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Abstract

It has previously been demonstrated that freehand 3D ultrasound can be acquired without
a position sensor by measuring the elevational speckle decorrelation from frame to frame.
However, this requires that the B-scans contain significant amounts of fully developed speckle.
In this paper, we show that this condition is rarely satisfied in scans of real tissue, which
instead exhibit fairly ubiquitous coherent scattering. By examining the axial and lateral
correlation functions, we propose an heuristic technique to quantify the amount of coherency
at each point in the B-scans. This leads to an adapted elevational decorrelation scheme which
allows for the coherent scattering. Using the adapted scheme, we demonstrate markedly
improved reconstructions of animal tissue in vitro.

1 Introduction

Freehand 3D ultrasound [4, 10] is an emerging medical imaging modality with many potential
applications [5]. The data is normally acquired by attaching a position sensor to the ultrasound
probe and recording a series of B-scans together with their positions and orientations. The B-scans
thus form a 3D data set which can be visualised and processed in a number of ways to extract
clinically useful information.

Perhaps the greatest barrier to widespread clinical uptake is the need for the add-on position
sensor. This requires careful end-user calibration [9] and imposes cumbersome constraints on the
scanning protocol. Typically, the operator must maintain a clear line of sight between the probe
and the position sensor’s fixed base station, and must be careful not to stray outside the sensor’s
operating region. It is therefore not surprising that researchers have been investigating alternative
freehand acquisition techniques that dispense with the position sensor.

Hossack et al. [6] propose a modified probe with auxiliary arrays mounted at right angles to
the main array. The probe thus records additional B-scans perpendicular to the main B-scan. As
the probe is moved across the subject’s skin, its motion can be deduced by tracking features in
the main and perpendicular B-scans. Unfortunately, the auxiliary arrays give the probe a fairly
large footprint, and it is difficult to keep the scanning window in full contact with the skin when
going around corners. This causes drop-outs in the auxiliary B-scans and hence tracking failures.
The extra probe complexity also adds considerable expense.

An alternative approach uses an unmodified probe and a technique called speckle decorrela-
tion [3, 8, 15] to estimate elevational1 motion. Consider two neighbouring B-scans A and B in a
freehand sequence. Any in-plane motion between A and B (translation in the axial and lateral
directions, roll around the elevational axis) is readily determined using standard 2D image regis-
tration techniques [11, 14]. That just leaves the three out-of-plane degrees of freedom: translation
in the elevational direction, tilt around the lateral axis and yaw around the axial axis.

1The following standard nomenclature is used to refer to the principal directions in ultrasound imaging. The
axial direction is in the direction of wave propagation, from the transducer into the skin. The lateral direction is
the other principal direction in the plane of the B-scan. The elevational direction is perpendicular to the plane of
the B-scan.
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Figure 1: Principle of elevational speckle decorrelation. The in-plane motion between
scans A and B (translation in the x and y directions, roll around the plane normal) is readily
determined using conventional 2D image registration techniques. This leaves three degrees of
freedom: translation in the elevational direction, tilt and yaw. Consider corresponding patches in
scans A and B (the shaded ellipses). Because of the imperfect elevational focusing, the contents of
the patches depend on scatterers within overlapping resolution cells (the hollow ellipsoids) and are
therefore correlated. The correlation coefficient depends on the degree of overlap and hence the
elevational separation. It follows that, given a suitable decorrelation curve, a measured correlation
ρ1 can be used to look up the corresponding separation d1. Repeating this process for three (or
more) non-collinear patches determines the elevational separation, tilt and yaw of A relative to B.

Perhaps surprisingly, these out-of-plane components can be estimated by analysing the images
themselves. This is because the focusing of the ultrasound beam is far from perfect. Consequently,
the backscattered signal at any point in a B-scan is a function of the scatterers in a certain
resolution cell around that point. The resolution cells are particularly elongated in the elevational
direction and there is considerable overlap between cells on neighbouring B-scans — see Figure 1.
It follows that if we examine corresponding patches on A and B, we will observe a correlation
between the two sets of backscattered signals. Moreover, the correlation will depend on the degree
of overlap of the resolution cells, and hence the separation of the two patches. We can therefore
measure the inter-patch correlation and look up the corresponding separation on a decorrelation
curve, as illustrated in Figure 1. A minimum of three such lookups, for three (non-collinear) pairs
of patches at different locations on the B-scans, allows us to estimate the elevational separation,
tilt and yaw of A relative to B.

