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Abstract

Displacement estimation is a key step in the evaluation of tissue elasticity by quasistatic
strain imaging. An efficient displacement estimation process may incorporate a tracking strat-
egy that initializes each point according to its neighbours’ displacements and then performs a
localized search. This increases the accuracy and reduces the computation expense compared
with exhaustive search. However, simple tracking strategies fail when the target displacement
map exhibits complex structure. For example, there may be discontinuities and regions of
indeterminate displacement caused by decorrelation between the pre- and post-deformation
radio frequency (RF) echo signals. This paper introduces a novel displacement tracking al-
gorithm, with an intelligent search strategy guided by a data quality indicator. Comparisons
with existing methods show that the proposed algorithm is more robust across a range of
displacement distributions, RF window lengths and noise levels.

1 Introduction

After over twenty years of research and development, ultrasound elasticity imaging is gradually
demonstrating its ability to characterize the mechanical properties of tissue [6]. Research activity
has moved from simulation and laboratory experiments [1] to clinical trials [7]. This trend is
supported by ongoing development of signal processing methods and hardware innovation.

Some sort of deformation estimation is required by all elasticity imaging methods. For ex-
ample, transient deformation induced by the acoustic radiation force can be used to measure the
tissue’s mechanical properties [15]. Alternatively, waves of shear deformation produced by an
impulsive load on either side of the tissue [3], or internally by acoustic radiation force [2], are
related to tissue elasticity. Depending on the magnitude of the deformation involved, some of
the above methods may benefit from the displacement tracking algorithm that we describe in
this paper. However, our focus is on the quasistatic approach to elasticity imaging [16], where
deformation is introduced by pressing on the probe. Two RF ultrasound frames are acquired pre-
and post-deformation. Some indication of the tissue elasticity is provided by the axial strain,
which is usually retrieved in two steps: displacement estimation, by matching pre-deformation
RF data windows with post-deformation windows; and strain estimation, by differentiating the
displacement field. The speed and accuracy of the strain imaging system depends heavily on the
displacement estimation algorithm in the first step.

Among several techniques for displacement estimation [12, 24], correlation maximization was
the first to be proposed and remains the most widely used [16]. The pre-deformation RF frame
is divided into an axial-lateral grid of small windows, which are associated with corresponding
windows in the post-deformation frame by searching for the highest correlation match. Tissue
displacement is then given by the shift between the pre- and post-deformation windows. Efforts
have been made to adapt the correlation algorithm to provide subsample accuracy [4]. Moreover,
standard correlation [21], and its variants such as the sum of absolute differences [5, 19] and the
sum of squared differences [26], have been integrated with multi-level or multi-scale schemes [5,
19, 21, 26] to improve the estimation stability. However, since these schemes rely on expensive,



brute force search to find the correlation peaks, they are less than ideal for implementation in a
real-time system.

As an alternative to exhaustive search, Hall et. al. [9] proposed a tracking strategy that takes
the displacement in each row of the grid as an initial guess for the next row. This assumes that the
displacement is continuous in the axial direction. The benefit is a smaller search range and hence
a reduction in the computation expense. However, there is an additional, implicit assumption that
the displacement estimated in the previous row does not suffer from significant errors; otherwise,
subsequent rows’ displacements might be incorrectly calculated because the search range does not
include the correct solution.

A second approach to displacement estimation is based on the phase of RF data. O’Donnell
et. al. [17, 18] showed that the phase of the complex correlation between baseband signal windows
is related to the relative displacement of the two windows. In particular, the correlation peak
corresponds to zero phase, while a nonzero phase can be used to estimate the location of the
peak without further search. Based on their work, Pesavento et. al. [20] proposed an improved
method that calculates the displacement by tracking the zero phase location from point to point?.
The efficiency of this tracking approach lies in the way the displacement map is accumulated. A
point’s displacement is initialized according to the value of a neighbour’s previously calculated
displacement. Phase zero search at the new point then refines the accuracy of this initial guess. If
the guess is close to the actual value, the correlation phase can be used to estimate the zero phase
location with minimal further computation.

Although they use different techniques for the point-wise displacement estimation, Hall’s [9] and
Pesavento’s [20] approaches both rely on a tracking strategy to advance the estimation process from
one point to the next. This strategy sits on top of the low-level displacement estimation process,
and controls the accumulation of the displacement map for the whole frame. An intelligent tracking
algorithm should be able to identify inaccurate points and avoid initializing other points with
unreliable data; while a naive algorithm may assign the initial displacement without considering
the data’s reliability, causing subsequent displacement estimations to fail.

