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ABSTRACT

The CUHTK evaluation systems typically make use of a multiple
pass, multiple branch, framework. This allows a range of acoustic
models to be used in the framework and the output from all the sys-
tems, or branch, to be combined to give the final output. This paper
describes experiments with several advanced acoustic modelling
techniques that were candidate approaches for the 2004 CU-HTK
large vocabulary speech recognition systems. These techniques
include Gaussianization for speaker normalization, discriminative
cluster adaptive training, discriminative subspace for precision and
mean modelling of inverse covariances, and discriminative com-
plexity control. Acoustic models built using these techniques were
integrated into a state-of-the-art 10 real-time multi-pass system
with sophisticated adaptation for performance evaluation. Exper-
imental results are presented on both broadcast news (BN) and
conversational telephone speech (CTS) transcription tasks.

1. INTRODUCTION

For many years automatic transcription of broadcast news (BN)
and conversational telephone speech (CTS) data have been the
two main tasks for the research community of large vocabulary
continuous speech recognition (LVCSR). Due to the difficulty of
these tasks, a variety of modelling techniques have been devel-
oped to allow systems to model highly complex data and be ro-
bust to changes in acoustic environment. In this paper several ad-
vanced modelling techniques that were candidates techniques for
the CUHTK 2004 BN-English and CTS-English evaluation sys-
tems. The approaches are investigated in the framework of a state-
of-the-art multi-pass LVCSR system using sophisticated adapta-
tion, large scale language models and Confusion Network (CN)
based system combination. By implementing the approaches in
this complex framework, it is possible to obtain a realistic estimate
of how they may perform in an evaluation style system. Tech-
niques investigated include Gaussianization for speaker normal-
ization, discriminative Cluster Adaptive Training (CAT), Subspace
for Precision And Mean (SPAM) modelling of inverse covariances,
and model complexity control.

Some of these approaches investigated, such as SPAM, yield
systems which do no have diagonal covariance matrices. It is
therefore not possible to use the standard efficient techniques for
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estimating the adaptation transformations in schemes such as Max-
imum Likelihood Linear Regression (MLLR). This paper also ad-
dresses this problem. Rather than using generic gradient descent
style optimization [1], simple iterative schemes closely related to
the standard optimization approaches are described, along with
simpler approximate schemes.

The rest of the paper is organized as follows. Section 2 de-
scribes the four acoustic modelling techniques examined. Sec-
tion 3 examines the adaptation schemes used. In particular, the
efficient row-by-row update approach for MLLR mean and con-
strained MLLR (CMLLR) adaptations of the SPAM model are de-
scribed. Section 4 gives an overview of the basic features of the
CU-HTK 10xRT system. Experimental results are given for vari-
ous adaptation configurations for the SPAM models. Then experi-
mental results of individual and combined systems on both BN and
CTS transcription tasks are presented. Section 5 is the conclusion.

2. MODELLING TECHNIQUES

This section describes the theory of Gaussianization, CAT, SPAM
and discriminative complexity control. Some implementation is-
sues are also discussed for individual techniques.

2.1. Gaussianization

Cepstral mean and variance normalization is a simple speaker nor-
malization scheme. The aim is to transform the distribution of
a speaker’s data to distribution having zero mean and unit vari-
ance. However, the approach does not attempt to normalize the
higher-order moments of the distribution. For scenarios where
there is highly non-homogeneous speech data, such as broadcast
news, additional normalization of the higher-order moments may
be beneficial. In this paper a non-linear speaker normalization
scheme, Gaussianization, is investigated for both BN and CTS
tasks. The idea of Gaussianization is to transform the distribu-
tion of an individual speaker to be a standard Gaussian. The ap-
proach adopted is to separately model each dimension of a speaker
by a on-dimensional Gaussian Mixture Model (GMM). Using the
Cumulative Density Function (CDF) of this GMM, it is possible
to transform any observation so that the overall distribution for
that dimension is a normal Gaussian. Note this does not guaran-
tee that the distribution for the complete feature vector is a nor-
mal multivariate Gaussian. The approach is similar to the one de-
scribed in [2]. However rather than using histogram normalization,
a GMM is used to model the data. It is also related to the Gaussian-
ization scheme described in [3], though iterative Gaussianization
is not performed.



Let oj denote the jth dimension of a n dimensional acoustic
feature vector o of speaker s. Then the Gaussianized feature on j
the dimension is given by,
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where φ−1(·) denotes the standard Gaussian inverse CDF. The
speaker GMM component mean, variance and prior is denoted by
µ(sjm), σ(sjm)2 and csjm respectively. For each speaker a to-
tal of n single dimension Msj component GMMs are trained us-
ing Maximum Likelihood (ML) criterion. This scheme provides a
more compact and smooth representation of the target distribution
than the histogram scheme in [2].