The precise form of the decorrelation curve can be derived using a simplified model of ultra-
sound imaging. For fully developed speckle, also known as Rayleigh scattering [16], it can be
shown that the Pearson correlation coefficient between two patches of backscattered intensity I1

and I2 is given by
ρ(I1, I2) = λ2 (1)

and the corresponding formula for the backscattered amplitude is

ρ(A1, A2) =
4E(λ2)− 2

(
1− λ2

)
K(λ2)− π

4− π
(2)

where K and E are complete elliptic integrals of the first and second kinds respectively [1, 17, 18].
Assuming a Gaussian shaped resolution cell, the parameter λ depends on the standard deviation
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of the elevational cell width as follows [11]

λ2 = exp
(−δ2

2σ2

)

where δ is the elevational separation of the patches. There is therefore a deterministic relationship
between correlation ρ and elevational separation δ. The resolution cell width σ varies across and
down the B-scan, especially with depth, and we must therefore use different decorrelation curves
at different points in the scan plane. In theory, σ can be calculated using acoustic physics and a
detailed specification of the ultrasound scanner and probe. A more practical way to calibrate the
decorrelation curves is to scan a speckle phantom and measure ρ directly for different elevational
offsets δ: this is the approach taken in this paper.

A serious difficulty with speckle decorrelation is that the theory only holds for fully developed
speckle. Real tissue contains regions of coherent scattering, which decorrelate at a slower rate
than regions of fully developed speckle. One way around this problem is to automatically detect
those regions which contain fully developed speckle, and obtain elevational distance estimates in
these regions only [15]: we shall return to this proposition later. Alternatively, we can accept that
coherent scattering results in distortion of the 3D reconstruction and attempt to correct this in a
post-processing stage. For example, we could correct any gross errors in length, tilt and yaw by
registering the data to an additional B-scan acquired at right angles to the originals, as suggested
in [2]. However, this complicates the scanning protocol and requires that the data contain sufficient
distinguishable features for the registration to succeed. A fair assessment of the state-of-the-art
is that speckle decorrelation is a good way to acquire qualitative 3D ultrasound data, but for
accurate, quantitative reconstructions one has to fall back on a position sensor.

In this paper, we show how geometrically accurate reconstructions can be obtained using an
adapted speckle decorrelation scheme. First, in Section 2, we describe the design and calibration
of a conventional speckle decorrelation system. Through experiments conducted with this system,
we establish the limitations of speckle detection as a means of overcoming the coherent scattering
problem. In Section 3, we propose a model for adapting the calibration curves to account for
local coherent scattering in the tissue being scanned. In a series of experiments, we demonstrate
markedly improved reconstructions of animal tissue in vitro. Finally, in Section 4, we draw some
conclusions and suggest some avenues for further work.

2 Conventional speckle decorrelation

The experimental framework

Experiments were conducted with a 5–10 MHz linear array probe connected to a Dynamic Imag-
ing2 Diasus ultrasound machine. The depth setting was 4 cm with a single focus at 2 cm. Analogue
radio frequency (RF) ultrasound signals were digitised after receive focusing and time-gain com-
pensation, but before log-compression and envelope detection, using a Gage Compuscope CS141003

14-bit digitiser. Whole frames, each comprising 127 RF vectors by 3818 samples, were stored in
on-board Gage memory before transferring to PC memory at 75 MB/s. The system operates in
real time, with acquisition rates exceeding 30 frames per second. Sampling was at 66.67 MHz,
synchronous with the ultrasound machine’s internal clock: this synchronization minimises phase
jitter between vectors. The acquired vectors were filtered with a 3–30 MHz broadband filter, then
envelope-detected using the Hilbert transform. The resulting 127 × 3818 frames of backscatter
amplitude data formed the basis of all further computation. Their resolution is approximately
0.01 mm per sample in the axial direction and 0.27 mm per vector in the lateral direction.

The real time RF acquisition platform constitutes a unique and powerful research facility which
we are happy to make available to other users4. For this study, it offers two important advantages

2http://www.dynamicimaging.co.uk
3http://www.gage-applied.com
4http://mi.eng.cam.ac.uk/~rwp/stradx
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(a) phantom (b) beef1 (c) beef2 (d) turkey

Figure 2: Calibration and test data. The figure shows typical B-scans from the calibration
(a) and test (b)–(d) data sets, with the 8 × 12 patch grid superimposed on each. Note that all
processing was performed on the 127 × 3818 RF amplitude data. These 382 × 439 B-scans are
geometrically correct (equal scales of 0.09 mm/pixel in the axial and lateral directions) and are
derived from the RF data by log-compression, subsampling axially and interpolating laterally.

over conventional, frame-grabbed B-scans. Firstly, the data is acquired before log-compression
inside the ultrasound machine: equations (1) and (2) are therefore directly applicable, without
having to first undo the log-compression process [12]. Secondly, the RF data’s axial resolution is
approximately ten times better than that of a B-scan (around 4000 samples compared with 400
pixels). We will soon see the value of this when we come to compute axial decorrelation curves.
Further details of the RF acquisition system can be found in [13].

