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Abstract

The quality of quasistatic ultrasound strain images depends strongly on post-processing
procedures (normalization, spatial and temporal filtering). Such procedures generally benefit
from weighting the data to give more credence to high quality strain estimates. In this paper,
we evaluate several different quality metrics on each post-processing procedure. The results
suggest that no single weighting scheme works best for all procedures. Rather, SNRe is well
suited to normalization and a combined variance-based metric to temporal filtering. For
spatial filtering, the various quality metrics produce similar results.

1 Introduction

In most ultrasonic elasticity imaging techniques, a displacement estimation method is used to
measure the deformation of tissue. Strain data can be obtained by taking the gradient of the
displacement field. As it is generally difficult to recover the underlying tissue elasticity, especially
with the quasistatic approach [1], post-processed strain images are often displayed as the end
product.

The post-processing strategy strongly affects the quality of such images. In early studies,
multi-compression averaging was used to reduce noise [2]. More recently, composite images have
been constructed from several strain fields using data quality metrics in weighting schemes [3, 4, 5].
The weights can be applied on a per-image [6, 3, 4] or per-pixel basis [5]. Although it may be
subjective as to which approach produces the “best” images, it is clear that an effective data
weighting scheme is important for strain image reconstruction.

The purpose of this study is to evaluate several quality metrics potentially suitable for weighting
strain data. Developing a post-processing strategy introduced in a previous paper [5], we propose
a novel weighting scheme that uses different metrics at different processing stages. Qualitative
and quantitative comparisons of the various schemes are performed using simulated, in vitro and
in vivo data.

2 Method

Three post-processing procedures are performed on the raw strain data (see [5] for details): normal-
ization1, followed by spatial filtering and then temporal filtering (persisting several strain fields).
In each of these procedures, every strain datum is assigned a weight indicative of the estimation
quality, so that unreliable strain estimates are given less credence than reliable ones. Whereas
only one weighting scheme was considered in [5], here we evaluate the following six data quality
metrics:

(1) no weighting: the same weight is assigned to all strain data.

1Normalization involves dividing the strain by an estimate of the local stress, to remove depth-dependent stress
attenuation and other artefacts [6, 4, 5]. The stress field is estimated by assuming uniform stiffness and fitting a
regression surface to the strain data.
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Figure 1: FEM simulation results of six quality metrics evaluated on the (a) normalization and
(b) spatial filtering procedures.

(2) correlation: ρ, the post-alignment correlation coefficient between pre- and post-deformation
windows (calculated using the envelope of the analytic RF signal).

(3) SNRρ: derived from correlation, originally given in [7] as ρ/(1 − ρ). We use a modified
version to force SNRρ to zero if ρ ≤ 2/3, since a low ρ usually indicates a complete mismatch and
an erroneous displacement estimate.

SNRρ =
{ 3ρ−2

1−ρ ρ > 2
3

0 otherwise
(1)

Note that, under reasonable assumptions, SNRρ is inversely proportional to the phase gradient
variance of matching windows [8].

(4) SNRe : defined as µs/σs, where µs and σs represent respectively the mean and standard
deviation within a small region of supposedly uniform strain [9]. We use a 3 × 3 window region,
since this is the smallest possible symmetric kernel.

(5) the inverse of the variance of strain: 1/σ2
s , again measured within a 3 × 3 window

region, reflecting strain continuity.
(6) combined variance: Cw =

√
SNRρ/σs, which combines intra- and inter-window precision

estimates (SNRρ and 1/σ2
s).

3 Results and discussion

3.1 Quantitative FEM simulations

Finite element modeling (FEM) was used to assess the effects of weighting on normalization and
spatial filtering. The 3D displacement field of a block of tissue with uniform elasticity (10 kPa) was
calculated using Abaqus 6.7 (Simulia, Rhode Island, USA). The probe displacement introduced
an average strain of 1%. Pre- and post-deformation RF data was simulated using Field II [10] at
elevational transducer offsets of 0, 0.1, 0.2, 0.3 and 0.4 mm (the out-of-plane displacement acts as
a proxy for various real-world decorrelation effects). At each offset, strain images were calculated
100 times with different RF realizations. Image quality was judged using the average pixel-wise
difference d between the post-processed strain and the ground truth (a uniform elasticity field of
value 1).

Figure 1(a) shows the mean and ±1 standard deviation of d across 100 trials evaluated on
normalization alone. Irrespective of the elevational offset, the SNRe weights produce the most
accurate normalized strain field. The three variance-based weightings (SNRρ, 1/σ2

s and Cw) exhibit
interesting behaviour at 0 and 0.1 mm offset: the accuracy improves with signal decorrelation. To
understand this seemingly irrational effect, consider the strain images and weights produced using
SNRρ and SNRe in Figure 2 (the results with 1/σ2

s and Cw are similar to those of SNRρ). In
Figure 2(a), an implausibly bright (soft) region is produced in the upper half of the image. The
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Figure 2: Normalized strain field based on (a) SNRρ and (e) SNRe at zero elevational offset. SNRρ

(b, c) and SNRe (f, g) weights at 0 and 0.1 mm offset. Normalization surface based on (d) SNRρ

and (h) SNRe at zero offset. In (d) and (h), the meshed surface is the raw strain field before
normalization.

SNRρ weights (Figure 2(b)) are high at the top of the frame because of the small deformation near
the probe surface. These high weights bias the normalization surface towards the top (Figure 2(d))
and produce the artefactual bright region in Figure 2(a). At 0.1mm elevational offset, the increased
RF signal decorrelation reduces the SNRρ across the entire image, but disproportionally so at the
top, since SNRρ is particularly sensitive to ρ when ρ is large (Equation (1)). Consequently, the
normalization surface is less biased and the results are improved (Figure 1(a)). Unlike SNRρ,
SNRe (Figures 2(f) and (g)) is not regionally sensitive to signal decorrelation. The normalization
surface (Figure 2(h)) fits closely to the main region of interest and the resulting post-processed
strain image (Figure 2(e)) is more plausible for tissue of uniform stiffness.

