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ABSTRACT

This paper describes the Cambridge University HTK (CU-HTK)
system developed for the NIST March 2000 evaluation of English
conversational telephone speech transcription (Hub5E). A range of
new features have been added to the HTK system used in the 1998
Hub5 evaluation, and the changes taken together have resulted in an
11% relative decrease in word error rate on the 1998 evaluation test
set. Major changes include the use of maximum mutual informa-
tion estimation in training as well as conventional maximum likeli-
hood estimation; the use of a full variance transform for adaptation;
the inclusion of unigram pronunciation probabilities; and word-level
posterior probability estimation using confusion networks for use in
minimum word error rate decoding, confidence score estimation and
system combination. On the March 2000 Hub5 evaluation set the
CU-HTK system gave an overall word error rate of 25.4%, which
was the best performance by a statistically significant margin. This
paper describes the new system features and gives the results of each
processing stage for both the 1998 and 2000 evaluation sets.

1 INTRODUCTION

The transcription of conversational telephone speech is one of the
most challenging tasks for speech recognition technology with state-
of-the-art systems yielding high word error rates. The primary focus
for research and development of such systems for US English has
been the Switchboard/Call Home English corpora along with the
regular NIST “Hub5” evaluations. The Cambridge University HTK
(CU-HTK) Hub5 system has been developed over several years.
This paper describes changes to the September 1998 Hub5 evalu-
ation system [6] made while developing the March 2000 system.

Major system changes include the use of HMMs trained us-
ing maximum mutual information estimation (MMIE) in addition to
standard maximum likelihood estimation (MLE); the use of pronun-
ciation probabilities; improved speaker/channel adaptation using a
global full variance transform; soft-tying of states for the MLE based
acoustic models; and the use of confusion networks for minimum
word error rate decoding, confidence score estimation and system
combination. All of these features made a significant contribution
to the word error rate improvements of the complete system. In ad-
dition, several minor changes have been made and these include the
use of additional training data and revised transcriptions; acoustic
data weighting; and an increased vocabulary size.

The rest of the paper is arranged as follows. First an overview
of the 1998 HTK system is given. This is followed by a description
of the data sets used in the experiments and then by sections that
discuss each of the major new features of the system. Finally the
complete March 2000 evaluation system is described and the results
of each stage of processing presented.

2 OVERVIEW OF 1998 HTK SYSTEM

The HTK system used in the 1998 Hub5 evaluation served as the
basis for development. In this section a short overview of its features
is given (see [6] for details).

The system uses perceptual linear prediction cepstral coeffi-
cients derived from a mel-scale filterbank (MF-PLP) [18] covering
the frequency range from 125Hz to 3.8kHz. A total of 13 coeffi-
cients, includingc0, and their first and second order derivatives were
used. Cepstral mean subtraction and variance normalisation are per-
formed for each conversation side. Vocal tract length normalisation
(VTLN) was applied in both training and test.

The acoustic modelling used cross-word triphone and quin-
phone hidden Markov models (HMMs) trained using conventional
maximum likelihood estimation. Decision tree state clustering [20]
was used to select a set of context-dependent equivalence classes.
Mixture Gaussian distributions for each tied state were then trained
using sentence-level Baum-Welch estimation and iterative mixture
splitting [20]. After gender independent (GI) models had been
trained, a final training iteration using gender-specific training data
and updating only the means and mixture weights was performed
to estimate gender dependent (GD) model sets. The triphone mod-
els were phone position independent, while the quinphone models
included questions about word boundaries as well as±2 phone con-
text. The HMMs were trained on 180 hours of Hub5 training data.

The system used a 27k vocabulary that covered all words in
the acoustic training data. The core of the pronunciation dictionary
was based on the 1993 LIMSI WSJ lexicon, but used a large num-
ber of additions along with various changes. The system used N-
gram word-level language models. These were constructed by train-
ing separate models for transcriptions of the Hub5 acoustic training
data and for Broadcast News data and then merging the resultant
language models to effectively interpolate the component N-grams.
The word-level 4-grams used were smoothed with a class-based tri-
gram model using automatically derived classes [12].

