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ABSTRACT

In this paper the estimation of word posterior probabilities is dis-
cussed and their application in the CU-HTK system used in the
March 2000 Hub5 Conversational Telephone Speech evaluation is
described. The word lattices produced by the Viterbi decoder were
used to generate confusion networks, which provide a compact rep-
resentation of the most likely word hypotheses and their associated
word posterior probabilities. These confusion networks were used
in a number of post-processing steps. The 1-best sentence hypothe-
ses extracted directly from the networks are shown to be signifi-
cantly more accurate than the baseline decoding results. The poste-
rior probability estimates were used as the basis for the estimation of
word-level confidence scores. A new system combination technique
is presented that uses these confidence scores and the confusion net-
works and performs better than the well-known ROVER technique.

1 INTRODUCTION

Most HMM-based speech recognition systems use the sentence-
level maximum a-posteriori (MAP) criterion to decide among the
possible word sequence hypotheses. The sentence level MAP prob-
ability and associated word sequence can be efficiently found by
using Bayes rule and the Viterbi assumption. In this approach it is
assumed to be sufficient to consider only the best state-level path in-
stead of summing over all alternative paths corresponding to a word
sequence.

Recently there has been renewed interest in alternatives to the
sentence MAP criterion. In [10] it was argued that this criterion
is only optimal with respect to minimising thesentenceerror rate,
whereas the real optimisation aim in ASR development is usually the
worderror rate. A technique for explicitly minimising the word error
rate was presented in [6]. This technique usesword-levelposterior
probabilities and relies on post-processing the word lattice generated
by a Viterbi decoder.

Estimates of word-level posteriors can also be used as the basis
for very accurate confidence tagging of the recognition result [1].
Previously such confidence scores for the 1-best word sequence have
been used to combine the output of multiple recognition systems
using the ROVER technique [2]. In this paper, a new approach that
is a generalisation of the ROVER technique is presented. This new
approach, unlike ROVER, takes alternative recognition hypotheses
into account.

The results of experiments using word posteriors are presented
in the context of the CU-HTK system used in the March 2000 Con-
versational Telephone Speech evaluation. In the following section a
brief overview of this system is given. In section 3 an overview of
word posterior probabilities and their estimation from word lattices
is given. Experimental results of the application of word posteriors

in an improved decoding scheme are presented in section 4. The es-
timation of confidence scores is discussed in section 5. Finally the
new system combination scheme used in the CU-HTK evaluation
system is presented in section 6.

2 SYSTEM DESCRIPTION

In this section a brief overview of the CU-HTK system used in the
March 2000 Hub5 evaluation is given (see [4] for details). All the
experiments reported are based on this system.

The acoustic models used are triphone and quinphone HMMs
trained on data from the Switchboard and CallHome corpora. Two
different training criteria were used, namely the conventional maxi-
mum likelihood estimation (MLE) criterion and the maximum mu-
tual information estimation (MMIE) criterion. The resulting four
model sets (two each for triphones and quinphones) are used in
different stages of recognition. Vocal tract length normalisation
(VTLN) was used in training and testing. During recognition, max-
imum likelihood linear regression (MLLR) based speaker/channel
adaptation was performed and a full-variance transform applied.

A 4-gram language model was trained on the transcripts of the
acoustic training data and additional broadcast news transcriptions.
The word 4-gram was smoothed with a class-based trigram that used
automatically derived classes.

The system operates in a number of different stages with more
complex models being applied in later stages. The first two stages
are only used to determine the gender of the speaker, select a VTLN
warp factor and to generate an initial transcription for use in the
MLLR adaptation. In the third stage lattices are generated using
the MMIE triphones and the 4-gram language model. These lat-
tices are then individually rescored using the four different acous-
tic model sets (after application of MLLR and a full-variance trans-
form), resulting in four lattices for each utterance. The lexicon used
for rescoring contained pronunciation variants with unigram prob-
abilities. The lattices generated by these four systems (referred to
as P4a, P4b, P6a and P5b in [4]) are the basis for all experiments
reported in this paper. All experiments were performed on the test
sets used in the September 1998 and March 2000 Hub5 evaluations
(eval98 and eval00, respectively).

3 WORD POSTERIOR PROBABILITY
ESTIMATION

Word-level posterior probabilities are the basis for the techniques
discussed in this paper. Estimates of these posteriors are derived
from the acoustic and language model (LM) likelihoods of the word
sequences hypothesised by a Viterbi decoder.