Tracking strategies have not been well studied in the ultrasonic strain imaging literature. This
might be because of the homogeneity of phantoms typically used to evaluate strain imaging sys-
tems. Data acquired from such phantoms is amenable to processing by simple row-to-row [20, 28],
column-to-column [11] or diagonal [27] tracking strategies. However, as strain imaging emerges
from the laboratory into the clinic, there is an urgent need for more sophisticated tracking al-
gorithms. The mechanical properties of human tissue are inhomogeneous: consequently, real
displacement maps often exhibit several disjoint regions, with displacement continuity only within
each region. Moreover, RF echo decorrelation is commonplace when scanning in wvivo. These
factors present important challenges for displacement tracking algorithms.

Lindop et. al. [14] refer to tracking errors as drop-outs and proposed a two-pass tracking
strategy to reduce drop-outs. Later, Lindop et. al. [13] and Treece et. al. [22; 23] described a
refined drop-out correction method. In the first tracking pass (from the top of the frame to the
bottom), every point’s displacement is initialised from a seed point in the previous row. The
algorithm examines a fixed-length lateral span in the previous row, centred on the current point,
to locate the best seed point. In this context, “best” is defined in terms of the correlation between
the previously matched pre- and post-deformation RF windows. The second pass of tracking (from
the bottom to the top) uses a similar seeding strategy and corrects remaining errors by comparing
the correlations between the two passes: better correlated matches found in the second pass
overwrite poorer matches discovered in the first pass. The algorithm prevents poor displacement
estimations, characterised by low correlations, from affecting subsequent estimates, and performs
well in many situations. However, it has two limitations. Firstly, the search range for the seed
point in the previous row is a fixed parameter that has to be set in advance. If a small distance
is chosen, all points within the range might be unreliable: initialization of the current point is
therefore inaccurate. If a larger distance is chosen, this increasingly violates the assumption of

n the sequel, we shall refer loosely to each RF window as a point. Displacement is estimated at these points,
then differentiated to obtain strain. A displacement tracking algorithm propagates displacement estimates from
point to point.



short range (but not long range) displacement continuity. Secondly, the propagation direction of
the algorithm is constrained (up-down and down-up, in this case), in much the same manner as
all existing methods [11, 20, 27, 28]. If a previous row contains a large section of invalid data, the
algorithm has to resort to a second pass, or even further passes, to correct these errors.

This paper introduces a novel, quality-guided displacement tracking algorithm for ultrasonic
strain imaging. Its basis is a propagation scheme that is not constrained to any particular set
of directions, but is instead guided by the quality of the data. The algorithm can be seeded at
a single location or, for greater robustness, at multiple points. The quality measure that guides
the algorithm can be any suitable metric calculated from the RF data. The general approach is
inspired by similar methods used in other disciplines for phase unwrapping [8]. This paper includes
a series of experiments that demonstrate the new approach’s robustness in comparison with simpler
alternatives. Specifically, the quality-guided algorithm is able to track through geometrically
irregular and disjoint regions, and copes well with regions of poorly correlated RF data.

2 Quality-guided displacement tracking

2.1 Seed initialization

The proposed quality-guided tracking algorithm comes in single-seed and multiple-seed variants.
The former demonstrates the fundamental structure of the tracking strategy, while the latter is
a significant extension that adds robustness when there are disjoint regions and displacement
discontinuities. For both versions, the first stage is seed initialization.

The seed initialization method used in this study is based on a simple grid test. On an RF
frame, a grid of N x N equally spaced points are tested as seed candidates. At each test point, a
window is defined with the point at its centre. The complex cross-correlation is used to measure the
similarity between the corresponding windows in RF frames recorded before and after deformation:
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where C(d) is the correlation coefficient at displacement d, a; and ay are analytic RF signals
obtained before and after deformation respectively, a5 is the complex conjugate of as, and 1" is
the window size. A brute force search that varies d within the maximum expected displacement
identifies the best match displacement. The corresponding correlation coefficient and displacement
are recorded for each test point. After all grid points have been processed, the one with the highest
correlation is chosen as the seed for the single-seed tracking algorithm. For the multiple-seed
tracking algorithm, all of the grid points are used as seeds.

It remains to discuss the choice of an appropriate value for N. For the single-seed algorithm,
the larger the value of N, the greater the chance of discovering a good seed. For the multiple-seed
algorithm, the larger the value of N, the greater the probability that each disjoint region benefits
from at least one good seed: conversely, with small IV, there is an increased likelihood that some
regions might not be properly tracked. In practice, reliable seeding is readily achieved with values
of N that are sufficiently small to have a negligible impact on the overall computational load,
which is dominated by the subsequent displacement tracking stage.

