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Abstract

Present approaches to human face detection have made
several assumptionsthat restrict their abilityto be extended
to general imaging conditions. We identify that the key fac-
tor inageneric androbust systemisthat of exploitingalarge
amount of evidence, related and reinforced by model knowl -
edge through a probabilistic framework. In this paper, we
propose a face detection framework that groupsimage fea-
turesinto meaningful entitiesusing perceptual organization,
assigns probabilities to each of them, and reinforce these
probabilitiesusing Bayesian reasoning techniques. Truehy-
potheses of faces will be reinforced to a high probability.
The detection of faces under scale, orientation and view-
point variationswill be examined in a subsegquent paper.

1. Introduction

Detecting human facesin asceneisanimportant problem
for researchers in human face processing. Many face recog-
nition a gorithms have either assumed that the face has been
cropped from theimage (Craw et.al. [4], Turk and Pentland
[15]), or they have assumed some constraints about the face
and/or background such that the face detection process be-
comestrivid (Chow and Li [3]). In ageneral imaging envi-
ronment these assumptions are certainly not true. As such,
face detection till remains largely an unsolved problem.

2. Present approaches

The present approaches to face detection can be model -
based, feature-based, neural network-based or col our-based.
The model-based approach assumes a different face model
at different coarse-to-fine scales. For efficiency, theimageis
searched at the coarsest scae first. Once a match is found,
the image is searched at the next finer scale until the finest
scaleisreached. Some of thework using thisapproach were

reported by Yang and Huang [16], and Lanitiset.al. [6]. In
general, only onemodd isassumed ineach scale (usualyin
thefronto-pardle view) and thusit isdifficult to extend this
approach to multipleviews.

The feature-based approach searches the image for a set
of facia featuresand groupsthem into face candidates based
ontheir geometrica relaionship. Leung et.al.[7], Sumi and
Ohta [12], and Yow and Cipolla[17] reported work using
thisapproach. Though thisapproach can be easily extended
to multiple views, it is unable to work well under different
imaging conditionsbecause theimage structure of thefacial
features vary too much to be robustly detected.

The approach based on neural networks detects faces by
subsampling different regions of the image to a standard-
sized image and then passing it through a neural network fil-
ter. Recent work was reported by Sung and Poggio[13], and
Rowley et.al. [9]. The agorithm performed very well for
fronto-parallel faces but is difficult to be extended to differ-
ent views of theface.

Lastly, the colour-based approach labels each pixel ac-
cording to itssimilarity to skin colour, and subsequently la
bel seach subregionasafaceif it containsalargeblob of skin
colour pixels(Chen et.al. [2], Dai and Nakano [5]). Chen's
approach can cope with different viewpoint of facesbut it is
sensitive to skin colour and the face shape.

3. About image evidence

So what can we learn from the attempts of these various
researchers ? We find that Lanitis et.al. 's approach is able
to localize the human face very well. It performs well be-
cause they make use of grey-level information in addition
to edge information. Sung and Poggio’sneural network ap-
proach works very well also because almost every pixel in
the 19x19 subimageis used to eval uate the output, and many
of these pixels encode spatial and grey-level information.
This emphasi zed the importance of using different types of
image evidence to support the face detection process.



On the other hand, we can see why Leung et.al. ’s, Sumi
and Ohta's method did not perform as well. The system is
dependent on too few image features, which cannot be ex-
tracted robustly duetoimage noiseor noiseinthefeaturede-
tector. Leung et.al. use the response from a set of steerable-
scalablefilterstofind facial features, and Sumi and Ohtause
template matching to identify eyes. In both these cases the
evidence for afeature to be present comes largely from the
response of thefilter or the correlation output. As a resullt,
thereisalack of evidenceto support the hypothesisof aface
and therefore the performance of the algorithmis affected.