3.1 Lattice-based Posterior Estimation
The estimation of word-level posterior probabilities is based on the
word lattices generated by a conventional Viterbi decoder. The word
lattices represent the most likely part of the search space for each ut-
terance and contain scores for a large number of competing word
hypotheses. In the lattices used here, each node corresponds to a
point in time and each link is labelled with a word (pronunciation)
hypothesis and the associated log likelihoods from all the models
used (acoustic, pronunciation and language model). As some of
these scores may depend on the surrounding context (e.g. cross word
acoustic models or n-gram language models) many of the links have
to be duplicated, i.e. there are multiple links with the same word
label and the same start and end times.

The estimation of word posteriors is performed in two stages.
First the link posterior probabilityp(l|X) is estimated for each
link l. These probabilities are then combined to form word pos-
teriors for the set of links that are considered to correspond to the
same word.

The joint probability of a lattice pathq (corresponding to word
sequencew) and the acoustic observationsX is the product of the
scores from the three models:

p(q,X) = pacc(X|q)
1
γ plm(w) ppr(q|w) (1)

whereγ is the factor that is used toscale downthe acoustic scores
(contrary to normal practice in Viterbi decoding of scaling the LM
scores) because otherwise the resulting distribution would typically
be dominated by the best path. The scaling used here results in a
much “flatter” posterior distribution. This form of scaling is also
more appropriate from a theoretical point of view since the main ef-
fect, that scaling attempts to compensate for, is the underestimation
of the acoustic likelihoods due to invalid independence assumptions.

For each linkl, the joint probabilities of all paths through the
link (setQl) are summed to yield the link posterior:

p(l|X) =

P
Ql

p(q,X)

p(X)
(2)

This summation can be performed efficiently using a variant of the
forward-backward algorithm on the lattice.

The second step in the estimation of word posteriors is the com-
bination of links that correspond to the same word in the utter-
ance. This decision is non-trivial and corresponds to the problem
discussed in [11] in the context of N-best lists.

The approach used in the following experiments and the final
evaluation system is based on the clustering procedure introduced
in the framework of “consensual lattice post-processing” in [6]. An
alternative texhnique based on time-conditioned word posteriors was
introduced in [1].

3.2 Confusion Network Generation
The confusion network decoding technique relies on a clustering
procedure that transforms a word lattice produced by a conventional
Viterbi decoder into a linear graph, called aconfusion network. All
paths through this graph pass through all nodes in the same order.
The links are grouped intoconfusion setsand every path contains
exactly one link from each such set. The clustering is performed in
two stages. In the first stage, links that correspond to the same word
and overlap in time are combined (i.e. their posteriors are added and
the graph topology is updated). The result of this stage is a graph
that contains word posteriors.

In the second stage, links corresponding to different words are
clustered into confusion sets. These sets represent competing hy-
potheses corresponding to the same part of the utterance. The order
of clustering is based on the phonetic similarity, the time overlap and
the posteriors of the words. The clustering is constrained by the or-
der of links encoded in the original lattice and is performed until the
linear graph structure is achieved. A detailed description of the clus-
tering procedure is given in [5] and an example of such a confusion
network is shown in Figure 1.
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Figure 1: Example Confusion Network

Confusion networks offer a very compact representation of the
most likely word hypotheses and will be used in the processing steps
described in the following three sections.

4 POSTERIOR PROBABILITY DECODING

The confusion networks generated by the procedure outlined in the
previous section are used in a decoding scheme that aims to find an
improved 1-best sentence hypothesis (cf. [6]).

In a confusion network, each word hypothesis is labelled with
its word posterior probability, i.e. the sum of the link posteriors that
were combined in the clustering. The sentence hypothesis found by
picking the word with the highest posterior from each confusion set
can be shown to have the lowest expected word error rate (according
to the posterior distribution represented in the network).

The confusion network decoding technique was evaluated in the
CU-HTK Hub5 evaluation system described in section 2. For each
of the four systems (triphone/quinphone and MMIE/MLE) confu-
sion networks were generated and the hypothesis with the minimum
expected word error rate was found.

triphones eval98 eval00
WER WER SER

MMIE
Viterbi 38.5 28.4 65.7
Confnet 37.1 27.2 65.8

MLE
Viterbi 39.3 28.8 65.4
Confnet 38.0 27.8 65.4

quinphones eval98 eval00
WER WER SER

MMIE
Viterbi 37.2 27.3 66.0
Confnet 36.0 26.5 66.2

MLE
Viterbi 38.2 27.6 65.0
Confnet 37.0 26.9 65.4

Table 1: Word Error Rates (WER) and Sentence Error Rates (SER)
using Confusion Network and Viterbi Decoding

In Table 1 the word error rates for the confusion network decod-
ing technique (Confnet) are compared against the baseline sentence-
level MAP results (Viterbi). Confusion network decoding achieves a



consistent improvement of more than 1% absolute over the baseline
and as expected the sentence error rate stays constant or increases as
a side effect of the minimisation of the word error rate.

