, when the HMM is re-estimated by a training tool, the behaviour is not

<Begi nH\WV>
<Nuntt at es> 5 <VecSi ze> 12 <Streanminfo> 6 6
<Dl AGC> <NULLD> <MFCC D>
<State> 2 <NunM xes> 2 3 <SWeights> 1.0 0.8
<Streanr 1
<M xture> 1 0.43
<Mean> 6
4.748 2.095 4.663 0.587 1.752 -1.277
<Variance> 6
1.131 0.696 1.606 1.351 1.632 2.285
<M xture> 2 0.57
<Mean> 6
-5.989 3.728 1.195 4.653 1.333 -2.260
<Variance> 6
21.684 1.131 0.696 0.606 1.321 0.366

<Streanr 2
<M xture> 1 0.32
<Mean> <Variance>
<M xture> 2 0.16
<Mean> <Variance>
<M xture> 3 0.52
<Mean> <Variance>
<State> 3 <NunM xes> 3 1 <SWeights> 1.0 0.8
<Streanr 1
<M xture> 1 0.25
<Mean>
etc
<EndHMV>

Figure 4: External Definition of a Mixture-Gaussian, Multiple-Stream HMM

the same. In this latter case, the data which would have been used to re-estimate each
individual variance is pooled and the variances therefore remain identical. If the same
values had been simply replicated in the definition file, then they would most likely be
different after re-estimation. This is the parameter tying mechanism that underlies much
of HTK’s operation and it is discussed further below.

Note that macro definitions can contain other macro definitions provided that the
nested definitions are defined before they are used in the macro file. In practice, it is not
often that either HMM definition files or macro definition files are written by hand. They
are usually generated by HTK tools as part of the incremental build process outlined in
section 4. Thus, there is rarely any need in practice to understand the detailed rules for
the construction of HMM and macro definition files.

As well as tying sub-structures of HMMs, HTK also allows whole HMMs to be tied
together, however, the mechanism used for this is different. Every HMM in HTK has
both a logical and a physical name and these are stored in a HMM List. The logical and
physical names are commonly the same, however, they need not be. When several logical
HMMs share the same physical name they are effectively tied and during re-estimation
the training data for each logical HMM in a tied set is pooled to yield just one set of
(physical) HMM parameters.

3.3 Internal Representation of HMMs and Parameter Estimation

Internally, HMMs are stored in memory with the same hierarchical organisation as is used
for the external definitions with the one important difference that the parameter tying

<Begi nH\W>
<Use> nmcr os
<Nunftt ates> 5 <VecSi ze> 8
<Dl AGC> <NULLD> <MFCC>
<State> 2
<Mean> 8
-5.949 4.748 2.095 3.653 0.587 -2.360 1.752 -1.277
~Vv gvar
<State> 3
<Mean> 8
-0.032 5.125 1.868 3.430 1.017 -3.460 1.622 -0.881
~Vv gvar
<State> 4
<Mean> 8
1.357 1.428 -2.536 3.976 1.035 -5.003 -0.651 O0.152
~v gvar
<TransP> 5
0.000 1.000 0.000 0.000 0.000
0.000 0.628 0.372 0.000 0.000
0.000 0.000 0.699 0.301 0.000
0
0

0. 000 0.000 0.000 0.526
0. 000 0.000 0.000 0.000
<EndHVW>

File: macros

~v gvar
<Vari ance> 8
31.68 1.131 0.696 0.606

1.321 0.366 1.642 2.285

Figure 5: External Definition Showing the Use of a Macro to Create a Tied Variance
Vector

achieved by using macros is explicit in the internal representation. Each parameter set in
the hierarchy is referenced by its parent using an address pointer. When a parameter is
tied, then it has multiple parents referencing it.

HMM Def

»
Ll

rry 1]
[T
s
> | | |
State 3
{3y} > L
State 4
qh- I

Figure 6: Internal Representation Showing a Tied Variance Vector

Figure 6 illustrates in a greatly simplified form how the example in Fig 5 in the previous
section would be stored internally?. As can be seen, each state points to a unique mean
vector but points to the same shared variance vector. Note that viewed from the top down,
there is no difference between a tied and a non-tied system. Thus, for most operations
tying is transparent and this includes parameter estimation.

HTK uses Baum-Welch re-estimation for estimating HMM parameters from training
data. Parameter estimates using this procedure are based on weighted averages. For the
simple case of a single-stream single-Gaussian HMM and a parameter belonging to state
J, the weight for an observation o; at time ¢ is the likelihood L;(t) of being in state j at
time ¢. For example, the re-estimation formula for the variance is?

5 =1 Li() (00 =) (01 — 1)’
! 31:1 L] (t)

L;(t) depends on the current HMM parameters and hence this formula is applied iteratively
until the required convergence is achieved.

From the above it is clear that to re-estimate a parameter, storage is needed to ac-
cumulate the numerator of the re-estimation formula and to separately accumulate the
denominator. The numerator has the same dimensions as the parameter itself and the de-
nominator is effectively just a counter. In HTK, these accumulators are attached directly
to the parameter being re-estimated and in this way, the Baum-Welch procedure works
properly independently of whether or not the parameter is tied[Young 1992].

Fig 7 illustrates this process. Every shareable vector in HTK has space allocated at
the head of the vector to store a pointer to an accumulator. During re-estimation, the

2The HTK Reference Manual describes the actual internal representation in terms of C data structures.

®The mean vector in this formula should in fact be the new estimate and not the existing estimate.
However, it is simpler to use the existing estimate and empirically no significant difference has been found
to arise from this practice.