In this work Gaussianization was performed on top of HLDA
projected cepstral features. The normalized features were then
used in both training and testing. All GMMs used for Gaussian-
ization had 4 components.

2.2. Cluster Adaptive Training

Multiple-cluster schemes, such as cluster adaptive training (CAT)
or eigenvoices system, are popular approaches for rapid speaker
and environment adaptation [4]. Here, a multiple-cluster model
is used as the canonical model in an adaptive training framework.
A set of interpolation weights are used to transform this multiple-
cluster model to a standard HMM set representative of an indi-
vidual speaker or acoustic environment which is then used in de-
coding. Usually only multiple-cluster means are considered. Thus
adapted mean vector is represented as

µ
(sm) = M

(m)
λ

(s) (2)

where M
(m) = [µ

(m)
1 , . . . , µ

(m)
P ] is the multiple-cluster mean

matrix, λ(s) = [λ
(s)
1 , . . . , λ

(s)
P ]′ is the interpolation weight vector.

Maximum likelihood estimation for the multiple-cluster model
and interpolation weights are described in [4]. Initializations of
CAT is also detailed discussed in the paper, which allows CAT
to be used in LVCSR systems. However, to get state-of-the-art
performance, discriminative training, particularly minimum phone
error (MPE) training is required. This has been studied for mul-
tiple cluster systems in [5]. Though both model parameters and
interpolation weights can be discriminatively updated, a simpli-
fied version of discriminative adaptive training is commonly used,
in which ML-estimated weights are fixed in later discriminative
training stage.

In the CU-HTK 10xRT system, the estimation of the test-set
transformations for the CAT system employed a similar approach
to the standard SAT system. CAT weight transforms are iteratively
estimated using the ML criterion based on supervision from the
previous lattice generation stage. Then given using these trans-
forms, the standard adaptations transforms can be estimated in
a cascade fashion for lattice rescoring using the standard CAT
adapted models. More details of the evaluation framework are
given in section 4.1.

2.3. Precision Matrix Modelling

The most commonly used form of GMMs for speech recognition
use diagonal covariance matrices. Structured precision matrix ap-
proximations have been found to yield improved performance us-

ing both ML and MPE training [1, 6]. They yield a compact rep-
resentation and efficient likelihood calculation. Examples of this
form of model are the Semi-tied Covariances (STC), Extended
Maximum Likelihood Linear Transform (EMLLT) and Subspace
for Precision And Mean (SPAM) systems. The precision matrix
(inverse covariance), P m, of a Gaussian component m, can be
expressed in a general form of basis superposition:
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where Si is the ith basis matrix and λ
(m)
ii is the corresponding ba-

sis coefficient. Si is a symmetric matrix with an arbitrary rank, R,
which can be further decomposed into a superposition of R basis
vectors, air . P m is constrained to be positive-definite. If, Si is
rank-1 (R = 1), equation 3 becomes a STC model when n = d
and an EMLLT model when d < n ≤ d

2
(d + 1). Removing the

rank-1 constraint gives the SPAM model. Among these, SPAM
was found to yield the best performance [6]. This paper will also
consider SPAM modelling within a speaker adaptively trained fea-
ture space.

This paper considers MPE discriminatively trained SPAM mod-
els. Two variants of SPAM models were trained. The first model
was trained within the 39-dimensional HLDA feature space. The
second form of model was built with an adaptively trained feature-
space. Here constrained MLLR was used to generate a standard
ML Speaker Adaptively Trained (SAT) system. Then within the
adaptively trained feature-space the precision matrix models were
built. This is the SAT-SPAM system

2.4. Complexity Control

There are a wide range of possible models that can be used for
LVCSR. It is not practical to build, and compare, each possible
system for large vocabulary speech recognition systems. To over-
come this problem automatic model complexity control schemes
have been proposed [7, 8]. Most existing complexity control schemes
make an assumption that increasing the likelihood on held-out data
can decrease the word error rate (WER). However this correlation
has been found quite weak for current speech recognition systems.
It would be preferable to use a criterion more closely related to
WER. One possible method is to marginalize a discriminative cri-
terion. However, due to sensitivity to outliers, discriminative train-
ing criteria, such as Maximum Mutual Information (MMI), can not
be directly integrated for complexity control.