2.2 Single-seed, quality-guided tracking

The proposed tracking strategy requires a quality indicator to determine each point’s reliability
before it is used to initialize a neighbouring point. A number of criteria may be used as quality
indicators, including B-mode intensity, phase gradient variance and correlation coefficient. In
this paper, all studies make use of the complex correlation coefficient, as given in Equation (1).



The quality map may be represented as Q(z,y), where y and x are indices in the axial and
lateral directions respectively. The tracking algorithm maintains a set S which contains points
that have been initialized and are ready for processing. In the first step, S; (1 is the index of
the step) starts with the one seed, p1 = (xo,¥0). As p1 is the only point ready for processing,
it is selected and fed into any suitable displacement estimation method [12, 16, 17, 18, 20, 24]
to calculate the displacement at this point. If using a correlation-based quality indicator, the
calculated displacement is then used to determine Q(zg,yo) according to Equation (1).

In the second step, the point set is updated by removing p; from S and adding its four
neighbours, whose initial displacement estimates and qualities are assigned according to p;’s values:

So = {p2,p3,p4,p5} (2)

where, po = (o +1,v0), p3 = (xo — 1,40), p4 = (x0,yo + 1), and p5 = (xg,yo — 1). Since there are
now four points ready for processing, the next point to be processed is selected according to the
maximum quality criterion:

Pty = argmax (Q(p2), Q(p3), Q(pa), Q(ps)) (3)

where Pto refers to the current point to be processed (2 denotes the index of the step), and the arg
max() operator extracts the point with the maximum quality value from S. If there is a tie, as there
will inevitably be at step 2, any one of the tied points is selected at random. Subsequently, Pts is
processed by a displacement estimation method, and during this procedure both its displacement
and quality are refined.

Similarly, in the third step, Pts is removed from the point set S. Its neighbours that have
not been processed are initialized with Pts’s displacement and quality, and added to S. A new
current point is then selected, according to the maximum quality criterion. This recursive process
continues and can be described as:

Sk+1 = Sk + Neighbour(Pty) — Pty (4)
Pleyr = argmax (Q(p)| p € Sk+1) (5)

where the Neighbour() operator extracts a point’s 4-way neighbours that are not in S and have
not yet been processed. For any neighbour that is already in S, a comparison is made between its
quality value and that of the current point. If the current point’s quality is greater, the neighbour’s
initial displacement estimate is replaced by the current point’s displacement. This simply reflects
the fact that a better displacement estimate is now available. The algorithm terminates when the
point set S is empty, which indicates that all points in the RF frame have been processed.

This strategy ensures that high quality regions are processed first, while low quality regions
are avoided at an early stage. The advantage is twofold. Firstly, accurate estimation in high
quality regions is propagated to other points, thus facilitating subsequent processing. Secondly,
initialization errors frequently encountered in low quality regions are prevented from propagating.
Note, however, that the strategy does not guarantee that points are processed in order of quality.
A high quality point will not be processed until the tracking path reaches it. The initial estimation
of each point is obtained from one of its 4-way neighbours, with no jumps allowed, in accordance
with the short range continuity assumption. Furthermore, there is no constraint on the direction
in which the tracking path propagates: hence, the algorithm is able to process a region with an
arbitrary geometrical shape. Depending on the type of quality indicator chosen, the quality map
may be available prior to tracking (e.g. B-mode intensity) or it may have to be built dynamically
during tracking (e.g. correlation coefficient). Figure 1 shows a flowchart for the single-seed, quality-
guided tracking strategy with the correlation quality indicator generated dynamically.

2.3 Multiple-seed, quality-guided tracking

There are two common situations that may cause the single-seed tracking algorithm to fail, re-
trieving only a partially correct displacement map. Firstly, there may be two high quality regions
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Figure 1: Flowchart of the single-seed quality-guided tracking algorithm.




separated by a region of poorly correlated RF data. Whichever region provides the initial seed, it
is unlikely that the tracking algorithm will be able to maintain accurate estimation as it traverses
the poor quality region. Therefore, tracking in the second high quality region will not be correctly
initialized and displacement estimation will fail. Secondly, the correct displacement map may be
discontinuous, as is often encountered when imaging arterial elasticity [21] or, more generally,
when there are slip boundaries. When the tracking path reaches a discontinuity where there is
a dramatic change in the true displacement, initialization by a 4-way neighbouring point is no
longer appropriate and subsequent displacement estimation will fail.