Apart fromtheusual image evidence of edges, grey levdl,
etc., a form of evidence that is less well-exploited is that
of contextud evidence, i.e. the knowledge that certain fea-
turesoccur inthevicinity of other features. For example, we
know that eyes occur in pairs. So, when wefind an eyeinthe
image, the existence of thiseyeisevidence for the existence
of the other eye.

In this paper, we present a framework that makes use
of the specified structure between various components of a
face to propagate and update evidence in each of the compo-
nents. Evidencefor the hypothesisof afacethuscomesfrom
two sources, from detected image features and from model
knowledge, resulting in a high detection confidence in the
true instance of aface.

4. Theface mode

Wealwaysneed amodel of the object in any object recog-
nitiontask. A model of an object intermsof low level image
features (such as edges, corners, etc.) isalways very diffi-
cult because theimage structure changes very drasticaly in
different images due to noise and changes in imaging con-
ditions. Assuch, models of explicit shape (e.g. deformable
template models - Yuilleet.al. [20]), only work well in high
resolution and relatively noise-free images. However, a
model of the object described in terms of higher level fea-
tures (such as a face described in terms of eyes, nose and
mouth), is usually quite stable and robust.

We model the face as a plane with 6 oriented facia fea
tures. To cope with occlusion and missing features (eye-
brows, usualy), we decompose the face model into compo-
nents consisting of 4 features. These components are com-
mon occurrences of faces under different viewpoints and
different identity, and arethuscalled Partial Face Groups (or
PFGs). These PFGs are further subdivided into components
consisting of 2 features (horizontal and vertical pairs- Hpair
and Vpair) for the purpose of perceptua grouping and evi-
dence propagation (seefig. 1).

In order for the feature detection to be robust we have to
use image features that areinvariant to changesin scae and
illumination intensity. We observe that at low resolutions,
all the 6 facia features will appear only as dark elongated
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Figure 1. The face model and its components.

blobs against the light background of the face. And since
edges areillumination invariant to alarge extent, we model
the 6 facia festures as pairs of oriented edges as shown in
fig. 2. Theimage should be smoothed before the feature de-
tection process so that any high-resolutionfeatures will take
the form of the lower resolution ones. The vertical edgesin
the eye and nose model are only used to provideevidencein
labelling thefacial feature and isnot an important criteriain
the detection of the feature.
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Figure 2. The facial feature models.

5. Perceptual grouping

With such alow resolution model, we can expect alot of
false positive feature candidates. We will therefore need a
perceptua grouping framework that will group true feature
candidates into faces based on geometrical, grey-level and
gpatia evidence. Feature candidates that cannot be grouped
must be false and will be discarded.

Wemodel our face detection process asatwo stage model
of perception (Triesman [14]). Thefirst stage, whichis de-
scribed as pre-attentive perception, extracts image informa
tion into pointsand regions of interest, which directsthe at-
tention of processing efforts of the next stage. The second
stage, the attentive stage, will perform grouping and rea
soning activitiesbased on the detection and i dentification of
mesaningful object groupsin theimage.

5.1. Preattentive feature salection

The preattentive feature selection stage is performed in
two steps. Firgt, alist of interest pointsisfound fromtheim-
age. Thisisachieved by filtering theimage using a preatten-
tivefilter (asecond derivative of Gaussian used in Yow and
Cipolla[17]) and then searching for local maxima. Next,
the edges around each interest point are examined. Similar



edges are linked using a boundary following agorithm. If
wefind the existence of two roughly parallel edge segments
with opposite polarity on both sides of the interest point,
then this point is flagged as a feature point. The extent of
thefesture region isthen defined by finding a boundary box
around the two edges. Fig. 3 illustratesthis process.
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Figure 3. Preattentive feature selection.

M easurements of theregion’simage characteristics (such
as edge length, edge strength, grey-level variance, etc.) are
then made and stored into afeature vector x. Fromthetrain-
ing dataof thefacial features, e.g. “eyebrow”, amean vector
Hirow 8N COVariance matrix X, ., arealso obtained which
define the class of valid “eyebrow” feature vectorsin a n-
dimensiond space, where n is the number of components
defining the feature vector x.