The decoding was performed in stages with successively more
complex acoustic and language model being applied in later stages.
Initial passes were used for test-data warp factor selection, gen-
der determination and finding an initial word string for unsuper-
vised mean and variance maximum likelihood linear regression
(MLLR) adaptation [8, 3]. Word-level lattices were then created
using adapted triphone HMMs and a bigram model which were ex-
panded to included the full 4-gram and class model probabilities.
Iterative MLLR [17] was then applied using quinphone models and
confidence scores estimated using an N-best homogeneity measure
for both the triphone and quinphone output. The final stage com-
bined these two transcriptions using the ROVER program [2]. The
system gave a 39.5% word error rate on the September 1998 evalu-
ation data.



3 TRAINING AND TEST DATA

The Hub5 acoustic training data is from two corpora: Switchboard-
1 (Swb1) and Call Home English (CHE). The 180 hour training
set used for training the 1998 HTK system used various sources of
Swbd1 transcriptions and turn-level segmentations. For the March
2000 system we took advantage of the January 2000 release from
Mississippi State University (MSU) of Swbd1 transcriptions which
should provide greater accuracy and consistency. We made a num-
ber of changes to these manual corrections and also automatically
removed more than 30 hours of silence data at segment boundaries.
An important feature of the MSU transcripts is the full-word tran-
scription of false starts and mispronunciations. In order to make use
of the extended transcripts a dictionary of false starts and mispro-
nunciations was created for use during training.

Three different training sets were used during the course of de-
velopment: the 18 hour Minitrain set defined by BBN which gives a
fast turnaround; the full 265 hour training set (h5train00) for the the
March 2000 system and a subset of h5train00 denoted h5train00sub.
The sizes of the training sets are given in Table 1 together with the
number of conversation sides that each includes. The h5train00sub
set was chosen to include all the speakers from Swb1 in h5train00
as well as a subset of the available CHE sides.

Training Total Conversation Sides
Set Time (hrs) Swb1 CHE

Minitrain 18 398 –
h5train00sub 68 862 92

h5train00 265 4482 235

Table 1: Hub5 training sets used.

The development test sets used were the subset of the 1997
Hub5 evaluation set used in [6], eval97sub, containing 10 conver-
sation sides of Switchboard-2 (Swb2) data and 10 of CHE; and the
1998 evaluation data set, eval98, containing 40 sides of Swb2 and
40 CHE sides (in total about 3 hours of data). Furthermore results
are given for the March 2000 evaluation data set, eval00, which has
40 sides of Swb1 and 40 CHE sides.

Training Clustered States / % Word Error Rate
Set Gaussians per State Swbd2 CHE Total

Minitrain 3088 / 12 43.7 57.7 50.6
h5train00sub 6165 / 12 38.7 53.5 46.0

h5train00 6165 / 16 36.4 52.5 44.4

Table 2: % WER on eval97sub using VTLN, GI, MLE triphone
models and a trigram language model, different training set sizes.

Basic gender independent, cross-word triphone versions of the
system, with no adaptation, were constructed for each training set
size. Table 2 shows the number of clustered speech states and the
number of Gaussians per state for each of these systems as well as
word error rates on eval97sub. An initial 3.5-fold increase in the
amount of training data results in a 4.6% absolute reduction in word
error rate (WER). However some of this large gain can be attributed
to the careful selection of the h5train00sub set to have a good cov-
erage of the full training material. A further approximately 3-fold
increase in the amount of training data only brings a further 1.6%
absolute reduction in WER.

4 MMIE TRAINING

The model parameters in HMM based speech recognition sys-
tems are normally estimated using Maximum Likelihood Estima-
tion (MLE). During MLE training, model parameters are adjusted
to increase the likelihood of the word strings corresponding to the
training utterances without taking account of the probability of other
possible word strings. In contrast to MLE, discriminative train-
ing schemes, such as Maximum Mutual Information Estimation
(MMIE) take account of possible competing word hypotheses and
try to reduce the probability of incorrect hypotheses. The objective
function to maximise in MMIE is the posterior probability of the
true word transcriptions given the training data.