The probe was mounted on a linear screw thread allowing accurate translation in the elevational
direction. Its displacement was measured using a dial gauge. Four 3D data sets were acquired
using this framework, each comprising 100 parallel B-scans at an elevational spacing of 0.04 mm or
0.02 mm. The first was of a speckle phantom with Rayleigh backscatter and uniform attenuation
of 0.4 dB/cm/MHz [7]. This was used to calibrate the elevational decorrelation curves at different
points in the scan plane. The elevational scan spacing was 0.04 mm. The next two were of a
beef joint: one was acquired parallel to the muscle fibres, the other perpendicular to them. Both
had an elevational scan spacing of 0.04 mm. The final data set was of a stack of turkey fillets
lying in a water bath, with an elevational scan spacing of 0.02 mm. The three in vitro test sets
allow us to carefully evaluate reconstruction accuracy without having to worry about the effects
of physiological motion.

Each frame was divided into an 8 column × 12 row grid of patches. This gives more than 5000
samples per patch, sufficient to calculate meaningful second order statistics. Using the speckle
phantom, separate calibration curves were obtained for each patch, thereby capturing any variation
in the resolution cell across and down the B-scan. Subsequently, separate distance estimates were
obtained for each patch in the three test sets. Typical B-scans from each data set can be found
in Figure 2.

The calibration scan

For each patch in the phantom data set, we recorded not only elevational, but also axial and
lateral decorrelation curves. Preliminary experiments indicated that the data decorrelated in the
elevational direction over a distance not greater than 0.8 mm, and in the axial direction over a
distance not greater than 0.2 mm. Wishing to represent each decorrelation curve with around 10
samples, we therefore computed elevational correlations at offsets of 0, 0.08, 0.16 . . . 0.72 mm (i.e.
skipping every other frame) and axial correlations at 0, 0.02, 0.04 . . . 0.18 mm (i.e. skipping every
other sample). Lateral correlations were calculated at the finest possible resolution of 0.27 mm
(unit vector steps). Typical decorrelation curves can be found in Figure 3. They are for four
patches from the same column near the centre of the B-scan, but at different depths.
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Figure 3: Decorrelation curves for the speckle phantom. The figure shows average curves
in the axial, lateral and elevational directions for four patches from the same, central column of
the grid. Each curve is represented by ten samples, though only the first three are shown for the
lateral curves. Each data point on each curve is the average of a large number of observations.
For example, the 0.08 mm sample of the elevational curve was based on the correlation of all pairs
of frames 0.08 mm apart, i.e. the average of 98 separate correlation measurements.
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frame separation (mm)
0.08 0.24 0.40 0.56 0.72

phantom 0.077± 0.010 0.239± 0.011 0.404± 0.014 0.552± 0.017 0.612± 0.011
beef1 0.029± 0.005 0.127± 0.009 0.216± 0.011 — —
beef2 0.044± 0.004 0.154± 0.009 0.246± 0.013 — —
turkey 0.034± 0.003 0.125± 0.005 0.205± 0.006 — —

Table 1: Elevational distance estimation using conventional speckle decorrelation. The
table shows the mean distance estimate ± one standard deviation for all frames separated by 0.08,
0.24, 0.40, 0.56 and 0.72 mm. For separations greater than 0.40 mm, the estimates are biased for
reasons explained in Figure 4. Results for the test data sets, and for all further experiments in
this paper, are therefore given for separations of up to 0.40 mm only.

The approximately Gaussian shape of the curves is in agreement with theory [3]. The widths
of the curves indicate significant variation in the resolution cell down the B-scan. However, there
is little variation across the B-scan: different patches in the same row exhibit similar curves.
Note how the elevational focusing is far worse at the bottom of the scan than at the top. Also
note how the data decorrelates in the lateral direction after only one or two samples, which is
to be expected given the relatively good lateral focusing but sparse lateral sampling. Since there
is always complete decorrelation after two lateral shifts (0.54 mm), only the 0.27 mm sample is
potentially meaningful, and we shall disregard all higher shifts in the rest of this work.

At the bottom of the B-scan, the curves lose their characteristic Gaussian shape, with rapid
decorrelation in all directions for small offsets. Visual inspection of the B-scans — see Figure 2(a)
— indicates severe attenuation at depth: the backscattered signal for rows 11–12 is dominated by
noise which is essentially uncorrelated in all directions. This suggests a rather simple technique
for automatic noise detection. If a0, a1 and a2 are the first three samples of the axial decorrelation
curve, then a patch is classified as containing significant noise if

a1 − a2 < c(a0 − a1) (3)

The constant c was set to 0.9 for all the experiments in this study, though repeating some of
them with c = 1.0 made very little difference to the results: this is not a critical parameter.
Noisy patches are disregarded for the purpose of elevational distance estimation. This includes
all patches in rows 11–12 of the B-scan, since these patches fail the noise test in the calibration
scan of the speckle phantom. We also disregard all patches in rows 1–2, since we were unable
to obtain valid calibration curves for these patches: the phantom’s scanning window introduced
strong specular features in these rows, as is evident in Figure 2(a).