To overcome this problem the marginalization of a discrimi-
native growth function has been proposed [9]. The growth func-
tion of a discriminative criterion retains its curvature in the para-
metric space, and largely removes the sensitivity to outliers. Let
λ denotes the model parameters. For a family of discriminative
criteria that can be expressed as a ratio between two polynomi-
als with positive coefficients (including MMI and MPE), F(λ) =
Fnum(λ)/Fden(λ), a generic form of the associated growth func-
tion is given below.

G(λ) = Fden(λ)
[

F(λ)−F(λ̃) + CFsm(λ, λ̃)
]

(4)

where λ̃ is the current parameter estimate. The first two terms in
the bracket retain the criterion’s curvature in the parametric space.
A third smoothing criterion or statistics, Fsm(λ, λ̃), scaled by a
constant C > 0, acts to remove the sensitivity to outliers by by



penalizing highly unlikely word sequences. The exact form of the
smoothing term depends on the underlying discriminative crite-
rion being considered. Using a generalized EM approach, a strict
lower bound of the growth function can be derived. This has a
more tractable form for marginalization, with the dependence on
the hidden variables removed. A second order Laplace’s approxi-
mation can be used for the growth function integration.

In this paper complexity controlled acoustic models were built
using this marginalized growth function. Two forms of complex-
ity were varied. In contrast to the standard global 39-dimension
HLDA projection, the systems were built with multiple HLDA
transforms, in this case 65, with number of retained dimensions
varied. In addition the number of components per state were var-
ied. Both forms were determined using a marginalized MPE crite-
rion. For more details of the experimental set-up see section 4.1.

3. ADAPTATION OF ACOUSTIC MODELS

An important aspect of any form of improved acoustic models is
the applicability of adaptation techniques to these models. This
paper considers three forms of the MLLR adaptation schemes,
namely the mean [10], covariance and constrained MLLR (CM-
LLR) [11] adaptation schemes. Gaussianization is a feature trans-
formation scheme. So, the form of adaptation methods required
only depends on underlying model used to represent the Gaussian-
ized features. In this paper, Gaussianization systems are built using
the diagonal covariance matrix models where the standard adapta-
tion approaches given in [10, 11] can be directly employed. The
following sections will describe the application of the above men-
tioned adaptation schemes to CAT, SPAM and complexity control
systems. Since the HLDA system can be viewed as a special form
of basis superposition precision matrix model with basis coeffi-
cient tying for the nuisance parameters [12], the multiple HLDA
projections used in the complexity control system is equivalent to a
multiple basis precision matrix model. Hence, the following adap-
tation schemes will be described in terms of a generic form of pre-
cision matrix structure.

3.1. MLLR Mean Adaptation

MLLR adaptation of the mean vector [10] can be written as

µ̂m = A
r
µm + b

r = W
r
ξ

m
(5)

where Ar and br are the d × d linear transformation matrix and
the bias vector respectively associated to the regression class, r
(m ∈ r). µm and µ̂m denote the original and adapted mean vec-
tors respectively for component m. W r = [Ar | br] and ξm =
[µ′m 1]′ are the augmented transformation matrix and mean vector
respectively. W r can be estimated in an Expectation Maximiza-
tion (EM) fashion by maximizing the following auxiliary function

Q(W r) = K −
1

2

Mr
∑

m=1

Tr(P mX
(mr)) (6)

where K subsumes terms independent of W r , Mr is the num-
ber of component in regression class r, P m is a generic form of
precision matrix for component m and X(mr) is given by

X
(mr) =

T
∑

t=1

γm(t)(ot −W
r
ξm)(ot −W

r
ξm)′

γm(t) is the posterior of component m at time t. For the case
where P m is full, direct optimization of equation (6) with respect
to W r using the direct closed-form solution [13] is computation-
ally expensive and may result in numerical stability issue [13].
Instead, a simplified row-by-row estimation of W r which guar-
antees an increase in the adaptation data likelihood may be used.
This is achieved by differentiating equation (6) with respect to wr

i ,
the ith row of W r and equating that to zero to yield the Maximum
Likelihood (ML) solution as

w
r
i = G

(rii)−1
k

(ri)

where

G
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k
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j G
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Gm = βmξmξ
′
m (9)

Km = umξ
′
m (10)

pm(i, j) and pm(i) denotes the (i, j)th element and ith row of
P m respectively. The component level sufficient statistics are
given by

βm =
T

∑

t=1

γm(t) (11)

um =
T

∑

t=1

γm(t)ot (12)

This update formula is dependent on the other rows through the
term k(ri) in equation (8). Hence, an initial estimate of W r is
required and an iterative approach used. Although W r can be
initialized as an identity matrix, a better starting value may be
found by using a diagonal precision matrix approximation, where
pm(i, j) = 0 for j 6= i. Equation (8) simplifies to that of a diago-
nal covariance matrix system [10].

