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Abstract

Present approaches to human face detection have made
several assumptions that restrict their ability to be extended
to general imaging conditions. We identify that the key fac-
tor in a generic and robust system is thatof exploitinga large
amount of evidence, related and reinforced by model knowl-
edge through a probabilistic framework. In this paper, we
propose a face detection framework that groups image fea-
tures into meaningful entities using perceptual organization,
assigns probabilities to each of them, and reinforce these
probabilitiesusing Bayesian reasoning techniques. True hy-
potheses of faces will be reinforced to a high probability.
The detection of faces under scale, orientation and view-
point variations will be examined in a subsequent paper.

1. Introduction

Detecting human faces in a scene is an important problem
for researchers in human face processing. Many face recog-
nition algorithms have either assumed that the face has been
cropped from the image (Craw et.al. [4], Turk and Pentland
[15]), or they have assumed some constraints about the face
and/or background such that the face detection process be-
comes trivial (Chow and Li [3]). In a general imaging envi-
ronment these assumptions are certainly not true. As such,
face detection still remains largely an unsolved problem.

2. Present approaches

The present approaches to face detection can be model-
based, feature-based, neural network-based or colour-based.
The model-based approach assumes a different face model
at different coarse-to-fine scales. For efficiency, the image is
searched at the coarsest scale first. Once a match is found,
the image is searched at the next finer scale until the finest
scale is reached. Some of the work using this approach were

reported by Yang and Huang [16], and Lanitis et.al. [6]. In
general, only one model is assumed in each scale (usually in
the fronto-parallel view) and thus it is difficult to extend this
approach to multiple views.

The feature-based approach searches the image for a set
of facial features and groups them into face candidates based
on their geometrical relationship. Leung et.al. [7], Sumi and
Ohta [12], and Yow and Cipolla [17] reported work using
this approach. Though this approach can be easily extended
to multiple views, it is unable to work well under different
imaging conditions because the image structure of the facial
features vary too much to be robustly detected.

The approach based on neural networks detects faces by
subsampling different regions of the image to a standard-
sized image and then passing it through a neural network fil-
ter. Recent work was reported by Sung and Poggio [13], and
Rowley et.al. [9]. The algorithm performed very well for
fronto-parallel faces but is difficult to be extended to differ-
ent views of the face.

Lastly, the colour-based approach labels each pixel ac-
cording to its similarity to skin colour, and subsequently la-
bels each subregionas a face if it contains a large blob of skin
colour pixels (Chen et.al. [2], Dai and Nakano [5]). Chen’s
approach can cope with different viewpoint of faces but it is
sensitive to skin colour and the face shape.

3. About image evidence

So what can we learn from the attempts of these various
researchers ? We find that Lanitis et.al. ’s approach is able
to localize the human face very well. It performs well be-
cause they make use of grey-level information in addition
to edge information. Sung and Poggio’s neural network ap-
proach works very well also because almost every pixel in
the 19x19 subimage is used to evaluate the output, and many
of these pixels encode spatial and grey-level information.
This emphasized the importance of using different types of
image evidence to support the face detection process.



On the other hand, we can see why Leung et.al. ’s, Sumi
and Ohta’s method did not perform as well. The system is
dependent on too few image features, which cannot be ex-
tracted robustlydue to image noise or noise in the feature de-
tector. Leung et.al. use the response from a set of steerable-
scalable filters to find facial features, and Sumi and Ohta use
template matching to identify eyes. In both these cases the
evidence for a feature to be present comes largely from the
response of the filter or the correlation output. As a result,
there is a lack of evidence to support the hypothesis of a face
and therefore the performance of the algorithm is affected.

Apart from the usual image evidence of edges, grey level,
etc., a form of evidence that is less well-exploited is that
of contextual evidence, i.e. the knowledge that certain fea-
tures occur in the vicinityof other features. For example, we
know that eyes occur in pairs. So, when we find an eye in the
image, the existence of this eye is evidence for the existence
of the other eye.

In this paper, we present a framework that makes use
of the specified structure between various components of a
face to propagate and update evidence in each of the compo-
nents. Evidence for the hypothesisof a face thus comes from
two sources, from detected image features and from model
knowledge, resulting in a high detection confidence in the
true instance of a face.

4. The face model

We always need a model of the object in any object recog-
nition task. A model of an object in terms of low level image
features (such as edges, corners, etc.) is always very diffi-
cult because the image structure changes very drastically in
different images due to noise and changes in imaging con-
ditions. As such, models of explicit shape (e.g. deformable
template models - Yuille et.al. [20]), only work well in high
resolution and relatively noise-free images. However, a
model of the object described in terms of higher level fea-
tures (such as a face described in terms of eyes, nose and
mouth), is usually quite stable and robust.