A relevant detail of the lattice transformation procedure as used
here is that pronunciation variants of the same word (which result in
multiple links in the word lattice) are recombined. As a result the
word posteriors estimated in the first stage of the above procedure
do not just represent the probability of the most likely pronuncia-
tion of a word but the sum over all variants. This summation over
variants is very desirable from a theoretical point of view but is dif-
ficult to implement directly in a Viterbi decoder. Therefore typically
only the most likely variant is taken into account. A modification
to the Viterbi decoding procedure that offers a limited version of
this summation has been suggested recently in [7], but only variant
hypotheses ending in the same time frame are considered and the
acoustic models are constrained to ignore cross-word contexts. The
confusion network framework provides a more general solution to
this problem.

5 CONFIDENCE SCORES

As the speech recogniser is not perfect it is often useful to anno-
tate the words in the 1-best hypothesis with a measure of how cer-
tain the recogniser is in its decision. These word level confidence
scores have many applications in the post-processing of the recog-
niser output (e.g. syntactic parsing, information extraction, etc.). For
example all words with a confidence score below a threshold could
be considered as unreliable and discarded. If such a scheme is used
only the relative order of word hypotheses is relevant. In other appli-
cations making a hard decision is not appropriate and a confidence
score is assumed to be the posterior probability that a word is cor-
rect1. Therefore it is important that the absolute values are in the
correct range. The metric most commonly employed to asses the
accuracy of a confidence scoring procedure is the normalized cross
entropy (NCE).

The NCE is an information theoretic measure of how much addi-
tional information the confidence tags provide over the trivial base-
line case of setting all scores to the (optimal) constant valuepc (cor-
responding to the ratio of correct words in the hypothesis:pc =
1.0− sub− ins, where sub and ins are the substitution and insertion
error probabilities respectively). An NCE of zero means no addi-
tional information is contained in the confidence scores and positive
values mean they provide useful extra information. See [8] for a
more detailed discussion of this metric.

The word posterior probabilities that result from the confusion
network clustering procedure can be used directly as confidence
scores but they tend to overestimate the probabilities of correct
recognition. This is due to the fact that the lattices used as the basis
for the posterior estimation only represent part of the posterior dis-
tribution and a significant amount of the probability mass is “miss-
ing”. Consistent with this explanation, it was found that this effect is
more pronounced in systems with higher error rates and on smaller
lattices. If the system has a low overall error rate then the models
are able to distinguish relatively well between the correct hypothesis
and incorrect alternatives, whereas for systems with high error rates
the probability mass is more evenly distributed over a large number
of competing hypotheses.

1In this context “correct” refers to the result of the standard Levenshtein
scoring procedure, i.e. it depends on the exact alignment procedure and the
context of the reference and hypothesis word sequences.

To compensate for the over-estimation effect we applied a piece-
wise linear mapping to the lattice based posterior estimates to map
them to confidence scores. This mapping function is based on a
decision tree (see [1]). An alternative to this is the use of a neural
network for the mapping as suggested in [9].

posteriors +mapping
eval98 eval00 eval98 eval00

Triphone MMIE -0.034 0.191 0.238 0.294
Triphone MLE -0.034 0.195 0.236 0.287
Quinphone MMIE -0.132 0.135 0.224 0.284
Quinphone MLE -0.097 0.180 0.229 0.292

Table 2: NCEs with and without Mapping

Table 2 gives the NCEs before and after the mapping. It can
be seen that for the eval00 test set the unmapped posteriors perform
much better than for the eval98 set. This can be explained by the
fact that the system has has a much lower error rate on the eval00
set and therefore the lattices contain a larger part of the probability
mass in the same number of paths.

The normalised cross entropies achieved using the lattice based
estimation clearly outperform other techniques. The confidence es-
timation scheme used in the 1998 CU-HTK system [3] relied on an
N-best homogeneity based measure and resulted in an NCE of 0.143
on the eval98 set.