For R training observation sequences{O1, . . . ,Or, . . .OR}
with corresponding transcriptions{wr}, the MMIE objective func-
tion is given by

FMMIE(λ) =
R

∑

r=1

log
pλ(Or|Mwr )P (wr)

∑

ŵ pλ(Or|Mŵ)P (ŵ)
(1)

whereMw is the composite model corresponding to the word se-
quencew andP (w) is the probability of this sequence as determined
by the language model. The summation in the denominator of (1) is
taken over all possible word sequencesŵ allowed in the task and it
can be replaced by

pλ(Or|Mden) =
∑

ŵ

pλ(Or|Mŵ)P (ŵ) (2)

whereMden encodes the full recognition acoustic/language model.
Normally the denominator of (1) requires a full recognition pass

to evaluate on each iteration of training. However as discussed in
[16] this can be approximated by using a word lattice which is gen-
erated once to constrain the number of word sequences considered.
This lattice-based framework can be used to generate the neces-
sary statistics to apply the Extended-Baum Welch (EBW) algorithm
[5, 13, 16] to iteratively update the model parameters. The statistics
required for EBW can be gathered by performing for each train-
ing utterance a forward-backward pass on the lattice correspond-
ing to the numerator of (1) (i.e. the correct transcription) and on
the recognition lattice for the denominator of (1). The implemen-
tation we have used is rather different to the one in [16] and does
a full forward-backward pass constrained by (a margin around) the
phone boundary times that make up each lattice arc. Furthermore
the smoothing constant in the EBW equations is computed on a per-
Gaussian basis for fast convergence and a novel weight update for-
mulation used. The computational methods that we have adopted
for Hub5 MMIE training are discussed in detail in [19].

While MMIE is very effective at reducing training set error a key
issue is generalisation to test data. It is very important that the con-
fusable data generated during training (as found from the posterior
distribution of state occupancy for the recognition lattice) is repre-
sentative to ensure good generalisation. If the posterior distribution
is broadened, then generalisation performance can be improved. For
this work, two methods were investigated: the use of acoustic scal-
ing and a weakened language model.

Normally the language model probability and the acoustic
model likelihoods are combined by scaling the language model log
probabilities. This situation leads to a very large dynamic range in
the combined likelihoods and a very sharp posterior distribution in
the denominator of (1). An alternative is to scale down the acoustic
model log likelihoods and as shown in [19] this acoustic scaling aids



generalisation performance. Furthermore, it is important to enhance
the discrimination of the acoustic models without overly relying on
the language model to resolve difficulties. Therefore as suggested
in [15] a unigram language model was used during MMIE training
which also improves generalisation performance [19].

Experiments reported in [19] show that MMIE is effective for
a range of training set sizes and model types. Table 3 shows word
error rates using triphone HMMs trained on h5train00. These exper-
iments required the generation of numerator and denominator lat-
tices for each of the 267,611 training segments. It was found that
two iterations of MMIE re-estimation gave the best test-set perfor-
mance [19]. Comparing the lines in Table 3 show that, without data
weighting, the overall error rate reduction from MMIE training is
2.6% absolute on eval97sub and 2.7% absolute on eval98.

eval97sub eval98
Iteration Swbd2 CHE Total Swbd2 CHE Total

MLE 36.4 52.5 44.4 42.6 48.6 45.6
MLE/w 35.7 51.8 43.7 42.5 47.7 45.1

1 34.2 50.7 42.4 40.9 46.5 43.7
1/w 34.0 50.2 42.0 40.7 46.2 43.5
2 33.6 50.1 41.8 40.3 45.4 42.9

2/w 33.8 50.0 41.9 40.3 45.1 42.7

Table 3: %WER on eval97sub and eval98 using VTLN GI triphone
models and a trigram language model. (w) denotes data weighting.

The table also shows the effect of giving a factor of three weight-
ing to the CHE training data.1 This reduced the error rate for the
MLE models by 0.5% to 0.7% absolute, but has a much smaller ben-
eficial effect for MMIE trained models. This is probably because
while MLE training gives equal weight to all training utterances,
MMIE training effectively gives greater weight to those training set
utterances with low sentence posterior probabilities for the correct
utterance.