Figure 1(b) shows the FEM results for the spatial filtering procedure (following normalization
with SNRe weights). The spatial filter spans 3 × 3 mm2 and is weighted by Gaussian coefficients
multiplied by the quality metric. The results indicate little difference between the various weighting
schemes. This is most likely because the data quality does not vary dramatically within the
3× 3mm2 kernel, so all the schemes effectively reduce to “no weighting”.

3.2 In vitro phantom scan

The effect of weighting on temporal filtering was investigated using six consecutive strain fields
from an elasticity phantom, as shown in Figures 3(a1-a6). Figures 3(a2) and (a3) suffer from re-
gional and whole-frame displacement tracking errors, which are essentially unavoidable in practice.
With no weighting, tracking errors are persisted in the strain images (Figures 3(b2-b6)). SNRe

offers little advantage (Figures 3(c2-c6)), since SNRe weights strain data mildly and the distinc-
tion between high and low quality estimates is insufficient. The three variance-based weightings
produce considerably better strain images (SNRρ: (d1-d6), 1/σ2

s : (e1-e6) and Cw: (f1-f6)).
A closer inspection of Figures 3(d3-d5), (e3-e5) and (f3-f5) reveals that Cw outperforms SNRρ

and 1/σ2
s . The SNRρ weights fail to suppress a few small dark and bright patches in (d3-d5),

because erroneous displacement estimates may occasionally attain similar SNRρ scores to accurate
estimates. The 1/σ2

s weights fail to suppress larger erroneous patches in (e3-e5). Although 1/σ2
s

can detect low quality at the boundaries of mismatched regions, it may be less effective inside
such a region, since the strain estimates may be incorrect but nevertheless fairly continuous. Cw

multiplies
√

SNRρ and 1/σs, producing a high weighting only when both quantities are large. In
essence, Cw provides a double check of strain quality by testing both the displacement estimation
precision and the strain continuity.

Based on all the results, we propose a weighting scheme that applies SNRe to normalization
and Cw to spatial and temporal filtering.

3



(a1) (b1) (c1) (d1) (e1) (f1)

(a2) (b2) (c2) (d2) (e2) (f2)

(a3) (b3) (c3) (d3) (e3) (f3)

(a4) (b4) (c4) (d4) (e4) (f4)

(a5) (b5) (c5) (d5) (e5) (f5)

(a6) (b6) (c6) (d6) (e6) (f6)

individual no weight SNRe SNRρ 1/σ2
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Figure 3: (a1-a6) Individual strain fields from the phantom scan. Strain images at each step of
temporal filtering based on no weighting (b1-b6), SNRe (c1-c6), SNRρ (d1-d6), 1/σ2

s (e1-e6), and
Cw (f1-f6). The ρ-based weights produce very similar results to (b1-b6). All strain images are
normalized using SNRe and no spatial filtering is applied. The grey scale is the same as that in
Figure 2(a).
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Figure 4: The first row shows the B-mode image of the neck nodule and the SNRρ, SNRe and Cw

weights. In the next three rows, each column shows strain images obtained using (a) no weighting,
(b) SNRρ, (c) SNRe and (d) the proposed scheme (SNRe for normalization and Cw for spatial
and temporal filtering); and each row indicates a post-processing procedure. Temporal filtering is
applied to six consecutive strain fields. The grey scale is the same as that used in Figure 2(a).

3.3 In vivo scans

Four weighting schemes (no weighting, SNRρ, SNRe and the proposed scheme), applied to all
three post-processing stages, were tested on an in vivo scan of a neck nodule (Figure 4) and a
testis (Figure 5). The nodule, indicated in the B-mode image, appears as a dark elliptical region
in all strain images. The dark strip towards the left is caused by slight loss of contact between the
transducer and the skin. RF signals in this region change very little before and after compression,
resulting in high SNRρ and Cw, since there is high correlation and low variance. Conversely, the
loss of contact induces low SNRe due to near zero strain. Similar phenomena can be observed
in the nodule region, where small deformations produce high SNRρ and Cw, but low SNRe. The
SNRρ weights are high towards the top of the frame, resulting in a biased normalization surface
that is evident in Figure 4(b). The proposed scheme (Figure 4(d)) selects the most suitable quality
metric at each stage (SNRe for normalization and Cw for spatial and temporal filtering), producing
a strain image with the fewest apparent artefacts.

The testis results (Figure 5) show a similar trend. The no weighting (a) and SNRρ (b) schemes
do not produce a correctly normalized strain field. The SNRe scheme (c) is less effective at
suppressing artefacts around the testis than the proposed scheme (d).

4 Conclusions

We have demonstrated the importance of weighting schemes when post-processing strain images
by normalization, spatial filtering and temporal filtering. FEM, in vitro and in vivo experiments
all indicated that no single weighting scheme is ideally suited to each task. Rather, SNRe is the
preferred candidate for normalization, whereas the combined variance offers some advantages for
temporal filtering. Spatial filtering is relatively insensitive to weighting, though we suggest the use
of combined variance to avoid unnecessary computation when filtering in both time and space.
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Figure 5: Results for the testis scan. Each column shows strain images obtained using (a) no
weighting, (b) SNRρ, (c) SNRe and (d) the proposed scheme; and each row indicates a post-
processing procedure. Temporal filtering is applied to six consecutive strain fields. The grey scale
is the same as that used in Figure 2(a).
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