We model the face as a plane with 6 oriented facial fea-
tures. To cope with occlusion and missing features (eye-
brows, usually), we decompose the face model into compo-
nents consisting of 4 features. These components are com-
mon occurrences of faces under different viewpoints and
different identity, and are thus called Partial Face Groups (or
PFGs). These PFGs are further subdivided into components
consisting of 2 features (horizontal and vertical pairs - Hpair
and Vpair) for the purpose of perceptual grouping and evi-
dence propagation (see fig. 1).

In order for the feature detection to be robust we have to
use image features that are invariant to changes in scale and
illumination intensity. We observe that at low resolutions,
all the 6 facial features will appear only as dark elongated
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Figure 1. The face model and its components.

blobs against the light background of the face. And since
edges are illumination invariant to a large extent, we model
the 6 facial features as pairs of oriented edges as shown in
fig. 2. The image should be smoothed before the feature de-
tection process so that any high-resolution features will take
the form of the lower resolution ones. The vertical edges in
the eye and nose model are only used to provide evidence in
labelling the facial feature and is not an important criteria in
the detection of the feature.

eyebrow eye mouthnose

Figure 2. The facial feature models.

5. Perceptual grouping

With such a low resolution model, we can expect a lot of
false positive feature candidates. We will therefore need a
perceptual grouping framework that will group true feature
candidates into faces based on geometrical, grey-level and
spatial evidence. Feature candidates that cannot be grouped
must be false and will be discarded.

We model our face detection process as a two stage model
of perception (Triesman [14]). The first stage, which is de-
scribed as pre-attentive perception, extracts image informa-
tion into points and regions of interest, which directs the at-
tention of processing efforts of the next stage. The second
stage, the attentive stage, will perform grouping and rea-
soning activities based on the detection and identification of
meaningful object groups in the image.

5.1. Preattentive feature selection

The preattentive feature selection stage is performed in
two steps. First, a list of interest points is found from the im-
age. This is achieved by filtering the image using a preatten-
tive filter (a second derivative of Gaussian used in Yow and
Cipolla [17]) and then searching for local maxima. Next,
the edges around each interest point are examined. Similar



edges are linked using a boundary following algorithm. If
we find the existence of two roughly parallel edge segments
with opposite polarity on both sides of the interest point,
then this point is flagged as a feature point. The extent of
the feature region is then defined by finding a boundary box
around the two edges. Fig. 3 illustrates this process.

Detected interest
point

Edge detection 
and linking

Detected feature
and feature region

Figure 3. Preattentive feature selection.

Measurements of the region’s image characteristics (such
as edge length, edge strength, grey-level variance, etc.) are
then made and stored into a feature vector � . From the train-
ing data of the facial features, e.g. “eyebrow”, a mean vector�������	� and covariance matrix 
 �����	� are also obtained which
define the class of valid “eyebrow” feature vectors in a � -
dimensional space, where � is the number of components
defining the feature vector � .

A facial feature candidate 
 is a valid facial feature � if the
Mahalanobis distance ����� of the feature vector � � is within
an admission threshold ��� from the class mean � � , i.e.

� ����� � � , where � � ����� � ��� � ���� 
 �"!$#%� � ��� � ���
This is repeated for all 4 classes of facial features,

namely, eyebrow, eye, nose, and mouth. If the facial feature
does not belong to any of them, it is discarded from the list.

5.2. Attentive feature grouping

After obtaining a set of feature points and the associated
feature regions, these feature regions are actively grouped
using our model knowledge of the face. Single features are
grouped into vertical and horizontal pairs, pairs are grouped
into partial face groups, and partial face groups are grouped
into face candidates (fig. 4).

The rules for grouping the facial components are divided
into 2 groups. One group encodes geometric information
such as length, orientation, inter-feature distance, etc., and
the other group encodes spatial information about whether
there should be edges of a particular strength and orientation
at some spatial location in the feature region.

These rules are represented by values in a geometric fea-
ture vector �'& and a spatial feature vector �)( , in the same
fashion as the facial feature vector � in the earlier section.
The Mahalanobis distance ����� of these feature vectors are
used to determine its membership in the class.

For efficiency, the geometric feature vector � & is exam-
ined first. If the feature vector fails to be a valid instance of

the geometric class, it is discarded, saving the more expen-
sive computation of the spatial feature vector � ( .

The measurements we choose for the vector � & are :

1. the ratio of feature lengths to image size.

2. the ratio of feature lengths between features.

3. the aspect ratio of the feature region.

4. the ratio of inter-feature distances.

5. the difference in orientation between features.

and the measurements we choose for vector �*( are :

1. the number of directional edgels in a region.

2. the ratio of edge strengths in a region to edge strengths
of facial features.

3. the mean grey level of a region.

4. the variance in the grey level distribution of a region.