k
(ri) =

Mr
∑

m=1

pm(i, i)um(i)ξ′m (13)

where um(i) is the ith element of um. In fact, the results presented
later indicates that subsequent row-by-row iterations yield very lit-
tle gain in terms of likelihood and the diagonal precision matrix
approximation itself gives good estimates. This approximation ap-
proach is directly applicable to both SPAM and complexity control
systems. For CAT system, on the other hand, MLLR mean adap-
tation is performed on the effective mean vector given by equation
(2). Thus, the speaker-dependent CAT weights, λ(s), for each tar-
get speaker, s needs to be estimated before the standard MLLR
mean adaptation approach is applied.

3.2. MLLR Covariance Adaptation

MLLR covariance adaptation is achieved via the following:

Σ̂m = A
r
ΣmA

r′

(14)



where Ar is the linear adaptation transformation matrix of the re-
gression class r. Σm and Σ̂m are the original and adapted covari-
ance matrices respectively. Equation (14) is equivalent to an STC
model, which is a special case of the basis superposition precision
matrix model as depicted in equation (3) where the bases are rank-
1 matrices. There exists an efficient row-by-row update for the
transformation matrix Ar as given by [14] where the ML solution
is given by

a
r
i = c

r
i G

r−1
i

√

β

cr
i G

r−1
i cr′

i

(15)

where ar
i is the ith row of Ar , cr

i is the vector of cofactors corre-
sponding to ar

i and

G
r
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m=1

T
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βmλ
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β =
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m=1

T
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t=1
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From the above, it is obvious to see that a simple way to
achieve covariance adaptation for basis superposition precision ma-
trix models is to train speaker-dependent basis matrices. The effi-
ciency of this kind of covariance adaptation depends on the com-
putational cost of the basis matrix update of the precision matrix
model. Unfortunately, this approach is computationally inefficient
for SPAM and complexity control (multiple HLDA transforms)
systems. Another way to achieve covariance adaptation is using
the constrained MLLR adaptation where both the mean and co-
variance adaptation share the same linear transformation matrix.
CMLLR will be described next.

3.3. Constrained MLLR Adaptation

Constrained MLLR (CMLLR) adaptation combines both MLLR
mean and variance adaptation in a restrictive sense, such that the
adaptation of the mean vector and the covariance matrix share the
same linear transformation matrix. This constraint simplifies the
adaptation to a feature-based speaker normalization scheme [15].
In CMLLR, a linear feature transformation matrix, W r = [Ar | br],
is estimated for each regression class, r such that

ζ̂t = A
r
ot + b

r = W
r
ζt (18)

where ζt and ζ̂t are the augmented vectors of the original and
adapted observation respectively. The ML solution of W r is found
by maximizing the following auxiliary function

Q(W r) = K + β log |W r| −
1

2

Mr
∑

m=1

Tr(P mX
(mr)) (19)

W r is the transformation matrix, K subsumes terms independent
of W r , and

X
(mr) =

T
∑
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γm(t)(W r
ζt − µm)(W r

ζt − µm)′

Again, a row-by-row update approach is adopted here. Differenti-
ating equation (19) with respect to wr

i , the ith row of W r , yields

∂Q(W r)

∂wr
i
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ciwr′

i

−w
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where ci is the cofactors of the ith row of W r . G(rij) and k(ri)

are given by equations (7) and (8) respectively with the terms Gm

and Km given by

Gm =
T

∑

t=1

γm(t)ζtζ
′
t (21)

Km = µmu
′ (22)

The sufficient statistics are β, Gm and um =
∑T

t=1 γm(t)ζt. Set-
ting equation (20) to zero yields the ML update for each row of
W r as

w
r
i = α

(

ci + λk
(ri)

)

G
(rii)−1 (23)

Equation (23) is similar to the update formula derived for the case
of diagonal covariance matrix [15], differed by the term k(ri),
which also depends on other rows in this case. α is found by solv-
ing a quadratic equation as described in [15]. It is easy to see that
when pm(i, j) = 0 for j 6= i, equation (23) simplifies to the case
of diagonal covariance matrix systems.

CMLLR provides an alternative to variance adaptation. This
is particularly useful for SPAM and complexity control systems
where variance adaptation is computationally expensive. Unlike
the case of MLLR mean, diagonal precision matrix approxima-
tion does not work for constrained MLLR because the estimated
transforms operates on both the mean vectors and the precision
matrices. However, the CMLLR transforms estimation process for
SPAM models can be approximated using a diagonal covariance
matrix model. For good approximation, this model should be the
starting point used to train the SPAM model.