A multiple-seed variant of the quality-guided tracking strategy is proposed to overcome these
problems. As with the single-seed version, seed initialization is by the grid point test (Section 2.1),
but in this case all the grid points are used as seeds and are added to the point set in the first
step:

Sy ={p1,02:p3,---,Pn} (6)

Equation (6) describes a point set S containing n seeds. The seeds are not all processed in the
first step: instead, only the one with the maximum quality is selected as the current point Pty

Pty = argmax (Q(p1), Q(p2), Q(p3), - - -, Q(pn)) (7)

and fed into the displacement estimation procedure. All subsequent processing — displacement
estimation on the current point, initializing the current points’ neighbours, updating the point set,
and generating a new current point — is identical to the single-seed version (Figure 1). If at least
one good seed is planted in each disjoint region, all regions should be propagated individually
and successfully. This is because the quality at a region’s boundary is relatively low, either
because of signal decorrelation or because of discontinuity-induced tracking failure. Hence, when
a seed propagates to a region boundary, it stops growing and other seeds get a chance to proceed.
Eventually, regions of poorly correlated data, or points at the boundaries between discontinuous
regions, are processed at the last stage of tracking. Inevitable estimation errors are confined to
these small localities and not propagated elsewhere.

An issue that arises with the use of multiple seeds is the correction of tracking errors caused by
bad seeds. Bad seeds arise because the standard cross-correlation metric used for seed initialization
can easily pick up an incorrect best match, especially when the window is small or the signal is
noisy [25]. A distinct feature of such seeds is that they are only able to propagate into a small
area. The quality at the boundary drops dramatically, and subsequent points are processed by
good quality estimates propagating from other seeds. The resulting displacement map, however,
contains small regions of incorrect displacement data surrounding the initial poor seeds.

The bad-seed defect can be fixed by re-initializing any problematic regions using good quality
points at their boundaries, and repeating the tracking procedure. Regions in need of this treatment
are identified using a simple threshold on the number of points propagated from any individual
seed: small regions, below the threshold, are labelled as requiring reprocessing. Then, the multiple-
seed algorithm is re-run, but this time discarding the seeds that grew the small regions. During
this second-pass of tracking, displacement estimation is performed only on the labelled regions.
This simple method avoids considerable redundant reprocessing and obviates the need to explicitly
locate the boundary points of the troublesome regions.

2.4 Implementation details

Efficient implementation of the quality-guided tracking algorithm requires each point’s attributes
(location, membership of S, displacement and quality) to be stored in two separate data struc-
tures. The first, a simple two-dimensional array indexed by x and ¥, is used to quickly identify
neighbours. However, this data structure is unsuitable for one important stage of the algorithm,
namely identifying the maximum quality point in the set S. Linear search of the two-dimensional
array has algorithmic complexity O(n) at each tracking step, where n is the number of points.
Thus, the active point set S is also maintained as a one-dimensional list, sorted according to
quality. The tracking algorithm then need only pick the first point from S at each step, with no
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Figure 2: (a) B-mode image of the simulated data. The arc-shaped region contains only noise.
Outside the arc-shaped region, white noise is superimposed on the RF signal, with less noise at
the centre than at the axial extremities. Displacement obtained by (b) exhaustive search and (c)
tracking along A-lines. The units displayed on the right are cycles of the sampled RF signal.

searching required. When the current point’s neighbours are added to the list, they are inserted
at the appropriate location according to their quality, thus maintaining the integrity of the sorted
list. Binary search, with complexity O(log(n)), is used to find the insertion indices, significantly
reducing the computational load. In such an implementation, the tracking overhead amounts to
around 1% of the cost of the underlying displacement estimation, even with efficient phase zero
search estimation techniques.

3 Results and discussion

Field II [10] simulations and an in vivo scan were used to evaluate the quality-guided tracking
algorithm. The simulations comprised two RF frames (256 vectors, 3464 samples) with a uniform
1% strain field. The focus depth was set at 20 mm, the centre of the frame. Artificially introduced
white noise corrupted certain regions of the RF data. The in vivo scan of a human carotid artery
was recorded using a Terason? T3000 ultrasound system with a 6.25 MHz linear array transducer.
The RF sampling frequency was 35.776 MHz, with each frame comprising 128 vectors of 2395
samples. In all the studies, we used complex cross-correlation based exhaustive search, within
the maximum expected displacement range, for seed initialization; correlation coefficient as the
quality indicator; and phase zero search [20], with logarithmic compressed signal amplitude, for
deformation estimation.

3.1 Tracking of geometrically irregular regions

Figure 2(a) shows a B-mode image of the first simulated data set. The signal in the arc-shaped
region is completely masked by white noise, providing a test of the algorithms’ ability to track
across decorrelated regions. Noise is also introduced outside the arc-shaped region, with a higher
signal-to-noise ratio (SNR) at the centre than at the top and the bottom. Five algorithms were
tested, namely exhaustive search without tracking, tracking along A-lines [20], drop-out correc-
tion [13, 22, 23], and both variants of the quality-guided tracking algorithm.