A facia featurecandidate: isavalidfacia featurej if the
Mahal anobisdistance M;; of the feature vector x; iswithin
an admission threshold 7; from the class mean y;, i.e.

Mi; < 75, where Mi; = (x; — ;)" 257 (xi — py)

This is repested for al 4 classes of facial features,
namely, eyebrow, eye, nose, and mouth. If thefacia feature
does not belong to any of them, it isdiscarded from thelist.

5.2. Attentive feature grouping

After obtaining aset of feature pointsand the associated
feature regions, these feature regions are actively grouped
using our model knowledge of theface. Singlefeatures are
grouped into vertical and horizontal pairs, pairsare grouped
into partia face groups, and partial face groups are grouped
into face candidates (fig. 4).

Therulesfor grouping the facial components are divided
into 2 groups. One group encodes geometric information
such as length, orientation, inter-feature distance, etc., and
the other group encodes spatial information about whether
there should be edges of a particul ar strength and orientation
at some spatial location in the festure region.

These rules are represented by valuesin ageometric fea
ture vector x, and a spatial feature vector x,, in the same
fashion as the facial feature vector x in the earlier section.
The Mahalanobis distance M;; of these feature vectors are
used to determineits membership in the class.

For efficiency, the geometric festure vector x, is exam-
ined first. If the feature vector failsto be avaid instance of

the geometric class, it isdiscarded, saving the more expen-
sive computation of the spatial feature vector x;.
The measurements we choose for the vector x, are :

. theratio of feature lengthsto image size.
. theratio of feature lengths between features.

1
2
3. the aspect ratio of the feature region.
4. theratio of inter-feature distances.
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. thedifference in orientation between features.
and the measurements we choose for vector x, are:

1. the number of directional edgelsinaregion.

2. theratio of edge strengthsin aregion to edge strengths
of facia features.

3. themean grey level of aregion.

4. thevariancein the grey level distribution of aregion.

This grouping processis effective in removing fal se pos-
itives because a lot of geometric and grey-level measure-
ments are used to determine its validity, in particular the
edge and spatial information about the new region formed
that isnot part of the componentsitsalf (see fig. 4).

new region

Al formed
—=— ]
formeet  newregion new region
formed formed
feature region feature pair partial face group face candidate

Figure 4. Attentive feature grouping.

One important advantage of this process is that though
the spatial regionto be analyzed getslarger at higher levels,
thereare fewer of these regionsto process, so theprocessing
timeiskept small throughout the whole algorithm.

6. Probabilistic framewor k

The perceptua grouping framework enables us to reject
grossly incorrect groupings of face candidates. However,
there are still a number of false positives which cannot be
discarded this way. We thus propose a probabilistic frame-
work to assign and propagate probabilitiesamong thefacial
features and face groups so that we will achieve a high con-
fidence rate for true positive faces.

We make use of Bayesian networks (or belief networks),
which are directed acyclic graphs, to propagate evidence.
Belief networks have nodes representing random variables



and arcs signifying direct dependencies specified in terms
of conditiond probabilities (Sarkar and Boyer [11]). Each
node can take either of 2 values, True or False, and has a
conditional probability table (or CPT) describing the condi-
tional probability of each vaue given each possible combi-
nation of the values of the parent nodes.

Theentriesinthe CPT can be estimated directly by using
the statistics of the set of examples (Russell et.al. [10]). The
crucia vaue hereisthe prior probability of the“face’ node,
and thisisoften hard to estimate. The choice of an appropri-
ate prior clearly depends on the compl ete space of hypothe-
sis, and we may assume an uniform prior for our case.