This grouping process is effective in removing false pos-
itives because a lot of geometric and grey-level measure-
ments are used to determine its validity, in particular the
edge and spatial information about the new region formed
that is not part of the components itself (see fig. 4).

formed new region
formed

new region
formed

new region
formed

new region

face candidatefeature region feature pair partial face group

Figure 4. Attentive feature grouping.

One important advantage of this process is that though
the spatial region to be analyzed gets larger at higher levels,
there are fewer of these regions to process, so the processing
time is kept small throughout the whole algorithm.

6. Probabilistic framework

The perceptual grouping framework enables us to reject
grossly incorrect groupings of face candidates. However,
there are still a number of false positives which cannot be
discarded this way. We thus propose a probabilistic frame-
work to assign and propagate probabilities among the facial
features and face groups so that we will achieve a high con-
fidence rate for true positive faces.

We make use of Bayesian networks (or belief networks),
which are directed acyclic graphs, to propagate evidence.
Belief networks have nodes representing random variables



and arcs signifying direct dependencies specified in terms
of conditional probabilities (Sarkar and Boyer [11]). Each
node can take either of 2 values, True or False, and has a
conditional probability table (or CPT) describing the condi-
tional probability of each value given each possible combi-
nation of the values of the parent nodes.

The entries in the CPT can be estimated directly by using
the statistics of the set of examples (Russell et.al. [10]). The
crucial value here is the prior probability of the “face” node,
and this is often hard to estimate. The choice of an appropri-
ate prior clearly depends on the complete space of hypothe-
sis, and we may assume an uniform prior for our case.

The belief network used in our previous approach [17]
has a root node (the “face” node) and 4 child nodes (one for
each PFG). This was shown to be highly effective for fronto-
parallel view of faces because all 4 PFGs can be detected in
this view, giving a large amount of evidence for true face
candidates. However, for profile views, the probability of
the face remained low because only one PFG can be found
in the image.

To overcome this, we propose a new belief network, us-
ing the facial features as child nodes instead of the PFGs (fig.
5). The belief network now has 6 child nodes instead of 4.
Profile view of faces will thus have 4 pieces of evidence (fa-
cial features) out of 6, instead of 1 (face group) out of 4 pre-
viously. This leads to a better capability of detecting profile
views of faces.

Face

Leftbrow Rightbrow Lefteye Righteye Nose Mouth

Figure 5. Belief network.

So how do we update and improve the probabilities of
these child nodes using model knowledge ? As mentioned
earlier, one source of evidence that is often overlooked is the
presence of a neighbouring feature (e.g. presence of another
eye next to an eye candidate). To harness this extra piece of
evidence, we build a second belief network (fig. 6) to re-
inforce the belief of each feature based on the presence of
neighbouring features.

When evidence for a facial feature becomes available, a
virtual node is created (the “evidence” node) and instanti-
ated, allowing the evidence, specified in the form of a prob-
ability, to propagate through the entire network and update
all the other nodes. The resulting effect is a large increase
in the probabilities of the feature candidates which are true
facial features.

We use a propagation algorithm for singly connected net-
works given by Pearl [8] which does not make any un-

TopPFG BottomPFG LeftPFG RightPFG

Hpair1 Hpair2 Vpair1 Vpair2 Vpair3

Leftbrow Rightbrow Lefteye Righteye Nose Mouth

Figure 6. Reinforcement belief network.

founded assumption of the conditional independence of the
system. In Pearl’s algorithm, each node when instantiated
with a piece of evidence will modify its parent or child nodes
based on the conditional probabilities between the nodes.
These parent or child nodes will further modify their parent
and child nodes, thus propagating the evidence throughout
the network (see [19] for details). The main difference be-
tween this propagation algorithm and the one for trees (used
in our previous work [17]) is that nodes in a singly connected
network can have more than one parent. Our belief network
structure in fig. 6 clearly requires this.

After the perceptual grouping process described in the
earlier section. Each face candidate will have between 4 to
6 features associated with it. A belief network is initialized
for each face candidate and virtual nodes are created for each
feature and component face groups that is found in the pro-
cess. The evidence for each facial feature or face group � is
related to its Mahalanobis distance, ����� , and the admission
threshold for the � th feature class, � � , by :

� �
	���
������ �� �
�

Each facial feature that is detected is assigned 4 probabil-
ity values,

���������
,
� �"!#�

,
�%$&�(')�

and
�%*+�",.-0/

, using the above
equation. When a higher level group is formed, only the
probability of the corresponding feature is propagated. For
example, if a vertical brow-eye pair (Vpair1) is formed, only�1�������

of the upper facial feature and
�2��!#�

of the lower fea-
ture is propagated. Likewise, only these values are updated
in the propagation process. As a result, only true positive
faces are updated to a high confidence level.