10

\ Shared Parameter V ector

Numerator |

Denominator

Attached Accumulator

Figure 7: Parameter Re-estimation Involving a Tied Parameter Vector

shared parameter will be accessed via several different parents. Each time it is accessed,
increments for the numerator and denominator will be added to the accumulators. The
differing parents will not know or care that they are contributing to the same parameter.
When all of the data has been processed, the numerators and denominators are used to
update the parameter vectors to which they are attached.

By means of this simple storage organisation in which the accumulators needed for
Baum-Welch re-estimation are attached directly to the parameter vectors themselves, the
generalised tying facilities provided by HTK are effectively transparent to the re-estimation
tools. Furthermore, it is simple to show that this tying process does not affect the con-
vergence properties of the Baum-Welch algorithm[Bellegarda & Nahamoo 1990].

4 The HTK Model Build Philosophy

As noted previously, HTK adopts an incremental philosophy to the construction of HMM-
based systems and the representations used for the models themselves have all been se-
lected to give the flexibility needed to support this. In the introduction it was noted that
HTK is based on continuous rather than discrete density distributions because of their
improved robustness and desirable mathematical properties. However, the use of paramet-
ric mixture distributions has the further advantage that the precision of any individual
distribution can easily be changed simply by adding or removing mixture components. In
HTK, a component is added to a mixture simply by making a copy of the component with
the largest weight, perturbing the means by +0.2 standard deviations and halving the
weights. This mechanism is referred to as mizture splitting and although crude, when fol-
lowed immediately by Baum-Welch re-estimation, it works well. Mixture splitting coupled
with the generalised tying mechanism enables the complexity of a HMM-based system to
be adjusted so that it can be carefully balanced against the amount of available training
data.

The general approach to model building in HTK is illustrated by Fig 8. The input is
a prototype HMM definition whose function is to specify the topology and global charac-
teristics of each HMM. Using the prototype, a set of initial HMMs is created using HInit,
HRest and a small amount of bootstrap data for which the model unit boundaries have
been marked by hand. The set of initial models is then retrained on the whole training
data set using HERest to perform embedded training for which only the sequence of units

11

prototype HMM
definition

-9

|abelled _
bootstrap HInit/HRest
data

— l<intermedi ate models
unlabelled
training HERest HHEd
data B |

Y
fully trained
model set

Figure 8: The HMM Construction Procedure

in each training utterance need be known. Once a set of fully trained models have been
produced, they can be refined using the HMM editor HHEd.

For example, in small vocabulary whole word recognition with very limited training
data, single-Gaussian HMMSs can be built. If there is insufficient data to estimate indi-
vidual state variances, then the variances can be tied either within models or globally.
If more data becomes available for some units, then further mixture components can be
added and the variances untied for those units.

74%

72%—

70% —

68% —

Accuracy

66%
Number
of States

64%

1000
2000
3000
4000
5000
6000

Figure 9: Recognition Accuracy vs. Number of Tied States in a Phoneme Recognition
Task using the TIMIT Database

In large vocabulary continuous speech recognition, it is necessary to model contextual
effects by using context-dependent sub-word units. For example, the commonest such unit
is the triphone which is a phone model used only with specific left and right neighbours.
For a typical 40 phone set, there are 40% potential triphones and there will not be suffi-
cient data to robustly estimate the parameters of all of them. Furthermore, experimental
evidence shows that mixture Gaussian distributions must be used to achieve adequate

12

modelling accuracy creating a need for even more training data. These problems can
again be solved by tying and mixture component incrementing. In particular, state ty-
ing has been found to be very effective]Woodland & Young 1992, Hwang & Huang 1992,
Young & Woodland 1993, Hwang & Huang 1993]. The procedure for this is that firstly
a set of single Gaussian triphones is trained and then the corresponding states within
each allophone set are clustered and tied. The clustering process, ensures that the re-
sulting tied states each have sufficient data to estimate more accurate mixture Gaussian
distributions. The aim in this process is to find the optimal balance between modelling
contextual effects and accurately modelling the underlying distributions. Figure 9 shows
how recognition performance varies as a function of the number of tied states for a stan-
dard phoneme recognition task using the TIMIT database and right-context dependent
biphone HMMs[Lee & Hon 1989]. For each system with a differing number of tied states,
the number of mixture components was incremented until maximum performance was
achieved. The far left of this graph corresponds to the case of context independent mono-
phones and the far right corresponds to conventional context dependent biphones. As can
be seen, there is a clear peak in performance when state tying is used.

In the TIMIT experiments, a data-driven agglomerative clustering procedure was
used. It is also possible to use a phonetically-driven tree-based clustering procedure in
which the decision at each tree node is based on a question about the left and right
contexts[Bahl et al 1991, Odell 1992, Kannan et al 1994, Odell et al 1994]. Though more
complex, this procedure has the advantage that, once built, the decision trees can be used
to find appropriate state distributions to use for unseen triphones i.e. those triphones for
which no examples occur in the training data.

From the above, it is clear that HHEd is a key component of the HTK toolkit. It
operates by loading in a complete set of HMMs, applying a sequence of edit commands
to them and then writing out a new set of definitions. Edit commands consist of a two
character command name plus one or more arguments, one of which is typically an item
list. The latter defines a set of similar items in the parameter hierarchy which are the
target for some operation. For example, the following HHEd command will tie all variance
vectors for mixture component 1 of states 2 to 6 of the HMM called one. The resulting
macro is called var01.

TI varO1 {one.state[2-6] .mix[1].cov}

In general, the TI command simply ties all of the items in the item list together using
the first item in the list as the exemplar. When mean vectors are tied, the exemplar is
formed from the average and when covariances are tied, the exemplar is formed from the
maximum over all the items.