The piece-wise linear mapping used is based on a small decision
tree (eight leaf nodes). Table 3 shows the average confidence scores
and the optimal constant scorepc. The tree used for this mapping
was trained on the eval98 data. It can be seen that the discrepancy
between the average confidence score andpc is bigger on the (much
easier) eval00 data, which implies that a better NCE could have been
achieved by using more appropriate training data for the mapping.

Triphones Quinphones
eval98 eval00 eval98 eval00

avg. confidence 0.722 0.763 0.729 0.763
pc=1.0-sub-ins 0.750 0.809 0.751 0.810

Table 3: Average Confidence Scores after Mapping for MMIE Sys-
tems

6 SYSTEM COMBINATION

A technique that has become very popular in recent years is the com-
bination of the recognition output of multiple systems to produce a
hypothesis that is more accurate than any of the original systems.

The most widely used technique is based on the ROVER pro-
gram [2] and uses the 1-best word sequence from the different sys-
tems. These word sequences are aligned using a dynamic program-
ming (DP) procedure similar to the one used in scoring recognition
results. Based on this alignment a decision is made among the words
aligned together. This decision can either be based on a simple vot-
ing scheme or take confidence scores into account. If simple voting
is used, then very frequently “ties” are encountered where the same
number of systems favoured two competing words. In such cases an
arbitrary decision has to be made. If reliable confidence scores are
available this situation is avoided and a far more accurate decision
can be made.

A limitation inherent in ROVER is the restriction to the 1-best
word sequences in the alignment as well as the decision procedure.



Thus only words hypotheses that were chosen by one of the systems
can be picked as the final result.

Alternative hypotheses can be taken into account by using con-
fusion networks instead of word strings in the DP alignment proce-
dure. The local scoring function used in ROVER’s DP algorithm to
compare two words (simple test for word equality) is replaced by
a version that calculates the probability of a word match given two
confusion sets. It was found that the use of alternatives and their
associated posteriors improved the quality of the DP alignment sig-
nificantly.

Given the alignment of the confusion networks a generalisation
of ROVER’s decision procedure is used. The probability of each
candidate word in the composite system is calculated as the sum of
the posteriors from the component systems. In this calculation a
weight can be associated with each system although in practice this
was found to make only a very small difference. The candidate word
with the largest weighted sum of component posteriors is picked as
the final system output:

ŵ = argmax
w

NX
i=1

P (Si)P (w|X, Si) (3)

The confidence score used for the final word is just the aver-
age of the (mapped) posteriors of the component systems. Table 4
shows results of different system combination techniques. The four
main systems used in the CU-HTK evaluation system were used
(MMIE/MLE and triphone/quinphones, see [4] for details). The sin-
gle best system was based on the quinphone MMIE models. It can
be seen that the use of confidence scores consistently gives better
performance than the simple voting scheme. The confusion network
combination (CNC) technique presented here gave a a further small
improvement over the use of ROVER.

eval98 eval00
WER WER NCE

single system Quin MMIE 36.0 26.5 0.284
2-way
(MMIE)

Rover conf 35.6 25.7 0.267
CNC 35.2 25.6 0.278

4-way
Rover vote 35.8 25.9
Rover conf 35.4 25.5 0.262
CNC 35.0 25.4 0.271

Table 4: System Combination Results

The improvement over the single best system achieved by
ROVER are rather disappointing especially on the eval98 test set. To
investigate the interaction between the confusion network decoding
and the system combination, the ROVER experiments were run on
the word hypotheses produced by the Viterbi decoder (i.e. without
applying the confusion network decoding).

eval98 eval00
cn no-cn cn no-cn

Quin MMIE 36.0 36.9 26.5 27.3
4-way ROVER vote 35.8 36.6 25.9 26.6
4-way ROVER conf 35.4 36.1 25.5 26.2

Table 5: Effect of Confnet Decoding on System Combination

The results in Table 5 show that the improvements due to
ROVER are consistently slightly bigger for the case where no con-
fusion network decoding was applied. Nevertheless the gains are
almost additive.

7 CONCLUSIONS

We have discussed the estimation of word posterior probabilities and
investigated applications in large vocabulary decoding, the estima-
tion of confidence scores and system combination. A generalisa-
tion of the ROVER technique was presented that takes alternative
hypotheses and their posterior probabilities into account. Experi-
mental results were presented based on the CU-HTK conversational
telephone speech evaluation system.
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