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Abstract

There is considerable interpersonal variation in the size and shape of the human cochlea, with evident
consequences for cochlear implantation. The ability to characterize a specific cochlea, from pre-operative
computed tomography (CT) images, would allow the clinician to personalize the choice of electrode,
surgical approach and post-operative programming. In this study, we present a fast, practicable and freely
available method for estimating cochlear size and shape from clinical CT. The approach taken is to fit a
template surface to the CT data, using either a statistical shape model (SSM) or a locally affine deformation
(LAD). After fitting, we measure cochlear length, mean lumen area and a novel measure of basal turn non-
planarity, which is expected to correlate with the risk of insertion trauma. Gold-standard measurements
from a convenience sample of 18 micro-CT scans are compared with the same quantities estimated from
low resolution, noisy, pseudo-clinical data synthesized from the same micro-CT scans. The results show
that the LAD method outperforms the SSM method, with an expected error of around 11% of the gold-
standard sample range for non-planarity and cochlear length. Results for lumen area are significantly
worse, reflecting the difficulty of detecting the cochlear inner wall in clinical CT.

1 Introduction

The size and shape of an individual human cochlea are of profound interest when planning cochlear implant
surgery. Knowing the size of the cochlea would enable the clinician to make an informed choice of electrode
array and insertion depth, one aim being to preserve any residual, low frequency natural hearing, which
can be beneficial in difficult listening conditions (Dhanasingh and Jolly, 2017; Sheffield et al., 2015). Over-
insertion runs the risk of destroying residual hearing, while under-insertion may result in insufficient coverage
of the frequency components required for good “electric hearing” through the implant (Lenarz et al., 2019).
Additionally, since the cochlea is tonotopically organized, if the electrodes and their assigned frequencies can
align with the natural tonotopic arrangement, speech recognition may be enhanced (Canfarotta et al., 2020).

Beyond cochlear size, a more nuanced knowledge of cochlear shape would allow the clinician to be
forewarned of potentially traumatic insertion contact with the basillar membrane and the lateral wall. The
immunological and fibrosis events that follow such trauma may damage the neural structures that respond
to electrical stimulation. The nature, force and site of insertion contact will be determined by the shape of
the cochlea, particularly in places where the array has to bend (Avci et al., 2017; De Seta et al., 2017; Meng
et al., 2016; Nguyen et al., 2012). Unfortunately, this degree of patient-specific planning is difficult to achieve
given the relatively low resolution of current, pre-operative computed tomography (CT) imaging. The human
cochlea has outer dimensions of approximately 10 mm × 8 mm × 4 mm (Kjer et al., 2016), which corresponds
to only 33 × 27 × 13 voxel widths in typical 0.3 mm clinical CT imaging.

High resolution morphometry of the inner ear is achievable through the use of cadaveric temporal bone
specimens, which are either subject to micro-CT imaging with isotropic voxel dimensions of around 20 µm
(Iyaniwura et al., 2018), or used to produce exquisite corrosion casts of the ductal structures which are then
photographed and measured (Erixon et al., 2009). The emphasis of many of these studies is on measurements
that are of relevance to cochlear implantation, these falling naturally into three broad categories: measure-
ments of the cochlea’s overall size (total coiling angle, diameter, length, cross-sectional ductal area) (Biedron
et al., 2009; Escudé et al., 2006; Iyaniwura et al., 2018; Singla et al., 2015); measurements of the cochlea’s
“vertical” trajectory in the direction of the modiolar axis (Avci et al., 2014; Meng et al., 2016; Pietsch et al.,
2017); and local measurements at the round window that constrain the initial insertion and bending angles of
the electrode, when not performing a cochleostomy (Rask-Andersen et al., 2012; Tang et al., 2018).