The belief network used in our previous approach [17]
has aroot node (the “face” node) and 4 child nodes (one for
each PFG). Thiswas shownto behighly effectivefor fronto-
paralel view of faces because adl 4 PFGs can be detected in
this view, giving a large amount of evidence for true face
candidates. However, for profile views, the probability of
the face remained low because only one PFG can be found
inthe image.

To overcome this, we propose a new belief network, us-
ingthefacia featuresas child nodesinstead of the PFGs(fig.
5). The belief network now has 6 child nodes instead of 4.
Profileview of faceswill thushave 4 pieces of evidence (fa-
cia features) out of 6, instead of 1 (face group) out of 4 pre-
vioudly. Thisleadsto abetter capability of detecting profile
views of faces.

Rightbrow Righteye

Figure 5. Belief network.

So how do we update and improve the probabilities of
these child nodes using modd knowledge ? As mentioned
earlier, one source of evidencethat isoften overlooked isthe
presence of aneighbouring feature (e.g. presence of another
eye next to an eye candidate). To harness this extra piece of
evidence, we build a second belief network (fig. 6) to re-
inforce the belief of each feature based on the presence of
neighbouring features.

When evidence for afacia feature becomes available, a
virtual node is created (the “evidence” node) and instanti-
ated, allowing the evidence, specified in the form of a prob-
ability, to propagate through the entire network and update
all the other nodes. The resulting effect is a large increase
in the probabilities of the feature candidates which are true
facia features.

We use apropagation a gorithmfor singly connected net-
works given by Pearl [8] which does not make any un-

Figure 6. Reinforcement belief network.

founded assumption of the conditional independence of the
system. In Pearl’s agorithm, each node when instantiated
with apiece of evidencewill modify itsparent or child nodes
based on the conditiona probabilities between the nodes.
These parent or child nodes will further modify their parent
and child nodes, thus propagating the evidence throughout
the network (see [19] for details). The main difference be-
tween this propagation a gorithm and the onefor trees (used
inour previouswork [17]) isthat nodesinasingly connected
network can have more than one parent. Our belief network
structureinfig. 6 clearly requiresthis.

After the perceptual grouping process described in the
earlier section. Each face candidate will have between 4 to
6 features associated withit. A belief network isinitialized
for each face candidate and virtual nodesare created for each
feature and component face groups that is found in the pro-
cess. The evidence for each facid feature or face group i is
related to its M ahal anobis distance, M, and the admission
threshold for the jth feature class, 7;, by :

Each facial featurethat isdetected isassigned 4 probabil-
|ty vaIu&s, Pbrowy Peye: Pnose and Pmouth: usi ng the above
equation. When a higher level group is formed, only the
probability of the corresponding feature is propagated. For
example, if avertical brow-eyepair (Vpairl) isformed, only
Py, 0y Of the upper fecia festureand P,, . of thelower fea-
tureis propagated. Likewise, only these values are updated
in the propagation process. As a result, only true positive
faces are updated to a high confidence level.

7. Implementation

In this paper, we are interested to evaluate the vdidity
of the framework, rather than trying to solve the scale and
orientation problem. Hence we implement the agorithm
assuming that the orientation is vertical, the viewpoint is
fronto-parallel, and we allow the user to specify the filter
scale. Thevariationsin scale, orientation and viewpoint are
treated in asubsequent paper (see Yow and Cipolla[18] this
volume).



7.1. Learning the feature class space and condi-
tional probabilities.

A set of 40 images taken of different subjects under dif-
ferent scale and dightly different viewpoint is used as a
training set. Facia features are marked by hand and the a-
gorithm is run through these test images, making the nec-
essary measurements to define each class space. The fre-
guency of occurrences of each feature and the component
face groups are also measured and entered into the condi-
tional probability tables.

7.2. Perceptual grouping

Interest pointsare first detected by spatia filtering using
asecond derivative of Gaussian described in[17]. Edge de-
tection is then performed using a Canny edge finder with
both hysteresis threshold set to zero. A standard boundary
following dgorithm (Ballad and Brown [1]) is used to link
the edges. The results after verification with each feature
classare showninfig. 7.