The evaluation scans

The calibrated decorrelation curves were used to estimate the spacing between pairs of scans in
the phantom, beef and turkey data sets. All pairs of scans i and j, separated by 0.72 mm or less,
were considered. A separate distance estimate was obtained for each patch, by measuring the
elevational correlation between the corresponding patches on i and j and looking up the distance
on the patch’s calibration curve. To facilitate the noise test (3), axial decorrelation curves were
also calculated for each patch. The elevational distance lookup was deemed invalid if the patch
failed the noise test, or the measured correlation was below the range recorded in the calibration
curve. The results from valid lookups were averaged to obtain a single distance estimate for each
pair of scans. The mean and standard deviation of these inter-scan spacings are tabulated in
Table 1.

As expected, the results for the phantom are very good, since this was the very data used
to derive the calibration curves. Small errors arise because the calibration curves are based on
the average of many measurements, whereas individual correlations between a particular pair of
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Figure 4: Systematic errors for large inter-scan separation. When two patches are widely
separated in the elevational direction, their correlation will be relatively low. Suppose two patches,
which are actually separated by a distance d1, exhibit a slightly higher than average correlation
ρ1, as shown in (a). Lookup on the calibration curve leads to a slight underestimate of distance
d2. Now suppose ρ1 is slightly lower than average, as in (b). In this case, the lookup fails and no
distance estimate is available for this patch. The set of valid lookups is thus dominated by cases
like (a), resulting in systematic underestimation of elevational separation.

frame separation (mm)
0.08 0.24 0.40

beef1 0.057± 0.009 0.215± 0.020 0.358± 0.025
turkey 0.063± 0.004 0.193± 0.005 0.319± 0.005

Table 2: Elevational distance estimation using tissue-based calibration. The table shows
the results of conventional speckle decorrelation, but this time using calibration curves derived
from the beef2 data set.

patches may differ slightly from the average. The larger errors for separations above 0.40 mm are
more systematic. They arise because patches exhibiting a lower than expected correlation may
cause an invalid lookup. The set of valid lookups is thus dominated by patches exhibiting a higher
than expected correlation, leading to systematic underestimation of elevational separation. This
phenomenon is illustrated in Figure 4. All remaining results in this study are for separations not
exceeding 0.40 mm, and are therefore assumed to be unaffected by this systematic error.

The results for the beef and turkey data sets are very poor, with severe underestimation of
distance at all inter-scan separations. This is because these data sets contain very little in the way
of fully developed speckle. They are dominated by coherent scattering, which correlates over a
longer range than fully developed speckle. The resulting high correlation values are misinterpreted
as close spacing. The traditional solution to this problem is to somehow detect those patches
which contain fully developed speckle, and disregard all other patches when estimating elevational
separation. Speckle detectors typically draw on low order statistics [12], such as the ratio of the
mean backscattered signal intensity to the standard deviation [15]. Using this simple scheme, the
authors of [15] found that only 5% of an in vivo breast scan qualified as fully developed speckle.

To establish to what extent the results in Table 1 could be improved by speckle detection, we
implemented the “ideal” speckle detector by manually rejecting all patches except those whose
actual elevational decorrelation matched the calibration curves. In the beef data, we found ex-
tremely little that even approached fully developed speckle. Figure 5 shows, for a typical frame,
the only two patches which came close. Even if a practical speckle detector were able to single
out these two patches, we would still have residual distance errors of around 20–30%, and, with
just two offsets, we would be unable to estimate all degrees of freedom between the two scans.

As a last resort, we might try a less principled approach to improve the results in Table 1.
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Figure 5: Elevational decorrelation curves for beef. These are the only two patches whose
elevational decorrelation curves approach those of the speckle phantom. All other patches deviate
even further from the calibration.

Even though the decorrelation theory holds only for fully developed speckle, we could consider
an alternative calibration, this time based on scans of real tissue instead of the speckle phantom.
Table 2 shows what happens if we repeat the beef1 and turkey experiments, but this time using
decorrelation curves calibrated on the beef2 data set. Though much improved, the results still
indicate errors of around 20–30%. This is because the average decorrelation rate in turkey is
different to that in beef, and even the same piece of beef decorrelates at different rates when
scanned in different directions. So what is required is not a refined, static calibration, but a
dynamic scheme which can adapt to the local properties of the tissue being scanned.

3 Adaptive speckle decorrelation

The scatterer adaptation model

The principal reason for the poor results in Table 1 is that real data exhibits little to no Rayleigh
scattering. Interestingly, this is observable in the lateral and axial decorrelation curves as well as
in the elevational curves — see Figure 6(a). Compared with the speckle phantom, the coherent
scattering in beef results in slower decorrelation in all directions. This begs the following question:
can the observed discrepancies in the axial and lateral curves be used to adapt the elevational
calibration curve to allow for coherent scattering? To answer this question, we first consider
models for decorrelation in the presence of coherent scattering.