MMIE was also used to train quinphone HMMs. The gain
from MMIE training for quinphone HMMs was 1.9% absolute
on eval97sub from a quinphone MLE system using acoustic data
weighting. As shown in [19] the gains from MLLR adaptation are
as great for MMIE models as for MLE trained models. Hence the
primary acoustic models used in the March 2000 CU-HTK evalua-
tion system used gender-independent MMIE trained HMMs.

5 SOFT-TYING

Soft tying of states [10] allows Gaussians from a particular state,
corresponding to a decision tree leaf node, to be also used in other
mixture distributions with similar acoustics. Previously, using an
implementation from JHU, the technique was investigated using var-
ious training set sizes and levels of model complexity [7]. It was
found that while consistent improvements were obtained, the im-
provement in WER was reduced when features such as VTLN and
MLLR adaptation were included in the system.

For the March 2000 system, a revised and somewhat simplified
implementation of soft-tying was investigated. For a given model
set a single Gaussian per state version was created. For each speech
state in the single Gaussian system, the nearest two other states were

1The test set is balanced across Switchboard and Call Home data but
the training set isn’t and so data weighting attempts to partially correct this
imbalance.

found using a log-overlap distance metric [14], which calculates the
distance between two Gaussians as the area of overlap of the two
probability density functions. All of the mixture components from
the two nearest states and the original state of the original mixture
Gaussian HMM are then used in a mixture distribution for the state.
Thus the complete soft-tied system has the same number of Gaus-
sians as the original system and three times as many mixture weights
per state. After this revised structure has been created all system pa-
rameters are re-estimated. This approach allows the construction of
both soft-tied triphone and quinphone systems in a straightforward
manner.

System Triphones Quinphones
Type Swbd2 CHE Total Swbd2 CHE Total

GI 42.5 47.7 45.1 42.1 47.3 44.7
ST/GI 42.1 47.4 44.8 41.5 46.9 44.2
ST/GD 41.4 47.0 44.2 41.0 46.1 43.6

ST/GD/PP 40.1 45.5 42.8 39.2 44.6 41.9

Table 4: WER on eval98 using VTLN GI triphone/quinphone mod-
els trained on h5train00 (3x CHE) and a trigram LM. ST denotes
soft-tied models and PP the use of pronunciation probabilities.

The results of using soft-tied (ST) triphone and quinphone sys-
tems on eval98 is shown in Table 4 when data weighting is used.2

There is a reduction in WER of 0.3% absolute for triphones and
0.5% for quinphones and a further 0.6% absolute from using GD
models. So far, soft-tying has only been used with MLE training,
although the technique could also be applied to MMIE trained mod-
els.

6 PRONUNCIATION PROBABILITIES

The pronunciation dictionary used in this task contains on average
1.1 to 1.2 pronunciations per word. Unigram pronunciation prob-
abilities, that is the probability of a certain pronunciation variant
for a particular word, were estimated based on an alignment of the
training data. If words were not seen in the training data a uni-
form distribution over all pronunciation variants is assumed. How-
ever, this straight-forward implementation only brought moderate
improvements in WER.

The dictionaries in the HTK system explicitly contain silence
models as part of a pronunciation. Experiments with or without
inclusion of silence into the probability estimates were conducted
[7]. The most successful scheme used three separate dictionary en-
tries for each real pronunciation which differed by the word-end
silence type: a no silence version; adding a short pause preserv-
ing cross-word context; and a general silence model altering con-
text. The unigram “pronunciation” probability is found separately
for each of these entries and the distributions are smoothed with the
overall silence distributions. Finally all dictionary probabilities are
renormalised so that the pronunciation for each word which has the
highest probability is set to one. During recognition the (log) pro-
nunciation probabilities are scaled by the same factor as used for the
language model.

Table 4 shows that the use of pronunciation probabilities gives a
reduction in WER of 1.4-1.7% absolute on eval98. On other test sets
improvements greater than 1% absolute have also been obtained and

2We have found that the use of acoustic data weighting reduces the bene-
ficial effect of soft-tying.



size of the gains is found to be fairly independent of the complexity
of the underlying system.