7. Implementation

In this paper, we are interested to evaluate the validity
of the framework, rather than trying to solve the scale and
orientation problem. Hence we implement the algorithm
assuming that the orientation is vertical, the viewpoint is
fronto-parallel, and we allow the user to specify the filter
scale. The variations in scale, orientation and viewpoint are
treated in a subsequent paper (see Yow and Cipolla [18] this
volume).



7.1. Learning the feature class space and condi-
tional probabilities.

A set of 40 images taken of different subjects under dif-
ferent scale and slightly different viewpoint is used as a
training set. Facial features are marked by hand and the al-
gorithm is run through these test images, making the nec-
essary measurements to define each class space. The fre-
quency of occurrences of each feature and the component
face groups are also measured and entered into the condi-
tional probability tables.

7.2. Perceptual grouping

Interest points are first detected by spatial filtering using
a second derivative of Gaussian described in [17]. Edge de-
tection is then performed using a Canny edge finder with
both hysteresis threshold set to zero. A standard boundary
following algorithm (Ballad and Brown [1]) is used to link
the edges. The results after verification with each feature
class are shown in fig. 7.

(a) (d)(c)(b)

Figure 7. (a) Interest points obtained from
spatial filtering (81 points). (b) Canny edge
detection with zero threshold. (c) Linked
edges of approximately horizontal orienta-
tion. (d) Feature regions detected (21 points).

The list of feature candidates is then examined to form
pairs, and each horizontal pair and vertical pair is further ex-
amined to form partial face groups. If any two partial face
groups have some component features that are the same,
they are combined to form a 5- or 6-feature face candidate.
If not, each PFG willbecome a 4-feature face candidate. The
results for the perceptual grouping stage is given in fig. 8.

7.3. Evidence propagation

Each facial feature that is detected is assigned 4 proba-
bility values,

� ��� ���
,
� �"!#�

,
� $ �('(�

and
� * ��,.-�/

. If the Maha-
lanobis distance of the facial feature in a particular feature
class is greater than the admission threshold, the facial fea-
ture is given a probabilityvalue of zero for that feature class.

Each of these probabilities is propagated through the re-
inforcement network by creating and instantiating a virtual

(a) (d)(b) (c)

Figure 8. (a) Horizontal pairs (4 pairs). (b) Ver-
tical pairs (7 pairs). (c) Partial face groups (1
top, 2 bottom, 1 left, 1 right). (d) Face candi-
dates detected (1 face).

node in turn. Fig. 9 shows the face candidates and the fi-
nal probabilities for 2 subjects found by the algorithm. As
these faces cannot exist simultaneously because they over-
lap, only the face with the highest probability is selected.

For subject 1, in fig. 9a, the top PFG is not found in the
process and so the computed probability of the face candi-
date is lower. Moreover since the hypothesized eye location
(on the right) is actually a brow, the image evidence that is
propagated in this case is actually

�2�"!#�
which is very low

compared to fig. 9b.
For subject 2, only the bottom partial face groups is found

in the first case, resulting in a low probability. Clearly, with-
out the use of the probabilistic framework and the reinforc-
ing of evidence, the difference between the true and false
positive candidates will be very close, making it very dif-
ficult to successfully reject the false candidates.

(a) (d)(b) (c)

Figure 9. Face candidates found for 2 sub-
jects. (a) Probability = 0.6578. (b) Probability
= 0.9255. (c) Probability = 0.5045. (d) Proba-
bility = 0.9468.

8. Results

We test the algorithm on 100 256x256 images taken from
subjects sitting in front of a workstation mounted with a Pul-
nix monochrome CCD camera. The user specifies the filter
scale at run time, and the algorithm takes about 10 seconds
to run on a SUNSparc20 workstation.

Of the 100 test images, 92 are successfully detected (92%
detection rate). Some of the successful results are shown in



fig. 10. We find that the algorithm is able to cope with small
variations in scale, orientation and viewpoint, although the
scale is specified and we have made the assumption that
the orientation is vertical and the viewpoint fronto-parallel.
Presence of glasses, occlusion and absence of facial features
are also tolerated to some extent.

Figure 10. Result of face detection on various
test images.

Some of the unsuccessful cases are shown in fig. 11. In
the first image, the subject’s eyebrows are too close to the
eyes and are incorrectly located. The right eyebrow of the
subject in the second image coincides nicely with a dark
strip in the background, and is thus treated as a single long
feature. In the third image, the face has rotated beyond the
angle that the algorithm can cope.

Figure 11. Some unsuccessful cases.

9. Conclusion

We have proposed a face detection framework which de-
tects interest points using spatial filters, groups them into
face candidates using geometric and grey-level information,
and selects true faces using a belief network. The confidence
of true positive faces is improved by using a large amount
of evidence in a probabilistic framework. The algorithm is
shown to be able to work for small variations in scale, ori-
entation and viewpoints of the face.
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