Efforts to measure cochlear morphology from low-resolution, clinical CT images fall into two broad
categories. Two-dimensional methods attempt to infer cochlear size and shape from a set of discrete mea-
surements taken in specific planes (Rivas et al., 2017; Würfel et al., 2014). However, Koch et al. (2017) cast
doubt on the accuracy of such measurements and suggest that full, three-dimensional analysis is preferable.
Falling into this second category is the work of Noble et al. (2011), who built a statistical shape model (SSM)
of the cochlea using six micro-CT scans of cadaveric temporal bones, and then assessed how well the SSM
could be fitted to low-resolution, clinical scans of five of the same bones. Evaluation metrics were based on
Dice similarity coefficients and surface errors, so it is unclear how well this method can estimate surgically
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relevant parameters. Kjer et al. (2018) developed a similar approach using a statistical deformation model,
reporting measurement accuracy and precision for cochlear length, width and height in addition to surface
errors, but with no consideration of vertical trajectories. van der Jagt et al. (2017) describe an automatic,
three-dimensional tracing method that was used to estimate inner and outer wall radii, duct diameter and ver-
tical trajectory in low-resolution CT scans of 242 patients. Significant variation was observed in the cohort,
but there was no validation against gold-standard measurements. Iyaniwura et al. (2018) describe a method to
fit a grayscale cochlear atlas to low-resolution, clinical CT data using sequential landmark, affine and B-spline
registration. Evaluation was performed using 20 specimens scanned at micro-CT and clinical CT resolutions.
Gold-standard, micro-CT “A-values”, which correlate well with cochlear duct length (Escudé et al., 2006),
were compared with A-values derived from the fitted atlas and also A-values estimated by experts on the
clinical CT images. There was no consideration of vertical trajectories.

In this work, we describe a fast, simple and freely available method to fit surface models of the otic capsule
to CT data. The fitting may be directed by a statistical model, in the spirit of Noble et al. (2011) and Kjer et al.
(2018), or constrained only by a smoothness criterion, in the spirit of Iyaniwura et al. (2018). We compare
the performance of the two approaches, with specific reference to three-dimensional, surgically relevant mea-
surements like those considered by van der Jagt et al. (2017). Particular emphasis is placed on an improved
metric for characterizing the different vertical trajectories first described by Avci et al. (2014). Validation is
by way of pseudo-clinical CT data synthesized from the original, gold-standard micro-CT images.

2 Materials and Methods

Temporal bone specimens and micro-CT scanning

A convenience sample of 18 human temporal bones was provided by the Department of Physiology, Devel-
opment and Neuroscience at the University of Cambridge. The donors had provided consent before decease
for the use of their bodies for anatomical research, in compliance with the UK Human Tissue Act 2004. The
specimens were scanned using a Nikon Metrology XT H 225 ST micro-CT scanner (Nikon Metrology NV,
Leuven, Belgium) at 125 kV, 120 µA, 1080 projections, 2 frames per projection and 1 s exposure time. Re-
construction was at an isotropic voxel resolution of around 25 µm, apart from specimen #18, which was a
larger bone section reconstructed at 61 µm. The bones were a mixture of left and right sides and were all
unimplanted apart from specimen #17, which was implanted before scanning (as part of a different study) and
whose scans therefore suffered significant beam-hardening artefacts.

Construction of the template and statistical shape models

Figure 1, steps 1 and 2, show how the 18 micro-CT scans were segmented and the otic capsules represented
as triangulated surface meshes. A template surface was then constructed as follows. One of the 18 specimens
was selected, by eye, as being the most “average”. The chosen mesh was registered to all 18 specimens,
and the mean deformation was calculated and applied at each vertex, producing a mean otic capsule surface.
This surface was re-triangulated to a reasonable resolution (11145 vertices), the resulting mesh serving as
the template for all remaining experiments in this paper. Steps 3 and 4 show how the template mesh was
then registered to each specimen using the sliding semilandmark algorithm, originally developed for planar
morphometry (Bookstein, 1991, 1997) and subsequently extended to surfaces (Gunz et al., 2005). Segmen-
tation and mesh construction were performed using Stradview1, while surface registration was carried out in
wxRegSurf2, both of which are available for free download.

Following registration, the n = 18 sets of deformed template vertex coordinates were standardized for
location, orientation and scale using Procrustes analysis (Goodall, 1991). This involves translating each spec-
imen to a common origin, scaling to unit centroid size, and then rotating to minimize the sum of the squared
distances between the vertices of each specimen and the undeformed template mesh. We then rescaled each