As in HMM definitions, the syntax of an item list mirrors the HMM parameter hier-
archy with an explicit stream indicator being optional since it is very often unity. Within
the item list specification, the metacharacter * may be used in model names to match zero
or more characters and 7 may be used to match a single character. For example, context
dependent models in HTK use the naming convention L-ph+R where ph is the phone name,
L is the left context and R is the right context. The following command would apply the
state clustering procedure described above to state 2 of all allophones of the phone ih

TC 0.5 ih_2 {(*-ih,ih+*,*—ih+*).state[2]}

The first argument is the clustering threshold and the second is the root name of the macro
to use such that for this example, the actual macros for each tied state would then be

13

called ih 2.1,ih 2.2,ih 2.3, etc. A tied-state HMM system is therefore created simply
by executing a command like this for each state of each allophone.

One special case, which should be mentioned is that an item list ending in the word
mix without any component indices denotes a set of pdfs. When pdfs are specified in
a TI command, the pdfs are joined rather than tied and the result is a tied mizture
or semi-continuous system[Huang & Jack 1989, Bellegarda & Nahamoo 1990, Paul 1990].
For example, the commands

JO 128 2.0
TI mix {*.state[2-4] .mix}

indicate that the pdfs of states 2 to 4 of all models are to be joined. In this case, all of the
mixture components in all of the items specified by the list are sorted in order of mixture
weight. The JO command sets the total number J of tied mixtures required. Mixture
components are either discarded or split until the required number .J is obtained and all of
the mixture weights are normalised subject to the floor specified by the second argument
of the JO command. Macros called mix1, mix2, etc. are then created and all pdfs share
all 128 components. Since tied mixture systems are common, special notation is provided
to represent them externally and various computations internal to HTK are optimised for
them (see section 7).

This section has outlined the philosophy of model building in HTK. It is based on
the notion of incremental building and successive refinement, primarily via interleaved
executions of the HMM editor HHEd and the embedded re-estimation tool HERest. This
allows model complexity to be balanced against the amount of available training data and
the experience gained so far with this approach suggests that it is very effective.

5 Speech Recognition

HTK provides two recognition tools. Firstly, HVite is a Viterbi-based tool which can be
used for connected whole-word recognition, continuous speech sub-word based recognition
and word-spotting. Secondly, HAlign is a derivative of HVite which is specially configured
to perform forced alignments down to the state level. Both of these tools gain their
flexibility from the syntax definition language provided by HParse.

5.1 Syntax Definition

The function of a Viterbi decoder is to find the sequence of HMMs for which the likelihood
of the unknown speech is maximum given that sequence. In practice, it is extremely useful
to be able to prescribe the allowable sequence of models in order to constrain the recogniser
to operate in some desired way. For example, in a voice-based control interface, only a few
very limited commands may be allowed. These commands may be conveniently defined
using a grammar. Similarly, in sub-word recognition, several different pronunciations for
each word might be allowed and again a grammar can be used to specify these.

HTK uses an extended Backus Naur Form (EBNF) of grammar notation to specify
recognition constraint networks[Wirth 1976]. EBNF is actually a context-free grammar
notation, but in HTK all variables must be defined before they are used thus constraining
the grammar to be regular. A full definition of the HParse network definition language is
given in the Reference Manual. In brief, a network definition consists of an optional set of
variable definitions followed by an expression which defines the actual network. Any name

14

Expression | Meaning (E,F,G are expressions)

a the model a
$v the variable v
EF G sequence

E|F|G alternatives, E or F or G in parallel
(E|F) G | factoring, same as E G | F G

{E} zero or more repetitions of E
<E> one or more repetitions of E

<< E >> | context sensitive loop (see text)

$v = E; define variable v as equivalent to E

Table 3: Network Definition Constructs

beginning with a ‘$’ is a variable otherwise it is the name of a HMM. The right hand side
of variable definitions and the network expression itself is built using the constructs listed
in Table 3.

turn (left | right);
st op;
($cndl | $cnd2) sil >)

AT

Figure 10: Network Construction using HParse

Each of the EBNF constructs maps into an equivalent network construct in a fairly
obvious way. As a simple example, Fig 10 shows a simple network definition file which
allows sequences of the form “turn left, turn right, stop” with a silence between each
command. The figure also shows how the network definition would be translated into an
actual network by HParse.

For sub-word recognition, the special names WD_BEGIN and WD_END are used to mark
the beginning and end of a pronunciation. For example, Fig 11 shows a syntax definition
which defines a simple word recogniser in which any word can follow any other word.
Notice that the name of the word is attached to the WD_BEGIN and WD_END symbols and

15

$A = WD _BEG NVA (ax|ae) WD _ENDYA;
$ABDOVEN = WD_BEG NY®ABDOMEN ae b d ax m ax n WD_ENDIABDOVEN:
$ABI DES = WD _BEG NY#BI DES ax b ay d z WD _ENDY#BI DES
$ABOLI SH = WD_BEG N%ABOLI SH (ax|ae) b aa | ih sh WD _ENDYABOLI SH;
etc
<
$A | $ABDOVEN | $ABIDES | $ABOLISH| ... etc
>)

Figure 11: Defining Word Pronunciations

this is output by the recogniser instead of the constituent phone model names.