The displacement distribution obtained by exhaustive search is shown in Figure 2(b). Clearly,
it is not possible to recover the displacement in the totally decorrelated arc-shaped region. Where
the SNR is low (top and bottom of the frame), exhaustive search picks up a large number of
false matches and produces erroneous displacement estimates. Results obtained by tracking top-
to-bottom along A-lines, starting with an assumed displacement of zero at the top, are shown
in Figure 2(c). When the tracking algorithm encounters the uncorrelated data, the displacement
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Figure 3: Same data as in Figure 2(a). Displacement obtained by (a) the first pass and (b) the
second pass of the drop-out correction method. Quality map of (c) the first pass and (d) the
second pass.

estimates inevitably become inaccurate. Since these incorrect estimates are used to initialise the
phase zero search at subsequent points, correct displacement tracking is not re-established, even
outside the arc-shaped region. The outcome is that tracking errors are propagated from the arc-
shaped region downwards. However, it is interesting to note that, except for these understandable
tracking errors, the simple A-line tracking strategy performs better than exhaustive search in low
SNR regions at the top and bottom of the frame. This illustrates the advantage of exploiting
displacement continuity inherent to all tracking approaches.

The drop-out correction method processes the RF frames in two passes. Figure 3(a) shows the
results of the first pass. As with A-line tracking, the region below the arc receives spurious initial
displacements and tracking fails. However, there are good displacement estimates available either
side of the arc, and these gradually propagate inwards, since each point is initialised by searching a
fixed-length window in the previous row, picking the displacement with the highest corresponding
quality. At the end of the first pass, only the area enclosed by the arc and a tapering region below
it are in need of correction. The second pass repeats the process, but this time sweeping from the
bottom of the frame (where the first pass has discovered plenty of good displacement estimates
to seed the second pass) to the top. If the second pass discovers matches of better quality than
those of the first pass, the corresponding point’s displacement and quality are updated. Results in
Figure 3(b) illustrate correct displacement estimation everywhere in the frame apart from inside
the arc itself. The two passes’ quality maps are shown in Figure 3(c) and (d), with bright pixels
indicating high correlation and dark pixels low correlation. The arc contains uncorrelated random
noise, so the quality in this region is very low. The quality of the region enclosed by the arc is
higher after the second pass than after the first pass, indicating that this region’s displacement
estimates have been corrected. The drop-out correction method illustrates the advantages of using
a quality measure to guide the tracking algorithm, albeit with a highly constrained direction of
propagation in this instance.
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Figure 4: Same data as in Figure 2(a). (a) Displacement obtained by the single-seed quality-guided
tracking algorithm. (b)—(j) show the propagation progress.
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Figure 5: Same data as in Figure 2(a). (a) Displacement obtained by the first pass of the multiple-
seed algorithm. (b)—(f) show the propagation progress.

The single-seed quality-guided tracking algorithm retrieves an accurate deformation distribu-
tion in one go — see Figure 4(a). Unlike all previously documented methods, the tracking path of
this algorithm is dynamically generated. For this reason, it is instructive to visualize the progress
of the tracking procedure, as shown in Figures 4(b)—(j). Dark pixels indicate points that have
had their displacement estimated by phase zero search, while bright pixels indicate unprocessed
points. At the first stage (Figure 4(b)), the seed starts from the central region enclosed by the
arc. This has the best quality among all the grid points tested in the seed initialization pro-
cess. In Figures 4(c)—(e), the seed propagates and fills up the region enclosed by the arc. Note
in Figure 4(e) how the tracking path avoids entering the noisy arc: instead, it is guided by the
quality indicator to the edge of the arc and proceeds to the well-correlated data on the left. After
that, the algorithm quickly detects the strong SNR at the centre-left and processes the data with
priority (Figure 4(f)). When high quality regions at the left are exhausted, the tracking path
proceeds to the right (Figure 4(g)). It once again finds high quality territory and processes it with
priority (Figure 4(h)). After all the high SNR regions have been processed, the tracking algorithm
gradually proceeds to the lower SNR regions at the top and bottom of the frame (Figure 4(i)).
Only when all the surrounding points have been processed does the tracking path penetrate the
arc region itself (Figure 4(j)). Here, estimation errors are inevitable, but they are prevented from
propagating into other regions of the frame. Without constraints on the propagation direction,
the quality-guided tracking algorithm is capable of retrieving the displacement distribution of a
geometrically irregular region in one pass, while minimizing the effects of estimation errors.