3.4. Sufficient Statistics for SPAM Models

The required statistics associated to each regression class r for
both MLLR mean and CMLLR adaptations are Grij for 1 ≤ i ≤
d; 1 ≤ j ≤ i and kri for 1 ≤ i ≤ d, as given by equations (7) and
(8) respectively. The number of parameters to be stored for these
statistics are [ d

2
(d + 1)]2 + d2, which is dominated by G(rij). For

structured precision matrix models, the memory requirement can
be reduced by exploiting the basis superposition structure. Substi-
tuting equation (3) into equation (7) yields

G
(rij) =

n
∑

b=1

sb(i, j)G
(rb) (24)

G
(rb) =

Mr
∑

m=1

λ
(m)
bb Gm (25)

where sb(i, j) denotes the (i, j)th element of the bth basis matrix,
Sb and 1 ≤ b ≤ n. So, instead of storing d

2
(d+1) terms of G(rij),

only n terms of G(rb) are needed. Thus, the required memory
is reduced from the order O(d4) to O(nd2). These statistics are
directly related to those presented in [1] where Gk

1 and Gk
4 are the

same as G(rb) for MLLR mean and CMLLR cases respectively.
The notation k used in [1] has the same meaning as b used in this
paper. Also, Gk

3 relates to K(rb) =
∑Mr

m=1 λ
(m)
bb Km.

4. EXPERIMENTS AND RESULTS

4.1. Evaluation Framework

The evaluation framework used for system comparison was based
on the the CU-HTK 10xRT evaluation system [16]. This is a multi-



pass system uses sophisticated adaptation and CN based system
combination. The overall system structure consists of two main
stages: the initial lattice generation stage and the rescoring stage
using multiple model sets. The confusion network outputs from
different rescoring passes were finally combined. This is shown
in figure 1. More details of the overall system architecture can be
found in [16].

For both the CTS and BN systems the audio data was param-
eterized using 13 PLP features augmented with their first, second
and third order derivatives. For the CTS systems only, Vocal Tract
Length Normalization (VTLN) along with Cepstral mean and vari-
ance normalization was used in training and test. This 52 dimen-
sional acoustic feature was projected down to 39 dimension us-
ing a global HLDA transform. Continuous density, mixture of
Gaussians, cross-word triphone HMM systems were used for all
systems and all acoustic models were built using discriminative
training based on the minimum phone error (MPE) criterion [17].
Bandwidth-specific acoustic models were used for the BN task.
Gender-specific BN models were also used for the non-adaptively
trained system. However, all CTS acoustic models were gender
independent.

The two baseline models used in the lattice rescoring (P3)
stage were a SAT model employing constrained MLLR and an
HMM set trained using a Single Pronunciation (SPron) dictionary.
These model sets were adapted using lattice based MLLR in addi-
tion to standard adaptation based on the 1-best hypothesis.

Segmentation

Normalisation
Adaptation

Adapt

Lattices

Lattice generation

Adapt

Initial transcription

P3a P3x

1−best

CN

Lattice

CNC

Fig. 1. CU-HTK 10xRT System

For both BN and CTS tasks a word-based 4-gram language
model was trained on the acoustic transcriptions and additional
Broadcast News data. The word-based 4-gram was then inter-
polated with a class-based trigram trained only on the associated
acoustic transcriptions. The BN and CTS recognition dictionaries
contain approximately 59k and 58k words respectively. Each word
had about 1.1 pronunciations on average for both tasks.

4.2. Adaptation Results for SPAM models

This section presents the adaptation results for SPAM models based
on the CTS and BN English tasks. Two forms of SPAM model
were investigated in this work. The first was a standard SPAM sys-
tem. The second was built within an adaptive training framework
using CMLLR transforms. Instead of training the SAT+SPAM
system from the SPAM system, the training approach described
in [1] was adopted, where a speaker adaptively trained diagonal
covariance matrix system (SAT+DIAGC) was used as the start-
ing point. In other words, the SPAM precision matrix modelling
was performed within the SAT feature space. In testing, MLLR
mean transforms for the SPAM models were estimated using two
row-by-row iterations as described in Section 3.1 (mllr) or sim-
ply approximated using the diagonal precision matrix assumption
(mllr+). Similarly, the CMLLR transforms were estimated ei-
ther using the exact method (cmllr) as described in Section 3.3
or approximated using a SAT+DIAGC system (cmllr+) for the
adaptively trained SAT-SPAM system.
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Fig. 2. Change in average log likelihood of one speaker on CTS
with increasing number of MLLR iterations for (a) MLLR mean
and (b) CMLLR, for 28-component SPAM model

Figure 2 illustrates the change in the average log likelihood of
one speaker with increasing number of iterations for both MLLR
mean and CMLLR adaptations. On each iteration, the component
alignment was recomputed based on the transforms estimated in
the previous iteration. The average log likelihood was found to in-
crease upon every iteration. As expected the log-likelihood from
the exact MLLR estimation (mllr) is always better than the ap-
proximate scheme (mllr+). However in both cases the likelihood
increased at each iteration and the overall final difference was rel-
atively small. For CMLLR, the log likelihood gain from using the
cmllr method is about twice that of the approximated method,
cmllr+, as depicted in Figure 2(b).

