
GLOBAL OPTIMISATION OF NEURAL NETWORK MODELS
VIA SEQUENTIAL SAMPLING-IMPORTANCE RESAMPLING

João F.G. de Freitas Sue E. Johnson Mahesan Niranjan Andrew H. Gee

Cambridge University Engineering Department,
Trumpington Street, Cambridge CB2 1PZ, UK.
{jfgf,sej28,niranjan,ahg}@eng.cam.ac.uk

ABSTRACT

We propose a novel strategy for training neural networks
using sequential Monte Carlo algorithms. This global opti-
misation strategy allows us to learn the probability distri-
bution of the network weights in a sequential framework.
It is well suited to applications involving on-line, nonlinear
or non-stationary signal processing. We show how the new
algorithms can outperform extended Kalman filter (EKF)
training.

1. INTRODUCTION

This paper addresses sequential training of neural networks
using powerful sequential sampling techniques. Sequential
techniques are important in many applications of neural
networks involving real-time signal processing, where data
arrival is inherently sequential. Furthermore, one might
wish to adopt a sequential training strategy to deal with
non-stationarity in signals, so that information from the
recent past is lent more credence than information from
the distant past.

One way to sequentially estimate neural network models is
to use a state space formulation and the extended Kalman
filter [7]. This involves local linearisation of the output e-
quation, which can be easily performed, since we only need
the derivatives of the output with respect to the unknown
parameters. This approach has been employed by several
authors, including ourselves. Recently, we demonstrated a
number of advanced ideas in this context using a hierar-
chical Bayesian framework [1]. In particular, we proposed
ways of tuning the noise processes to achieve regularisation
in sequential learning tasks.

However, local linearisation leading to the EKF algorith-
m is a gross simplification of the probability densities in-
volved. Nonlinearity of the output model often induces
multi-modality of the resulting distributions. Gaussian ap-
proximation of these densities will lose important details.
The approach we adopt in this paper is one of sampling.
In particular, we propose the use of ‘sampling-importance
resampling’ [5, 8] and ‘sequential importance sampling’
[3, 4, 6] algorithms to train multi-layer neural networks.

2. STATE SPACE NEURAL
NETWORK MODELLING

As in our previous work, we start from a state space repre-
sentation to model the neural network’s evolution in time.
A transition equation describes the evolution of the net-
work weights, while a measurements equation describes the
nonlinear relation between the inputs and outputs of a par-
ticular physical process. In mathematical terms:

wk+1 = wk + dk (1)

yk = g(wk,xk) + vk (2)

where (yk ∈ <m) denotes the output measurements, (xk ∈
<d) the input measurements and (wk ∈ <q) the neural net-
work weights. The measurements nonlinear mapping g(.)
is approximated by a multi-layer perceptron (MLP). It is
widely known that this neural model exhibits the capaci-
ty to approximate any continuous function, to an arbitrary
precision, as long as it is not restricted in size. Nonetheless,
the work may be easily extended to encompass recurrent
networks, radial basis networks and many other approxi-
mation techniques. The measurements are assumed to be
corrupted by noise vk, which in our case we model as zero
mean, uncorrelated Gaussian noise with covariance R.

We model the evolution of the network weights by assum-
ing that they depend on their previous value wk and a
stochastic component dk. The process noise dk may rep-
resent our uncertainty in how the parameters evolve, mod-
elling errors or unknown inputs such as target manoeu-
vres. We assume the process noise to be a zero mean, un-
correlated Gaussian process with covariance Q. We have
shown previously that the process of adapting Q is equiva-
lent to adapting smoothing regularisation coefficients and
distributed learning rates [1]. To simplify the exposition
in this paper, we do not treat the problem of estimat-
ing the noise covariances and initial conditions. To under-
stand how these variables may be estimated via hierarchi-
cal Bayesian models or EM learning, the reader is referred
to our previous work [1, 2].