1mi.eng.cam.ac.uk/Main/StradView
2mi.eng.cam.ac.uk/~ahg/wxRegSurf

mi.eng.cam.ac.uk/Main/StradView
mi.eng.cam.ac.uk/~ahg/wxRegSurf
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Figure 1: Constructing otic capsule models. (1) The micro-CT scans were segmented in Stradview by
simple thresholding followed by manual tidying up of the contours. (2) Stradview was then used to construct
triangulated surface meshes of each specimen. (3) Since each mesh has a different number of triangles and
vertices, the next step is to align a common template mesh (red) with each specimen (green). This allows
statistical analysis of the deformation at each of the template’s vertices, and subsequent construction of an
SSM. (4) The alignment involves translation, rotation, isotropic scaling and (if necessary) reflection, followed
by a nonrigid thin-plate spline deformation. The deformation was computed in wxRegSurf using the sliding
semilandmark algorithm.
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(a) Surface sliding semilandmarks only (b) Homologous landmarks on the outer cochlear wall

Figure 2: Statistical shape models. (a) shows the fourth mode, ±3 standard deviations, of a statistical shape
model constructed using surface sliding semilandmarks only. Variations in cochlear coiling are partially
represented by this mode, as a local extension of the duct at the apex. (b) shows the first mode, ±1.35
standard deviations, of an SSM constructed using surface sliding semilandmarks and 20 homologous point
landmarks (the green and red spheres) placed at regular intervals along the outer cochlear wall. Variations in
cochlear coiling are represented by this mode as a global elongation of the duct from the round window to the
apex (compare the tangential locations of the red and green spheres).

specimen’s vertex coordinates by its centroid size, and used principal component analysis to build a point-
based SSM from the resulting n sets of coordinates. Let Xi be the 33435-element vector formed by concate-
nating the coordinates of individual i, and let X̂ = 1

n

∑n
i=1Xi. Then the principal modes of shape variation

are the n − 1 eigenvectors mi of the sample covariance matrix 1
n−1

∑n
i=1(Xi − X̂)(Xi − X̂)T with corre-

sponding non-zero eigenvalues. In SSM-based segmentation, the surfaces of new specimens are restricted to
anatomically plausible shapes by representing the mesh as a linear combination of the shape modes

X = X̂+
n−1∑
i=1

Simi (1)

where Si are referred to as shape coefficients.
The nature of an SSM is entirely dependent on the choice of surface registration algorithm used to align

the template with each specimen. The sliding semilandmark algorithm of Gunz et al. (2005) is highly flexible
in this regard. At one extreme, the template and specimen may be aligned using surface sliding semilandmarks
only, the effect being to warp the template onto the specimen with minimum bending energy and no further
constraints on the tangential alignment. This produces a low variance SSM in which, for example, extra
coiling of the cochlea is represented by local deformation at the apex, as shown in Figure 2(a). However, it
can be argued (Gunz et al., 2012; Kjer et al., 2016) that such models do not capture the true nature of the
inter-subject variation, since they do not account for correspondence between distinguished points and curves
on the template and each specimen.

The sliding semilandmark algorithm can accommodate such point and curve homologies. For example,
Figure 2(b) shows the first mode of an alternative SSM in which 20 point landmarks were placed at regular
intervals along the outer cochlear wall of the template and each individual, and forced into correspondence
during registration. This results in a much higher variance SSM with significant deformation tangential to
the surface, as is evident by the wrapping and unwrapping of the entire cochlea in Figure 2(b). While such
models are essential for meaningful shape-based classification in taxonomic studies, in this work we simply
wish to represent the surfaces of our specimens with as little variance as possible, since any extra, tangential
variance could result in implausible surfaces when fitting to noisy data. We therefore prefer the model built
using surface sliding semilandmarks only, as in Figure 2(a). This model is available for free download as part
of the Stradview package.
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Synthesis of pseudo-clinical CT data

The micro-CT data, and the otic capsules segmented from them, provide the gold-standard measurements for
the experiments in this paper. For the clinical measurements, we synthesized pseudo-clinical CT images from
the micro-CT data. We achieved this by downsampling the micro-CT until the desired clinical resolution
was achieved. We then projected the downsampled data into the CT detector space, in effect recovering the
sinogram, added Gaussian noise to the sinogram, and then backprojected the noisy data into the world space.
All of this processing was performed using wxDicom3.