While the single-seed variant has performed flawlessly on this particular data, it is neverthe-
less instructive to examine the multiple-seed variant as well. In particular, we will see why this
algorithm requires two passes to counter the effects of exhaustive search errors at the seed ini-
tialization stage. Figure 5(a) shows the displacement distribution obtained by the first pass. The
overall distribution is correct and errors inside the arc are not propagated. However, a very small
patch above the arc has not been correctly processed. To discover the root cause, one has to
examine the tracking progress shown in Figures 5(b)—(f).

During seed initialization, twenty grid points were tested and a few were processed at an early
stage (Figure 5(b)). Points propagated from each seed are displayed in a distinct colour. As the
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Figure 6: Same data as in Figure 2(a). (a) Displacement obtained by the second pass of the
multiple-seed algorithm. (b)—(f) show the propagation progress.

algorithm proceeds (Figure 5(c)), two seeds with highly correlated data at the centre of the frame
grow faster. Although the right-centre region also has good quality data, it has not been processed
so far because there happens to be no good seed planted inside it. Eventually, the central tracked
region is guided to the right-centre region of high quality data (Figure 5(d)). All well-correlated
data is now processed and the tracking progresses to the noisy arc (Figure 5(e)). At this stage,
some invalid seeds inside the arc start to grow because the maximum quality of the remaining,
unprocessed points is nearly zero: hence, invalid seeds with comparable quality get selected for
processing. Figure 5(f) shows the final propagation map, which is highly informative since it
indicates the regions grown from each seed. For example, there are two bright patches inside
the arc in Figure 5(a) that correspond to regions grown from two invalid seeds in Figure 5(f).
The displacement error above the arc can be traced to a bad seed at the same position on the
propagation map. The bad seed can be further traced back to a false correlation peak chosen by
the exhaustive search algorithm. Since the correlation peak was nevertheless rather high, the seed
had a chance to grow a little before fizzling out as the quality at its boundaries dropped.

The second pass of the multiple-seed algorithm fixes the problem with minimal extra com-
putation. A correct displacement distribution is retrieved, as shown in Figure 6(a). The second
pass repeats the displacement estimation process on points grown from seeds that form an area
smaller than a threshold, in this case 5% of the whole frame. Initial displacement estimates for
these reprocessed regions are obtained at their boundaries using information propagated from
other seeds. For this particular data set, the 5% test eliminates all but three of the original twenty
seeds. Figures 6(b)—(f) show the progress of the second pass: note how the surviving three seeds
propagate regions previously processed by the discarded seeds. While Figures 6(b)—(f) hint at
similar computational expense to the first pass, this is not in fact the case. The tracking is indeed
repeated in its entirety, albeit from a reduced seed set, but the expensive displacement calculations
are performed only in the small regions flagged for reprocessing. As explained in Section 2.4, time
spent on tracking can be safely ignored in an efficient implementation. The second pass, therefore,
is responsible for only a small part of the overall computational cost.
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Figure 7: (a) B-mode image of the simulated data. The -shaped region contains only noise.
Outside the Q-shaped region, white noise is superimposed on the RF signal, with less noise at
the centre than at the axial extremities. Displacement obtained by (b) the first pass and (c) the
second pass of the drop-out correction method.

Figure 8: Same data as in Figure 7(a). Displacement obtained by the single-seed algorithm.

3.2 Tracking of disjoint regions

In the second Field II simulation (Figure 7(a)), the noisy arc was extended sideways to partition
the well-correlated data into two disjoint regions. Such a situation is not uncommon when scanning
in vivo, as we shall see in Section 3.3. To succeed, a tracking algorithm will need to recover the
displacements in the two regions separately.

Results obtained by the drop-out correction method are shown in Figures 7(b)—(c). The sur-
prising element of these results is the unexpected resumption of correct tracking in the first pass
below the noisy region, caused by a lucky good match left-of-centre that subsequently propagates
down and to the right. In the second pass (Figure 7(c)), bottom-to-top tracking propagates good
displacement estimates to the entire region enclosed by the arc. The remaining poor displacement
estimates at the bottom left corner could be corrected with a third, top-to-bottom pass.

The single-seed quality-guided tracking algorithm does not recover the correct displacement
below the noisy region — see Figure 8. The seed starts propagating from above the noisy arc.
When the tracking path reaches the arc, estimation errors arise and are propagated into the region
below. This illustrates the danger of relying on displacement continuity over the whole frame. In
such situations, a multiple-seed approach is required for successful displacement estimation.