$v =iy | ih| eh | ae | ix | ax | ah | ax-h | ... etc
$C =ch | j | dh| b| d| dx]| g]| p] etc
$N =m| n| en| ng| em]| nx | eng;
$L =1 | el | r | y| w| er | axr;
$S = sil | pau;
(<< V-iy+V | Niy+V | L-iy+v | ... |
L-vcl+C | Cvcl+C | sil >>)

Figure 12: Defining a Context-Sensitive Phone Loop

The philsophy in designing the HTK network definition language was to try to make it
straightforward to define networks for the most common tasks. An alternative would have
been to provide a language to define a finite state network directly but this was rejected
on the basis that for many cases it would have been insufferably tedious. However, the
lack of direct control over the form of the network constructed does have limitations. For
example, it is not possible to define a triphone loop in such a way that only consistent
triphone sequences are allowed. Similarly, at the word level, it is not possible to define
word-pair grammars. To solve these specific problems, syntax network definitions may
contain context sensitive loops. For example, the syntax in Fig 12 defines a network
consisting of a set of context dependent phone models in parallel. Each context is a broad
class and it is defined using a variable whose value is a list of phones. The resulting
network will be such that each model V-iy+V, N-iy+V, L-iy+V, etc. is linked back to all
and only those models whose contexts match according to the context definitions. For
example, V-p+N would link back to all vowels which had a C right context such as C-iy+C.

5.2 Viterbi Decoding using Token Passing

Both HVite and HAlign are time-synchronous Viterbi decoders which find the sequence of
HMMSs which has the maximum likelihood of generating the unknown speech sequence and

16

which conforms with the syntax constraints specified by the recognition network described
above. In HVite, the recognition network is defined explicitly by the user and it is used
for all input speech files. In HAlign, the network is constructed on-the-fly for each input
speech file using a supplied transcription. Thus, HVite finds the most likely interpretation
of each input file subject to the constraints of a recognition network, whereas HAlign does
a forced recognition to find the optimal alignment between the HMM states and the speech
data.

In HTK, Viterbi decoding is implemented using the Token Passing Model in which the
concept of a state alignment path is made explicit[Young et al 1989, Young et al 1991].
In this model, each node of the recognition network corresponding to a HMM contains a
single HMM instance. Each HMM instance contains storage sufficient to hold one token
for each HMM state. At time ¢, the token in state j of HMM instance h represents the
best partial match between the observation sequence o to 0; and some sequence of HMMs
ending in state 7 of model h.

Initially, all possible HMM entry states contain a token with partial path probability
of log(1) and all other states hold a token with partial path probability of log(0). At each
time frame, every token is copied into all possible successor states and probabilities are
updated according to the transition and output probabilities. Whenever this process would
leave multiple tokens in the same state, all but the best token is discarded. When all input
frames have been consumed, the exit states of all HMMs which can end the utterance are
examined and the token with the highest log probability identifies the optimal sequence.
In order to find this sequence, the propagation of tokens must be accompanied by some
house-keeping operations.

The history of a token’s route through the network is recorded efficiently as follows.
In addition to the partial path probability, every token carries a single pointer called a
link. When a token is propagated from the exit state of one HMM to the entry state of
another, that transition represents a potential HMM boundary. Hence a record called a
Link Record is generated which stores the identity of the HMM from which the token has
just emerged and the current value of the token’s link. The token’s actual link is then
replaced by a pointer to the newly created Link Record. Figure 13 illustrates this process.
Once all of the unknown speech has been processed, the Link Records attached to the link
of the best matching token (i.e. the token with the highest log probability) can be traced
back to give the best matching sequence of models. At the same time the positions of the
word boundaries can also be extracted if required. During the recognition process, many
Link Records will be generated which cannot lie on the optimal path. Hence, all active
tokens are periodically traced-back to find all useful Link Records so that the remainder
can be garbage-collected.

The above describes the essence of the Token Passing paradigm. It is a simple yet
powerful conceptual model which can be extended in a number of ways. For example,
HVite allows an additional bigram language model to be super-imposed on top of a syntax
constraint network so that a model-to-model or word-to-word transition probability is
added to the overall path probabilities. When word pronunciations are defined using the
WD _BEGIN and WD_END constructs, Link Records are only generated on word transitions
since there is no need to know the positions or identity of word-internal transitions. In
HAlign, each token also holds a record of how many input speech frames it stayed in each
state. This allows the trace back of a token’s history to be recorded down to the state
level.

The combination of the very general syntax definition mechanism, the facilities for

17

W o+ UH}o{ N |-o—

T%?(Setn: Recording Decisions T fo{ uwfo———
came Before After
from i [logP| [logP TH o{ R Fo{ 1Y o
‘N
TR SRS — Recognition Network
\
logP logP logP logP
> _og —~ = Link Records
4__ — I
t-3 t-2 t-1 t
UH uw N N

Figure 13: Link Record Generation during Token Propagation

word pronunciations and the ability to specify a bigram language model make the standard
HTK recognition tools powerful, flexible and easy to use. Typical recognition tasks that
can be handled include isolated and connected digits, phoneme recognition, simple task-
oriented commands, phone-based word recognition upto 5000 words and various forms of
word-spotting. Similarly, the flexibility of the syntax definition mechanism makes HAlign
multi-purpose. When no syntax definition is given, HAlign aligns the sequence of models
corresponding exactly to the transcription. This is useful for research purposes where the
underlying state-sequence is required. However, when a syntax definition is given which
contains word pronunciations and the corresponding transcriptions are orthographic, then
HAlign will find the optimal pronunciation for each word in each utterance. This is
extremely useful for building a phone-based word recogniser for which only othographic
transcriptions of the training data are available.

6 User Interface Design

HTK tools are typically invoked by typing a command with the form
HTool -a arg -b arg hmmlist spl.mfc sp2.mfc

that is the name of the tool is followed by zero or more optional arguments followed by one
or more file names. This form of interface was chosen in preference to a more interactive
WIMP-style of interface to make HTK portable across operating systems and to ensure
that it was simple to execute HTK tools from within scripts. For user convenience, typing
the name of a HTK tool alone without any arguments prints a summary of how to invoke
the tool. All option names consist of a single character as shown in the example. To
improve consistency, all upper-case options have the same meaning across all tools. For
example, the option =T N sets the trace level to N for all tools.