(@ (b) (© (d)

Figure 7. (a) Interest points obtained from
spatial filtering (81 points). (b) Canny edge
detection with zero threshold. (c) Linked
edges of approximately horizontal orienta-
tion. (d) Feature regions detected (21 points).

The list of feature candidates is then examined to form
pairs, and each horizontal pair and vertical pair isfurther ex-
amined to form partia face groups. If any two partia face
groups have some component features that are the same,
they are combined to form a 5- or 6-festure face candidate.
If not, each PFG will become a4-featureface candidate. The
results for the perceptual grouping stageisgiveninfig. 8.

7.3. Evidence propagation

Each facia feature that is detected is assigned 4 proba
bility values, Pyrow, Peyer Prose and Prousn. If the Maha
lanobis distance of the facial feature in a particular feature
classis greater than the admission threshold, the facial fea
tureisgiven aprobability value of zero for that feature class.

Each of these probabilitiesis propagated through the re-
inforcement network by creating and instantiating a virtual

Figure 8. (a) Horizontal pairs (4 pairs). (b) Ver-
tical pairs (7 pairs). (c) Partial face groups (1
top, 2 bottom, 1 left, 1 right). (d) Face candi-
dates detected (1 face).

node in turn. Fig. 9 shows the face candidates and the fi-
nal probabilitiesfor 2 subjects found by the algorithm. As
these faces cannot exist simultaneously because they over-
lap, only the face with the highest probability is selected.

For subject 1, in fig. 9a, the top PFG is not found in the
process and so the computed probability of the face candi-
dateislower. Moreover since the hypothesized eye location
(on theright) is actually a brow, the image evidence that is
propagated in this case is actually P,,. which is very low
compared to fig. 9b.

For subject 2, only thebottom partial face groupsisfound
inthefirst case, resultingin alow probability. Clearly, with-
out the use of the probabilistic framework and the reinforc-
ing of evidence, the difference between the true and fase
positive candidates will be very close, making it very dif-
ficult to successfully reject the false candidates.
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Figure 9. Face candidates found for 2 sub-
jects. (a) Probability = 0.6578. (b) Probability
= 0.9255. (c) Probability = 0.5045. (d) Proba-
bility = 0.9468.

8. Reaults

Wetest the algorithmon 100 256x256 images taken from
subjectssittinginfront of aworkstation mounted with a Pul-
nix monochrome CCD camera. The user specifies the filter
scale at run time, and the a gorithm takes about 10 seconds
to run on a SUNSparc20 workstation.

Of the 100 test images, 92 are successfully detected (92%
detection rate). Some of the successful resultsare shownin



fig. 10. Wefind that thea gorithmisable to cope with smdll
variationsin scale, orientation and viewpoint, athough the
scale is specified and we have made the assumption that
the orientation is vertical and the viewpoint fronto-paralldl.
Presence of glasses, occlusion and absence of facia features
are also tolerated to some extent.

Figure 10. Result of face detection on various
test images.

Some of the unsuccessful cases are shown infig. 11. In
the first image, the subject’s eyebrows are too close to the
eyes and are incorrectly located. The right eyebrow of the
subject in the second image coincides nicely with a dark
strip in the background, and is thus treated as a singlelong
feature. In thethird image, the face has rotated beyond the
angle that the algorithm can cope.

Figure 11. Some unsuccessful cases.

9. Conclusion

We have proposed a face detection framework which de-
tects interest points using spatia filters, groups them into
face candidates using geometric and grey-level information,
and sdlectstruefacesusing abelief network. Theconfidence
of true positive faces isimproved by using a large amount
of evidence in a probabilistic framework. The agorithmis
shown to be able to work for smal variationsin scale, ori-
entation and viewpoints of the face.
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