Figure 9(a) shows the displacement distribution retrieved by the first pass of the multiple-
seed tracking algorithm. Accurate displacement estimates are obtained throughout the two well-
correlated regions. Figures 9(b)—(d) show how both regions benefit from at least one good seed that
propagate independently from each other. When both well-correlated regions are fully processed,
the algorithm penetrates the noisy region, the quality drops dramatically and spurious seeds inside
the noisy region get a chance to grow, producing the bright patches in Figure 9(a).
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Figure 9: Same data as in Figure 7(a). (a) Displacement obtained by the first pass of the multiple-
seed algorithm. (b)—(f) show the propagation progress.

(a) (b)

Figure 10: Same data as in Figure 7(a). (a) Displacement obtained by the second pass of the
multiple-seed algorithm. (b) seed propagation map.
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Figure 11: B-mode image of the carotid artery scan.

These white patches fall below the 5% threshold and are therefore among the regions repro-
cessed in the second pass of the multiple-seed algorithm (Figure 10(a)), which starts from just
three seeds (Figure 10(b)). Although in this case reprocessing is not absolutely necessary, in gen-
eral the second pass does help to correct discontinuous regions grown from bad seeds. Comparing
the propagation maps of the two passes, it is apparent that the three seeds used in the second pass
have invaded some of each other’s territory, as well as that of the eliminated seeds. However, the
displacement is only recalculated in those small regions flagged for reprocessing. Doing otherwise
— for example, overwriting good quality displacements on a per-point basis with better quality
displacements — would not only slow down the algorithm but also introduce unwanted, small
discontinuities in otherwise continuously tracked regions.

3.3 In vivo displacement tracking

Figure 11 shows a B-mode image of a human carotid artery. The artery separates well-correlated
data into two regions. Inside the artery, the scattering is weak and blood flow causes significant
decorrelation between the pre- and post-deformation frames. A further challenge to displace-
ment estimation is the pulsation of the arterial wall, which produces a discontinuous deformation
distribution in its vicinity. Both these factors point to the need for a robust tracking algorithm.

Figures 12(a)—(b) shows the displacement and quality obtained by the first pass of the drop-out
correction method. Displacement estimation above the artery is correct, but the algorithm loses
track as it encounters the decorrelated data inside the artery. Nevertheless, a chance good match
below the artery is propagated downwards left and right, with correct tracking reestablished across
the full lateral range in the bottom third of the frame. The second, bottom-to-top pass, shown in
Figures 12(c)—(d), corrects most of the remaining poor estimates below the artery, apart from a
small region at the right of the frame, just below half way down. In this region, poor estimates
from the first pass just happen to have higher quality, and are therefore not overwritten by better
estimates propagating up from below. This definite tracking error should be contrasted with the
spurious displacement estimates in the bottom quarter of the frame, where the weak backscatter
signal is so dominated by noise that accurate displacement estimation is impossible, whatever the
tracking algorithm.

Results obtained by the single-seed quality-guided algorithm are poor in this case, as shown
in Figure 13. Accurate displacement estimates are obtained only in the region below the artery,
which is where the seed was planted. Estimation errors inside the artery propagate upwards, with
subsequent tracking failing outright.

The first pass of the multiple-seed tracking algorithm produces promising results, with plau-
sible displacements both above and below the artery — see Figure 14(a). The early propagation
map (Figure 14(b)) shows several seeds planted on either side of the artery. These propagate
independently (Figure 14(c)) until all the well-correlated data is processed (Figure 14(d)). The
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Figure 12: (a) Displacement and (b) quality map of the first pass of the drop-out correction
method. (c¢) Displacement and (d) quality map of the second pass.

Figure 13: Same data as in Figure 11. Displacement obtained by the single-seed algorithm.
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(f)

Figure 14: Same data as in Figure 11. (a) Displacement obtained by the first pass of the multiple-
seed algorithm. (b)—(f) show the propagation progress.

tracking path then proceeds to the poorly correlated data inside the artery (Figure 14(e)) and
finally to the even lower quality data at the bottom of the frame (Figure 14(f)). However, there
is a visible error — a tiny bright dot — below the artery in Figure 14(a), just to the right of
centre. The final propagation map (Figure 14(f)) shows the bad seed responsible for this error.
The growth of the seed is first evident in Figure 14(d), at the stage where the tracking algorithm
had exhausted most of the high quality data.

Figure 15 shows how this error is corrected, with negligible computational overhead, by the
second pass. An important difference between the second pass of the multiple-seed algorithm
and that of the drop-out correction method is that the former uses seed propagation area to
flag possible errors, while the latter relies on a further quality comparison. As we have seen at
several points in this study, and as has been noted previously elsewhere [25], high quality does not
guarantee correct estimation. In the quality-guided approach, the quality is only used to indicate
the sequence of processing, not as a criterion to select or remove individual displacement estimates.