18

HTK tools typically process three kinds of file: HMM definitions, speech files and
transcriptions (label files). Transcriptions consist of a sequence of labels with optional
start and end boundary times. However, even if present, the boundary times are ignored
during embedded training which is the commonest case. In general, every speech file has
a corresponding transcription.

In the example above, the first argument to the generic HTK tool HTool is a HMM list.
This is a file which contains a list of HMM definitions to load. The files spl.mfc, sp2.mfc,
etc will typically be the names of speech files to use to train or test this set of HMMs.
For each such speech file spN.mfc, HTK will expect to find a corresponding label file with
the name spN.lab. Options exist to change the various extensions and the directories in
which the searches for HMM definitions and label files are carried out. However, in many
cases, the training or testing of a HMM system will involve many thousands of HMM
definitions, and many thousands of speech files. To accommodate these situations, HTK
has a number of additional mechanisms for avoiding the many problems of scale that would
otherwise arise. Firstly, most operating systems have an upper limit on the number of
files that can be specified on the command line. Hence, HTK allows some or all of the file
name arguments of a command to be written in a separate file. Thus, for example, when
running the embedded re-estimation tool HERest, the most common approach would be
to list all the training files in a file called train.scp and then execute

HERest -S train.scp hmmlist

this command then behaves as if all the contents of train.scp were appended to the
command line after hmmlist. This simple facility is also useful for keeping a permanent
record of which files were used to train any given system.

The need for a separate transcription for every speech file also causes efficiency prob-
lems. Firstly, most transcriptions will contain only a few bytes of information and storing
this in a separate file is very ineflicient. Secondly, it will commonly be the case that several
speech files may require identical transcriptions. For example, in training an isolated digit
recogniser, all examples of “one”, say, might require a transcription containing just the
labels “silence one silence”. To increase efficiency, HTK provides the concept of a Master
Label File (MLF). This is a single file which contains a number of transcriptions stored
sequentially within it. Each such transcription is preceded by a pattern and terminated by
a period. The pattern can be a complete file name, in which case the behaviour would be
identical to the case where each transcription was stored in a separate file. However, if the
pattern contains the wildcard metacharacters * or 7, then many speech files can reference
the same transcription by simple pattern matching. For example, if an MLF contained

one*.lab
silence
one
silence

then any speech file whose name had the form one.NN.mfc would expect a corresponding
transcription with a name of the form one.NN.lab. Since the latter matches the pattern

19

preceding the transcription “silence one silence”, all such speech files would reference the
same transcription.

Master label files can also be used to redirect the search for a transcription to another
directory thereby allowing a HTK tool to access label files dispersed throughout a large
database. Similar facilities also exist for storing a set of HMM definitions in a single

Master Model File.

7 Optimisations

HTK is designed to support the construction of large-scale HMM-based systems and for
this reason it is important to reduce the computational burden wherever possible. To
this end, HTK includes a number of optimisations in its implementation of the standard

Baum-Welch and Viterbi decoding algorithms.

7.1 Parameter Tying

The major load in both training and recognition using continuous density HMMs is in
the computation of output probabilities. Parameter tying not only allows more robust
estimation from sparse data, it also allows, in certain cases, more efficient computation
of output probabilities. The basic mechanism used in HTK to exploit parameter tying
is very simple. When a shared single Gaussian, a shared stream distribution or a shared
complete state distribution is evaluated, its value is stored so that if some other owner
attempts to re-evaluate the same quantity, the pre-computed value can be used.

One special but common case of the above is where all mixture component Gaussians
are tied across all states of all models in order to create a so-called Tied Mixzture System.
The key point about this form of tying is that all Gaussian mixture components are
computed once globally and then each individual output distribution is formed from a
weighted sum over all these Gaussians. However, since many of the individual Gaussians
will have a very low probability for any given observation vector, it is only worth summing
those Gaussian probabilities which fall within a beam relative to the most likely. To do
this, the set of Gaussians is sorted into rank order and only those at the top of the list
within the beam are used in the output probability calculations.

7.2 Pruning

The implementation of the Baum-Welch re-estimation formulae requires that the forward
probabilities «;(¢) and the backward probabilities 3;(t) be computed for all states j and
all time frames ¢. In the case of the embedded training performed by HERest, a composite
model consisting of the sequence of HMMs corresponding to the speech file transcription
is matched against an utterance which may be several hundred frames long. In this case,
it is extremely wasteful to compute the o and § probabilities for all 7 and ¢, so instead a
forward—backward beam search is used as illustrated in Fig 14.

The backward probabilities are computed first. Starting at the last speech frame, the
last HMM in the sequence is activated and [values are computed backwards in time. At
each time ¢, the beam of active models is extended by one nearer the start and §;(t) is
computed for all states j of all active models. During this process the maximum value of
8, B say, is recorded. When all active models have been processed at time ¢, the beam is

20

>

HMM Seguence

“00000000000000000000

Input Frames

Figure 14: Forward-Backward Pruning

shrunk until all models in the beam have at least one state j for which

log(B) — log(B;(t)) < ¢
where ¢; is a user-defined threshold.

Once all of the 3 values are known, the « values are calculated in a similar way.
However, in this case, since the § values are already known, it is possible to calculate the
actual state occupation likelihoods from the af product so that all models in the beam
have at least one state j for which

log P(O|M) — log(a;(t)53;(1)) < c2
where log P(O|M) is the total log likelihood calculated from 3(0) and ¢; is a fixed threshold.

Since the o beam depends on actual state occupation likelihoods, the threshold ¢y can be
set quite precisely and the o beam itself is much narrower and lies within the 8 beam.