Wagner et al. [17] postulate a model for mixed coherent and Rayleigh scattering in which a
fixed coherent component is added to the Rayleigh model in equations (1) and (2). This leads to
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Figure 6: Decorrelation curves for beef. (a) shows decorrelation curves for a patch near the
centre of one of the beef B-scans. Compared with the same patch in Figure 3(b), the coherent
scattering leads to slower decorrelation in all directions. There is even significant correlation
between neighbouring vectors laterally. (b) highlights the elevational curves, showing how, for
each elevational offset, the correlation in beef is always greater than the corresponding correlation
in the calibration phantom. Adapting the calibration curve to allow for the coherent scattering
results in much closer agreement between the phantom and beef curves.

an expression for the intensity correlation as follows

ρ(I1, I2) =
λ2Ir + 2λIc

Ir + 2Ic
(4)

where Ir is the intensity of Rayleigh scattering and Ic is the intensity of coherent scattering. The
equivalent amplitude expression results in a graph of similar shape, but is complicated to express
algebraically [17].

As Wagner et al. illustrate in Figure 8 of [18], the consequence of equation (4) is that as the
scattering changes from Rayleigh to purely specular, the decorrelation lengths increase by a factor
of
√

2. This is thus a poor model for some sorts of coherent scattering where the decorrelation
lengths may be arbitrarily large, depending on the geometry of the objects being scanned. By
comparing the decorrelation curves in Figures 6(a) and 3(b), it is clear that increases of more than
a factor of

√
2 should not be ruled out. Hence, equation (4) does not provide a sufficiently flexible

model for our empirical observations.
Instead, we propose a simple, heuristic model for decorrelation in the presence of coherent

scattering. Consider a patch of RF amplitude data A1 in B-scan i and a corresponding patch A2

in B-scan j. Assuming both patches contain fully developed speckle, their correlation coefficient
can be written ρr = ρ(A1, A2), where the subscript r denotes Rayleigh scattering. Now add to
each patch a component of coherent scattering. In our model, we assume that the patches now
contain data A1 + kA2 and A2 + kA1, where 0 ≤ k ≤ 1. The correlation coefficient is then
ρ = ρ(A1 +kA2, A2 +kA1). The parameter k accounts for coherent scattering correlating over the
distance between the two patches: when k = 0 we have fully developed speckle and ρ = ρr, when
k = 1 we have identical data A1 + A2 in the two patches and ρ = 1. Intermediate values of k give
correlation coefficients between ρr and 1.

This model is entirely heuristic and certainly does not account for all the phenomena observed
in ultrasound images. For example, when k = 1 the patches are perfectly correlated but the data
A1 + A2 would still have the appearance of speckle: so this is not a convincing model for specular
reflection. But this simple model does account for the sort of decorrelation curves observed in real
tissue, with ρ varying between ρr and 1 depending on the amount k of coherent scattering present
in both patches.
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The precise relationship between ρ and ρr is readily derived by expanding the expression for
the correlation coefficient:

ρ = ρ(A1 + kA2, A2 + kA1)

=
cov(A1 + kA2, A2 + kA1)√
var(A1 + kA2)var(A2 + kA1)

=
cov(A1, A2) + cov(A1, kA1) + cov(kA2, A2) + cov(kA2, kA1)√

[var(A1) + var(kA2) + 2cov(A1, kA2)] [var(A2) + var(kA1) + 2cov(A2, kA1)]

=
cov(A1, A2) + kvar(A1) + kvar(A2) + k2cov(A2, A1)√

[var(A1) + k2var(A2) + 2kcov(A1, A2)] [var(A2) + k2var(A1) + 2kcov(A2, A1)]

Since A1 and A2 both represent Rayleigh scattering, var(A1) = var(A2), and this simplifies to

ρ =
(1 + k2)cov(A1, A2) + 2kvar(A1)
(1 + k2)var(A1) + 2kcov(A1, A2)

Dividing through by var(A1), and noting that ρr = cov(A1, A2)/var(A1), we arrive at

ρ =
(1 + k2)ρr + 2k

(1 + k2) + 2kρr
(5)

Equation (5) allows us to predict the correlation coefficient between two patches given an amount
k of coherent scattering. There is also the inverse problem to address: given observed correlation
ρ, how much coherent scattering k is there? By simple rearrangement of (5), we find:

k2(ρr − ρ) + 2k(1− ρρr) + ρr − ρ = 0

This is a quadratic equation in k. Solving, we find

k =
(1− ρρr)
(ρ− ρr)

±
√

(1− ρ2)(1− ρ2
r)

(ρ− ρr)
(6)

For physically plausible scenarios ρ > ρr, and the negative solution then gives k in the range
0 < k ≤ 1, as required.