We synthesized three different classes of pseudo-clinical data, which we shall refer to as standard multi-
detector CT (MDCT) (isotropic voxel dimension 0.3 mm), poor MDCT (isotropic voxel dimension 0.45 mm)
and next-generation cone beam CT (CBCT) (isotropic voxel dimension 0.15 mm): see Figure 3. The level
of Gaussian noise was adjusted by trial and error until the images resembled reference images from the lit-
erature4. For example, the standard MDCT images in Figure 3(b) resemble the exemplar clinical images in
Figure 1 (c,e,g) of Phillips et al. (2012), while the poor MDCT images in Figure 3(c) are noticeably worse.
The next generation CBCT images in Figure 3(a) are superior to those currently found in clinical practice, but
resemble the state-of-the-art research images in Zou et al. (2017).

Fitting the model to CT data

Figure 4 shows the process of fitting the otic capsule model to new CT data. The data in Figure 4 is pseudo-
clinical CT data, though the method is equally applicable to micro-CT data. The model-fitting process is
freely available as part of the Stradview package and is designed to be clinically practicable, in that it requires
around one minute of expert interaction, followed by at most a couple of minutes of computation.

The first step is to position the template surface at approximately the correct location, by manually iden-
tifying three point landmarks in the data: the cochlear apex, the centre of the oval window and the posterior-
anterior canal bifurcation (Figure 4, step 1). Stradview then computes the similarity transformation (rotation,
translation and isotropic scaling) that best aligns these three points in the data with corresponding points pre-
defined on the template mesh (Figure 4, step 2). The operator can optionally reflect the template in the plane
of the three points, if the left-right fit was incorrect. The final manual interaction is to select an appropriate
grayscale threshold to segment the boundary of the otic capsule (Figure 4, step 3). The thresholded contours
define the point cloud (Figure 4, step 4) to which the model is now fitted automatically.

An initial, approximate alignment is computed using the iterative closest point (ICP) approach of Besl
and McKay (1992). This approximate alignment is parameterized by a second similarity transformation
(Figure 4, step 5). There follows a further iterative process to compute the additional, local displacement
of each template vertex (Figure 4, step 6). Since the thresholded data is noisy (structures other than the otic
capsule are captured, and some of the boundaries of the otic capsule, especially at the inner wall and the round
and oval windows, are lost), this nonrigid registration must be regularized, to prevent overfitting of the model
to the noise. Stradview offers two methods for regularized, nonrigid registration.

The first is the locally affine registration algorithm of Feldmar and Ayache (1996). Associated with each
vertex k of the template is a set of neighbouring vertices Nk, where each member of Nk lies within a distance
d of vertex k. At iteration i, every vertex on the template is paired with the closest point in the cloud. Then,
for each vertex k on the template, the rigid transformation Rk,i is found that minimizes the sum of the squared
distances between the transformed vertices in Nk and their partners in the point cloud. The local displacement
of vertex k is then set to a proximity-weighted average of all the rigid transformations Rk,i within Nk. At
iteration i + 1, the closest neighbours and consequent rigid transformations Rk,i+1 are recomputed, and so
on, until convergence. d is the algorithm’s only parameter, its effect being to control the amount of allowable
deformation. Smaller values of d permit more deformation and closer alignment of the template to the point

3mi.eng.cam.ac.uk/Main/GMT_wxDicom
4There is no convenient way to quantify the noise levels other than relative to each other. Expressed arbitrarily as the value of

wxDicom’s Detection Noise slider, the levels were 60 dB for the next-generation CBCT data, 70 dB for the standard MDCT data and
75 dB for the poor MDCT data.

mi.eng.cam.ac.uk/Main/GMT_wxDicom
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(a) Next generation pseudo-clinical CBCT (0.15 mm voxel dimension, 60 dB added noise).

(b) Standard pseudo-clinical MDCT (0.3 mm voxel dimension, 70 dB added noise).

(c) Poor pseudo-clinical MDCT (0.45 mm voxel dimension, 75 dB added noise).