In order to minimise memory and computation, storage for the § values is created
on demand and output probabilities are calculated on demand. On the forward pass,
only a(t) and a(t — 1) are stored and the actual re-estimation formulae numerator and
denominator sums are updated at each « step.

The Viterbi decoder implemented by HVite also uses a beam search similar in principle
to that used by the § pass described above. In this case however, there are a number of
extra complications. Firstly, the simple sequence of HMMs assumed in re-estimation is
replaced by an arbitrary network of HMMSs in recognition. Secondly, in phone-based word
recognition, pruning can be applied at both the word and phone level.

These are solved in HVite by keeping a list of all active HMM instances in the beam in
a global array. Inter-model token propagation is then modified such that only the output
tokens from active models whose scores lie within the beam are passed to successor models.
If the receiving model is inactive then it is activated. After each cycle, all active models
are checked and any model containing no tokens within the beam is deactivated. As in
the above, the beam is calculated relative to the maximum partial path probability in any
state at that time. In the case of recognition networks using the WD _BEGIN and WD_END
constructs, a second list is maintained of active word ends to which a second independent
beam can be applied.

21

8 Software Engineering

The general structure of HTK was outlined in section 2, and as noted there, HTK is
intended to serve not just as a ready-to-use toolkit but also as a development environment
for users to create new tools. As a consequence of this, HTK is distributed in source form
and some care has been taken in engineering it.

HTK is written in ANSI standard C and most of the main data structures are rep-
resented by explicit data types. For example, HMM definitions are represented by the
type HMMDef and an associated set of ancillary types such as StateInfo, StateElem, etc.
defining the lower level structures in the HMM parameter hierarchy. In order to support
these types, a set of routines is provided for accessing and manipulating them.

All of the types and routines associated with a particular logical function are bundled
into a separate library module. The header file for that module defines the interface to
the rest of the system. For example, the definitions and support routines for the HMMDef
type are defined within HModel.h and HModel.c. Modules in HTK are thus designed
using the modern principle of Data Abstraction. However, they are not actually abstract
data types. Far from it, all HTK data types are very concrete. The full definition of
each type is visible outside of the module that defines it and the program which uses that
type is free to manipulate its innards. Thus, from a software engineering perspective, the
construction of HTK is unsafe since it is all too easy for an external agent to corrupt
the internal operation of a module. Furthermore, it is necessary for an external agent
to have a detailed understanding of each library module data type in order to use it
effectively. Again, the HMMDef type provides a good example since this type represents a
large hierarchical structure which HTK tools need to traverse and manipulate. To do this
they have to access and manipulate the structure directly and since it is complex, this
kind of operation will be prone to error.

There are several reasons why HTK has been constructed like this. Firstly, and perhaps
most importantly, it is very hard to isolate a complex data structure such as a HMMDef
to make it secure, whilst at the same time allowing tools to use it efficiently. Since all
of the main HTK tools are invariably compute-bound, the additional overheads incurred
in accessing truly abstract data types were thought to be unacceptable. Secondly, one of
the functions of HTK is to provide a programming environment to support research in
speech recognition, and it is expected that individual researchers will wish to have direct
access to HTK’s internals at any level of detail. Thirdly, ANSI C was selected as the
implementation language because it is widely available and portable. A more principled
use of abstact data types would have demanded the use of a language which gave explicit
support for data abstraction. At the time of HTK’s inception, there was no such language
which was also stable, portable, efficient and widely available.

HTK uses floating-point arithmetic throughout and all re-estimation and decoding al-
gorithms use log arithmetic representations in preference to explicit scaling. All parameter
storage and accumulators used in the re-estimation tools use single precision in order to
conserve memory. However, double precision is used in the calculation of the forward («)
and backward () probabilites in the re-estimation tools, and in the accumulation of log
probabilities in the recognition tool in order to ensure that there is no significant loss of
numerical accuracy when processing very long observation sequences.

HTK’s generalised parameter tying mechanism requires the ability to share both struc-
tures and arrays amongst a number of owners and to attach additional storage structures
to them. To accommodate this, all shareable objects have a field called hook to store a

22

pointer and a field called nUse to record the current number of owners. Nearly all HTK
data structures are allocated dynamically and the nUse field is necessary to know when it
is safe to dispose of a shared structure.

9 Applications and Systems

As noted in the introduction, HTK is now licensed for use at over 100 speech laboratories
around the world and it is used for a wide variety of applications. In this final section,
some examples of its use in the Cambridge Speech Group will be described to illustrate
its flexibility and the performance that can be achieved using it.

One of the simplest applications of HTK is in whole word recognition. The basic
approach is to define a prototype model for each word and then train it using the iso-
lated word training tools HInit and HRest. The training data can consist either of iso-
lated examples, or continuous speech for which the word end-points are known. Alter-
natively, if the training data is continuous speech and its orthography is known, HERest
can be used for embedded training. In this type of application, the flexibility of the syn-
tactic constraint network allows various recognition modes to be used and silence and
noise models can be inserted into the network wherever they are required. This type
of set-up has been used extensively in our study of noise compensation using Parallel
Model Combination (PMC). In this work, speech models trained on clean speech are
combined with a HMM trained on examples of the prevailing background noise to form
a compensated set of HMMs whose parameters approximate those that would be ob-
tained if the speech models had been trained directly on the noisy speech. Tested on
both isolated and connected digit recognition tasks performed against a variety of back-
ground noises, typical performance at 0dB SNR improves from 30% or worse to over
97%|[Gales & Young 1992, Gales & Young 1993a, Gales & Young 1993b].