Equations (5) and (6) suggest a possible scheme for coping with coherent scattering in el-
evational distance estimation. Consider a patch of data which exhibits axial correlation ρa at
axial displacement da. Given a suitable calibration for this patch, we know the expected corre-
lation ρr for fully developed speckle. We can then use equation (6) to calculate ka, the amount
of coherent scattering correlating over a distance da in the axial direction. Assuming physical
isotropy of the coherent scatterers in the axial and elevational directions, we would expect to
observe the same amount of coherent scattering correlating over a distance de in the elevational
direction. The correspondence between da and de should account for the resolution of the imaging
system: we assume de = 4da, since the elevational resolution is, on average, around four times
worse than the axial resolution (see Figure 3). Hence, by calculating ka for the full set of axial
displacements da ∈ {0 . . . 0.18} mm, we obtain a matching set of values ke for elevational offsets
de ∈ {0 . . . 0.72} mm.

We can repeat the same analysis in the lateral direction, though in this case we have only one
meaningful measurement of ρl, and hence kl, this being for a unit vector lateral displacement of
dl = 0.27 mm. We assume that this value of kl is valid for the full set of elevational displacements
de ∈ {0 . . . 0.72} mm. There is no reason to favour either the axial or lateral ke estimates, so
we simply average the two to obtain the final set of ke values. We use these in equation (5)
to calculate an adapted elevational decorrelation curve which accounts for the apparent coherent
scattering. Figure 6(b) shows one such adapted curve. The entire adaptation process is illustrated
in Figure 7.
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Figure 7: The adaptation procedure. Consider a patch of RF amplitude data on B-scan i and
the corresponding patch on B-scan j. The starting point for elevational distance estimation is a
set of decorrelation curves ρr in the axial, lateral and elevational directions, obtained by one-off
scanning of a speckle phantom. We can also calculate decorrelation curves ρa and ρl in the axial
and lateral directions for the patch on B-scan i (since decorrelation curves are slowly varying,
it makes little difference whether we use B-scan i or B-scan j). By comparing ρa with ρr using
equation (6), we can calculate ka(da), the apparent amount of coherent scattering correlating over
a distance da in the axial direction. Likewise, we can calculate kl(dl) in the lateral direction, though
in this case we have only one meaningful distance dl to work with. In this particular example, the
patch exhibits pronounced streaks in the lateral direction and kl is higher than ka. By averaging ka

and kl we can estimate ke(de), the amount of coherent scattering correlating over a distance de in
the elevational direction. Since the resolution cell is approximately four times wider elevationally
than axially, we assume ke(4d) = 0.5(kl + ka(d)): in other words, coherent scattering correlates
four times further in the elevational direction than in the axial direction. The ke values are then
used in equation (5) to adapt the elevational decorrelation curve ρr to obtain ρe. ρr was measured
for fully developed speckle, whereas ρe accounts for the observed coherent scattering. The ρe curve
allows lookup of elevational distance given elevational correlation: in this case, the patches are
estimated to be 0.38 mm apart. Note how using the unadapted curve ρr would have resulted in
a gross underestimate. This is because these patches exhibit significant coherent scattering and
therefore decorrelate at a slower rate than fully developed speckle.
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Figure 8: Distance estimation using adaptive speckle decorrelation. The distance between
any pair of frames was estimated by averaging all valid patch lookups on the elevational decor-
relation curves. The graphs show the mean of these inter-frame distances, with the error bars
representing ± one standard deviation.

frame separation (mm)
0.08 0.24 0.40

phantom distance (mm) 0.077± 0.010 0.240± 0.011 0.404± 0.013
tilt (deg) 0.005± 0.017 −0.008± 0.021 −0.025± 0.044
yaw (deg) 0.000± 0.011 −0.000± 0.013 0.002± 0.034

beef1 distance (mm) 0.075± 0.009 0.243± 0.015 0.404± 0.020
tilt (deg) 0.083± 0.034 0.188± 0.104 0.305± 0.169
yaw (deg) −0.001± 0.011 0.013± 0.026 0.033± 0.055

beef2 distance (mm) 0.085± 0.006 0.246± 0.012 0.403± 0.020
tilt (deg) 0.152± 0.055 0.164± 0.148 0.200± 0.268
yaw (deg) −0.045± 0.024 −0.080± 0.041 −0.099± 0.074

turkey distance (mm) 0.087± 0.005 0.256± 0.009 0.417± 0.013
tilt (deg) 0.055± 0.019 0.146± 0.038 0.285± 0.066
yaw (deg) −0.022± 0.014 −0.084± 0.013 −0.131± 0.035

Table 3: Distance and angle estimation using adaptive speckle decorrelation. This table
includes the distances plotted in Figure 8, and also inter-frame tilt and yaw estimates as described
in Figure 9. For the parallel frames used in this study, both angles should be zero. Although the
average distances are very good, there is a bias in the tilt. The yaw angles are generally acceptable.