7 FULL VARIANCE TRANSFORMS

A side-dependent block-full variance (FV) transformation [4],H,
of the form Σ̂ = HΣHT was investigated. This can be viewed
as the use of a speaker-dependent global semi-tied block-full co-
variance matrix and can be efficiently implemented by transforming
both the means and the input data. In our implementation, the full
variance transform was computed after standard mean and variance
maximum likelihood linear regression (MLLR). Typically a WER
reduction of 0.5% to 0.8% was obtained. However as a side effect,
we found that there were reduced benefits from multiple iterations
of MLLR when used with a full variance transform.

8 CONFUSION NETWORKS

Confusion networks allow estimates of word posterior probabilities
to be obtained. For each link in a particular word lattice (from
standard decoding) a posterior probability is estimated using the
forward-backward algorithm. The lattice with these posteriors is
then transformed into a linear graph, or confusion network (CN),
using a link clustering procedure [11]. This graph consists of a se-
quence of so called confusion sets, which contain competing sin-
gle word hypotheses with associated posterior probabilities. A path
through the graph is found by choosing one of the alternatives from
each confusion set. By picking the word with the highest posterior
from each set the sentence hypothesis with the lowest overall ex-
pected word error rate can be found. This hypothesis is generally
more accurate than the one chosen by the normal Viterbi decoding,
which minimises thesentenceerror rate.

The estimates of the word posterior probabilities encoded in
the confusion networks can be used directly as confidence scores
(which are essentially word-level posteriors), but they tend to be
over-estimates of the true posteriors. This effect is due to the as-
sumption that the word lattices represent the relevant part of the
search space. While they contain the most-likely paths, a significant
part of the “tail” of the overall posterior distribution is missing. To
compensate for this a decision tree was trained to map the estimates
to confidence scores.

The confusion networks with their associated word posterior es-
timates were also used in an improved system combination scheme.
Previously the ROVER technique introduced in [2] had been used
to combine the 1-best output of multiple systems. Confusion net-
work combination (CNC) can be seen as a generalisation of ROVER
to confusion networks, i.e. it uses the competing word hypotheses
and their posteriors encoded in the confusion sets instead of only
considering the most likely word hypothesised by each system.

A more detailed description of the use of word posterior proba-
bilities and their application to the Hub5 task can be found in [1].

9 MARCH 2000 EVALUATION SYSTEM

This section gives an overview of the complete system as used in
the March 2000 evaluation. The system operates in multiple passes
through the data: initial passes are used to generate word lattices and
then these lattices are rescored using four different sets of adapted
acoustic models. The final system output comes from combining the
confusion networks from each of these re-scoring passes. While this

architecture results in a complex overall system, this section also re-
ports the results of each of the stages. This allows the performance
of many system variants at different levels of complexity to be as-
sessed.

9.1 Acoustic Models
The VTLN acoustic models used in the system were either triphones
(6165 speech states/16 Gaussians per state) or quinphones (9640
states/16 Gaussians per state) trained on h5train00. More details
on the performance of these models was given in previous sections.
It should be emphasised that the MMIE models were all gender in-
dependent while the MLE VTLN models were all gender dependent
using soft-tying. All the acoustic models used Call Home weighting.

9.2 Word List & Language Models
The word list was taken from two sources: the 1998 27k word list
[6] and the most frequent 50,000 words occurring in the 204 million
words of broadcast news (BN) LM training data. This gave a new
word list with 54,537 words where most of the pronunciations were
already available in our broadcast news (Hub4) dictionary. The 54k
wordlist reduced the out-of-vocabulary (OOV) rate on eval98 from
0.94% to 0.38%. After the March 2000 evaluation it was found that
using the 54k dictionary gave an OOV rate of 0.30% on eval00 com-
pared to 0.69% if the 27k dictionary had been used.

The use of the MSU Swb1 training transcriptions for language
modelling purposes raised certain issues. First, the average sentence
length was 11.3 words compared to 9.5 words on the LDC tran-
scripts that we previously used. This has the effect that LMs trained
on the MSU transcripts have a higher test-set perplexity which is
mainly due to the reduced probability of the sentence-end symbol.
Since it was not known if LDC-style or MSU-style training tran-
scripts would be more appropriate, both sets of data were used along
with the broadcast news data. Bigram, trigram and 4-gram LMs
were trained on each data set (LDC Hub5, MSU Hub5, BN) and
merged to form an effective 3-way interpolation. Furthermore, as
described in [6] a class-based trigram model using 400 automati-
cally generated word classes [12, 9] was built to smooth the merged
4-gram language model by a further interpolation step to form the
language model used in lattice rescoring.