Figure 3: Pseudo-clinical data. The images in (b) are of comparable quality to those found in current clinical
practice, see for example Figure 1 (c,e,g) of Phillips et al. (2012).
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Figure 4: Fitting a model to CT data. (1) The operator scrolls through the axial CT images and places
landmarks at the cochlear apex, the centre of the oval window and the posterior-anterior canal bifurcation (at
the tip of the crus commune). (2) These landmarks are matched with corresponding, pre-defined landmarks
on the model. An initial, approximate alignment is provided by the similarity transformation (rigid body plus
uniform scaling) that minimizes the sum of the squared distances between the three pairs of landmarks. (3)
The operator selects a suitable segmentation threshold: this subfigure shows contours thresholded at grayscale
160 (green), 170 (cyan) and 180 (purple). (4) The contour vertices at the selected threshold (170 in this
example) provide the point cloud to which the model is fitted. Points closest to a model vertex are displayed
in bright red, other points in dark red. (5) Iterative closest point (ICP) registration of the model to the point
cloud, with a similarity transformation. (6) Finally, the fit is refined using ICP registration with a nonrigid
transformation, either a statistical shape model or a locally affine deformation.
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cloud, while larger values of d favour smooth displacement fields over alignment accuracy. We shall refer to
this algorithm using the acronym LAD (Locally Affine Deformation).

In Stradview’s second method, the nonrigid deformation is governed by the SSM, with the template’s
vertices constrained according to Equation 1. The registration again proceeds within an ICP framework. Each
of the template’s vertices is paired with the closest point in the cloud. Then, the SSM shape coefficients Si

are found that minimize the sum of the squared distances between the deformed template vertices and their
partners in the point cloud. At iteration i + 1, the closest neighbours and consequent shape coefficients Si

are recomputed, and so on, until convergence. This algorithm is parameter-free, since we use all the available
SSM modes in Equation 1.

Clinically relevant shape and size measurements

Figure 5 summarises the three measurements we make on the cochlear surfaces, to compare the similarity of
the meshes fitted to pseudo-clinical CT data with their gold-standard counterparts. All three measurements are
made on the first 270◦ of the basal turn5. Limiting the measurements to this angular range avoids any influence
of the middle and apical turns, which are of little relevance to most current implant designs (Dhanasingh and
Jolly, 2017; Pelliccia et al., 2014). The 270◦ range covers the most common sites of insertion trauma (Avci
et al., 2017; De Seta et al., 2017; Meng et al., 2016; Nguyen et al., 2012).

Mean lumen area is measured on gross cross-sections of the cochlea, with no attempt to isolate the scala
tympani. The remaining two measurements are made on the curve that delineates the cochlear outer wall. The
first, which we shall refer to as “reach” (and is equivalent to common measures of cochlear length, including
the “A-value” of Escudé et al. (2006)), is the distance from the round window to the furthest point on the
curve. It characterizes the cochlea’s size, focusing on the clinically relevant basal turn. The second concerns
the cochlea’s vertical trajectory, in which a down-then-up “rollercoaster” profile was identified by Avci et al.
(2014) as a potential risk factor for insertion trauma. However, Demarcy et al. (2017) observed that vertical
trajectories are sensitive to the definition of “vertical”, which is normally taken to be the modiolar axis (Avci
et al., 2014). We further explore this point in Figure 6, which shows two vertical trajectories of the same
cochlea, with the vertical axis defined by the modiolar axis in (a) and the normal to the basal plane in (b). We
note not only the previously observed sensitivity to the vertical direction, but also that the rollercoaster profile
in (a) does not necessarily imply a challenging insertion.

We therefore propose an alternative way to characterize the vertical trajectory. We define the “basal plane”
as the best fit plane to the first 270◦ of the outer wall contour. Vertical trajectories are measured along the
normal to this plane, as in Figure 6(b), thus avoiding any sensitivity to the less germane anatomy of the
middle and apical turns. Defining the vertical direction in this way is consistent with the consensus approach
to cochlear coordinate systems (Verbist et al., 2010). Having established a reliable vertical trajectory, Figure 5
illustrates how we summarise the “non-planarity” of the basal turn as the mean absolute distance between
the first 270◦ of the outer wall contour and the basal plane. The hypothesis is that cochleas with lower non-
planarity are less susceptible to insertion trauma than those with higher non-planarity.

3 Experiments, results and discussion

The otic capsule model was fitted to each of the 54 pseudo-clinical scans (18 specimens, 3 different resolu-
tions) at grayscale thresholds of 160, 170 and 180. The threshold of 170 was observed to produce visually
appropriate segmentations in most cases, with ±10 re-runs to assess sensitivity. For each data set at each
threshold, the model was fitted three times: using the “full” SSM, trained using all 18 micro-CT data sets;
using a “leave-one-out” SSM, trained using 17 of the micro-CT data sets, but not the specimen on which it
was being evaluated; and using the LAD method, with a fixed parameter d = 5 mm.