Word Error Rate (WER) performance was also examined. For
the CTS task, 28-component models were trained using 400 hours
of Fisher data (fsh2004sub) and evaluated on two test sets.
eval03 consists of two parts, Switchboard (s25) and Fisher (fsh),
3 hours each. dev04, on the other hand, is a 3 hours test set, con-
taining only Fisher data. Table 1 summarizes the results of various
adaptation configurations on CTS. The WERs of the baseline DI-
AGC system after MLLR adaptation were 22.3% and 18.4% on
eval03 and dev04 respectively. SPAM model with diagonal



System
Adapt eval03 dev04
Config s25 fsh Avg Avg

DIAGC mllr 26.1 18.1 22.3 18.4

SPAM
mllr+ 25.5 17.9 21.9 17.9
mllr 25.5 18.0 21.9 18.0

SAT+DIAGC cmllr 25.8 17.8 21.9 17.9

SAT+SPAM
cmllr+ 25.0 17.6 21.4 17.6
cmllr 24.9 17.5 21.3 17.5

Table 1. Comparisons of MLLR mean and CMLLR adaptations
for 28-comp DIAGC and SPAM models on CTS system

precision matrix approximated MLLR adaptation gave 0.4-0.5%
gains, although a large proportion of the gain on eval03 came
from s25 (0.6%). Performing two additional row-by-row itera-
tions, although improved the likelihood, degraded the WER per-
formance by 0.1% on the fsh part of eval03 and dev04. The
SAT+DIAGC system is about 0.3%-0.5% absolute better than the
non-SAT baseline on both test sets. Using this model to estimate
the CMLLR transforms for the SAT+SPAM system (cmllr+) im-
proved the WERs by 0.5% and 0.3% absolute on eval03 and
dev04 respectively. Again, the gain on s25 dominated for the
eval03 test set. Exact implementation using the cmllr method
gave a consistent improvement of 0.1% on all test sets.

Next, a state-of-the-art SAT+SPAM system was trained us-
ing the 2180 hours fsh2004h5etrain03b training data. This
training data comprises both Fisher (1820 hours fsh2004) and
Switchboard (360 hours h5etrain03b) data. This system was
evaluated on both eval03 and dev04 test sets and compared
with the SAT+DIAGC system.

System
Adapt eval03 dev04
Config s25 fsh Avg Avg

SAT+DIAGC cmllr 22.7 15.5 19.2 16.1

SAT+SPAM
cmllr+ 22.1 15.0 18.6 15.7
cmllr 22.1 15.0 18.7 15.5

Table 2. Comparisons of CMLLR adapted 36-comp SAT+DIAGC
and SAT+SPAM models on state-of-the-art CTS

In Table 2, the WER performance of the baseline SAT+DIAGC
system was 19.2% and 16.1% on eval03 and dev04 respec-
tively. As before, the difference between cmllr and cmllr+ for
SAT+SPAM is small. Comparing to SAT+DIAGC, the SAT+SPAM
system gained about 0.5-0.6% and 0.4-0.6% absolute on eval03
and dev04 respectively. These gains were found to be statisti-
cally significant. Similar gains were also found with more com-
plex adaptation techniques.

Similar comparisons were made on the BN task. 16-component
models were trained using 374 hours of bnetrain04sub train-
ing data. This consists of 143 hours of carefully annotated data
and 231 hours of lightly supervised data. Adaptation experiments
were conducted based on three 3-hour test sets: eval03, dev04
and dev04f. 4-gram rescoring lattices were generated using an
adapted HLDA system1. Rescoring results are summarized in Ta-
ble 3. For MLLR mean adaptation, a gender dependent (GD) DI-
AGC system was chosen as the baseline. This system gave WERs
of 10.7%, 13.2% and 20.0% on the three test sets. The exception-