The development of the TIMIT acoustic phonetic database has made it possible to use
phoneme recognition as a standard test for the acoustic accuracy of a speech recogniser
[Lee & Hon 1989]. To use HTK on this test, a training corpus of 3694 phonetically tran-
scribed utterances was used to estimate the parameters of 48 left-right 3 state phoneme
HMMs. To take account of co-articulation effects, the 48 context independent models
were cloned to form 1748 right-context dependent biphone models. State tying, as de-
scribed in section 4, was then used to reduce the total number of states from 5244 to
1142 and the single Gaussian distributions were incremented to 8 component mixture
Gaussians. Using a context-sensitive phone loop and a context independent bigram com-
puted using HLStats, a phone recognition rate of 76.7% correct and 72.3% accuracy was
achieved[Young & Woodland 1993, Young & Woodland 1994].

HTK can be used to build speech recognition systems with vocabularies of several thou-
sand words and a variety of grammatical constraints including word-pair and bigram lan-
guage models. For example, tied-state word-internal triphone-based recognition systems
have been built for the 1000 word Resource Management Task[Woodland & Young 1992,
Woodland & Young 1993], the 2000 word Credit Card Corpus|[Young et al 1994] and the
5000 word Wall Street Journal Task[Woodland et al 1994]. In each case, the recognition
accuracy achieved compared favourably with systems developed specifically for those tasks.

Using a specially designed decoder, HTK has also been used to build 5000 word and
20000 word recognisers for the Wall Street Journal task which include full cross-word
triphones and both bigram and trigram language models. In the ARPA November 1993
WSJ Evaluation, this HTK recogniser produced the lowest error rate on the 5000 word

23

bigram (8.8%), 5000 word trigram (5.0%), and 20000 word bigram (14.5%); and the second
lowest error rate on the 20000 word trigram (12.7%) [Woodland et al 1994].
In addition to building speech recognition systems, HTK has been used to build word
spotting systems [James & Young 1994], speaker separation systems [Wang & Young 1992]
and even face recognition systems [Samaria 1993]. It has also been used as a research en-
vironment for studies in discriminative training [Woodland 1992, Kapadia et al 1993], hy-
brid HMM /Neural Net systems [Young 1991, Valtchev et al 1993], prosody [Jones & Woodland 1993]
and many others.

10 Acknowledgements

Through the years of developing HTK a number of people have made substantial contri-
butions to its design and implementation. First and foremost, Phil Woodland has played
a major role in improving and extending all aspects of HTK, and he is now co-developer
with the author. Several members of the CUED Speech Group, both past and present,
have assisted in debugging HTK, suggesting improvements and contributing code.

There are too many to acknowledge every contribution but of particular note are
Valerie Beattie who co-authored early versions of the isolated word re-estimation tools
HInit and HRest; Sadik Kapadia who helped tune the embedded re-estimator HERest
and who wrote the source generator HSource; Julian Odell who developed the tree-based
clustering software in HHEd; and Valtcho Valtchev who wrote the label editor HSLab. Others
who have contributed to HTK over the years include David Cole, Mark Gales, Matthew
Jones, Chris Leggetter, and Gordon Ramsay.

Many of the above contributions arose as a side-effect of developing research software
which used HTK as a base. Much of this software is substantial and innovative; and one
day some of it may find its way into the public version of HTK. In the mean time, its very
existence is evidence that the author has achieved at least one of his goals in producing
the HTK system.

References

[Browning et al 1993] Browning S, Russell M, Downey S. Phoneme Decision Tree Con-
struction for Automatic Speech Recognition. DRA Memorandum No 4666, De-
fence Research Agency, Malvern, Worc.

[Bahl et al 1987] Bahl LR, Brown PF, de Souza PV, Mercer RL. Speech recognition with
continuous parameters hidden Markov models. Computer Speech and Language,
Vol 2, No 3/4, pp219-234.

[Bahl et al 1991] Bahl LR, de Souza PV, Gopalakrishnan PS, Nahamoo D, Picheny MA.
Context Dependent Modeling of Phones in Continuous Speech Using Decision
Trees. Proc DARPA Speech and Natural Language Processing Workshop, pp264-
270, Pacific Grove, Calif, Feb.

[Bellegarda & Nahamoo 1990] Bellegarda JR, Nahamoo D. Tied Mizture Continuous Pa-
rameter Modeling for Speech Recognition. IEEE Trans ASSP Vol 38, No 12,
pp2033-2045.

24

[Gales & Young 1992] Gales MJF, Young SJ. An Improved Approach to the Hidden
Markov Model Decomposition of Speeech and Noise. Proc ICASSP, S35.1, pp233-
236, San Francisco, March.

[Gales & Young 1993a] Gales MJF, Young SJ. Cepsiral Parameter Compensation for
HMM Recognition in Noise. Speech Communication, Vol 12, No 3, pp231-239.

[Gales & Young 1993b] Gales MJF, Young SJ. HMM Recognition in Noise using Parallel
Model Combination. Proc Eurospeech 93, pp837-840, Berlin, Sept.

[Huang & Jack 1989] Huang XD, Jack MA. Semi-continuous hidden Markov models for
Speech Signals. Computer Speech and Language, Vol 3, No 3, pp239-252.

[Hwang & Huang 1992] Hwang M-Y, Huang X. Subphonetic Modeling with Markov States
- Senone. Proc ICASSP, Vol 1, pp33-36, San Francisco.

[Hwang & Huang 1993] Hwang M-Y, Huang X. Shared Distribution Hidden Markov Mod-
els for Speech Recognition. IEEE Trans Speech and Audio Processing, Vol 1, No
4, pp414-420.

[James & Young 1994] James D, Young SJ. A Fast Lattice- Based Approach to Vocabulary
Independent Wordspotling. ICASSP 94, Adelaide.