From a Bayesian perspective, the posterior density func-
tion p(Wk|Yk), where Yk = {y1, y2, · · · , yk} and Wk =
{w1, w2, · · · , wk}, constitutes the complete solution to
the sequential estimation problem. In many applications,

it is of interest to estimate one of its marginals, namely the
filtering density p(wk|Yk). If we know this density, we can
easily compute various estimates of the network weights
recursively, including centroids, modes, medians and con-
fidence intervals. Given a prior, the filtering density can
be computed by:

p(wk|Yk) = p(wk|yk, Yk−1)

=
p(yk|wk, Yk−1)p(wk|Yk−1)

∫

p(yk|wk, Yk−1)p(wk|Yk−1)dwk

=
p(v∗k)

∫

p(d∗k−1)p(wk−1|Yk−1)dwk−1
∫

p(v∗k)
∫

p(d∗k−1)p(wk−1|Yk−1)dwk−1dwk

where v∗k = yk − g(wk,xk) and d∗k−1 = wk −wk−1.

This optimal solution unfortunately entails multi-
dimensional integration, making it impossible to evaluate
analytically for most applications. Therefore approxima-
tions such as direct numerical integration or Monte Carlo
simulation methods are needed.

3. SEQUENTIAL SAMPLING-
IMPORTANCE RESAMPLING

In Monte Carlo simulation a set of weighted samples drawn
from the posterior density function of the neural network
weights is used to map the integrations involved in the in-
ference process to discrete sums. More precisely, we make
use of the following Monte Carlo approximation:

p̂(Wk|Yk) =
1
S

S
∑

i=1

δ(Wk −W (i)
k)

where W (i)
k represents the samples used to describe the

posterior density and δ(.) denotes the Dirac delta function.
Consequently, any expectations of the form:

E[fk(Wk)] =
∫

fk(Wk)p(Wk|Yk)dWk

may be approximated by the following estimate:

E[fk(Wk)] ≈ 1
S

S
∑

i=1

fk(W (i)
k)

where the samples W (i)
k are drawn from the posterior den-

sity function.

A problem arises because often we cannot sample direct-
ly from the posterior density function. However, we can
circumvent this difficulty by sampling from a known, easy-
to-sample, proposal density function π(Wk|Yk) and making
use of the following substitution:

E[fk(Wk)] =
∫

fk(Wk)
p(Wk|Yk)
π(Wk|Yk)

π(Wk|Yk)dWk

=
Eπ[qk(Wk)fk(Wk)]

Eπ[qk(Wk)]

where the unnormalised importance ratios are given by:

qk =
p(Yk|Wk)p(Wk)

π(Wk|Yk)

Hence, by drawing samples W (i)
k from the proposal func-

tion π(.), we get

E[fk(Wk)] ≈
∑S

i=1 fk(W (i)
k)qk(W (i)

k)
∑S

i=1 qk(W (i)
k)

which leads to:

p(Wk|Yk) = lim
S→∞

S
∑

i=1

q̃(i)
k δ(Wk −W (i)

k)

where q̃i
k is normalised over all i of the S samples.

In order to compute a sequential estimate of the posterior
density function at time k without modifying the previ-
ously simulated states Wk−1, we may adopt the following
proposal density:

π(Wk|Yk) = π(W0|Y0)
∏N

k=1 π(wk|Wk−1, Yk)

Consequently, if we assume that the states correspond to a
Markov process and that the observations are conditionally
independent given the states, it follows that:

qk = qk−1
p(Yk|Wk)p(Wk)π(Wk−1|Yk−1)

p(Yk−1|Wk−1)p(Wk−1)π(Wk|Yk)

= qk−1
p(yk|wk)p(wk|wk−1)

π(wk|Wk−1, Yk)
(3)

We adopt the following proposal function, likelihood and
prior:

π(wk|Wk−1, Yk) = p(wk|wk−1) (4)

p(y|w) ∝ exp((yk−ĝ(wk,xk))T R−1(yk−ĝ(wk,xk))) (5)

p(w0) = N (µ0, σ0), q(i)
0 = p(y0/w

(i)
0) (6)

Thus we can draw initial weights and importance ratios
from the prior (eqn 6) and for each sampling stage, pre-
dict the new weights (eqn 1), evaluate the new importance
ratios (eqns 3,4,5) and resample if necessary.