1Similar to the P2 stage of the CU-HTK evaluation system

System
Adapt Test Set WER (%)
Config eval03 dev04 dev04f

DIAGC mllr 10.7 13.2 20.0

SPAM
mllr+ 10.6 13.1 19.5
mllr 10.6 13.1 19.5

SAT+DIAGC cmllr 10.6 13.1 19.5

SAT+SPAM
cmllr+ 10.2 12.7 18.6
cmllr 10.2 12.8 18.8

Table 3. Comparisons of MLLR mean and CMLLR adaptations
for 16-comp DIAGC and SPAM models on BN system

ally poor performance on dev04f is due to the large mismatch
between the training and the test data. Both mllr+ and mllr
configurations yielded the same performance, which is 0.1% abso-
lute better than the baseline on eval03 and dev04. The gain on
dev04f is larger, 0.5% absolute. This shows that MLLR mean
adaptation can be efficiently approximated with the diagonal pre-
cision matrix assumption for the SPAM models and other forms of
precision matrix models such as EMLLT.

Two forms of CMLLR adaptation for SAT+SPAM models were
compared using the SAT+DIAGC system as the baseline. This sys-
tem has the same WER performance as the MLLR mean adapted
SPAM system. The cmllr+ configurations gained 0.4% abso-
lute on the first two test sets and 0.9% on dev04f. Again, there
is a large gain from the adapted SPAM models due to the mis-
match between the training and test sets. Similar performance was
obtained on eval03 using the exact cmllr configuration. Sur-
prisingly, 0.1% and 0.2% degradations were observed on dev04
and dev04f although the likelihood of the test data given these
transforms was higher than those approximated using cmllr+.
Apart from the gains from the mllr+ and mllr SPAM models on
eval03 and dev04, all the gains shown in Table 3 were found
to be statistically significant2.

4.3. CTS Experiments

The CTS data set used for training, fsh2004sub, consists of
400 hours of Fisher conversations released by the LDC, with a
balanced gender and line condition [18]. Quick transcriptions are
provided by BBN, LDC and another commercial transcription ser-
vice. Two CTS test sets were used for systems evaluation. A 6
hour DARPA RT-03 evaluation set, eval03, contains 72 conver-
sations from the LDC Fisher collection, fsh, and Switchboard II
phase 5, s25. Another DARPA development set dev04 was also
used, which includes 72 LDC released Fisher conversations. All
CTS models have approximately 6k physical states after decision
tree based tying. The number of components per state is 28 on
average level.

Table 4 shows the baseline performance of the 10 time real-
time CTS system. The 2-way combination between the SAT and
SPron systems was the standard configuration used in the CUED
CTS evaluation system. Significant error rate reduction over indi-
vidual branches was achieved after system combination. The final
error rates were 20.5% on eval03 and 16.9% on dev04.

Table 5 shows the performances of various systems featuring
techniques described in section 2. Note for the complexity con-
trol system the average number of components per state was 29.9

2Significance tests were carried out using the NIST Scoring Toolkit.



System
eval03

dev04
s25 fsh Avg

P2-cn HLDA 26.6 18.4 22.6 18.7

P3a-cn SAT 24.5 17.1 20.9 17.3
P3c-cn SPron 24.7 17.6 21.3 17.6

P3a+P3c 23.9 16.8 20.5 16.9

Table 4. CTS 10xRT system baseline performance

Gaussians per state and average number of retained dimensions per
HLDA projection 42.6. The global HLDA system used for lattice
generation was also re-adapted as a rescoring branch. The Gaus-
sianization (GAUSS) and complexity controlled system (CTRL)
systems gave marginal improvement. The SPAM system gave
0.8% absolute improvement on eval03 over the HLDA baseline.
An absolute word error reduction of 0.3% was also obtained on
dev04 against the P3b branch. Among all the adaptively trained
systems, the SAT+SPAM outperformed all the other systems on
both test sets. An absolute WER reduction of 0.4%∼0.5% were
obtained on both sets over the SAT branch.

System
eval03

dev04
s25 fsh Avg

P3b-cn HLDA 24.8 17.7 21.4 17.5
P3d-cn GAUSS 24.8 17.5 21.3 17.3
P3e-cn CAT 24.9 17.2 21.2 17.5
P3g-cn SPAM 24.1 16.9 20.6 17.2
P3h-cn SAT+SPAM 23.9 16.9 20.5 16.8
P3i-cn CTRL 24.5 17.5 21.1 17.6

P3d+P3c 24.1 17.0 20.5 17.0
P3e+P3c 24.2 16.8 20.7 17.0
P3g+P3c 23.6 16.5 20.2 16.8
P3h+P3c 23.6 16.4 20.1 16.6
P3i+P3c 23.9 16.8 20.5 16.9