[Jones & Woodland 1993] Jones M, Woodland PC. Ezxploiting Variable Width Features
in Large Vocabulary Speech Recognition. Proc ICASSP, Vol 2, pp323-326, Min-
neapolis.

[Juang et al 1986] Juang B-H, Levinson SE, Sondhi MM. Mazimum Likelihood Estima-
tion for Multivariate Mixture Observations of Markov Chains. IEEE Trans on
Information Theory, Vol 32, No 2, pp307-309.

[Juang 1985] Juang B-H. Mazimum-Likelihood FEstimation for Mizture Multivariate
Stochastic Observations of Markov Chains. ATT&T Technical J, Vol 64, No
6, pp1235-1249.

[Kapadia et al 1993] Kapadia S, Valtchev V, Young SJ. MMI Training for Continuous
Parameter Recognition of the TIMIT Database. Proc ICASSP, Minneapolis.

[Kannan et al 1994] Kannan A, Ostendorf M, Rohlicek JR. Mazimum Likelihood Clus-
tering of Gaussians for Speech Recognition. IEEE Trans on Speech and Audio
Processing, July.

[Lee & Hon 1989] Lee K-F, Hon H-W. Speaker Independent Phone Recognition Using Hid-
den Markov Models. IEEE Trans ASSP, Vol 37, No 11, pp1641-1648.

[Liporacel982] Liporace LA. Maximum-Likelihood FEstimation for Multivariate Observa-
tions of Markov Sources. IEEE Trans Information Th, Vol IT-28, No 5, pp729-
734.

[Maxwell & Woodland 1993] Maxwell BA, Woodland PC. Hidden Markov Models Using
Shared Vector Linear Predictors. Proc Eurospeech, p819-822, Berlin.

[Odell 1992] Odell JJ. The Use of Decision Trees with Context Sensitive Phoneme Mod-
elling. MPhil Thesis, Cambridge University Engineering Department, Sept.

25

[Odell et al 1994] Odell JJ, Young SJ, Woodland PCW. Tree-Based State Clustering for
Large Vocabulary Speech Recognition. IEEE Conf on Image, Speech and Neural
Nets, Hong Kong.

[Paul 1990] Paul DB. The Lincoln Tied Mizture HMM Continuous Speech Recogniser.
Proc DARPA Speech and Natural Language Workshop, pp332-336, Hidden Val-
ley, Pennsylvania, June.

[Samaria 1993] Samaria F. Face Segmentation for Identification Using Hidden Markov
Models. Proc 4th British Machine Vision Conference, Springer-Verlag.

altchev et al 1993] Valtchev V, Kapadia S, Youn . Recurrent Inpul Transformations
Valtch) Valtchev V, Kapadia S, Young SJ. R I Transf]
for Hidden Markov Models. Proc ICASSP, Minneapolis.

[Wang & Young 1992] Wang MQ, Young SJ. Speech Recognition Using Hidden Markov
Model Decomposition and a General Background Speech Model. Proc ICASSP,
S35.6, San Francisco, March.

[Wirth 1976] Wirth N. Algorithms+ Data Structures = Programs. Prentice-Hall, Series in
Automatic Computation, Englewood Cliffs, New Jersey.

[Woodland 1992] Woodland PC. Using Vector Linear Prediction in Hidden Markov Mod-
els. Proc ICASSP, San Francisco, March.

[Woodland & Young 1992] Woodland PC, Young SJ. Benchmark DARPA RM Results
with the HTK Portable HMM Toolkit. Proc DARPA Continuous Speech Recog-
nition Workshop, Stanford, Sept.

[Woodland & Young 1993] Woodland PC, Young SJ. The HTK Continuous Speech Recog-
niser. Proc Eurospeech '93, pp2207-2219, Berlin, Sept.

[Woodland et al 1994] Woodland PC, Odell JJ, Valtchev V, Young SJ. Large Vocabulary
Continuous Speech Recognition using HTK. ICASSP 94, Adelaide.

[Young 1992] Young SJ. The General Use of Tying in Phoneme-Based HMM Speech Recog-
nisers. Proc ICASSP, S66.5, San Francisco, March.

[Young et al 1989] Young SJ, Russell NH, Thornton JHS. Token Passing: A Simple
Conceptual Model for Connecled Speech Recognition Systems. Technical Report
CUED/F-INFENG/TR38, Cambridge University Engineering Dept.

[Young et al 1991] Young SJ, Russell NH, Thornton JHS. The Use of Syntaz and Multiple
Alternatives in the VODIS Voice Operated Database Inquiry System. Computer
Speech and Language, Vol 5, No 1, pp65-80.

[Young 1991] Young SJ. Competitive Training: a Connectionist Approach to the Discrim-
inative Training of Hidden Markov Models. Proc IEE, Part I, Vol 138, No 1,
pp61-68.

[Young & Woodland 1993] Young SJ, Woodland PC. The Use of State Tying in Conlin-
uous Speech Recognition. Proc Eurospeech ’93, pp2203-2206, Berlin, Sept.

[Young & Woodland 1994] Young SJ, Woodland PC. The Use of State Clustering in Con-
tinuous Speech Recognition. Submitted to Computer Speech and Language.

26

[Young et al 1993] Young SJ, Woodland PC, Byrne WJ. HTK Version 1.5: User, Refer-
ence and Programmer Manual. Publ. Entropic Research Laboratories, Washing-
ton DC.

[Young et al 1994] Young SJ, Woodland PC, Byrne WJ. Spontaneous Speech Recognition
for the Credit Card Corpus using the HTK Toolkit. Submitted to IEEE Trans
Audio and Speech Processing, special issue on Robust Processing.

27