Resampling can be performed to concentrate the samples
round the areas with a high importance ratio. A unifor-
m random number is mapped onto the cumulative impor-
tance distribution and the sampling index corresponding
to this point is found. By repeating this S times, the new
resampled indices are determined, with the new impor-
tance ratios being set to S−1. Clearly, more “children”
arise from the original samples with the greatest likelihood,
with the random variation being added by the subsequen-
t prediction stage. This process will be called Sampling
Importance Resampling (SIR) and is illustrated in Figure
1.

Liu and Chen have argued that when all the importance ra-
tios are nearly equal, resampling only reduces the number
of distinctive streams and introduces extra variation in the
simulations [6]. Therefore, in order to reduce the computa-
tional cost of the algorithm, resampling is only performed

when the variance of the importance ratio exceeds a cer-
tain threshold. This leads to Sampling Importance Partial
Resampling (SIPR).

update

w

p(y w)

prediction

Figure 1: The sequential sampling process. The sam-
ples are propagated according to their likelihood found in
the update stage. A process noise term is added to the
surviving samples and those with higher likelihood are as-
signed more “children”. This produces a better weighted
description of the likelihood function.

4. EXPERIMENTS

The first experiment compares the use of the described SIR
and SIPR techniques with the standard EKF algorithm.
This allows the ability of the SIR techniques to handle non-
linear models to be seen. The second experiment shows the
ability of SIR to find hidden parameters in a simple neural
network when the network model is both stationary and
non-stationary.

4.1. Expt 1: Non-linear Modelling

Input-output data was generated using the following func-
tion:

y(x1, x2) = 4 sin(x1 − 2) + 2x2
2 + 5 + ν

where the inputs x1 and x2 where simulated from a Gaus-
sian distribution with zero mean and unit variance. The
noise ν was generated from a Gaussian distribution with
zero mean and standard deviation equal to 0.01. The data
was then approximated with an MLP with 5 hidden sig-
moidal neurons and a linear output neuron. The MLP was
trained sequentially using the SIR, SIPR and EKF algo-
rithms. The threshold for SIPR gave an average of 50%
occurrence of resampling. 100 samples were used in the
Monte Carlo simulations.

Table 1 shows the average one-step-ahead prediction er-
rors obtained for 10 runs, of 200 time steps each, on a
Silicon Graphics R10000 workstation. It is clear from the
results that reducing the number of occurrences of resam-
pling does not yield a great reduction in computational
time. The results also show the improvements which can
be gained by using SIR at the expense of increased com-
putational time.

EKF SIPR SIR

RMS Error 6.04 4.81 2.83
Computational Time (sec) 4 98 109

Table 1: Expt 1: Function approximation results.

4.2. Expt 2: Latent States Estimation

To assess the capacity of our algorithms to estimate hidden
parameters, output data was generated from an MLP, with
one sigmoidal hidden unit and a linear output unit. This
input consisted of two Gaussian sequences. This is a very
simple model, which is only slightly more complex than a
logistic data generator and is shown in Figure 2.

Σ Σ
θ 2

θ
1

θ 3

θ 4

θ 5

Figure 2: Neural net architecture used for experiment 2.

A second network with the same structure was then trained
using the input-output data generated by the first network.
Figure 3 shows the performance of the SIR algorithm for
a stationary model, both with training data and with data
not encountered in the training set. As depicted in Fig-
ure 4, the means of the network weights converged to their
true value. Figure 4 also shows the error bars (one stan-
dard deviation wide) of the estimates. The evolution of the
probability density function of the weight of value 1 is plot-
ted in Figure 5. The experiment was then repeated with a
non-stationary model, where some of the network weights
changed with time. The results are shown in Figure 6.