P3c+P3d+P3h 23.6 16.4 20.1 16.5
P3c+P3h+P3i 23.3 16.3 19.9 16.6

Table 5. Extended CTS 10xRT system performance

The GAUSS, CAT, SPAM, SAT+SPAM and CTRL systems
were then used for combination with the SAT and SPron systems.
Using the SAT+SPAM branch reduced the error rate by 0.4% on
eval03 and 0.3% on dev04. The other approaches gave little
gain over using the SAT system in combination with the SPron
system. Adding the GAUSS system in a 3-way combination with
the SPron and SAT+SPAM branches gave further marginal gain on
dev04. Similarly the error rate on eval03 was reduced by 0.2%
using a 3-way combination including the CTRL system. To further
increase the diversity and complimentary effects between different
systems, a 6-way combination was performed. Unfortunately no
further gain was obtained.

4.4. BN Experiments

The BN system was trained on 370 hours of training data. This
consists of two parts [19], 140 hours of accurately transcribed
broadcast news acoustic training data released by the LDC in 1996

and 1997 and 230 hours of data selected from the TDT4 audio
corpora with close-captions based quick transcriptions. All BN
models have approximately 7k physical states after decision tree
based tying. The number of components per state is 16 on average
level. Three BN test sets were used, each of them contains six 30
minutes broadcast news shows. The first set, eval03, was the
DARPA RT-03 evaluation data set. It contains shows which were
broadcast during February 2001. Two additional DARPA inter-
nal development sets, dev04 and dev04f were also used. They
contain shows of January 2001 and November 2003 respectively.

System eval03 dev04 dev04f
P2-cn HLDA 10.8 13.4 20.1

P3a-cn SAT 10.3 12.9 18.7
P3c-cn SPron 10.2 13.0 19.0

P2+P3a+P3c 10.1 12.6 18.6

Table 6. BN 10xRT system baseline performance

Table 6 shows the performance of the baseline BN 10xRT sys-
tem. In contrast to the CTS system, a 3-way combination between
the P2, P3a (SAT) and P3c (SPron) branches was the standard con-
figuration used in CUED BN evaluation system. The final numbers
for each of the tasks was 10.1%, 12.6% and 18.6%, with gains of
0.1% to 0.4% being obtained from system combination.

System eval03 dev04 dev04f
P3b-cn HLDA 10.5 13.1 19.5
P3d-cn GAUSS 10.4 12.8 19.1
P3e-cn CAT 10.4 12.8 19.1
P3g-cn SPAM 10.2 12.7 18.8
P3h-cn SAT+SPAM 10.1 12.5 18.5
P3i-cn CTRL 10.5 12.8 19.3

P3e+P3c+P2 10.0 12.6 18.7
P3g+P3c+P2 10.0 12.6 18.5
P3h+P3c+P2 10.0 12.4 18.4
P3i+P3c+P2 10.1 12.6 18.8

P2+P3a+P3c+P3h 10.0 12.4 18.4

Table 7. Extended BN 10xRT system performance

Table 7 shows the performances of various BN systems. For
the complexity control system there were an average of 16.5 com-
ponents per state and 46.3 dimensions per HLDA transform. The
Gaussianization system outperformed the HLDA system on all
three sets. 0.3%∼0.4% error rate reduction is obtained on dev04
and dev04f. The SPAM system was the best non-adaptively
trained system, by an absolute WER reduction of 0.6%∼1.0%
against the P3b system. Performances of the two SPAM systems
are close. The CAT system consistently outperformed the gender-
dependent HLDA baseline system on all sets. The gain from the
CTRL system over the HLDA baseline was marginal similar to the
CTS experiments. The SAT+SPAM system was then used for com-
bination. Using the SAT+SPAM branch reduced the error rate by
0.1% on eval03 and 0.2% on both dev04 and dev04f, com-
pared with the baseline 3-way combination configuration shown
in table 6. Including the SAT system as additional branch in a
4-way combination with the P2, SPron and SAT+SPAM systems



gave the same performance. Further marginal error rate reduction
was obtained using a 7-way combination.

5. CONCLUSION

In this paper several advanced acoustic modelling techniques, Gaus-
sianization, CAT, SPAM and complexity control were investigated
for LVCSR training. Various MLLR-based adaptation schemes
were discussed for these models, focusing primarily on the effi-
cient row-by-row update approach for the MLLR mean and CM-
LLR adaptation of SPAM models. Performances of individual and
combined systems were compared in the framework of a state-of-
the-art 10 time real time system for both BN and CTS data. Ex-
perimental results show that these techniques are useful for further
improving performance of current LVCSR systems.
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