12



valid patch

invalid patch

θ
average

tilt angle

least squares
best fit line

y

d

Figure 9: Estimation of yaw and tilt. For any pair of frames, the valid elevational distance
estimates are averaged across rows to produce a single estimate per row. Invalid patches (the top
and bottom two rows of the grid, and any additional patches which fail the noise test or cause
an out-of-range lookup) are disregarded. A best fit line is found for the averaged distances: the
orientation of this line provides an estimate of the tilt between the two frames. A similar analysis
along columns produces an estimate of the yaw between the two frames.

The adaptive scheme was applied to the calibration and test data sets, yielding the results in
Figure 8. At first sight, the performance appears to be excellent. The beef data is almost perfectly
corrected, the turkey results are slightly biased but much better than before. The adaptation makes
negligible difference to the phantom results, since ke ≈ 0 for all patches.

While the graphs in Figure 8 are a common way of presenting results of this kind, they can
obscure significant deficiencies. It transpires that, while the average distance estimate per frame is
very good, patches near the top of the B-scan tend to underestimate, while those near the bottom
tend to overestimate. If these distances were used for three degree of freedom position estimation,
the reconstruction would exhibit an incorrect tilt, with the frames bunched tightly at the top and
more widely spaced at the bottom. To quantify this error, we calculated yaw and tilt estimates
for each pair of frames, as explained in Figure 9. The complete results, including all three degrees
of freedom, are presented in Table 3. While by no means perfect, the performance of the adaptive
scheme is quite remarkable considering its heuristic nature and total lack of adjustable parameters.

Scatterer adaptation with axial correction

By introducing an ad hoc axial correction term, with two adjustable parameters, we can signifi-
cantly improve the tilt estimates in Table 3. The correction takes the simple, linear form

k∗e = ke [1− a(r − b)] (7)

where k∗e is the corrected ke term, r is the row in which the patch resides (in the range 1–12),
and a and b are adjustable parameters. We tuned a and b using a fifth data set, an additional
scan of the beef made several days later. By this time the beef had toughened, producing scans
with a different appearance to those in beef1 and beef2. We found that a = 0.048 and b = 5.2
corrected the tilt errors in this additional data set. Using the same ad hoc correction with the
original four data sets produced the results in Table 4. Figure 10 shows the marginal effect of the
axial correction on decorrelation curves from the top and bottom of a B-scan.

It would appear that the axial correction generalises well from the independent data set to the
original four data sets. Interestingly, and perhaps significantly, little to no correction is needed
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frame separation (mm)
0.08 0.24 0.40

phantom distance (mm) 0.077± 0.010 0.240± 0.011 0.404± 0.013
tilt (deg) 0.005± 0.017 −0.008± 0.022 −0.026± 0.045
yaw (deg) 0.000± 0.011 −0.000± 0.013 0.001± 0.033

beef1 distance (mm) 0.071± 0.009 0.235± 0.014 0.394± 0.019
tilt (deg) 0.000± 0.034 0.016± 0.101 0.045± 0.188
yaw (deg) 0.004± 0.010 0.022± 0.027 0.044± 0.053

beef2 distance (mm) 0.084± 0.006 0.244± 0.012 0.402± 0.021
tilt (deg) 0.075± 0.062 0.007± 0.157 −0.028± 0.255
yaw (deg) −0.044± 0.023 −0.079± 0.042 −0.096± 0.073

turkey distance (mm) 0.083± 0.005 0.248± 0.009 0.409± 0.011
tilt (deg) −0.042± 0.014 −0.056± 0.032 −0.044± 0.057
yaw (deg) −0.011± 0.012 −0.057± 0.026 −0.077± 0.059

Table 4: Distance and angle estimation using adaptive speckle decorrelation with axial
correction. These results are for the corrected elevational coherency terms k∗e , calculated using
equation (7) with parameters a and b tuned using an additional, independent data set. Compared
with Table 3, the tilt errors are much improved.
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Figure 10: Scatterer adaptation with axial correction. The axial correction makes a small
but significant difference to the decorrelation curves at the top (a) and bottom (b) of the B-
scan. While the adapted phantom curves are close to the true decorrelation curves for beef, the
additional axial correction improves the match even further and largely removes the top-to-bottom
bias responsible for erroneous tilt estimates.
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width (mm) tilt (deg) yaw (deg)
phantom 3.95 −0.06 0.05
beef1 3.84 1.13 0.54
beef2 3.98 0.55 −0.85
turkey 2.04 0.10 −0.07

Table 5: Accumulated errors in full 3D reconstructions. The table shows the width of the
reconstruction, measured from the centre of B-scan 1 to the centre of B-scan 100. The correct
width is 3.96 mm for the first three data sets and 1.98 mm for the turkey data set. Also tabulated
is the tilt of B-scan 100 relative to B-scan 1 (positive if the tops of the B-scans are closer than the
bottoms), and the yaw of B-scan 100 relative to B-scan 1 (positive if the left sides of the B-scans
are closer than the right sides). Both angles should be zero.

around rows 5–6, which is approximately where the ultrasound beam is focused (2 cm focus on a
4 cm depth setting). The original, parameter-free adaptation scheme would appear to work well at
the focus, but produce slightly biased results away from it. Further work is required to establish
the connection between the heuristic adaptation scheme and ultrasound physics, and explain the
scheme’s apparent sensitivity to beam focusing.