5Since we do not detect the modiolus in this study, the 270◦ angle is not measured in the usual polar coordinate system defined by
the modiolus (origin) and the round window (0◦). Instead, we consider the angle through which the tangent to the outer wall contour
has turned with respect to its initial trajectory at the round window. 270◦ in this paper’s notation corresponds to somewhat more than
270◦ in round window/modiolar polar coordinates.
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Figure 5: Clinically relevant measurements. In evaluating the success or otherwise of the model fit, we
consider the cochlea’s non-planarity, reach and lumen area. These measurements are of direct clinical utility,
unlike more conventional and generic measures of surface misalignment, such as average vertex error. The
three measurements are made on the first 270◦ of the basal turn (red), ignoring the rest of the spiral (blue).
The basal plane (black dotted line) is defined as the best fit plane to the first 270◦ of the outer wall contour. It
is a coincidence that the contour passes through the basal plane at around 270◦ in this example.
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Figure 6: Modiolar and basal coordinates. Previous studies have defined cochlear vertical trajectories with
reference to the modiolar axis (dashed line, a). However, estimation of this axis is not straightforward and is in-
fluenced by the middle and apical turns, which are of little relevance to most current implant designs (Dhanas-
ingh and Jolly, 2017; Pelliccia et al., 2014). Furthermore, “rollercoaster” height profiles that go down and then
up may nevertheless correspond to planar insertion trajectories that present little risk of trauma. An alternative
is to replace the modiolar axis with the normal to the best fit plane through the first 270◦ of the basal turn
(solid line, b). In this coordinate system, the “height” axis corresponds to deviation from the best fit plane, and
it is clear at which point the insertion trajectory becomes nonplanar and potentially traumatic to the cochlear
structures.
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Figure 7: Vertical trajectories of the least (left) and most (right) nonplanar cochleas. The gold-standard
micro-CT profiles are displayed in gray. The other profiles are derived from LAD model fits to the standard
pseudo-clinical MDCT data, thresholded at 160 (red), 170 (blue) and 180 (green).

full model leave-one-out model LAD
160 170 180 160 170 180 160 170 180

CBCT non-planarity 2.47 2.46 3.35 15.7 16.0 14.8 12.1 10.8 8.63
reach 9.36 9.16 9.57 26.7 24.7 23.6 13.0 11.2 10.9

MDCT non-planarity 3.04 3.67 4.52 15.1 14.2 15.5 11.7 10.6 8.3
reach 13.6 11.2 10.4 26.3 24.1 26.2 13.7 11.5 12.8

poor MDCT non-planarity 4.58 4.61 6.27 16.8 16.0 14.7 17.6 17.4 23.6
reach 12.9 9.46 16.9 27.5 28.9 35.4 19.0 17.7 18.1

Table 1: Summary results for the 17 specimens without an implanted electrode. Average measurement errors
are expressed as 100 × mean(absolute error) / gold-standard sample range.

The full SSM provides an upper bound on SSM performance, with an effectively perfect model and
fitting compromised only by the image resolution and detector noise. In contrast, the leave-one-out results
are indicative of expected performance on unseen specimens with a model trained using only 17 exemplars.
Since the LAD method does not require training, the results presented here are expected to generalise to new
specimens without gross malformations. The parameter d = 5 mm was chosen since it produced visually
plausible nonrigid deformations in all cases, without over-fitting to noise.

Figure 7 illustrates the LAD method’s ability to recover the vertical trajectories of the least and most
nonplanar cochleas, when applied to the standard pseudo-clinical MDCT data. Sensitivity to the grayscale
segmentation threshold appears to be reasonable. Figures 8, 9 and 10 show the full set of non-planarity and
reach results for next-generation CBCT, standard MDCT and poor MDCT data respectively, with the gold-
standard measurements on the x-axis and the measurements derived from the pseudo-clinical images on the
y-axis. The results show the expected degradation in performance with lower resolution, more noisy data.
Also as expected, the full model performs significantly better than the leave-one-out model. The specimen
with the implanted electrode is identified by half-sized markers and is a frequent outlier, since the scans
suffered from beam-hardening artefacts that corrupted the thresholded point cloud.