0 10 20 30 40 50 60 70 80 90 100

5

5.2

5.4

5.6

5.8

6

T
ra

in
in

g

0 10 20 30 40 50 60 70 80 90 100

5

5.2

5.4

5.6

5.8

6

T
es

t

Time

Figure 3: Network prediction on training and test data.
Actual output[o o] and estimated output [—].

0 20 40 60 80 100 120 140 160 180 200
−1

0

1

2

3

4

5

6
N

et
w

or
k

w
ei

gh
ts

Time

Figure 4: Hidden weights estimation for a stationary
model, θ = w = (2,−0.5, 0.1, 1, 5)T

−1
0

1
2

3
4

0

50

100

150

200
0

100

200

300

400

500

Sample spaceTime

P
os

te
rio

r
de

ns
ity

Figure 5: Evolution of the probability density of θ4

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

4

N
et

w
or

k
w

ei
gh

ts

Time

Figure 6: Hidden weights estimation for a non-stationary
model, θ = w = (2,−0.5− 2k/N, 0.5, 1, 1.5 + 2k/N)T

5. CONCLUSIONS

Our experiments, together with various financial studies
presented in [3], clearly indicate that the neural network
training algorithms proposed in this paper represent an
interesting and promising alternative to existing method-
s. Sampling methods provide a better description of the
probability distribution of the network’s weights than con-
ventional second order gradient descent methods, such as
the extended Kalman filter. Yet, for problems where the
posterior is essentially unimodal, the EKF leads to accu-
rate and much faster algorithms.

Acknowledgements
We would like to thank Neil Gordon (DERA) for his helpful
assistance. João F.G. de Freitas is financially supported by
two University of the Witwatersrand Merit Scholarships, a
Foundation for Research Development Scholarship (South
Africa), an ORS award and a Trinity College External S-
tudentship (Cambridge).

6. REFERENCES

1. J F G de Freitas, M Niranjan, and A H Gee. Hi-
erarchical Bayesian-Kalman models for regularisation
and ARD in sequential learning. Technical Report
CUED/F-INFENG/TR 307, Cambridge University En-
gineering Department, December 1997.

2. J F G de Freitas, M Niranjan, and A H Gee. The EM al-
gorithm and neural networks for nonlinear state space
estimation. Technical Report CUED/F-INFENG/TR
313, Cambridge University Engineering Department,
1998.

3. J F G de Freitas, M Niranjan, A H Gee, and A Doucet.
Sequential Monte Carlo methods for optimisation of
neural network models. Technical Report CUED/F-
INFENG/TR 328, Cambridge University Engineering
Department, July 1998.

4. A Doucet. On sequential simulation-based methods for
Bayesian filtering. To appear in Statistics and Comput-
ing, 1999.

5. N J Gordon, D J Salmond, and A F M Smith. Nov-
el approach to nonlinear/non-Gaussian Bayesian state
estimation. IEE Proceedings-F, 140(2):107–113, April
1993.

6. J S Liu and R Chen. Sequential Monte Carlo methods
for dynamic systems. Journal of the American Statisti-
cal Association, 93:1032–1044, 1998.

7. S Singhal and L Wu. Training multilayer perceptrons
with the extended Kalman algorithm. In D S Touretzky,
editor, Advances in Neural Information Processing Sys-
tems, volume 1, pages 133–140, San Mateo, CA, 1988.

8. A F M Smith and A E Gelfand. Bayesian statistics with-
out tears: a sampling-resampling perspective. Ameri-
can Statistician, 46(2):84–88, 1992.

	INTRODUCTION
	STATE SPACE NEURAL NETWORK MODELLING
	SEQUENTIAL SAMPLING- IMPORTANCE RESAMPLING
	EXPERIMENTS
	Expt 1: Non-linear Modelling
	Expt 2: Latent States Estimation

	CONCLUSIONS
	REFERENCES