9.3 Stages of Processing
The first three passes through the data (P1–P3) are used to generate
word lattices. First P1 (GI non-VTLN MLE triphones, trigram LM,
27k dictionary), generated an initial transcription. This P1 pass is
identical to the 1998 P1 setup [6]. The P1 output was used solely
for VTLN warp-factor generation and assignment of a gender la-
bel for each test conversation side. All subsequent passes used the
54k dictionary and VTLN-warped test data. Stage P2 used MMIE
GI triphones to generate the transcriptions for unsupervised test-set
MLLR adaptation [8, 3] with a 4-gram LM. A global transform3 for
the means (block-diagonal) and variances (diagonal) was computed
for each side. In stage P3, the actual word lattices were generated
using the adapted GI MMIE triphones and a bigram language model.
These lattices were expanded expanded to contain language model
probabilities generated by the interpolation of the word 4-gram and
the class trigram.

3A “global transform” denotes one transform for speech and a separate
transform for silence.



Subsequent passes rescored these lattices and operated in two
branches: a branch using GI MMIE trained models (branch “a”)
and a branch using GD, soft-tied, MLE models (branch “b”). Stage
P4a/P4b used triphone models with standard global MLLR, a FV
transform, pronunciation probabilities and confusion network de-
coding. The output of the respective branches served as the adapta-
tion supervision to stage P5a/P5b. These were as P4a/P4b but were
based on quinphone acoustic models. Finally for the MMIE branch
only, a pass with two MLLR transforms was run (P6a). The final
system word output and confidence scores was found by using CNC
with the confusion networks from P4a, P4b, P6a and P5b.

9.4 System Results on Eval98

Table 5 gives results for each processing stage for the 1998 evalua-
tion set. The large difference (6.8% absolute in WER) between the
P1 and P2 results is due to the combined effects of VTLN, MMIE
models on the new training set, the larger vocabulary and a 4-gram
LM. MLLR adaptation and the smoothing from a class LM results
in a further reduction in WER of 2.5% absolute. The second adapta-
tion stage which includes MLLR and a full variance transform (FV),
pronunciation probabilities and confusion network decoding reduces
the WER by a further 2.9% absolute (P4a), which is 0.8% absolute
better than the result of the corresponding MLE soft-tied GD tri-
phone models (P4b).

Stage Swbd2 CHE Total NCE

P1 47.0 51.6 49.3
P2 40.0 44.9 42.5
P3 37.5 42.4 40.0

P4a no FV/CN 36.2 41.4 38.8
P4a no CN 35.8 40.8 38.3

P4a 34.5 39.6 37.1 0.238
P4b no FV/CN 37.1 42.2 39.7

P4b no CN 36.8 41.3 39.0
P4b 35.5 40.3 37.9 0.235

P5a no CN 35.2 39.5 37.4
P5a 33.9 38.4 36.2 0.232

P5b no CN 35.6 40.7 38.1
P5b 34.5 39.5 37.0 0.229

P6a no CN 34.6 39.2 36.9
P6a 33.6 38.4 36.0 0.224

FINAL/ROVER 32.8 38.0 35.4
FINAL/CNC 32.5 37.4 35.0 0.225

Table 5: % WER and normalised cross entropy (NCE) values on
eval98 for all stages of the evaluation system. The final system out-
put is a combination of P4a,P4b,P6a and P5b. “no FV” denotes sys-
tem output without full variance transform. “no CN” denotes stan-
dard output rather than minimum word error rate output.

The use of quinphone models instead of triphone models gives
a further gain of 0.9% for both branches. Whereas the second adap-
tation stage with two speech transforms for the quinphone MMIE
models brings 0.5%, after obtaining CN output the difference is only
0.2%. The final result after 4-fold system combination is 35.0%.
This is an 11% reduction in WER relative to the CU-HTK evalua-
tion result obtained on the same data set in 1998 (39.5%).