The non-planarity and reach results are summarised in Table 1, omitting the specimen with the implanted
electrode. The tabulated numbers are the mean absolute error expressed as a percentage of the gold-standard
sample range. Thus, for example, when applied to standard MDCT data, the LAD method produces measure-
ments with an expected error of around 11% of the gold-standard range (maximum minus minimum) of the
measured quantity. For comparison, the corresponding errors for the unfitted model (i.e. measured directly on
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Figure 8: Cochlear non-planarity and reach estimated from next generation pseudo-clinical CBCT. Fully au-
tomatic processing with grayscale thresholds of 160 (red circles), 170 (blue crosses) and 180 (green squares).
The half-size markers are for the specimen with the implanted electrode.



13

0.04 0.06 0.08 0.1 0.12

micro-CT non-planarity (mm)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

c
lin

ic
a
l 
n
o
n
-p

la
n
a
ri
ty

 (
m

m
)

8.8 9 9.2 9.4 9.6 9.8

micro-CT reach (mm)

8.6

8.8

9

9.2

9.4

9.6

9.8

c
lin

ic
a
l 
re

a
c
h
 (

m
m

)

(a) Full SSM

0.04 0.06 0.08 0.1 0.12

micro-CT non-planarity (mm)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

c
lin

ic
a
l 
n
o
n
-p

la
n
a
ri
ty

 (
m

m
)

8.8 9 9.2 9.4 9.6 9.8

micro-CT reach (mm)

8.6

8.8

9

9.2

9.4

9.6

9.8

c
lin

ic
a
l 
re

a
c
h
 (

m
m

)

(b) Leave-one-out SSM

0.04 0.06 0.08 0.1 0.12

micro-CT non-planarity (mm)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

c
lin

ic
a
l 
n
o
n
-p

la
n
a
ri
ty

 (
m

m
)

8.8 9 9.2 9.4 9.6 9.8

micro-CT reach (mm)

8.6

8.8

9

9.2

9.4

9.6

9.8

c
lin

ic
a
l 
re

a
c
h
 (

m
m

)

(c) LAD

Figure 9: Cochlear non-planarity and reach estimated from standard pseudo-clinical MDCT. Fully automatic
processing with grayscale thresholds of 160 (red circles), 170 (blue crosses) and 180 (green squares). The
half-size markers are for the specimen with the implanted electrode.
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Figure 10: Cochlear non-planarity and reach estimated from poor pseudo-clinical MDCT. Fully automatic
processing with grayscale thresholds of 160 (red circles), 170 (blue crosses) and 180 (green squares). The
half-size markers are for the specimen with the implanted electrode.



15

full model leave-one-out model LAD
CBCT 0.0891 0.144 0.117
MDCT 0.104 0.151 0.123
poor MDCT 0.120 0.161 0.138

Table 2: Average vertex errors (mm) for the 17 specimens without an implanted electrode, at a grayscale
threshold of 170. The tabulated numbers are the average distances between vertices on the fitted model and
the gold-standard mesh, after optimal rigid body alignment of the two meshes.

the template without fitting to the individual) are 24.0% for non-planarity and 22.9% for reach.
Table 2 quantifies the segmentation accuracy of the 17 non-implanted specimens thresholded at a grayscale

value of 170. For comparison, the average vertex error for the unfitted model is 0.185 mm. While such results
are difficult to interpret from a clinical perspective, they do allow cautious comparison with the work of
Noble et al. (2011), who achieved average vertex errors of around 0.2 mm (fitted) and 0.27 mm (unfitted).
This comparison does require considerable qualification though, since Noble et al. (2011) segmented the
scala tympani, while the results in Table 2 are for the entire otic capsule. Kjer et al. (2018) reported mean
surface errors of 0.11 mm for the cochlear scalae.

Figure 11 presents the results for the mean lumen area, just for the standard pseudo-clinical MDCT data.
Performance is poor compared with non-planarity and reach. The principal difference between the two types
of measurement is involvement of the cochlear inner wall in the lumen estimation, whereas non-planarity
and reach require only the outer wall geometry. As Figure 11(e) shows, the clinical CT contrast at the inner
wall is significantly worse than at the outer wall, resulting in poor segmentation generally and systematic
overestimation of lumen area with the full SSM. Unfortunately, cochlear reach is not a good surrogate for
lumen area, as demonstrated in Figure 11(f). Estimation of the ϕ angle between the plumb line of the round
window and the tangent to the inner wall of the basal turn (Tang et al., 2018) — of interest since it constrains
the initial insertion and bending angles of the electrode — produced similarly poor results, which we do not
present here for reasons of concision. We conclude that anatomical measurements involving the cochlear
inner wall are currently infeasible with this methodology.