3.4 The effect of SNR and window length

It remains to compare the various tracking strategies in terms of their robustness to different SNR
levels and different RF window lengths. For any given amount of strain and SNR, there are lower
and upper bounds on the RF window lengths that allow accurate displacement estimation [13]. Too
short a window and the correct match will have much the same correlation as incorrect matches
one or more RF cycles away: this is especially evident at low SNR. Conversely, too long a window
and intra-window deformation will lower the correlation of the correct match, making it less
distinguishable from incorrect matches: this is especially evident at high strain. We demonstrate
in this section that the tracking algorithm plays its part too: more sophisticated approaches allow
a wider range of window lengths for any given strain and SNR.

Two RF frames were simulated with uniform echo amplitude and a 1% strain field. Random
white noise was added at six SNR levels (4 dB, 2 dB, 0 dB, —2 dB, —4 dB, and —6 dB) to evaluate
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Figure 15: Same data as in Figure 11. Displacement obtained by the second pass of the multiple-
seed algorithm.

the tracking capability. Unlike the previous tests, there is no completely decorrelated region and
the SNR is uniform across each frame. The experiment can therefore focus on the core ability
of each tracking algorithm to recover a continuous displacement field in the presence of noise,
without the extra challenges of severe, local data decorrelation and displacement discontinuity.

At each SNR level, four tracking strategies were tested: tracking along A-lines, the drop-out
correction method, the single-seed quality-guided algorithm and the multiple-seed quality-guided
algorithm. The RF window length of the underlying displacement estimation algorithm (phase
zero search) was varied between 1 and 50 cycles. We deemed each experiment a success if more
than 90% of the displacement estimates were correct, where “correct” means within a quarter
cycle of the known, true value. Although arbitrary, this criterion allows a meaningful comparison
of the various tracking algorithms. As expected, at each noise level, there were clear upper and
lower bounds on the window lengths that allowed successful recovery of the displacement field.
These bounds are plotted in Figure 16. The area enclosed by the lower and upper bounds provides
a measure of each algorithm’s robustness to different SNRs and window lengths. We call this area
the effective tracking zone. Although the results in Figure 16 are based on 1% strain, other strain
levels produced similar patterns.

The simplest strategy, tracking along A-lines, has the smallest effective tracking zone. If an
estimation error occurs, the method has no mechanism to prevent it from propagating. The single-
seed algorithm performs poorly as well. At low SNR levels (below 0 dB), the single seed is often
bad, even though it has the highest quality amongst all the grid points. When this happens,
tracking fails immediately and never recovers. This is an obvious brittleness of the single-seed
approach that we have deferred mentioning until now.

Although the single-seed algorithm is superior to the drop-out correction method in tracking
a geometrically irregular region, its weakness lies in its poor tolerance of noise. The latter, on
the other hand, is more robust against noise because it searches several previously processed
points for the best initial guess at each new point. The fragility of the single-seed algorithm
is overcome in its multiple-seed variant. If the region grown from one seed goes wrong, others
can still proceed correctly. The multiple-seed algorithm has a comparable effective tracking zone
to that of the drop-out correction method, with the advantage that it can process disjoint and
irregularly shaped regions.

4 Conclusion

Displacement tracking is an algorithmic procedure implicit in the data processing pipelines of all
ultrasonic strain imaging systems. Despite playing a large part in the efficiency and stability of
the displacement estimation process, previous work on tracking has been tightly interwoven with
particular displacement estimation techniques. In this paper, a generic quality-guided tracking
framework has been proposed. It can be integrated with a wide variety of displacement estima-
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Figure 16: Effective tracking zone.

tion techniques. The single-seed algorithm demonstrates the fundamental working mechanism of
the quality-guided tracking strategy. The multiple-seed variant greatly enhances the algorithm’s
robustness to noise and data discontinuity.

Further research on displacement tracking should explore alternative quality indicators. The
measure used in this study, the complex cross-correlation coefficient, was generally effective but
less so at low SNR. Alternative approaches, perhaps including a continuity element, might perform
better in high noise situations. Another area for further research concerns the spatial resolution
of strain imaging systems. Sophisticated tracking strategies allow the use of shorter RF windows.
This should be exploited to the full, with a quantitative study of the achievable spatial resolution
of the subsequent strain images. Finally, the multiple-seed version of the quality-guided tracking
algorithm produces, as a by-product, an approximate segmentation of the frame into regions
of continuous displacement. This segmentation could be refined and then used to improve the
subsequent calculation of strain. Specifically, differentiation across displacement discontinuities
could be avoided, thus eliminating some of the artefacts that commonly affect strain images.
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