The axial correction has improved not only the tilt, but also the distance estimates for the
turkey data set. This is because this data had a fair number of invalid lookups in the top half of the
B-scans, caused by the echogenic water between the fillets producing noise-like axial decorrelation.
Hence, compared with the other data sets, the turkey distances were based on a greater proportion
of patches from the lower half of the B-scans, leading to systematic overestimation. Axial correction
improves the situation by reducing the dependence of distance on depth.

We used adaptive speckle decorrelation, with axial correction, to compute full 3D reconstruc-
tions of the four data sets. For the data sets recorded at a pitch of 0.04 mm, the reconstruction
algorithm operated as follows.

1. Compare B-scans 2–11 with B-scan 1 (i.e. up to 0.4 mm separation).

2. For B-scans i and 1, i ∈ {2 . . . 11}, use the corrected coherency terms k∗e to obtain an
elevational distance estimate for each patch.

3. Apply a 3× 3 median filter to the grid of elevational offsets (to remove outlying estimates).

4. Find the least squares best fit plane through the filtered offsets: this locates B-scan i with
respect to B-scan 1.

5. Now position B-scans 12-21 relative to B-scan 11, and so on up to B-scan 100.

For the turkey data set, recorded at a pitch of 0.02 mm, the procedure was the same except
that the reference frame was advanced every 20 frames, not every 10 frames: this maintains the
maximum 0.4 mm separation for decorrelation-based distance estimation.

The reconstruction results can be found in Table 5 and Figure 11. In the design of the recon-
struction algorithm, we have to address an inherent trade-off regarding error accumulation. When
concatenating n rigid body transformations to find the position of B-scan i + n relative to B-scan
i, we would expect angular and distance errors of the order ne, where e is the mean per-frame
error given in Table 4. It therefore makes sense to minimise the amount of concatenation, by
moving the reference B-scan as infrequently as possible within the limits of elevational distance
estimation (i.e. up to around 0.4 mm). This is why, for the first three data sets, the algorithm
locates B-scans 2–11 relative to B-scan 1, then B-scans 12–21 relative to B-scan 11, and so on.
However, there are also potential problems with too little concatenation. The first three data sets
are reconstructed in ten steps, the turkey in only five. This makes the reconstructions susceptible
to random perturbations in e (the standard deviations in Table 4). We have been particularly
unlucky with beef1, accumulating a tilt error of 1.13◦ over only ten steps. The expected tilt error
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turkeybeef2beef1phantom

phantom beef1 beef2 turkey

Figure 11: Full 3D reconstructions. The figure shows the outlines of the 3D reconstructions
(left) and reslices down the centre of each reconstruction (right). The reslices are perpendicular
to the plane of the B-scans. The turkey data set was acquired at a pitch of 0.02 mm, compared
with 0.04 mm for the others, and is therefore narrower.
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is around 0.045◦ per 0.4 mm step — see Table 4. For larger data sets, we would expect the
accumulated errors to approach ne.

4 Conclusions and further work

We have demonstrated how conventional speckle decorrelation is not a feasible technique for B-scan
positioning in real tissue. Much improved results can be obtained by adapting the decorrelation
curves to account for apparent coherent scattering. Our heuristic adaptation model is conceptually
simple and entirely free of adjustable parameters. An additional ad hoc correction term can
improve estimates of tilt: this requires two adjustable parameters, though these do not appear to
be overly sensitive to tissue type.

We can identify three major avenues for further work. The first is to analyse the adaptation
scheme from the perspective of ultrasound physics. This may lead to a more principled way to
correct the tilt bias without introducing adjustable parameters. The second is to develop a more
powerful reconstruction algorithm. There is much redundancy of information to exploit: each
frame-pair provides many more elevational offsets than are required to estimate three degrees of
freedom, and we can correlate each frame with any number of frames within the decorrelation
range, not just one. Finally, we need to apply these algorithms to true freehand scans of in vivo
data. The difficulty here is that decorrelation will not depend solely on elevational motion, but
also on in-plane and physiological motion. In-plane probe motion can be tracked using established
image registration techniques [14]: we have already demonstrated their efficacy for sensorless free-
hand 3D ultrasound [11]. Physiological motion will cause localised, poor estimates of elevational
displacement. However, these should not compromise a robust reconstruction algorithm which
takes full advantage of the aforementioned redundancy.
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