On the basis of these investigations, we recommend the LAD approach as a practicable way to estimate
clinically relevant anatomy of the human cochlea from standard clinical MDCT. The model fitting software
is available for free download. Analysis of one cochlea requires around one minute of expert interaction
followed by a couple of minutes of computation. The expert does need to exercise reasonable care when
selecting the segmentation threshold: the one outlying result for the LAD approach, for non-planarity at a
threshold of 180 with the poor MDCT data, was due to this threshold failing to capture part of the outer wall
in many of the scans.

At the central threshold of 170, the LAD approach is able to estimate cochlear reach with a mean absolute
error of 11.5% of the gold-standard sample range, or 1.16% ± 0.88% (mean ± one standard deviation) of
the gold-standard values. This compares favourably with the method of Iyaniwura et al. (2018), where the
absolute error in equivalent “A-value” estimates was 2.7% ± 2.1% of the gold-standard values. Kjer et al.
(2018) reported signed errors for cochlear length down to 0.02± 0.2mm: our equivalent values for reach are
−0.00116± 0.134mm.

At the same threshold of 170, cochlear non-planarity was estimated with an average absolute error of
10.6% of the gold-standard sample range. This is a novel metric that we suggest might correlate with the
risk of insertion trauma, and may be more reliable than the “rollercoaster” classification of Avci et al. (2014),
which is sensitive to estimation of the modiolar axis (Demarcy et al., 2017). While van der Jagt et al. (2017)
demonstrated automatic estimation of cochlear vertical trajectories from clinical CT scans, to the best of our
knowledge this is the first study to validate such measurements against micro-CT gold standards.

The principal limitation of this study is the use of pseudo-clinical data for the low resolution model fitting.
Real MDCT scans of the temporal bones would arguably have provided a more sound basis for the work, but
they were not available. That said, real MDCT data is no panacea: a dissected temporal bone imaged in a
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(b) Leave-one-out SSM
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(f) Reach–area correlation (ρ = 0.68)

Figure 11: Cochlear mean lumen areas estimated from standard pseudo-clinical MDCT. (a)–(c) Fully auto-
matic processing with grayscale thresholds of 160 (red circles), 170 (blue crosses) and 180 (green squares).
(d) Micro-CT segmentation, correctly excluding the spiral ganglion at the inner wall. (e) Systematic overes-
timation in (a) can be attributed to the MDCT threshold including these inner-wall structures. (f) Lumen area
is only weakly correlated with reach.
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clinical MDCT scanner would not appear identical to the same bone scanned intact in a living human being.
A reassuring indicator of the validity of the present study is the failure to estimate lumen area or any metric
involving identification of the cochlear inner wall.

In comparison with the LAD method, the performance of the SSM approach was disappointing. Im-
proved performance may be achievable through more sophisticated grayscale modelling (Kjer et al., 2018),
or by using more training data, or by limiting the model to the cochlea alone (Kjer et al., 2018; Noble et al.,
2011). That said, a benefit of including the canals is to leverage the posterior-anterior canal bifurcation as
a readily identifiable landmark for initial model positioning. Notwithstanding potential improvements, SSM
approaches suffer the disadvantage of requiring training on representative exemplars, with no guarantee of
subsequent generalisation to new specimens, especially where there is malformation. Indeed, it was a failure
to generalise that limited their efficacy in the present study, as evidenced by the relative performance of the
full and leave-one-out models.

4 Conclusions

We have demonstrated a simple, rapid and freely available technique for estimating cochlear morphology
from clinical MDCT scans. Average vertex errors are comparable with the state of the art, as are estimates
of cochlear size. A further contribution of this study is an enhanced understanding of the cochlea’s vertical
trajectory, leading to a robust metric for characterizing the non-planarity of the basal turn. The non-planarity
metric can be estimated from clinical scans with an average absolute error of 10.6% of the gold-standard
sample range. The hope is that these morphologic estimates may one day assist in personalized implant
selection and surgical planning, in the same way that similar methods have already been shown to improve
implant programming (Noble et al., 2013).
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