Note that confusion network output consistently improves per-
formance by about 1% absolute and that combination of the 4 out-
puts using confusion network combination (CNC) is 0.4% absolute
better than using the ROVER approach. Then confidence scores
based on confusion networks give an improved normalised cross en-
tropy (NCE) of 0.225 compared to 0.145 from the 1998 CU-HTK
evaluation system which used N-best homogeneity based confidence
scores.

9.5 March 2000 Evaluation Data Results
Table 6 lists the evaluation system performance on the March 2000
evaluation set. The performance on eval00 gives a similar per stage
improvement to that obtained for eval98. However the absolute
WER levels are reduced by about 10% absolute.4

Stage Swbd2 CHE Total NCE

P1 31.7 45.4 38.6
P2 25.5 38.1 31.8
P3 22.9 35.7 29.3
P4a 20.9 33.5 27.2 0.294
P4b 21.9 33.7 27.8 0.287
P5a 20.3 32.7 26.6
P5b 21.0 32.8 26.9 0.292
P6a 20.3 32.6 26.5 0.284

P4b+P5b/CNC 20.6 32.4 26.5 0.285
P4a+P6a/CNC 19.5 31.7 25.6 0.278

P4a+P4b+P6a+P5b/CNC 19.3 31.4 25.4 0.271

Table 6: % WER and normalised cross entropy on eval00 for each
stage of the CU-HTK Hub5E 2000 evaluation system.

It was again found that there is a fairly consistent 1% absolute
reduction in WER from confusion networks. A contrast (not shown
in the table) showed that on P2 the use of MMIE models had given
a 2.1% absolute reduction in WER over the corresponding MLE
models. The combination P4a+P6a denotes a system where only
MMIE trained models have been used for decoding which yields a
result 0.9% absolute better than the corresponding MLE combina-
tion (P5b+P4b). However, the inclusion of the MLE system outputs
gives a 0.2% WER absolute improvement. The final error rate from
the system (25.4%) was lowest in the evaluation by a statistically
significant margin.

9.6 Pure MLE Contrast
A further run on eval98 was performed to investigate the effect of
using a combined MMIE/MLE system. For the results in Table 7,
MLE models were used to create the lattices and provide the adapta-
tion supervision (Pure MLE) rather than using MMIE based models
for P2/P3 and MMIE generated adaptation supervision for P4.

The pure MLE system (MLE models in P2/P3 and MLE lattices)
performs 2.1% absolute poorer than the MMIE system on P2. Com-
paring the performance of MLE models in P4b, they are 0.7% poorer
than in the eval setup (MLE models with MMIE lattices and adapta-
tion supervision) without confusion networks but only 0.3% poorer

4All participating sites found that the eval00 data was easier to recognise
than past Hub5 evaluation data sets.



Stage Evaluation Pure MLE

P2 42.5 44.6
P3 40.0 42.0

P4a 37.1 -
P4b no CN 39.0 39.7

P4b 37.9 38.2
P5a 36.2 -

P5b no CN 38.1 38.7
P5b 37.0 37.3

P4b+P5b 36.5 36.8
P6a 36.0 -

FINAL/CNC 35.0 35.0

Table 7: % WER on eval98 for the evaluation system and a com-
pletely separate MLE model-based (b) branch (pure MLE).

with confusion networks. An interesting result shows that although
the pure MLE branch is poorer than the mixed MMIE/MLE system
it is still able to contribute to the 4-way combination by the same
amount. Furthermore while the overall performance of the system
is significantly enhanced by the use of MMIE models, the complete
pure MLE system achieves a 36.8% WER on eval98.

10 CONCLUSIONS

This paper has discussed the substantial improvements in system
performance that have been made to our Hub5 transcription sys-
tem since the 1998 evaluation. The largest improvement stems from
MMIE HMM training, however the MLE model set in their current
configuration were shown to still work well. Confusion networks
were shown to consistently improve word error rates and yield im-
proved confidence scores. On the 1998 evaluation set a relative
reduction in word error rate of 11% was obtained. The system
presented here gave the lowest word error rate in the March 2000
Hub5E evaluation. While the overall system is complex, a much
simpler setup based on the first few passes of the full system also
gives competitive performance.
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